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Abstract
We propose a general formal model of isolated hierarchical parallel
computations, and identify several fragments to match the concur-
rency constructs present in real-world programming languages such
as Cilk and X10. By associating fundamental formal models (vector
addition systems with recursive transitions) to each fragment, we
provide a common platform for exposing the relative difficulties of
algorithmic reasoning. For each case we measure the complexity of
deciding state-reachability for finite-data recursive programs, and
propose algorithms for the decidable cases. The complexities which
include PTIME, NP, EXPSPACE, and 2EXPTIME contrast with un-
decidable state-reachability for recursive multi-threaded programs.

1. Introduction
Despite the ever-increasing importance of concurrent software
(e.g., for designing reactive applications, or parallelizing compu-
tation across multiple processor cores), concurrent programming
and concurrent program analysis remain challenging endeavors. The
most widely available facility for designing concurrent applications
is multithreading, where concurrently executing sequential threads
nondeterministically interleave their accesses to shared memory.
Such nondeterminism leads to rarely-occurring “Heisenbugs” which
are notoriously difficult to reproduce and repair. To prevent such
bugs programmers are faced with the difficult task of preventing
undesirable interleavings, e.g., by employing lock-based synchro-
nization, without preventing benign interleavings—otherwise the
desired reactivity or parallelism is forfeited.

The complexity of multi-threaded program analysis seems to
comply with the perceived difficulty of multi-threaded program-
ming. The state-reachability problem for multi-threaded programs is
PSPACE-complete [21] with a finite number of finite-state threads,
and undecidable [30] with recursive threads. Current analysis ap-
proaches either explore an underapproximate concurrent semantics
by considering relatively few interleavings [9, 22] or explore a
coarse overapproximate semantics via abstraction [13, 18].

Explicitly-parallel programming languages have been advocated
to avoid the intricate interleavings implicit in program syntax [24],
and several such industrial-strength languages have been devel-
oped [2, 5, 6, 17, 25, 31, 33]. Such systems introduce various mech-
anisms for creating (e.g., fork, spawn, post) and consuming
(e.g., join, sync) concurrent computations, and either encourage
(through recommended programming practices) or ensure (through
static analyses or runtime systems) that parallel computations ex-
ecute in isolation without interference from others, through data-
partitioning [6], data-replication [5], functional programming [17],
message passing [28], or version-based memory access models [33],
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0Proofs to technical results are contained in the appendices.

perhaps falling back on transactional mechanisms [23] when com-
plete isolation is impractical. Although few of these systems behave
deterministically, consuming one concurrent computation at a time,
many are sensitive to the order in which multiple isolated computa-
tions are consumed. Furthermore, some allow computations creating
an unbounded number of sub-computations, returning to their supe-
riors an unbounded number of handles to unfinished computations.
Even without multithreaded interleaving, nondeterminism in the or-
der in which an unbounded number of computations are consumed
has the potential to make program reasoning complex.

In this work we investigate key questions on the analysis of
interleaving-free programming models. Specifically, we ask to what
extent such models simplify program reasoning, how those models
compare with each other, and how to design appropriate analysis
algorithms. We attempt to answer these questions as follows:

• We introduce a general interleaving-free parallel programming
model on which to express the features found in popular parallel
programming languages (Section 2).
• We discover a surprisingly-complex feature of some existing lan-

guages: even simple classes of programs with the ability to pass
unfinished computations both to and from subordinate computa-
tions have undecidable state-reachability problems (Section 2.4).
• We show that the concurrency features present in many real-

world programming languages such as Cilk, X10, and Multilisp
are captured precisely (modulo the possibility of interleaving)
by various fragments of our model (Sections 4 and 6).
• For fragments corresponding to real-world language features,

we measure the complexity of computing state-reachability for
finite-data programs, and provide, in most cases, asymptotically
optimal state-reachability algorithms (Sections 5 and 7).

Our focus on finite-data programs without interleaving is a means
to measuring complexity for the sake of comparison, required since
state-reachability for infinite-data or multi-threaded programs is
generally undecidable. Applying our algorithms in practice may
rely on data abstraction [16], and separately ensuring isolation [23],
or approximating possible interleavings [9, 13, 18, 22]; still, our
handling of computation-order non-determinism is precise.

The major distinguishing language features are whether a single
or an arbitrary number of subordinate computations are waited for at
once, and whether the scope of subordinate computations is confined.
Generally speaking, reasoning for the “single-wait” case of Section 4
is less difficult than for the “multi-wait” case of Section 6, and we
demonstrate a range of complexities1 from PTIME, NP, EXPSPACE,
and 2EXPTIME for various scoping restrictions in Sections 5 and 7.
Despite these worst-case complexities, a promising line of work has

1In order to isolate concurrent complexity from the exponential factor in
the number of program variables, we consider a fixed number of variables
in each procedure frame; this allows us a PTIME point-of-reference for
state-reachability in recursive sequential programs [32].



P ::= ( proc p (var l: T) s )∗

s ::= s; s | l := e | skip | assume e
| if e then s else s | while e do s
| call l := p e | return e
| post r ← p e ~r d | ewait r | await r

Figure 1. The grammar of recursively parallel programs. Here
T is an unspecified type, p ranges over procedure names, e over
expressions, r over regions, and d over return-value handlers.

already demonstrated effective algorithms for practically-occurring
EXPSPACE-complete state-reachability problem instances based on
simultaneously computing iterative under- and over-approximations,
and rapidly converging to a fixed point [15, 19].

We thus present a classification of concurrency constructs, con-
necting programming language features to fundamental formal mod-
els, which highlight the sources of concurrent complexity resulting
from each feature, and provide a platform for comparing the diffi-
culty of formal reasoning in each. We hope that these results may
be used both to guide the design of impactful program analyses, as
well as to guide the design and choice of languages appropriate for
various programming problems.

2. Recursively Parallel Programs
We consider a simple concurrent programming model where com-
putations are hierarchically divided into isolated parallely executing
tasks. Each task executes sequentially while maintaining regions
(i.e., containers) of handles to other tasks. The initial task begins
without task handles. When a task t creates a subordinate (child) task
u, t stores the handle to u in one of its regions, at which point t and
u begin to execute in parallel. The task umay then recursively create
additional parallel tasks, storing their handles in its own regions. At
some later point when t requires the result computed by u, t must
await the completion of u—i.e., blocking until u has finished—at
which point t consumes its handle to u. When u does complete,
the value it returns is combined with the current state of t via a
programmer-supplied return-value handler. In addition to creating
and consuming subordinate tasks, tasks can transfer ownership of
their subordinate tasks to newly-created tasks—by initially passing
to the child a subset of task handles—and to their superiors upon
completion—by finally passing to the parent unconsumed tasks.

This model permits vastly concurrent executions. Each task along
with all the tasks it has created execute completely in parallel. As
tasks can create tasks recursively, the total number of concurrently
executing tasks has no bound, even when the number of handles
stored by each task is bounded.

2.1 Program Syntax
Let Procs be a set of procedure names, Vals a set of values,
Exprs a set of expressions, Regs a finite set of region identifiers,
and Rets ⊆ (Vals → Stmts) a set of return-value handlers.
The grammar of Figure 1 describes our language of recursively
parallel programs. We intentionally leave the syntax of expressions
e unspecified, though we do insist Vals contains true and false,
and Exprs contains Vals and the (nullary) choice operator ?. We
refer to the class of programs restricted to a finite set of values as
finite-value programs, and to the class of programs restricted to at
most n ∈ N (resp., 1) region identifiers as n-region (resp., single-
region) programs. A sequential program is a program without post,
ewait, and await statements.

Each program P declares a sequence of procedures named
p0 . . . pi ∈ Procs∗, each p having single type-T parameter l and a
top-level statement denoted sp; as statements are built inductively

by composition with control-flow statements, sp describes the entire
body of p. The set of program statements s is denoted Stmts.
Intuitively, a post r ← p e ~r d statement stores the handle
to a newly-created task executing procedure p in the region r;
besides the procedure argument e, the newly-created task is passed
a subset of the parent’s task handles in regions ~r, and a return-
value handler d. The ewait r statement blocks execution until
some task whose handle is stored in region r completes, at which
point its return-value handler is executed. Similarly, the await r
statement blocks execution until all tasks whose handles are stored
in region r complete, at which point all of their return-value handlers
are executed, in some order. We refer to the call, return, post,
ewait and await as inter-procedural statements, and the others as
intra-procedural statements, and insist that return-value handlers
are comprised only of intra-procedural statements. The assume e
statement proceeds only when e evaluates to true—we use this
statement in subsequent sections to block undesired executions in
our encodings of other parallel programming models.

Example 1. The Fibonacci function can be implemented as a single-
region recursively parallel program as follows.

proc fib (var n: N)
var sum: N
if n < 2 then

return 1
else

post r ← fib (n-1) ε (λv. sum := sum + v);
post r ← fib (n-2) ε (λv. sum := sum + v);
await r;
return sum

Alternate implementations are possible, e.g., by replacing the await
statement by two ewait statements, or storing the handles to the
recursive calls in separate regions. Note that in this implementation
task-handles are not passed to child tasks (ε specifies the empty
region sequence) nor to parent tasks (all handles are consumed by
the await statement before returning).

The programming language we consider is simple yet expressive,
since the syntax of types and expressions is left free, and we lose no
generality by considering only a single variable per procedure.

2.2 Parallel Semantics with Task-Passing
Unlike recursive sequential programs, whose semantics is defined
over stacks of procedure frames, the semantics of recursively parallel
programs is defined over trees of procedure frames. Intuitively, the
frame of each posted task becomes a child of the posting task’s
frame. Each step of execution proceeds either by making a single
intra-procedural step of some frame in the tree, creating a new frame
by posting a task, or removing a frame by consuming a completed
task; unconsumed sub-task frames of a completed task are added as
children to the completed task’s parent.

A task 〈`, s, d〉 is a valuation ` ∈ Vals to the procedure-local
variable l, along with a statement s to be executed, and a return-
value handler d ∈ Rets. (Here s describes the entire body of a
procedure p that remains to be executed, and is initially set to p’s
top-level statement sp.) A tree configuration c is a finite unordered
tree of task-labeled vertices and region-labeled edges, and the set
of configurations is denoted Configs. Let M[Configs] denote the set
of configuration multisets. We represent configurations inductively,
writing 〈t,m〉 for the tree with t-labeled root whose child sub-
trees are given by a region valuation m : Regs → M[Configs]:
for r ∈ Regs, the multiset m(r) specifies the collection of sub-
trees connected to the root of 〈t,m〉 by an r-edge. The initial
region valuation m∅ is defined by m∅(r)

def
= ∅ for all r ∈ Regs.

The singleton region valuation (r 7→ c) maps r to {c}, and r′ ∈
Regs \ {r} to ∅, and the union m1 ∪ m2 of region valuations is



defined by the multiset union of each valuation: (m1 ∪m2)(r)
def
=

m1(r) ∪m2(r) for all r ∈ Regs. The projection m |~r of a region
valuation m to a region sequence ~r is defined by m |~r(r

′) = m(r′)
when r′ occurs in ~r, and m |~r(r

′) = ∅ otherwise.
For expressions without program variables, we assume the

existence of an evaluation function J·Ke : Exprs → ℘(Vals) such
that J?Ke = Vals. For convenience, we define

e(〈`, s, d〉) def
= e(`)

def
= Je[`/l]Ke

—as l is the only variable, the expression e[`/l] has no free variables.
To reduce clutter and focus on the relevant parts of transition

rules in the program semantics, we introduce a notion of contexts.
A configuration context C is a tree with a single �-labeled leaf,
task-labeled vertices and leaves otherwise, and region-labeled edges.
We write C[c] for the configuration obtained by substituting a con-
figuration c for the unique �-labeled leaf of C. We use configuration
contexts to isolate individual task transitions, writing, for instance
C[〈t,m〉] → C[〈t′,m〉] to indicate an intra-procedural transition
of the task t. Similarly a statement context S = �; s1; . . . ; si is
a �-led sequence of statements, and we write S[s0] for the statement
obtained by substituting a statement s0 for the unique occurrence
of � as the first symbol of S, indicating that s0 is the next-to-be-
executed statement. A task-statement context T = 〈`, S, d〉 is a task
with a statement context S in place of a statement, and we write
T [s] to indicate that s is the next statement to be executed in the task
〈`, S[s] , d〉. Finally, we writeC[〈T [s1] ,m〉]→ C[〈T [s2] ,m′〉] to
denote a transition of a task executing a statement s1 and replacing
s1 by s2—normally s2 is the skip statement. Since the current
statement s of a task T [s] does not effect expression evaluation, we
liberally write e(T ) to denote the evaluation e(T [s]).

We say a task t = 〈`, S[s] , d〉 is completed when its next-to-
be-executed statement s is return e, in which case we define
rvh(t)

def
= {d(v) : v ∈ e(`)} as the set of possible return-value han-

dler statements for t; rvh(t) is undefined when t is not completed.
Figure 2 and Figure 3 define the transition relation →rpp/p

of recursively parallel programs as a set of operational steps on
configurations. The intra-procedural transitions→seq of individual
tasks in Figure 2 are standard. More interesting are the inter-
procedural transitions of Figure 3, which implicitly include a
transition C[〈t1,m〉] →rpp/p

P C[〈t2,m〉] whenever t1 →seq
P t2.

The POST-T rule creates a procedure frame to execute in parallel,
and links it to the current frame by the given region, passing
ownership of tasks in the specified region sequence to the newly-
created frame. The ∃WAIT-T rule consumes the result of a single
child frame in the given region, and applies the return-value handler
to update the parent frame’s local valuation. Similarly, the ∀WAIT-
NEXT-T and ∀WAIT-DONE-T rules consume the results of every
child frame in the given region, applying their return handlers in
the order they are consumed. The semantics of call statements
reduces to that of post and ewait: supposing an unused region
identifier rcall, we translate each statement call l := p e into
the sequence

post rcall ← p e ε dcall;
ewait rcall,

where dcall(v)
def
= l := v is the return-value handler which simply

writes the entire return value v into the local variable l, and ε
denotes an empty sequence of region identifiers.

A parallel execution of a program P (from c0 to cj) is a
configuration sequence c0c1 . . . cj where ci →rpp/p

P ci+1 for
0 ≤ i < j. An initial condition ι = 〈p0, `0〉 is a procedure
p0 ∈ Procs along with a value `0 ∈ Vals. A configuration
〈〈`0, s, d〉 ,m∅〉 is called 〈p0, `0〉-initial when s is the top-level
statement of p0. A configuration cf is called `f -final when there
exists a context C such that cf = C[〈t,m〉] and l(t) = `f . We say

POST-T
v ∈ e(T ) m′ = m \m |~r ∪

(
r 7→

〈
〈v, sp, d〉 ,m |~r

〉)
C[〈T [post r ← p e ~r d] ,m〉] rpp/p−−−−→

P
C
[〈
T [skip] ,m′

〉]
∃WAIT-T

m1 = (r 7→ 〈t2,m2〉) ∪m′1 s ∈ rvh(t2)

C[〈T1[ewait r] ,m1〉]
rpp/p−−−−→
P

C
[〈
T1[s] ,m′1 ∪m2

〉]
∀WAIT-NEXT-T

m1 = (r 7→ 〈t2,m2〉) ∪m′1 s ∈ rvh(t2)

C[〈T1[await r] ,m1〉]
rpp/p−−−−→
P

C
[〈
T1[s; await r] ,m′1 ∪m2

〉]
∀WAIT-DONE-T

m(r) = ∅

C[〈T [await r] ,m〉] rpp/p−−−−→
P

C[〈T [skip] ,m〉]

Figure 3. The tree-based transition relation for parallely-executing
recursively parallel programs with task-passing.

a valuation ` is reachable in P from ι when there exists an execution
of P from some c0 to cf , where c0 is ι-initial and cf is `-final.

Problem 1 (State-Reachability). The state-reachability problem is
to determine, given an initial condition ι of a program P and a
valuation `, whether ` is reachable in P from ι.

2.3 Sequential Semantics with Task-Passing
Since tasks only exchange values at creation and completion-time,
the order in which concurrently-executing tasks make execution
steps does not affect computed program values. In this section we
leverage this fact and focus on a particular execution order in which
at any moment only a single task is enabled. When the currently
enabled task encounters and ewait/await statement, suspending
execution to wait for a subordinate task t, t becomes the currently-
enabled task; when t completes, control returns to its waiting parent.
At any moment only the tasks along one path ρ in the configuration
tree have ever been enabled, and all but the last task in ρ are waiting
for their child in ρ to complete. We encode this execution order into
an equivalent stack-based operational semantics, which essentially
transforms recursively parallel programs into sequential programs
with an unbounded auxiliary storage device used to store subordinate
tasks. We interpret the ewait and await statements as procedure
calls which compute the values returned by previously-posted tasks.

We define a frame to be a configuration in the sense of the
tree-based semantics of Section 2.2, i.e., a finite unordered tree of
task-labeled vertices and region-labeled edges. (Here all non-root
nodes in the tree are posted tasks that have yet to take a single step
of execution.) In our stack-based semantics, a stack configuration c
is a sequence of frames, representing a procedure activation stack.

Figures 2 and 4 define the sequential transition relation→rpp/s

of recursively parallel programs as a set of operational steps on con-
figurations. The inter-procedural transitions of Figure 4 implicitly in-
clude a transition 〈t1,m〉 c→rpp/s

P 〈t2,m〉 c whenever t1 →seq
P t2.

Interesting here are the rules for ewait and await. The ∃WAIT-
S rule blocks the currently executing frame to obtain the result
for a single, nondeterministically chosen, frame c0 in the given re-
gion, by pushing c0 onto the activation stack. Similarly, the ∀WAIT-
NEXT-S and ∀WAIT-DONE-S rules block the currently executing
frame to obtain the results for every task in the given region, in a
nondeterministically-chosen order. Finally, the RETURN-S applies
a completed task’s return-value handler to update the parent frame’s



SKIP

T [skip; s]
seq−−→
P

T [s]

ASSUME
true ∈ e(T )

T [assume e]
seq−−→
P

T [skip]

IF-THEN
true ∈ e(T )

T [if e then s1 else s2]
seq−−→
P

T [s1]

IF-ELSE
false ∈ e(T )

T [if e then s1 else s2]
seq−−→
P

T [s2]

ASSIGN
`′ ∈ e(`)

〈`, S[l := e], d〉 seq−−→
P

〈
`′, S[skip], d

〉
LOOP-DO

true ∈ e(T )

T [while e do s]
seq−−→
P

T [s; while e do s]

LOOP-END
false ∈ e(T )

T [while e do s]
seq−−→
P

T [skip]

Figure 2. The intra-procedural transition relation for recursively parallel programs.

POST-S
v ∈ e(T ) m′ = m \m |~r ∪

(
r 7→

〈
〈v, sp, d〉 ,m |~r

〉)
〈T [post r ← p e ~r d] ,m〉 c rpp/s−−−−→

P

〈
T [skip] ,m′

〉
c

∃WAIT-S
m = (r 7→ c0) ∪m′

〈T [ewait r] ,m〉 c rpp/s−−−−→
P

c0
〈
T [skip] ,m′

〉
c

∀WAIT-NEXT-S
m = (r 7→ c0) ∪m′

〈T [await r] ,m〉 c rpp/s−−−−→
P

c0
〈
T [skip; await r] ,m′

〉
c

∀WAIT-DONE-S
m(r) = ∅

〈T [await r] ,m〉 c rpp/s−−−−→
P

〈T [skip] ,m〉 c

RETURN-S
s ∈ rvh(t1)

〈t1,m1〉 〈T2[skip] ,m2〉 c
rpp/s−−−−→
P

〈T2[s] ,m1 ∪m2〉 c

Figure 4. The stack-based transition relation for sequentially-
executing recursively parallel programs with task-passing.

local valuation. The definitions of sequential execution, initial, and
reachable are nearly identical to their parallel counterparts.

Lemma 1. The parallel semantics and the sequential semantics
are indistinguishable w.r.t. state reachability, i.e., for all initial
conditions ι of a program P , the valuation ` is reachable in P from
ι by a parallel execution if and only if ` is reachable in P from ι by
a sequential execution.

2.4 Undecidability of State-Reachability with Task-Passing
Recursively parallel programs allow pending tasks to be passed bidi-
rectionally: both from completed tasks and to newly-created tasks.
This capability makes the state-reachability problem undecidable—
even for the very simple cases recursive programs with at least one
region, and for non-recursive programs with at least two regions.
Essentially, when pending tasks can be passed to newly-created
tasks, it becomes possible to construct and manipulate unbounded
task-chains by keeping a handle to most-recently created task, after
having passed the handle of the previously-most-recently created
task to the most-recently created task. We can then show that such
unbounded chains of pending tasks can be used to simulate an arbi-
trary unbounded and ordered storage device.

Definition 1 (Task passing). A program which contains a statement
post r ← p e ~r d, such that |~r| > 0 is called task-passing.

The task-depth of a program P is the maximum length of a
sequence p1 . . . pi of procedures in P such that each pj contains a
statement post r ← pi+j e ~r d, for 0 < j < i, and some r ∈ Regs,
e ∈ Exprs, ~r ∈ Regs∗, and d ∈ Rets. Programs with unbounded
task-depth are recursive, and are otherwise non-recrusive.

Theorem 1. The state-reachability problem for n-region finite-
value task-passing parallel programs is undecidable for

(a) non-recursive programs with n > 1, and
(b) recursive programs with n > 0.

The proof of Theorem 1 is given by two separate reductions
from the emptiness problem for Turing machines to “single-wait”
programs, i.e., those using ewait statements but not await state-
ments. In essence, as each task-handle can point to an unbounded
chain of task-handles, we can construct an unbounded Turing ma-
chine tape by using one task-chain to store the contents of cells to
the left of the tape head, and another chain to store the contents
of cells to the right of the tape head. If only one region is granted
but recursion is allowed (i.e., as in (b)), we can still construct the
tape using the task-chain for the cells right of the tape head, while
using the (unbounded) procedure-stack to store the cells left of the
head. When only one region is granted and recursion is not allowed,
neither of these reductions work. Without recursion we can bound
the procedure stack, and then we can show that single-stack machine
suffices to encode the single unbounded chain of tasks.

3. Programs without Task Passing
Due to the undecidability result of Theorem 1 and our desire to
compare the analysis complexities of parallel programming mod-
els, we consider, henceforth, unless otherwise specified, only non-
task-passing programs, simplifying program syntax by writing
post r ← p e d. When task-passing is not allowed, region valu-
ations need not store an entire configuration for each newly-posted
task, since the posted task’s initial region valuation is empty. As
this represents a significant simplification on which our subsequent
analysis results rely, we redefine here a few key notions.

3.1 Sequential Semantics without Task-Passing
A region valuation is a (non-nested) mapping m : Regs →
M[Tasks] from regions to multisets of tasks, a frame 〈t,m〉 is a task
t ∈ Tasks paired with a region valuation m, and a configuration c
is a sequence of frames representing a procedure activation stack.
The transition relation→rpp of Figures 2 and 5 implicitly include
a transition 〈t1,m〉 c →rpp

P 〈t2,m〉 c whenever t1 →seq
P t2. The

definitions of sequential execution, initial, and reachable are nearly
identical to their task-passing parallel and sequential counterparts.
Since pending tasks need not store initial region-valuations in non-
task-passing programs, this simpler semantics is equivalent to the
previous stack-based semantics.

Lemma 2. For all initial conditions ι non-task-passing programs
P , the valuation ` is reachable in P from ι by a sequential execution



POST
v ∈ e(T ) m′ = m ∪ (r 7→ 〈v, sp, d〉)

〈T [post r ← p e d] ,m〉 c rpp−−→
P

〈
T [skip] ,m′

〉
c

∃WAIT
m = (r 7→ t2) ∪m′

〈T1[ewait r] ,m〉 c rpp−−→
P
〈t2, ∅〉

〈
T1[skip] ,m′

〉
c

∀WAIT-NEXT
m = (r 7→ t2) ∪m′

〈T1[await r] ,m〉 c rpp−−→
P
〈t2, ∅〉

〈
T1[skip; await r] ,m′

〉
c

∀WAIT-DONE
m(r) = ∅

〈T [await r] ,m〉 c rpp−−→
P
〈T [skip] ,m〉 c

RETURN
s ∈ rvh(t1)

〈t1,m1〉 〈T2[skip] ,m2〉 c
rpp−−→
P
〈T2[s] ,m1 ∪m2〉 c

Figure 5. The stack-based transition relation for sequentially-
executing recursively parallel programs without task-passing.

with task-passing if and only if ` is reachable in P from ι by a
sequential execution without task-passing.

Even with this simplification, we do not presently know whether
the state-reachability problem for (finite-value) recursively parallel
programs is decidable in general. In the following sections, we iden-
tify several decidable, and in some cases tractable, restrictions to the
program model which correspond to the concurrency mechanisms
found in real-world parallel programming languages.

3.2 Recursive Vector Addition Systems with Zero-Test Edges
Fix k ∈ N. A recursive vector addition system (RVASS)A = 〈Q, δ〉
of dimension k is a finite set Q of states, along with a finite set
δ = δ1 ] δ2 ] δ3 of transitions partitioned into additive transitions
δ1 ⊂ Q×Nk×Nk×Q, recursive transitions δ2 ⊆ Q×Q×Q×Q,
and zero-test transitions δ3 ⊆ Q×Q. We write

q
~n1~n2
↪−→q′ when

〈
q, ~n1, ~n2, q

′〉 ∈ δ1, and

q
q1q2
↪−→q′ when

〈
q, q1, q2, q

′〉 ∈ δ2.
q↪→q′ when

〈
q, q′

〉
∈ δ3.

A (non-recursive) vector addition system (with states) (VASS) is a
recursive vector addition system 〈Q, δ〉 such that δ contains only
additive transitions.

An (RVASS) frame 〈q, ~n〉 is a state q ∈ Q along with a vector
~n ∈ Nk, and an (RVASS) configuration c ∈ (Q × Nk)+ is a non-
empty sequence of frames representing a stack of non-recursive
sub-computations. The transition relation→rvas for recursive vector
addition systems is defined in Figure 6. The ADDITIVE rule updates
the top frame 〈q, ~n〉 by subtracting the vector ~n1 from ~n, adding
the vector ~n2 to the result, and updating the control state to q′. The
CALL rule pushes on the frame-stack a new frame 〈q1,0〉 from
which the RETURN rule will eventually pop at some point when the
control state is q2; when this happens, the vector ~n1 of the popped
frame is added to the vector ~n2 of the frame below. We describe an
application of the CALL (resp., RETURN) rule as a call (resp., return)
transition. Finally, the ZERO rule proceeds only when the top-most
frame’s vector equals 0.

An execution of a RVASS A (from c0 to cj) is a configuration
sequence c0c1 . . . cj where ci →rvas ci+1 for 0 ≤ i < j. A
configuration 〈q, ~n〉 is called q0-initial when q = q0 and ~n = 0,
and a configuration cf is called qf -final when cf = 〈qf , ~n〉 c for
some configuration c and ~n ∈ Nk. We say a state qf is reachable
in A from q0 when there exists an execution of A from some
q0-initial configuration c0 to some qf -final configuration cf . The
state-reachability problem for recursive vector addition systems is
to determine whether a given state q is reachable from some q0.

Recently Demri et al. [8] have proved that state-reachability in
branching vector addition systems (BVAS)—a very similar formal
model to which RVASS reduces—is in 2EXPTIME. This immedi-
ately gives us an upper-bound on computing state-reachability in
RVASS without zero-test edges. Though state-reachability in non-
recursive systems is EXPSPACE-complete [26, 29], for the moment,
we do not know matching upper and lower bounds for RVASS.

Lemma 3. The state-reachability problem for recursive (resp., non-
recursive) vector addition systems without zero-test edges is
EXPSPACE-hard, and in 2EXPTIME (resp., EXPSPACE).

3.3 Encoding Recursively Parallel Programs as RVASSs
When the value set Vals of a given program P is taken to be
finite, the set Tasks also becomes finite since there are finitely
many statements and return-value handlers occurring in P . As finite-
domain multisets are equivalently encoded with a finite number of
counters (i.e., one counter per element), we can encode each region
valuation m ∈ Regs→ M[Tasks] by a vector ~n ∈ Nk of counters,
where k = |Regs× Tasks|. To clarify the correspondence, we fix an
enumeration cn : Regs× Tasks→ {1, . . . , k}, and associate each
region valuation m with a vector ~n such that for all r ∈ Regs and
t ∈ Tasks, m(r)(t) = ~n(cn(r, t)). Let ~ni denote the unit vector of
dimension i, i.e., ~ni(i) = 1 and ~ni(j) = 0 for j 6= i.

Given a finite-data recursively parallel program P without task-
passing, we associate a corresponding recursive vector addition
system AP = 〈Q, δ〉. We define Q def

= Tasks ∪ Tasks3, and
define δ formally in Figure 7. Intra-procedural transitions translate
directly to additive transitions. The call statements are handled
by recursive transitions between entry and exit points t0 and tf of
the called procedure. The post statements are handled by additive
transitions that increment the counter corresponding to a region-task
pair. The ewait statements are handled in two steps: first an additive
transition decrements the counter corresponding to region-task pair
〈r, t0〉, then a recursive transition between entry and exit points t0
and tf of the corresponding procedure is made, applying the return-
value handler of tf upon the return. (Here we use an intermediate
state 〈T [skip] , t0, tf 〉 ∈ Q to connect the two transitions, in order
to differentiate the intermediate steps of other ewait transitions.)
The await statements are handled similarly, except the await
statement must be repeated again upon the return. Finally, a zero-test
transition allows AP to eventually step past each await statement.

Notice that ignoring intermediate states 〈t1, t2, t3〉 ∈ Q, the
frames 〈t, ~n〉 of AP correspond directly to frames 〈t,m〉 of the
given program P , given the correspondence between vectors and
region valuations. This correspondence between frames indeed
extends to configurations, and ultimately to the state-reachability
problems between AP and P .

Lemma 4. For all programs P without task-passing, procedures
p0 ∈ Procs, and values `0, ` ∈ Vals, ` is reachable from 〈`0, p0〉
in P if and only if there exist s ∈ Stmts and d0, d ∈ Rets such that
〈`, s, d〉 is reachable from 〈`0, sp0 , d0〉 in AP .

Our analysis algorithms in the following sections use Lemma 4
to compute state-reachability of a program P without task-passing
by computing state-reachability on the corresponding RVASS AP .



ADDITIVE

q
~n1~n2
↪−→ q′ ~n ≥ ~n1

〈q, ~n〉 c rvas−−−→
〈
q′, ~n	 ~n1 ⊕ ~n2

〉
c

CALL

q
q1q2
↪−→q′

〈q, ~n〉 c rvas−−−→ 〈q1,0〉 〈q, ~n〉 c

RETURN

q
q1q2
↪−→q′

〈q2, ~n1〉 〈q, ~n2〉 c
rvas−−−→

〈
q′, ~n1 ⊕ ~n2

〉
c

ZERO
q↪→q′

〈q,0〉 c rvas−−−→
〈
q′,0

〉
c

Figure 6. The transition relation for recursive vector addition systems. To simplify presentation, we assume that there is at most one recursive
transition originating from each state, i.e., for all q ∈ Q,

∣∣δ2 ∩ ({q} ×Q3)
∣∣ ≤ 1. We denote by 0 the vector 〈0, 0, . . . , 0〉, and by ⊕ and 	

the usual vector addition and subtraction operators.

v0 ∈ e(T ) i = cn(r, 〈v0, sp, d〉)

T [post r ← p e d]
0~ni
↪−→T [skip]

T [await r] ↪−→T [skip]

v0 ∈ e(T ) t0 = 〈v0, sp, dcall〉 (l := vf ) ∈ rvh(tf )

T [call l := p e]
t0tf
↪−→T

[
l := vf

]
t1

seq−−→
P

t2

t1
00
↪−→t2

i = cn(r, t0) s ∈ rvh(tf )

T [ewait r]
~ni0
↪−→

〈
T [skip] , t0, tf

〉 t0tf
↪−→T [s]

i = cn(r, t0) s ∈ rvh(tf )

T [await r]
~ni0
↪−→

〈
T [skip] , t0, tf

〉 t0tf
↪−→T [s; await r]

Figure 7. The transitions of the RVASS AP encoding the behavior
of a finite-data recursively parallel program P .

In general, our algorithms compute sets of region valuation vectors

sms(t0, tf , P )
def
= {~n : 〈t0,0〉

rvas−−→
AP

∗ 〈tf , ~n〉},

summarizing the execution of a procedure between an entry point t0
and exit point tf , where we write→rvas

AP
∗ to denote zero or more

applications of→rvas
AP

. Given an effective way to compute such a
function, we could systematically replace inter-procedural program
steps (i.e., of the call, ewait, and await statements) with intra-
procedural edges performing their net effect. Note however that even
if the set of tasks is finite, the set sms(t0, tf ,AP ) of summaries
between t0 and tf need not be finite; the ability to compute this
set is thus the key to our summarization-based algorithms in the
following sections.

4. Single-Wait Programs
Definition 2 (Single wait). A single-wait program is a program
which does not contain the await statement.

Single-wait programs can wait only for a single pending task at
any program point. Many parallel programming constructs can be
modeled as single-wait programs.

4.1 Parallel Programming with Futures
The future annotation of Multilisp [17] has become a widely
adopted parallel programming construct, included, for example,
in X10 [6] and in Leijen et al. [25]’s task parallel library. Flanagan
and Felleisen [12] provide a principled description of its semantics.
The future construct leverages the procedural program structure
for parallelism, essentially adding a “lazy” procedure call which
immediately returns control to the caller with a placeholder for a
value that may not yet have been computed, along with an operation
for ensuring that a given placeholder has been filled in with a
computed value. Syntactically, futures add two statements,

future x := p e touch x,

where x ranges over program variables, p ∈ Procs, and e ∈ Exprs.
Though it is not necessarily present in the syntax of a source
language with futures, we assume every use of a variable assigned
by a future statement is explicitly preceded by a touch statement.
Semantically, the future statement creates a new process in which
to execute the given procedure, which proceeds to execute in parallel
with the caller—and all other processes created in this way. The
touch statement on a variable x blocks execution of the current
procedure until the future procedure call which assigned to x
completes, returning a value with which is copied into x. Even
though each procedure can only spawn a bounded number of parallel
processes—i.e., one per program variable—there is in general no
bound on the total number of parallelly-executing processes, since
procedure calls—even parallel ones—are recursive.

Example 2. The Fibonacci function can be implemented as a
parallel algorithm using futures as follows.

proc fib (var n: N)
var x, y: N
if n < 2 then

return 1
else

future x := fib (n-1);
future y := fib (n-2);
touch x;
touch y;
return x + y

As opposed to the usual (naı̈ve) sequential implementation operating
in time O(n2), this parallel implementation runs in time O(n).

The semantics of futures is readily expressed with task-passing
programs using the post and ewait statements. Assuming a region
identifier rx and return handler dx for each program variable x, we
encode

future x := p e as post rx ← p e ~r dx

touch x as ewait rx

where dx(v)
def
= x := v simply assigns the return value v to the

variable x, and the vector ~r contains each ry such that the variable
y appears in e.

4.2 Parallel Programming with Revisions
Burckhardt et al. [5]’s revisions model of concurrent programming
proposes a mechanism analogous to (software) version control
systems such as CVS and subversion, which promises to naturally
and easily parallize sequential code in order to take advantage
of multiple computing cores. There, each sequentially executing
process is referred to as a revision. A revision can branch into
two revisions, each continuing to execute in parallel on their own
separate copies of data, or merge a previously-created revision,
provided a programmer-defined merge function to mitigate the
updates to data which each have performed. Syntactically, revisions
add two statements,

x := rfork s join x,



where x ranges over program variables, and s ∈ Stmts. Seman-
tically, the rfork statement creates a new process to execute the
given statement, which proceeds to execute in parallel with the
invoker—and all other processes created in this way. The assign-
ment stores a handle to the newly-created revision in a revision
variable x. The join statement on a revision variable x blocks
execution of the current revision until the revision whose handle
is stored in x completes; at that point the current revision’s data
is updated according to a programmer-supplied merge function
m : (Vals×Vals×Vals)→ Vals: when v0, v1 are, resp., the initial
and final data values of the merged revision, and v2 is the current
data value of the current revision, the current revisions data value is
updated to m(v0, v1, v2).

The semantics of revisions is readily expressed with task-passing
programs using the post and ewait statements. Assuming a region
identifier rx for each program variable x, and a programmer-
supplied merge function m, we encode

x := rfork s as post rx ← ps l ~r d

join x as ewait rx

where ps is a procedure declared as

proc ps (var l: T)
var l0 := l
s;
return (l0,l)

and d(〈v0, v1〉)
def
= l := m(v0,l,v1) updates the current local

valuation based on the joined revision’s initial and final valuations
v0, v1 ∈ Vals, and the joining revision’s current local valuation
stored in l. The vector ~r contains each ry for which the revision
variable y is accessed in s.2

4.3 Programming with Asynchronous Procedures
Asynchronous programs [14, 19, 34] are becoming widely-used
to build reactive systems, such as device drivers, web servers, and
graphical user interfaces, with low-latency requirements. Essentially,
a program is made up of a collection of short-lived tasks running one-
by-one and accessing a global store, which post other tasks to be run
at some later time. Tasks are initially posted by an initial procedure,
and may also be generated by external system events. An event loop
repeatedly chooses a pending task from its collection to execute
to completion, adding the tasks it posts back to the task collection.
Syntactically, asynchronous programs add two statements,

async p e eventloop

such that eventloop is invoked only once as the last statement of
the initial procedure. Semantically, the async statement initializes a
procedure call and returns control immediately, without waiting for
the call to return. The eventloop statement repeatedly dispatches
pending—i.e., called but not yet returned—procedures, and execut-
ing them to completion; each procedure executes atomically making
both synchronous calls, as well as an unbounded number of addi-
tional asynchronous procedure calls. The order in which procedure
calls are dispatched is chosen non-deterministically.

We encode asynchronous programs as (non-deterministic) re-
cursively parallel programs using the post and ewait statements.
Assuming a single region identifier r0, we encode

async p e as post r0 ← p′ e d

eventloop as while true do ewait r0 .

2Actually ~r must in general be chosen non-deterministically, as each revision
handle may be joined either by the parent revision or its branch.

Supposing p has top-level statement s accessing a shared global
variable g (besides the procedure parameter l), we declare p′ as

proc p′ (var l: T)
var g0 := ?
var g := g0

s; return (g0,g).

Finally d(〈v0, v1〉)
def
= assume l = v0; l := v1 models the

atomic update p performs from an initial (guessed) shared global
valuation v0. Guessing allows us to simulate the communication of
a shared global state g, which is later ensured to have begun with
v0, which the previously-executed asynchronous task had written.

5. Single-Wait Analysis
The absence of await edges in a program P implies the absence of
zero-test transitions in the corresponding recursive vector addition
system AP . To compute state-reachability in P via procedure
summarization, we must summarize the recursive transitions of
AP by additive transitions (in a non-recursive system) accounting
for the left-over pending tasks returned by reach procedure. This
is not trivial in general, since the space of possibly returned region
valuations is infinite. In increasing difficulty, we isolate three special
cases of single-wait programs, whose analysis problems are simpler
than the general case. In the simplest “non-aliasing” case where
the number of tasks stored in each region of a procedure frame is
limited to one, the execution of ewait statements are deterministic.
When the number of tasks stored in each region is not limited to one,
non-determinism arises from the choice of which completed task to
pick at each ewait statement (see the ∃WAIT rule of Figure 5). This
added power makes the state-reachability problem at least as hard
as state-reachability in vector addition systems—i.e., EXPSPACE-
hard, though the precise complexity depends on the scope of pending
tasks. After examining the PTIME-complete non-aliasing case, we
examine two EXPSPACE-complete cases by restricting the scope of
task handles, before moving to the general case.

5.1 Single-Wait Analysis without Aliasing
Many parallel programming languages consume only the compu-
tations of precisely-addressed tasks. In futures, for example, the
touch x statement applies to the return value of a particular
procedure—the last one whose future result was assigned to x.
Similarly, in revisions, the join x statement applies to the last
revision whose handle was stored in x. Indeed in the single-wait
program semantics of each case, we are guaranteed that the corre-
sponding region, rx, contains at most one task handle. Thus the
non-determinism arising (from choosing between tasks in a given
region) in the ∃WAIT rule of Figure 3 disappears. Though both fu-
tures and revisions allow task-passing, the following results apply
to futures- and revisions-based programs which only pass pending
tasks from child to parent.

Definition 3 (Non aliasing). We say a region r ∈ Regs is aliased
in a region valuation m : Regs → M[Tasks] when |m(r)| > 1.
We say r is aliasing in a program P if there exists a reachable
configuration C[〈t,m〉] of P in which r is aliased in m. A non-
aliasing program is a program in which no region is aliasing.

Note that the set of non-aliasing region valuations is finite when
the number of program values is. The non-aliasing restriction thus
allow us immediately to reduce the state-reachability problem for
single-wait programs to reachability in a recursive finite-data sequen-
tial program. To compute state-reachability we consider a sequence
A0A1 . . . of finite-state systems iteratively under-approximating the
recursive system AP given from a single-wait program P . Initially,
A0 has only the transitions ofAP corresponding to intra-procedural
and post transitions of P . At each step i > 0, we add to Ai an



additive edge summarizing an ewait transition

T [ewait r]
~nj~n
↪−→T [s] ,

for some t0, tf ∈ Tasks such that j = cn(r, t0), s ∈ rvh(tf ), and
~n is reachable at tf from t0 in Ai−1, i.e., ~n ∈ sms(t0, tf ,Ai−1).
This A0A1 . . . sequence is guaranteed to reach a fixed-point Ak,
since the set of non-aliasing region valuation vectors, and thus the
number of possibly added edges, is finite. Furthermore, as each Ai
is finite-state, only finite-state reachability queries are needed to
determine the reachable states of Ak, which are precisely the same
reachable states of AP . Note that the number of region valuations
grows exponentially in the number of regions.

Theorem 2. The state-reachability problem for non-aliasing single-
wait finite-value programs is PTIME-complete for a fixed number of
regions, and EXPTIME-complete in the number of regions.

5.2 Local-Scope Single-Wait Analysis
Definition 4 (Local scope). A local-scope program is a program in
which tasks only return with empty region valuations; i.e., for all
reachable configurations C[〈t[return e] ,m〉] we have m = m∅.

To solve state-reachability in local-scope single-wait programs,
we compute a sequence A0A1 . . . of non-recursive vector addition
systems iteratively under-approximating the recursive system AP
arising from a program P . The initial system A0 has only the
transitions of AP corresponding to intra-procedural and post
transitions of P . At each step i > 0, we add to Ai an additive
edge summarizing an ewait transition

T [ewait r]
~nj0
↪−→T [s]

for some t0, tf ∈ Tasks such that j = cn(r, t0), s ∈ rvh(tf ), and
~n ∈ sms(t0, tf ,Ai−1); since P is local-scope, every such ~n must
equal 0. Since the number of possibly added edges is polynomial
in P , the A0A1 sequence is guaranteed to reach in a polynomial
number of steps a fixed-pointAk whose reachable states are exactly
those of AP . The entire procedure is EXPSPACE-complete, since
each procedure-summarization reachability query is equivalent to
computing state-reachability in vector addition systems.

Theorem 3. The state-reachability problem for local-scope single-
wait finite-value programs is EXPSPACE-complete.

5.3 Global-Scope Single-Wait Analysis
Another relatively simple case of interest is when pending tasks are
allowed to leave the scope in which they are posted, but can only be
consumed by a particular, statically declared, task in an enclosing
scope. This is the case, for example, in asynchronous programs [34],
though here we allow for slightly more generality, since tasks can
be posted to multiple regions, and arbitrary control in the initial
procedure frame is allowed.

Definition 5 (Global scope). A global-scope programs is a program
in which the ewait (and await) statements are used only in the
initial procedure frame.

Since each non-initial procedure p of a global-scope program can-
not consume tasks, the set of tasks posted by p and recursively-called
procedures along any execution from t0 to tf is a semi-linear set,
described by the Parikh-image3 of a context-free language. Follow-
ing Ganty and Majumdar [14]’s approach, for each t0, tf ∈ Tasks
we construct a polynomial-sized vector addition system A(t0, tf )

3The Parikh-image of a word w over an alphabet Σ is the |Σ|-dimension
vector of integers counting the number of occurrences of each symbol of Σ
in w. The image of a language is the set of images of its elements.

characterizing this semi-linear set of tasks (recursively) posted be-
tween t0 and tf . Then, we use each A(t0, tf ) as a component of a
non-recursive vector addition system A′P representing execution of
the initial frame. In particular, A′P contains transitions to and from
the component A(t0, tf ) for each t0, tf ∈ Tasks,

T [ewait r]
~nj0
↪−→ 〈q0, T [skip]〉 〈qf , T [skip]〉 00

↪−→T [s] ,

for all r ∈ Regs such that j = cn(r, t0), s ∈ rvh(tf ), and q0
and qf are the initial and final states of A(t0, tf ). We assume each
A(t0, tf ) has unique initial and final states, distinct from the states
of other components A(t′0, t

′
f ). In order to transition to the correct

state T [s] upon completion, A(t0, tf ) carries an auxiliary state-
component T [skip]. In this way, for each task t′ posted to region r′

in an execution between t0 and tf , the component A(t0, tf ) does
the incrementing of the cn(r′, t′)-component of the region-valuation
vector. As each of the polynomially-many components A(t0, tf )
are constructed in polynomial time [14], this method constructs A′P
in polynomial time. Thus state-reachability in P is computed by
state-reachability in the non-recursive vector addition systemA′P , in
exponential space. The complexity is asymptotically optimal since
global-scope single-wait programs are powerful enough to capture
state-reachability in vector addition systems.

Theorem 4. The state-reachability problem for global-scope single-
wait finite-value programs is EXPSPACE-complete.

5.4 The General Case of Single-Wait Analysis
In general, the state-reachability problem for finite-value single-wait
programs is as hard as state-reachability in recursive vector addition
systems without zero-test edges.

Theorem 5. The state-reachability problem for single-wait finite-
value programs is EXPSPACE-hard, and in 2EXPTIME.

Demri et al. [8]’s proof of membership in 2EXPTIME relies
on a non-deterministically chosen reachability witness without
materializing a practical algorithm for the search of said witness.
Here we give a summarization-based algorithm.

To compute state-reachability we consider again a sequence
A0A1 . . . of non-recursive vector addition systems successively
under-approximating the recursive system AP of a single-wait pro-
gram P . Initially A0 has only the transitions of AP corresponding
to intra-procedural and post transitions of P . At each step i > 0,
we add to Ai an additive edge summarizing an ewait transition

T [ewait r]
~nj~n
↪−→T [s] ,

for some t0, tf ∈ Tasks such that j = cn(r, t0), s ∈ rvh(tf ),
and ~n ∈ sms(t0, tf ,Ai−1). Even though the set of possible added
additive edges summarizing recursive transitions is infinite, with
careful analysis we can show that this very simple algorithm
terminates, provided we can bound the edge-labels ~n needed to
compute state-reachability in AP . It turns out we can bound these
edge labels, by realizing that the minimal vectors required to reach
a target state from any given program location are bounded.

We adopt an approach based on iteratively applying backward
reachability analyses in order to determine for each task t the set of
vectors η(t) needed to reach the target state inAP . Let us first recall
some useful basic facts. Vector addition systems are monotonic
w.r.t. the natural ordering on vectors of integers, i.e., if a transition is
possible from a vector v, it is also possible from any u greater than v.
The ordering on vectors of integers is a well quasi-ordering (WQO),
i.e., in every sequence of vectors v0, v1, . . ., there are two indices
i < j such that vi is less or equal than vj . Thus, every infinite set of
vectors has a finite number of minimals. A set of vectors is upward
closed if whenever it contains v it also contains all vectors greater
than v. Such a set can be characterized by its minimals. Moreover,



the set of all predecessors in a vector addition system of an upward
closed set of vectors is also upward closed; and therefore backward
reachability analysis in these systems always terminates starting
from an upward closed set [1, 11].

We observe that for every task t, the set η(t) is upward closed (by
monotonicity), and therefore we need only determine its minimals.
However, since our model is recursive vector addition systems,
we must solve several state-reachability queries on a sequence of
vector addition systems with increasingly more transitions, which
necessarily stabilizes. We elaborate below.

First, in order to reason backward about executions to the
target state, consider the non-recursive system A′i obtained by
adding “return” transitions tf

00
↪→T [s] from every procedure exit

point tf = Tf [return e] and procedure return point T [ewait e]
occurring in P such that s ∈ rvh(tf ). These extra transitions in A′i
simulate a return from tf to t, transferring all of the pending tasks
from a frame at tf to a frame at T [s], without any contribution from
the T [s]’s intra-procedural predecessor T [ewait e].

Then define a sequence of functions η0, η1, . . . : Tasks →
℘(Nk), each ηi mapping each t ∈ Tasks to the (possibly empty,
upward-closed) set of vectors ηi(t) such that for any ~n ∈ ηi(t), a
configuration 〈t, ~n〉 is guaranteed to reach the target reachable state
in A′i—and thus 〈t, ~n〉 c is guaranteed to reach the target reachable
state in AP for any c; each ηi can be computed in by backward
reachability in the non-recursive vector addition system as explained
above. Since each Ai contains at least the transitions of Ai−1, the
ηi-sequence is non-decreasing w.r.t. set inclusion; i.e., more and
more configurations can reach the target state; i.e., for all t ∈ Tasks
we have ηi−1(t) ⊆ ηi(t). Since there can be no ever-increasing
sequence of upward-closed sets of vectors over natural numbers (by
the fact that the ordering on vectors of natural numbers if a WQO),
the ηi sequence must stabilize after a finite number of steps.

Furthermore, since any ~n ∈ ηi(t) is guaranteed to reach the
target state, it suffices to consider only vectors ~n′ bounded by
the minimals of the upward-closed set ηi(t). To see why, notice
that if some ~n ∈ ηi(t) labels an edge between t0 and t, then
every configuration at t0 is guaranteed to reach the target state,
since this edge adds the vector guaranteed to reach the target
from t. Additionally, any vector greater than a minimal of ηi(t)
is already guaranteed to be present in ηi(t), since ηi(t) is upward
closed. Thus we need only consider edge-labels bounded by the
decreasing η0η1 . . . sequence, which shows that the A0A1 . . .
sequence stabilizes after a finite number of steps.

6. Multi-Wait Programs
Though single-wait programs capture many parallel programming
constructs, they can not express waiting for each and every of
an unbounded number of tasks to complete. Some programming
languages require this dual notion, expressed here with await.

Definition 6 (Multi wait). A multi-wait program is a program which
does not contain the ewait statement.

Thus, multi-wait programs can wait only on every pending task
(in a given region) at any program point. Many parallel programming
constructs can be modeled as multi-wait programs.

6.1 Parallel Programming in Cilk
The Cilk parallel programming language [31] is an industrial-
strength language with an accompanying runtime system which
is used in a spectrum of environments, from modest multi-core com-
putations to massively parallel computations with supercomputers.
Similarly to futures (see Section 4.1), Cilk adds a form of procedure
call which immediately returns control to the caller. Instead of an
operation to synchronize with a particular previously-called pro-

cedure, Cilk only provides an operation to synchronize with every
previously-called procedure. At such a point, the previously-called
procedures communicate their results back to the caller one-by-one
with atomically-executing procedure in-lined in scope of the caller.
Syntactically, Cilk adds two statements

spawn p e p′ sync,

where p ranges over procedures, e over expressions, and p′ over
procedures declared by

inlet p′ (var rv: T) s.

Here s ranges over intra-procedural program statements contain-
ing two variables: rv, corresponding to the value returned from a
spawned procedure, and l, corresponding to the local variable of the
spawning procedure. Semantically, the spawn statement creates a
new process in which to execute the given procedure, which pro-
ceeds to execute in parallel with the caller—and all other processes
created in this way. The sync statement blocks execution of the
current procedure until each spawned procedure completes, and
executes its associated inlet. The inlets of each procedure execute
atomically. Each procedure can spawn an unbounded number of
parallel processes, and the order in which the inlets of procedures
execute is chosen non-deterministically.

Example 3. The Fibonacci function can be implemented as a
parallel algorithm using Cilk as follows.

proc fib (var n: N)
var sum: N
if n < 2 then

return 1
else

spawn fib (n-1) summer;
spawn fib (n-2) summer;
sync;
return sum

inlet summer (var i: N)
sum := sum + i

As opposed to the usual (naı̈ve) sequential implementation operating
in time O(n2), this parallel implementation runs in time O(n).

The semantics of Cilk is ready expressed with recursively parallel
programs using the post and await statements. Assuming a region
identifier r0, we encode

spawn p e p′ as post r0 ← p e dp′

sync as await r0

where dp′(v)
def
= sp′ [v/rv] executes the top-level statement of the

inlet p′ with input parameter v.

6.2 Parallel Programming with Asynchronous Statements
The async/finish pair of constructs in X10 [6] introduces parallelism
through asynchronously executing statements and synchronization
blocks. Essentially, an asynchronous statement immediately passes
control to a following statement, executing itself in parallel. A
synchronization block executes as any other program block, but
does not pass control to the following statements/block until every
asynchronous statement within has completed. Syntactically, this
mechanism is expressed with two statements,

async s finish s

where s ranges over program statements. Semantically, the async
statement creates a new process to execute the given statement,
which proceeds to execute in parallel with the invoker—and all
other processes created in this way. The finish statement executes



the given statement s, then blocks execution until every process
created within s has completed.

Example 4. The Fibonacci function can be implemented as a
parallel algorithm using asynchronous statements as follows.

proc fib (var n: N)
var x, y: N
if n < 2 then

return 1
else

finish
async call x := fib (n-1);
async call y := fib (n-2);

return x + y

As opposed to the usual (naı̈ve) sequential implementation operating
in time O(n2), this parallel implementation runs in time O(n).

Asynchronous statements are readily expressed with (non-
deterministic) recursively parallel programs using the post and
await statements. Let N be the maximum depth of nested finish
statements. Assuming region identifiers r1, . . . , rN , we encode

async s as post ri ← ps ? d

finish s as await ri

where i− 1 is number of enclosing finish statements, and ps is a
procedure declared as

proc ps (var l: T)
var l0 := l
s;
return (l0,l)

and d(〈v0, v1〉)
def
= assume l = v0; l := v1 models the up-

date p performs from an initial (guessed) local valuation v0. Using
the same trick we have used to model asynchronous programs in Sec-
tion 4.3, we model the sequencing of asynchronous tasks by initially
guessing the value v0 which the previously-executed asynchronous
tasks had written, and validating that value when the return-value
handler of a given task is finally run. Note that although X10 allows,
in general, asynchronous tasks to interleave their memory accesses,
our model captures only non-interfering tasks, by assuming either
data-parallelism (i.e., disjoint accesses to data), or by assuming tasks
are properly synchronized to ensure atomicity.

6.3 Structured Parallel Programming
So-called structured parallel constructs are becoming a standard
parallel programming feature, adopted, for instance, in X10 [6] and
in Leijen et al. [25]’s task parallel library. These constructs leverage
normally sequential control structures to express parallelism. A
typical syntactic instance of this is the parallel for-each loop:

foreach x in e do s

where x ranges over program variables, e over expressions, and
s over statements. Semantically, the foreach statement creates a
collection of new processes in which to execute the given statement—
one for each valuation of the loop variable. After creating these
processes, the foreach statement then block execution, waiting for
each to complete.

The semantics of the for-each loop is readily expressed with
recursively parallel programs using the post and await statements.
With a region identifier r0, we encode foreach x in e do s as

for x in e do post r0 ← ps (x,?) d;
await r0

and given that both x and l are free variables in s, ps is a procedure
declared as

proc ps (var x: T, l: T)
var l0 := l
s;
return (l0,l)

and d(〈v0, v1〉)
def
= assume l = v0; l := v1 models the up-

date p performs from an initial (guessed) local valuation v0.

7. Multi-Wait Analysis
The presence of await edges implies the presence of zero-test
transitions in the recursive vector addition systemAP corresponding
to a multi-wait program P . As we have done for single-wait
programs, we first examine the easier sub-case of local-scope
programs, which in the multi-wait setting corresponds concurrency
in the Cilk [31] language (modulo task interleaving), as well as
structured parallel programming constructs such as the foreach
parallel loop in X10 [6] and in Leijen et al. [25]’s task parallel library
(see Section 6.3). The concurrent behavior of the asynchronous
statements (Section 6.2) in X10 [6] does not satisfy the local-
scope restriction, since async statements can include recursive
procedure calls which are nested without interpolating finish
statements. There computing state-reachability is equivalent to
determining whether a particular vector is reachable in a non-
recursive vector addition system—a decidable problem which is
known to be EXPSPACE-hard, but for which the only known
algorithms are non-primitive recursive. Since all multi-wait parallel
languages we have encountered use only a single-region, we restrict
our attention at present to single-region multi-wait programs.

7.1 Local-Scope Single-Region Multi-Wait Analysis
With the local-scoping restriction, executions of each procedure
p ∈ Procs between entry point t0 ∈ Tasks and exit point tf ∈
Tasks are completely summarized by a Boolean indicating whether
or not tf is reachable from t0. However, as executions of p may
encounter await statements, modeled by zero-test edges in the
recursive vector addition system AP , computing this Boolean
requires determining the reachable program valuations between each
pair of consecutive “synchronization points” (i.e., occurrences of
the await statement), which in principle requires deciding whether
the vector 0 is reachable in a vector addition system describing
execution from the program point just after the first await statement
to the point just after the second; i.e., when T1[await r] and
T2[await r] are consecutively-occurring synchronization points,
we must determine whether 〈T1[skip] ,0〉 can reach 〈T2[skip] ,0〉.

A careful analysis of our reachability problem reveals it does
not have the EXPSPACE-hard complexity of determining vector-
reachability in general, due to the special structure of our reachability
query. We notice that between two synchronization points t1 and t2
of p, execution proceeds in two phases. In the first, post statements
made by p only increment the vector valuations. In the second
phase, starting when the second await statement is encountered, the
await statement repeatedly consumes tasks, only decrementing the
vector valuations—the vector valuations can not be re-incremented
again because of the local-scope restriction: each consumed task is
forbidden from returning addition tasks. Due to this special structure,
deciding reachability between t1 and t2 reduces to deciding if a
particular integer linear program I(t1, t2) has a solution.

Since consuming tasks in the await-loop requires using the
summaries computed for other procedures, we consider a sequence
A0A1 . . . of non-recursive vector addition systems iteratively under-
approximating the recursive system AP . Initially A0 has only
the transitions of AP corresponding to intra-procedural and post
transitions of P . At each step i > 0, we add to Ai one of two edges
types. One type is an additive procedure-summary edge, used to



describe a single task-consumption step of an await transition,

T [await r]
~nj0
↪−→T [s; await r] ,

for some t0, tf ∈ Tasks such that j = cn(r, t0), s ∈ rvh(tf ),
and sms(t0, tf ,Ai−1) 6= ∅. The second possibility is an additive
synchronization-point summary edge, summarizing an entire of se-
quence of program transitions between two synchronization points,

T1[skip]
00
↪−→T2[skip] ,

where T1[await r] , T2[await r] ∈ Tasks are consecutive synchro-
nization points occurringP , and 0 ∈ sms(T1[skip] , T2[skip] ,AP ).
The procedure-summary edges are computed using only finite-state
reachability between program states, using the synchronization-
point summary edges, while the synchronization-point summary
edges are computed by reduction to integer linear programming. As
the number of possible edges is bounded polynomially in the pro-
gram size, the A0A1 sequence is guaranteed to reach a fixed-point
Ak in a polynomial number of steps, though each step may take
nondeterministic-polynomial time, in the worst case, to compute
solutions to integer linear programs. The reachable states of Ak are
precisely the same reachable states of AP .

Theorem 6. The state-reachability problem for local-scope multi-
wait single-region finite-value programs is NP-complete.

7.2 Single-Region Multi-Wait Analysis
Without the local-scoping restriction, each execution of each pro-
cedure p ∈ Procs between entry point t0 ∈ Tasks and exit
point tf ∈ Tasks is summarized by the tasks posted between
the last-encountered await statement, at a “synchronization point”
ts ∈ Tasks (note that ts = t0 if no await statements are encoun-
tered), and a return statement, at the exit point tf . Since p can
make recursive procedure calls between ts and tf , and each called
procedure can again return pending tasks, the possible sets of pend-
ing tasks upon p’s return at tf is described by the Parikh-image3

of a context-free language L(t0, tf ). It turns out we can describe
this image as the set of vectors computed by a polynomially-sized
vector addition system AL(t0, tf ) without recursion and zero-test
edges [14]. We use thus computations of AL(t0, tf ) to summarize
the set of possible region-valuations reached in an execution from
t0 to tf . However, computing AL(t0, tf ) is not immediate, since
between t0 and the last-encountered synchronization point ts, exe-
cution of the given procedure p may encounter await statements
(necessarily so when t0 6= ts). Since we use zero-test edges to
express await statements, we also need to summarize execution
between synchronization points (i.e., between the procedure entry
point and among await statements) using only additive edges. To
further complicate matters, each such summarization requires, in
turn, the summaries AL(t′0, t

′
f ) computed for other procedures!

We break the circular dependence between procedure summaries
and synchronization-point summaries by iteratively computing both.
In particular, we compute a sequence AL0AL1 . . . of procedure
summary vector addition systems along with a sequence A0A1 . . .
of vector addition systems such that eachALi , for i > 0, is computed
using the transitions of Ai−1, and Ai, for i ≥ 0 is computed using
the procedure summaries of ALi . Initially AL0 contains only the
pending-task sets reachable without taking await transitions, and
A0 contains only the transitions of AP corresponding to intra-
procedural and post transitions of P , along with transitions to
components AL0 . For i ≥ 0, Ai contains transitions to and from the
components ALi (t0, tf )

T [await r]
~nj0
↪−→ 〈q0, T [skip]〉

〈
qf , T [skip]

〉 00
↪−→T [s; await r]

for each t0, tf ∈ Tasks such that j = cn(r, t0), s ∈ rvh(tf ), and
q0 and qf are the unique initial and final states of ALi (t0, tf ). (We

assume each component ALi (t0, tf ) has unique initial and final
states, distinct from the states of other components. Additionally,
we equip each AL(t0, tf ) with auxiliary state to carry the identity
T [skip] of the invoking task to ensure the proper return of control
when AL(t0, tf ) completes.)

At each step i > 0, we add to Ai an additive edge summarizing
the execution between two synchronization points T1[await r] and
T2[await r] occurring in P :

T1[skip]
00
↪−→T2[skip]

such that T2[skip] is reachable in Ai−1 from T1[skip], i.e., 0 ∈
sms(T1[skip] , T2[skip] ,Ai−1). Note that when T [await r] is a
synchronization point occurring in P , T [skip] refers to the program
point immediately after the await statement. Since there are only
polynomially-many such edges that can possibly be added, we are
guaranteed to reach a fixed-point Ak of A0A1 . . . in a polynomial
number of steps. Furthermore, the reachable states of Ak are
precisely the same reachable states of AP . However, computing
0 ∈ sms(t1, t2,Ai−1) at each step is difficult due to the zero-
test edge in the await statement immediately preceding t2; this is
computationally equivalent to computing reachability of a particular
vector in non-recursive vector addition systems.

Theorem 7. The state-reachability problem for multi-wait single-
region finite-value programs is decidable.

Since practical algorithms to compute vector-reachability is
a difficult open problem, we remark that it is possible to obtain
algorithms to approximate our state-reachability problem. Consider,
for instance, the over-approximate semantics given by transforming
each await r statement into while ? do ewait r. Though
many more behaviors are present in the resulting program, since not
every task is necessarily consumed during the while loop, practical
algorithmic solutions are more probable (see Section 5.4).

8. Related Work
Formal modeling and verification of multi-threaded programs has
been heavily studied, including but not limited to identifying decid-
able sub-classes [20], and effective over-approximate [13, 18] and
under-approximate [9, 22] analyses.

To our knowledge little work has been done in formal model-
ing and verification of programs written in explicitly-parallel lan-
guages which are free of thread interleaving. Sen and Viswanathan
[34]’s asynchronous programs, which falls out as a special case of
our single-wait programs, is perhaps most similar to our work in
this regard. Practical verification algorithms by combining itera-
tive over- and under-approximation [19], and in-depth complexity
analysis [14] of asynchronous programs have been studied.

Though decidability results of abstract parallel models have been
reported [4, 10] (Bouajjani and Esparza [3] survey of this line of
work), these works target abstract computation models, and do not
identify precise complexities and optimal algorithms for real-world
parallel programming languages, nor do they handle the case where
procedures can return unbounded sets of unfinished computations
to their callers.

9. Conclusion
We have proposed a general model of recursively parallel programs
which captures the concurrency constructs in a variety of popular
programming languages. By isolating the fragments corresponding
to various language features, we are able to associate correspond-
ing formal models, measure the complexity of state-reachability,
and provide precise analysis algorithms. We hope our complexity
measurements may be used to guide the design and choice of con-
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result complexity language/feature

Task-Passing

general Thm. 1 undecidable futures, revisions

Single-Wait

non-aliasing Thm. 2 PTIME futures†, revisions†

local scope Thm. 3 EXPSPACE —

global scope Thm. 4 EXPSPACE asynchronous programs

general Thm. 5 2EXPTIME —
† For programs without task-passing.

Multi-Wait (single region)

local scope Thm. 6 NP Cilk

general Thm. 7 decidable async (X10)

Figure 8. Summary of results for computing state-reachability for
finite-value recursively parallel programs.

current programming languages and program analyses. Figure 8
summarizes our results.
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A. Proofs of Theorems
To begin with we introduce notation and simplifying assumptions in
order to simplify the proof arguments in the following subsections.

Notation and Simplifying Assumptions
Words & Languages A Σ-word is a finite sequence w ∈ Σ∗ of
symbols from an alphabet Σ; the symbol ε denotes the empty word,
and a language L ⊆ Σ∗ is a set of words. The Parikh-image Π(w)
of a word w ∈ Σ∗ is the multiset m ∈ M[Σ] (equivalently, the
vector ~n ∈ N|Σ|) such that for each a ∈ Σ, m(a) (resp., , ~n(a))
is the number of occurrences of a in w; the Parikh-image of a
language L ⊆ Σ∗ is the set of Parikh-images of each constituent
word: Π(L) = {Π(w) : w ∈ L}. Two languages L1 and L2 are
Parikh-equivalent when Π(L1) = Π(L2).

Finite-State Automata A finite-state automaton (FSA) A =
〈Q,Σ, ↪→〉 over an alphabet Σ is a finite set Q of states, along
with a set ↪→ ⊆ Q × Σ × Q of transitions. Given initial and
accepting states q0, qf ∈ Q, the language A(q0, qf ) is the set of
Σ-words labeling runs of A which begin in the initial state q0 and
terminate in the accepting state qf . The language-emptiness problem
for finite-state automata is to decide, given an automaton A and
states q0, qf ∈ Q, whether A(q0, qf ) = ∅.

Context-Free Grammars A context-free grammar (CFG) G =
〈V,Σ, ↪→〉 over an alphabet Σ is a finite set V of variables, along
with a finite set ↪→ ⊆ V ×(V ∪Σ)∗ of productions. Given an initial
variable v0 ∈ V , the language G(v0) is the set of Σ-words derived
by G from the initial variable v0.

Pushdown Automata A pushdown automaton (PDA)A = 〈Q,Σ,Γ, ↪→〉
over an alphabet Σ is a finite set Q of states, along with a stack
alphabet Γ, and a finite set ↪→ ⊆ Q×Γ×Σ×Γ∗×Q of transitions.
A configuration qw is a state q ∈ Q paired with a stack-symbol
sequence w ∈ Γ∗. Given initial and accepting states q0, qf ∈ Q, the
language A(q0, qf ) is the set of Σ-words labeling runs of A which
begin in the initial configuration q0ε and terminate in an accepting
configuration qfw, for some w ∈ Γ∗. The language-emptiness
problem for pushdown automata is to decide, given an automatonA
and states q0, qf ∈ Q, whether A(q0, qf ) = ∅.

Vector Addition Systems A vector addition system (VAS) A =

〈Q, ↪→〉 of dimension k ∈ N is a finite set Q of states, along with a
finite set ↪→ ⊂ Q× Nk × Nk ×Q of transitions. A configuration
q~n is a state q ∈ Q paired with a vector ~n ∈ Nk. Given initial
and accepting states q0, qf ∈ Q, the language A(q0, qf ) is the
set of vectors Nf ⊆ Nk such that A has a run which begins

in q00 and terminates in qf~nf , for some ~nf ∈ Nf . The state-
reachability problem (resp., the configuration-reachability problem)
for vector addition systems is to decide, given a systemA and states
q0, qf ∈ Q (resp., and a vector ~nf ∈ Nk), whether A(q0, qf ) 6= ∅
(resp., whether ~nf ∈ A(q0, qf )).

Turing Machines A Turing machine (TM) A = 〈Q,Σ, ↪→〉 over
an alphabet Σ is a finite set Q of states, along with a finite set ↪→ ⊆
Q×Σ×{L,R}×Σ×Q of transitions. A configuration 〈q, w1, w2〉
is a state q ∈ Q along with two words w1, w2 ∈ Σ∗. Given initial
and accepting states q0, qf ∈ Q, the language A(q0, qf ) is the
set of Σ-words w such that A has a run which begins in an initial
configuration 〈q0, ε, w〉 and terminates in an accepting configuration
〈qf , w1, w2〉, for some and w1, w2 ∈ Σ∗. The language-emptiness
problem for Turing machines is to decide, given a machine A and
states q0, qf ∈ Q, whether A(q0, qf ) = ∅.

A.1 Proof of Theorem 1
Theorem 1. The state-reachability problem for n-region finite-
value task-passing parallel programs is undecidable for

(a) non-recursive programs with n > 1, and
(b) recursive programs with n > 0.

We prove (a) and (b) separately, both by reduction from the
language emptiness problem for Turing machines.

Proof (a). By reduction from the language emptiness problem for
Turing machines, let A = 〈Q,Σ, ↪→〉 be a Turing machine with
↪→ = {d1, . . . , dj}, and let q0, qf ∈ Q. We assume, without
loss of generality, that upon entering the accepting state qf , A
performs a sequence of left-moves until reaching the end of the tape;
i.e., 〈qf , a,L, a, qf 〉 ∈ ↪→ for all a ∈ Σ. We define a task-passing
program PA with two regions rL and rR, and one return-value
handler d, along with an initial procedure given by

proc main ()
var state: Q
var sym: Σ
var done: B = false

while ? do post rR ← p ? d;
post rR ← p w(k) d;
post rR ← p w(k − 1) d;
...;
post rR ← p w(2) d;

state := q0;
sym := w(1);

while ? do
if ? then s1

else if ? then s2

...
else if ? then sj;

// check: is state = qf reachable here?
done := true;
return

and an auxiliary non-recursive procedure p given by

proc p (var sym: Σ)
return sym

where each transition di ∈ ↪→ gives rise to a corresponding
statement si defined as follows. For right-moving transitions di =

q
a/b,R
↪−→ q′, we define si as



assume state = q;
assume sym = a;
post rL ← p b d;

state := q′;
ewait rR // overwrites sym

For left-moving transitions di = q
a/b,L
↪−→ q′, we define si as

assume state = q;
assume sym = a;
post rR ← p b d;

state := q′;
ewait rL // overwrites sym

where the return-value handler d(a)
def
= sym := a assigns a to sym.

By connecting the configurations of 〈q, w1, w2〉 ofA to the chain
of tasks in region rL—corresponding to the cells of w1—and the
chain of tasks in region rR—corresponding to the cells of w2—it is
routine to show that PA faithfully simulates precisely the runs of A.
As we assume A moves to the left upon encountering the accepting
state qf , we need only check reachability of a valuation qf to state
at the end of the main procedure to know whether or not A has an
accepting run.

Proposition A.1.I. A(q0, qf ) 6= ∅ if and only if state = qf and
done = true is reachable in PA.

Thus state-reachability in PA solves language emptiness for A.

Using only a single region, it will not be possible to create two
independent, unbounded task chains. However, if the program is
allowed to be recursive, we can leverage the unbounded procedure
stack as an additional, independent, unbounded data structure.

Proof (b). By reduction from the language emptiness problem for
Turing machines, let A = 〈Q,Σ, ↪→〉 be a Turing machine with
↪→ = {d1, . . . , dj}, and let q0, qf ∈ Q. We assume, without
loss of generality, that upon entering the accepting state qf , A
performs a sequence of left-moves until reaching the end of the tape;
i.e., 〈qf , a,L, a, qf 〉 ∈ ↪→ for all a ∈ Σ. We define a single-region
task-passing program PA with a single return-value handler d, along
with an initial procedure given by

proc main ()
var q_cur, q_R: Q
var sym_R: Σ
var done: B = false

while ? do post r ← p ? d;
post r ← p w(k) d;
post r ← p w(k − 1) d;
...;
post r ← p w(1) d;

ewait r;
assume q_R = q0;

// check: is q_cur = qf reachable here?
done := true;
return

and an auxiliary recursive procedure p given by

proc p (var sym: Σ)
var q_cur, q_init, q_R: Q
var sym_R: Σ

q_init := ?;

q_cur := q_init;

while ? do
if ? then s1

else if ? then s2

...
else if ? then sj

where each transition di ∈ δ gives rise to a corresponding state-
ment si defined as follows. For the right-moving transitions di =

q
a/b,R
↪−→ q′, we define si as

assume q_cur = q;
assume sym = a;
sym := b;

ewait r;
// At this point q_R, q_cur, and sym_R
// have been overwritten by the initial-
// and current-state valuations, and the
// symbol stored in the right-neighbor
// who has just moved left.

assume q_R = q′;
post r ← p sym_R d

where d(q, q′, a) assigns q to q_R, q′ to q_cur, and a to sym_R.
Our program thus simulates right moves by awaiting a pending task
representing the right neighbor of the current task. For left-moving

transitions di = q
a/b,L
↪−→ q′, we define si as

assume q_cur = q;
assume sym = a;
return (q_init, q′, b);

Our program thus simulates left moves by returning to the awaiting
task, who promptly recreates its right-neighbor by posting a new
task to replace it.

By connecting the configurations of 〈q, w1, w2〉 of A to the
chain of awaiting tasks—corresponding to the cells of w1—and
the chain of posted tasks—corresponding to the cells of w2—it is
routine to show that PA faithfully simulates precisely the runs of A.
As we assume A moves to the left upon encountering the accepting
state qf , we need only check reachability of a valuation qf to q_cur
at the end of the main procedure to know whether or not A has an
accepting run.

Proposition A.1.II. A(q0, qf ) 6= ∅ if and only if q cur = qf and
done = true is reachable in PA.

Thus state-reachability of PA solves language emptiness forA.

Theorem A.1.I. The state-reachability problem for single-region
non-recursive finite-value task-passing parallel programs is PTIME-
complete for fixed task-depth, and EXPTIME in the task-depth.

Proof. Let P be a non-aliasing single-wait finite-value single-region
non-recursive task-passing parallel program with finite sets of
procedures Procs, values Vals, regions Regs, and return-value
handlers Rets, and let ` ∈ Vals be a target reachable value.
Furthermore, we assume P is non-recursive, which implies there
is a maximum task-depth N ∈ N—i.e., N is the maximum length
of a sequence p0p1 . . . ∈ Procs∗ such that each pi contains a post
to pi+1. Without loss of generality, suppose ` is only reachable in
procedure frames where the current statement is sf .

We construct a pushdown automatonAP = 〈Q,Σ,Γ, ↪→〉 along
with initial and accepting states q0, qf ∈ Q. We define the states of
AP to be N -bounded sequences of tasks

Q
def
= Tasks≤N



In this way a state t0t1 . . . ti ∈ Q represents a computation of P in
which each tj−1 (0 < j ≤ i) is a task posted by tj . Note that this
finite representation is only possible since we know the task-depth
is bounded by N . Given this state-representation, we define the
transition relation ↪→ of AP as follows:

Intra-task transitions For each intra-task transition t1 →seq
P t2

of Figure 2, we add the transition

t1 · ~t↪−→t2 · ~t.

POST For each statement post r ← p e d occurring in P , we
add a transition which transfers control directly to procedure p,

T [post r ← p e d] ↪−→t · T [skip] ,

where t = 〈v, sp, d〉, for each v ∈ e(T ).

∃WAIT For each statement ewait r occurring in P , we add a
transition which simply pops the pair 〈v, d〉 from the top of the
pushdown stack, and applies the return-value handler,

T [ewait r] · ~t
pop〈v,d〉
↪−−−−→ T [s] · ~t,

where s ∈ d(v).

RETURN For each statement return e occurring in P , we add a
transition which pushes the return value and return-value handler
for the current task onto the pushdown stack, to be later consumed
by a subsequent ewait statement,

〈`, S[return e] , d〉 · t0 · ~t
push〈v,d〉
↪−−−−→ t0 · ~t.

where v ∈ e(`)
Finally, given an initial condition ι = 〈p0, `0〉 and target value

`f of P , we let q0 = 〈`0, sp0 , d〉, and qf = 〈`f , sf , d〉, for some
d ∈ Rets. (See above for the definition of sf .)

Proposition A.1.III. AP (q0, qf ) 6= ∅ if and only if ` is reachable
in P from ι.

As |Q| is O((|Locs| · |Rets|)N ) and |Γ| is O(|Vals| · |Rets|),
the size of AP is polynomial in P . Since language emptiness is
decidable in polynomial time for pushdown automata, our procedure
gives a polynomial-time algorithm for state-reachability when N is
fixed, though exponential in N .

A.2 Proof of Theorem 2
Theorem 2. The state-reachability problem for non-aliasing single-
wait finite-value programs is PTIME-complete for a fixed number of
regions, and EXPTIME-complete in the number of regions.

Though our proof only handles local-scope programs, the ex-
tension to generally-scoped programs is possibly by allowing the
values of the region-container variables rg below to be returned to
waiting procedures.

Proof. Let P be a non-aliasing local-scope single-wait finite-value
program with regions r1, . . . , rn. We define a sequential finite-
value program Ps by a code-to-code translation of P . We extend
each procedure declaration proc p (var l: T) s with addi-
tional procedure-local variables rg, rg’, and rv,

proc p (var l: T)
var rg[n]: R := [ ⊥; ..; ⊥ ]
var rg’[n]: R
var rv: T
s

where R is a type containing ⊥, and values of the record type

{ prc: Procs, arg: Vals, rh: Rets }.

Note that R is a finite-type since Procs, Vals, and Rets are finite
sets. We translate each statement return e into return (rg, e),
each statement post ri ← p e d into the assignment

rg[i] := { prc = p, arg = e, rh = d }

and each statement ewait ri into the statement

assume rg[i] 6= ⊥;
call (rg’,rv) := rg[i].prc rg[i].arg;
l := rg[i].rh;
rg[i] := ⊥;
for j := 1 to n do

if rg’[j] 6= ⊥ then rg[j] := rg’[j]

where we assume each d ∈ Rets is given by an expression in which
rv is a free variable. Note that for local-scope programs, the rg’
array will always be equal to [ ⊥; ..; ⊥ ] and can be safely
omitted from the translation.

Since regions do not alias, it is not hard to show that the
state-reachability problem for the resulting sequential program
Ps is equivalent to the state-reachability problem for P . (Though
technically we must check for reachability for a complete local
valuation in Ps, including l, rg, rg’, and rv, we may assume
without loss of generality reachability to certain values, by adding

if ? then
rg := ?; rg’ := ?; rv := ?;
assume false

between every statement of Ps. Since the assume false statement
cannot continue execution, this extra conditional statement has no
effect on program behavior, besides making any valuation with
l = ` reachable, if there is some reachable valuation with l = `.)

Proposition A.2.I. The value ` is reachable in P from ι if and only
if ` is reachable in Ps from ι.

The size of Ps is polynomial in P , while the number of variables
in Ps increases by n . Thus our state-reachability problem is PTIME-
complete for fixed n since the state-reachability for sequential
programs is [7, 32]. When the number n of regions is not fixed,
this state-reachability problem becomes EXPTIME-complete, due
to the logarithmic encoding of the program values into the n extra
variables.

A.3 Proof of Theorem 3
Theorem 3. The state-reachability problem for local-scope single-
wait finite-value programs is EXPSPACE-complete.

We show an equivalence between the state-reachability prob-
lems of local-scope single-wait recursively parallel programs and
vector addition systems (VASS)—i.e., we show the problems are
polynomial-time reducible to each other. EXPSPACE-completeness
follows since state-reachability in VASS is known to be EXPSPACE-
complete.

Lemma A.3.I. The state-reachability problem for local-scope
single-wait finite-value programs is polynomial-time reducible to
the state-reachability problem for vector addition systems (VASS).

Proof sketch. To solve state-reachability in local-scope single-wait
programs, we compute a sequence A0A1 . . . of non-recursive vec-
tor addition systems iteratively under-approximating the recursive
system AP arising from a program P . The initial system A0 has
only the transitions of AP corresponding to intra-procedural and
post transitions of P . At each step i > 0, we add toAi an additive
edge summarizing an ewait transition

T [ewait r]
~nj0
↪−→T [s]



for some t0, tf ∈ Tasks such that j = cn(r, t0), s ∈ rvh(tf ), and
~n ∈ sms(t0, tf ,Ai−1); since P is local-scope, every such ~n must
equal 0. Since the number of possibly added edges is polynomial
in P , the A0A1 sequence is guaranteed to reach in a polynomial
number of steps a fixed-pointAk whose reachable states are exactly
those of AP . Thus by solving a polynomial-sized sequence of state-
reachability queries in polynomial-sized VASSs, we compute state-
reachability in local-scope single-wait programs.

Lemma A.3.II. The state-reachability problem for vector addition
systems (VASS) is polynomial-time reducible to the state-reachability
problem for local-scope single-wait finite-value programs.

Proof. Let k ∈ N, and let A = 〈Q, ↪→〉 be a k-dimension VASS,
and let q0, qf ∈ Q. We construct a single-wait program PA with an
initial condition ι and target valuation `f such that A(q0, qf ) 6= ∅
if and only if `f is reachable in PA from ι.

The program PA contains only two procedures: an initial pro-
cedure main and a dummy procedure p which will be posted
(resp., awaited) for each addition (resp., subtraction) performed
in A. Accordingly, the region-set Regs = {r1, . . . , rk} of PA con-
tains a region ri per vector component. The program’s local variable
l is used to store the control-state of A, and we set Vals = Q. Fi-
nally, let Rets = {dconst}, where dconst(v)

def
= l; i.e., dconst is

the return-value handler which ignores the return value, keeping the
local valuation intact.

We simulate the transitions of A by awaiting a task from each
region ri once per decrement to the ith vector component, and
subsequently posting a task to each region ri once per increment

to the ith vector component. Thus for each transition dj = q
~n1~n2
↪−→q′,

we define the statement sj given by

assume l = q

ewait r1; . . . ; ewait r1︸ ︷︷ ︸
~n1(1) times

; . . . ; ewait rk; . . . ; ewait rk︸ ︷︷ ︸
~n1(k) times

;

post r1 ← p ? dconst; . . . ; post r1 ← p ? dconst︸ ︷︷ ︸
~n2(1) times

;

. . . ;

post rk ← p ? dconst; . . . ; post rk ← p ? dconst︸ ︷︷ ︸
~n2(k) times

;

l := q′.

Finally, the initial procedure is given by

proc main ()
l := q0;
while ? do

if ? then s1

else if ? then s2

...
else if ? then s|δ|.

Note the correspondence between configurations of A and PA.
Each configuration 〈q, ~n〉 of A maps directly to a configuration
〈〈q, s, dconst〉 ,m〉 of PA, where s is the loop statement of the
initial procedure, and |m(ri)| = ~n(i). Given this correspondence,
it follows easily that the state qf is reachable inA from q0 if and only
if the valuation `f = qf is reachable in PA from ι = 〈pmain, q0〉.
As there are O(|A|) statements in PA per transition of A, the size
of PA is O(|A|2).

A.4 Proof of Theorem 4
Theorem 4. The state-reachability problem for global-scope single-
wait finite-value programs is EXPSPACE-complete.

To proceed we show an equivalence between the state-reachability
problems of global-scope single-wait recursively parallel programs
and vector addition systems (VASS)—i.e., we show the problems are
polynomial-time reducible to each other. EXPSPACE-completeness
follows since state-reachability in VASS is known to be EXPSPACE-
complete.

Lemma A.4.I. The state-reachability problem for global-scope
single-wait finite-value programs is polynomial-time reducible to
the state-reachability problem for vector addition systems (VASS).

Proof sketch. Since each non-initial procedure p of a global-scope
program cannot consume tasks, the set of tasks posted by p and
recursively-called procedures along any execution from t0 to tf
is a semi-linear set, described by the Parikh-image of a context-
free language. Following Ganty and Majumdar [14]’s approach,
for each t0, tf ∈ Tasks we construct a polynomial-sized vector
addition systemA(t0, tf ) characterizing this semi-linear set of tasks
(recursively) posted between t0 and tf .

Proposition A.4.I ([14]). For every pair t0, tf ∈ Tasks, region
valuation m, and p ∈ Procs, there exists an execution of p from
〈t0,m∅〉 to 〈tf ,m〉 if and only if there exists ~n ∈ Nk such that
~n ∈ AP (t0, tf ), and m and ~n represent the same Parikh-image.

We use each A(t0, tf ) as a component of a non-recursive vector
addition system A′P representing execution of the initial frame.
In particular, A′P contains transitions to and from the component
A(t0, tf ) for each t0, tf ∈ Tasks,

T [ewait r]
~nj0
↪−→ 〈q0, T [skip]〉 〈qf , T [skip]〉 00

↪−→T [s] ,

for all r ∈ Regs such that j = cn(r, t0), s ∈ rvh(tf ), and q0
and qf are the initial and final states of A(t0, tf ). We assume each
A(t0, tf ) has unique initial and final states, distinct from the states
of other components A(t′0, t

′
f ). In order to transition to the correct

state T [s] upon completion, A(t0, tf ) carries an auxiliary state-
component T [skip]. In this way, for each task t′ posted to region r′

in an execution between t0 and tf , the component A(t0, tf ) does
the incrementing of the cn(r′, t′)-component of the region-valuation
vector. As each of the polynomially-many components A(t0, tf )
are constructed in polynomial time [14], this method constructs
A′P in polynomial time, reducing state-reachability in P to state-
reachability in the VASS A′P

Lemma A.4.II. The state-reachability problem for vector addition
systems (VASS) is polynomial-time reducible to the state-reachability
problem for global-scope single-wait finite-value programs

Proof. As the program PA constructed in Lemma A.3.II from
a given VASS A only uses the ewait statement in the initial
procedure, PA is also a global-scope program.

A.5 Proof of Theorem 5
Theorem 5. The state-reachability problem for single-wait finite-
value programs is EXPSPACE-hard, and in 2EXPTIME.

To proceed we show an equivalence between the state-reachability
problems of single-wait recursively parallel programs and recursive
vector addition systems without zero-test edges—i.e., we show the
problems are polynomial-time reducible to each other. EXPSPACE-
hardness follows from that of non-recursive vector addition systems,
and membership in 2EXPTIME follows from Demri et al. [8]’s
result on branching vector addition systems (BVAS).

Lemma A.5.I. The state-reachability problem for single-wait
finite-value programs P over values Vals is reducible to the state-
reachability problem for recursive vector addition systems in time
O(|P | · |Vals|).



Proof. The RVASS ofAP corresponding to a program P is given by
Lemma 4 of Section 3.3; since P does not contain await statements,
AP does not contain zero-test edges.

Lemma A.5.II. The state-reachability problem for recursive vector
addition systems A is reducible to the state-reachability problem
for single-wait finite-value programs in time O(|A|2).

Proof. Let k ∈ N, and let A = 〈Q, ↪→〉 be a RVASS over k-
length vectors with additive transitions δ1 and recursive transitions
δ2 (where ↪→ = δ1 ] δ2), and let q0, qf ∈ Q. We construct a single-
wait program PA with initial condition ι and target valuation `f
such that A(q0, qf ) 6= ∅ if and only if `f is reachable in PA from ι.

The program PA contains two types of procedures: a set of
recursive procedure {pq : q ∈ Q} whose invocations will corre-
spond to recursive transitions in A, and a dummy procedure pD

which will be posted (resp., awaited) for each addition (resp., sub-
traction) performed in A. Accordingly, the region-set Regs =
{r1, . . . , rk, rcall} of P contains a region ri per vector compo-
nent, and a call region rcall. As the program’s local variable l is
used to store the control-state of A, we set Vals = Q. Finally, let
Rets = {dconst}, where dconst(v)

def
= `; i.e., dconst is the return-

value handler which ignores the return value, keeping the local
valuation intact.

The top-level statement for the dummy procedure p0 is simply
return ?; the top-level statement for the other procedures pq for
q ∈ Q will simulate all transitions of A and return only when
the control-state reaches q. Let ↪→ = {d1, . . . , dn}. We define si
for each di ∈ ↪→ as follows. We simulate recursive transitions by
calling a procedure which may only return upon reaching q2. For
each transition di = q

q1q2
↪−→q′, si is given by

assume l = q;
call l := pq2 q1;
l := q′.

We simulate the additive transitions by awaiting a task from each
region ri once per decrement to the ith vector component, and
subsequently posting a task to each region ri once per increment to

the ith vector component. For each transition di = q
~n1~n2
↪−→q′, si is

given by

assume l = q

ewait r1; . . . ; ewait r1︸ ︷︷ ︸
~n1(1) times

; . . . ; ewait rk; . . . ; ewait rk︸ ︷︷ ︸
~n1(k) times

;

post r1 ← p0 ? dconst; . . . ; post r1 ← p0 ? dconst︸ ︷︷ ︸
~n2(1) times

;

. . . ;

post rk ← p0 ? dconst; . . . ; post rk ← p0 ? dconst︸ ︷︷ ︸
~n2(k) times

;

l := q′.

Finally, the top-level statement for procedure pq is

while ? do
if l = q and ? then return ?
else if ? then s1

else if ? then s2

...
else if ? then sn
else skip.

Note the correspondence between configurations ofA and PA. Each
frame 〈q, ~n〉 of A maps directly to a frame 〈〈q, s, dconst〉 ,m〉 of
PA, where s is the top-level statement of some procedure pq′ , and

|m(ri)| = ~n(i) for all i ∈ {1, . . . , k}; this correspondence extends
directly to the configurations of A and PA. It follows that the state
qf is reachable in A if and only if the valuation qf is reachable in
PA. As there are O(|Q|) statements in PA per transition of A, the
size of PA is O(|A|2).

A.6 Proof of Theorem 6
Theorem 6. The state-reachability problem for local-scope multi-
wait single-region finite-value programs is NP-complete.

We show NP-hardness in Lemma A.6.I by a reduction from
circuit satisfiability [27], and membership in NP in Lemma A.6.II
by a procedure which solves a polynomial number of polynomial-
sized integer linear programs.

Lemma A.6.I. The circuit satisfiability problem [27] is polynomial-
time reducible to the state-reachability problem for local-scope
multi-wait single-region finite-value programs.

Proof. Let C be a Boolean circuit with wires W , gates G, inputs
I , and an output wire w0 ∈W . Without loss of generality, assume
that each gate g ∈ G is connected to exactly two input wires and
two output wires, and that each input h ∈ I is connected to exactly
two wires. The circuit satisfiability problem asks if there exists a
valuation to the inputs I which makes the value of write w0 true.

We construct a multi-wait single-region finite-value program PC
as follows. Let Wire be the type defined as

type Wire = { id: W, active: B, val: B }

and define a procedure for writing a value to a wire,

proc set (var id: W, val: B)
var fst, snd: Wire

if ? then
fst.id := id;
fst.val := val;
fst.active := true

else
snd.id := id;
snd.val := val;
snd.active := true;

return (fst,snd)

which takes a value to be written and returns two output wires (one
of which is written to), and a procedure for reading the value of a
wire,

proc get (var id: W, fst, snd: Wire)
var val: B

if ? then
assume fst.active and fst.id = id;
val := fst.val;
fst.active := false;

else
assume snd.active and snd.id = id;
val := snd.val;
snd.active := false;

return (val,fst,snd).

which takes two wires fst and snd, reads a value from one of
them, and returns the same (but mutated) wires, along with the value
read. For each gate g ∈ G connected to input wires w1, w2, output
wires w3, w4, and computing a function f : B → B, we declare a
procedure,



proc pg (var val: B)
var fst0, snd0, fst, snd: Wire
var a, b, c: B

fst := fst0;
snd := snd0;
call (a,fst,snd) := get(w1,fst,snd);
call (b,fst,snd) := get(w2,fst,snd);
c := f(a,b);
assume c = val;
return (fst0,snd0,fst,snd).

Finally, the initial procedure posts two instances of set per input
h ∈ I , and two instances of set per gate g ∈ G, along with one
instance of pg , then waits until every task is consumed in some
sequence,

proc init ()
var fst, snd: Wire
var val: B
var done: B

fst.active := false;
snd.active := false;
done := false;

// input h1

val := ?;
post r ← set(wh1,1,val) dw;
post r ← set(wh1,2,val) dw;

// input h2

val := ?;
post r ← set(wh2,1,val) dw;
post r ← set(wh2,2,val) dw;

...;

// gate g1

val := ?;
post r ← pg1(val) drw;
post r ← set(wg1,3,val) dw;
post r ← set(wg1,4,val) dw;

...;

await r;
done := true,

where whi,j (resp., wgi,j) denotes the jth wire of input hi
(resp., gate gi). The return handler dw(f,s) assigns f to fst and
s to snd, and drw(f0,s0,f,s) ensures f0 = fst and s0 = snd4,
and assigns f to fst and s to snd.

The program PC simulates C by evaluating each gate g ∈ G
one-by-one at the await statement, based on an ordering such that
g’s input wires are active exactly when the task of procedure pg
is consumed. This is possible since the setting of each input wire
w ∈ W of g is also a pending task (of procedure set), which in
turn can be scheduled immediately before pg . Such an execution is
guaranteed to be explored since every possible ordering of pending
task consumption is considered at the await statement.

We then ask if there is a reachable state in which

fst.id = w0 and fst.val = true and done =
true

4We can block executions by allowing return handlers to be partial functions.

and if so, it must be the case that C is satisfiable. Inversely, if C is
satisfiable then there must exist a corresponding execution of PC
since every possible circuit evaluation order is considered.

Lemma A.6.II. The state-reachability problem for local-scope
multi-wait single-region finite-value programs P over values Vals
and return-value handlers Rets is reducible to solving a O(|P |3 ·
|Vals|3 · |Rets|)-length series of integer linear programs, each of
size O(|P |5 · |Vals|5 · |Rets|).

Proof. Let P be a program with finite sets of procedures Procs,
values Vals, and return-value handlers Rets, and let ` ∈ Vals be
a target reachable value from an initial condition ι = 〈p0, `0〉.
We construct two sequences As

1,As
2, . . . and At

1,At
2, . . . of finite-

state automata. Intuitively, each As
i will be a sync-point summary

automaton, characterizing pairs of program states reachable between
two consecutive await statements; eachAt

i will be a task-summary
automaton, characterizing pairs of program states reachable between
the entry and the exit of each task’s procedure.

Let Q def
= Tasks. We model task-posting by labeling the transi-

tions of the automata by tasks, and define the alphabet Σ
def
= Tasks∪

{ε}. The initial task-summary automaton is At
0 = 〈Q, {ε}, ∅〉 with

states Q, alphabet {ε}, and the empty set ∅ of transitions.

Construction of As
i For i > 0, we define the ith sync-point

summary automaton, characterizing state-reachability between sync-
point pairs, as

As
i =

〈
Q ∪ Q̄,Σ, δs

i

〉
,

where the states Q and Q̄ def
= {q̄ : q ∈ Q} correspond, resp., to con-

trol locations of the first (task-posting) and second (task-consuming)
phases, and the transitions δs

i = δ+ ] δ′ ] δ−i are partitioned
into first-phase transitions δ+ ⊆ Q × Σ × Q, phase-change
transitions δ′ = {〈q, ε, q̄〉 : q ∈ Q}, and second-phase transitions
δ−i ⊆ Q̄× Σ× Q̄.

The relation δ+ is given directly by the sequential and task-
posting transitions of the input program. The relation δ−i contains
a transition

〈
T̄ [await r] , t0, T̄ [s; await r]

〉
summarizing the

computation of the task t0 if and only if there exists tf ∈ Tasks
such that At

i−1(t0, tf ) is non-empty, and s ∈ rvh(tf ). In other
words, 〈q̄, t, q̄′〉 summarizes the effect of consuming task t, based
on At

i−1’s summarization of t, including the local-variable update
due to its return-value handler. In this way, the possible behaviors
between sync-points are computed using the thus-far computed
(entire) behaviors of each posted task.

Note that not every word of As
i(q0, q̄f ) represents a valid

computation between two consecutive sync points q0 and qf , since
As
i cannot ensure that each task posted in the first phase is consumed

in the second. For q0, qf ∈ Q, we say a word w1w2 ∈ As
i(q0, q̄f )

is balanced if and only if Π(w1) = Π(w2) and there exists q ∈ Q
such that w1 ∈ As

i(q0, q) and w2 ∈ As
i(q̄, q̄f ). We say As

i(q0, q̄f )
has a balanced run if some word of As

i(q0, q̄f ) is balanced. For
each sync-point pair 〈q0, qf 〉, we can decide whetherAs

i(q0, q̄f ) has
a balanced run by integer linear programming. In particular, given
As
i and 〈q0, qf 〉, we construct a integer linear program Φs

i(q0, qf )
which has a positive integer solution exactly when As

i(q0, q̄f ) has a
balanced run.

Construction of Φs
i Given the sync-point summary automaton

As
i and sync-point pair q0, qf ∈ Q, we construct an ILP, de-

noted Φs
i(q0, qf ). Fix (finite) enumerations q1q2 . . ., a1a2 . . .,

and d1d2 . . . of the states, symbols, and transitions, resp., of As
i;

i.e., Q = {q1, q2, . . .}, Σ = {a1, a2, . . .}, and δ = {d1, d2, . . .}.
Additionally, assume that dj = 〈qj , ε, q̄j〉 ∈ δ′ for each qj ∈ Q.
We define Φs

i(q0, qf ) as an integer linear program with |δs
i | transi-

tion occurrence variables, one dj for each transition dj ∈ δs
i , and



|Σ| − 1 task counter variables, one aj for each aj ∈ Σ \ {ε}. Then
Φs
i(q0, qf ) contains the following constraints: for each qk ∈ Q,dk +

∑
dj∈δ+(qk,·,·)

dj −
∑

dj∈δ+(·,·,qk)

dj

 =

{
0 when qk 6= q0
1 when qk = q0

ensures each state in the first phase is exited once per entry (except
q0, which is exited one extra time); for each q̄k ∈ Q̄,dk +

∑
dj∈δ

−
i (·,·,q̄k)

dj −
∑

dj∈δ
−
i (q̄k,·,·)

dj

 =

{
0 when qk 6= qf
1 when qk = qf

ensures each state in the second phase is exited once per entry
(except qf , which is entered one extra time);∑

dj∈δ′
dj

 = 1

ensures a single inter-phase transition is taken; and for each ak ∈ Σ, ∑
dj∈δ+(·,ak,·)

dj

 = ak =

 ∑
dj∈δ

−
i (·,ak,·)

dj


ensures that the number of occurrences of each ak in the first phase
is equal to the number of occurrence in the second phase. (Note that
the aj variables are not strictly necessary; they are added only for
clarity.) Supposing dj1dj2 . . . is a connected sequence of transitions
through As

i , a corresponding solution to the given set of constraints
would set the variables dj1 , dj2 , . . . to positive (non-zero) values
corresponding to the number of times each transition is taken in As

i .
However, supposing there are loops inAs

i which are not connected to
any of the selected transitions, the given constraints do not prohibit
solutions which take each transition of these loops an arbitrary
number of times. This is a standard issue with encoding automaton
traces which can be addressed by adding a polynomial number of
constraints to Φs

i(q0, qf ).

Proposition A.6.I. As
i(q0, q̄f ) has a balanced run if and only if

Φs
i(q0, qf ) has a positive integer solution.

Note that |Φs
i| is bounded byO(|P |5 ·|Vals|5 ·|Rets|), since each

ofO(|Q|2)-many programs Φs
i(q, q

′) containsO(|δs
i |) = O(|Q|2 ·

|Σ|) variables and O(|Q| + |Σ|) constraints, where O(|Q|) =
O(|P | · |Vals|) and O(|Σ|) = O(|P | · |Vals| · |Rets|).

Construction of At
i For i > 0 we define the ith task-summary

automaton, characterizing state-reachability among synchronization
points, as

At
i =

〈
Q, {ε}, δt

i

〉
such that 〈q, ε, q′〉 ∈ δt

i if and only if 〈q, q′〉 is a sync-point pair,
and As

i(q, q
′) has a balanced run.

Note that there are only finitely-many transitions which can be
added over the entire As

i and At
i sequence. It follows that there

exists a fixed-point m ∈ N of this sequence, and it is not hard to see
that As

m and At
m capture every behavior of the input program P .

Proposition A.6.II. A synchronization point qf of the initial task
is reachable from an initial control location q0 if and only if
At
m(q0, qf ) is non-empty.

Though we consider here only state-reachability to a synchro-
nization point contained in the initial task for simplicity, Proposi-
tion A.6.II can indeed be extended to arbitrary control locations of
arbitrary tasks. As the set of possible added transitions is bounded

by O(|Q|2 · |Σ|) = O(|P |3 · |Vals|3 · |Rets|), our procedure is
guaranteed to terminate in polynomial-time.

A.7 Proof of Theorem 7
Theorem 7. The state-reachability problem for multi-wait finite-
value programs is polynomial-time equivalent to the configuration-
reachability problem for vector addition systems.

We demonstrate this equivalence by a polynomial-time reduction
in each direction. Though VASS configuration-reachability has been
shown decidable [29], only non-primitive recursive algorithms are
known; VASS state-reachability gives an EXPSPACE lower-bound.

Lemma A.7.I. The state-reachability problem for multi-wait finite-
value programs is reducible to the configuration-reachability prob-
lem for vector addition systems.

Proof sketch. Without the local-scoping restriction, each execution
of each procedure p ∈ Procs between entry point t0 ∈ Tasks and
exit point tf ∈ Tasks is summarized by the tasks posted between
the last-encountered await statement, at a “synchronization point”
ts ∈ Tasks (note that ts = t0 if no await statements are
encountered), and a return statement, at the exit point tf . Since
p can make recursive procedure calls between ts and tf , and each
called procedure can again return pending tasks, the possible sets of
pending tasks upon p’s return at tf is described by the Parikh-image3

of a context-free language L(t0, tf ). It turns out we can describe
this image as the set of vectors computed by a polynomially-sized
vector addition system AL(t0, tf ) without recursion and zero-test
edges [14]. We use thus computations of AL(t0, tf ) to summarize
the set of possible region-valuations reached in an execution from
t0 to tf . However, computing AL(t0, tf ) is not immediate, since
between t0 and the last-encountered synchronization point ts,
execution of the given procedure pmay encounter await statements
(necessarily so when t0 6= ts). Since we use zero-test edges to
express await statements, we also need to summarize execution
between synchronization points (i.e., between the procedure entry
point and among await statements) using only additive edges. To
further complicate matters, each such summarization requires, in
turn, the summaries AL(t′0, t

′
f ) computed for other procedures!

We break the circular dependence between procedure summaries
and synchronization-point summaries by iteratively computing both.
In particular, we compute a sequence AL0AL1 . . . of procedure
summary vector addition systems along with a sequence A0A1 . . .
of vector addition systems such that eachALi , for i > 0, is computed
using the transitions of Ai−1, and Ai, for i ≥ 0 is computed using
the procedure summaries of ALi . Initially AL0 contains only the
pending-task sets reachable without taking await transitions, and
A0 contains only the transitions of AP corresponding to intra-
procedural and post transitions of P , along with transitions to
components AL0 . For i ≥ 0, Ai contains transitions to and from the
components ALi (t0, tf )

T [await r]
~nj0
↪−→ 〈q0, T [skip]〉

〈
qf , T [skip]

〉 00
↪−→T [s; await r]

for each t0, tf ∈ Tasks such that j = cn(r, t0), s ∈ rvh(tf ), and
q0 and qf are the unique initial and final states of ALi (t0, tf ). (We
assume each component ALi (t0, tf ) has unique initial and final
states, distinct from the states of other components. Additionally,
we equip each AL(t0, tf ) with auxiliary state to carry the identity
T [skip] of the invoking task to ensure the proper return of control
when AL(t0, tf ) completes.)

At each step i > 0, we add to Ai an additive edge summarizing
the execution between two synchronization points T1[await r] and
T2[await r] occurring in P :

T1[skip]
00
↪−→T2[skip]



such that T2[skip] is reachable in Ai−1 from T1[skip], i.e., 0 ∈
sms(T1[skip] , T2[skip] ,Ai−1). Note that when T [await r] is a
synchronization point occurring in P , T [skip] refers to the program
point immediately after the await statement. Since there are only
polynomially-many such edges that can possibly be added, we are
guaranteed to reach a fixed-point Ak of A0A1 . . . in a polynomial
number of steps. Furthermore, the reachable states of Ak are
precisely the same reachable states of AP . However, computing
0 ∈ sms(t1, t2,Ai−1) at each step is difficult due to the zero-
test edge in the await statement immediately preceding t2; this is
computationally equivalent to computing configuration reachability
in non-recursive vector addition systems.

Lemma A.7.II. The configuration-reachability problem for vector
addition systems is reducible to the state-reachability problem for
multi-wait finite-value programs.

Proof. Let A = 〈Q, ↪→〉 be a k-dimension vector addition system
with ↪→ = {d1, . . . , dn}, and let q0, qf ∈ Q. Instead of checking
reachability of a vector ~nf from 0 in A, we will instead solve an
equally-hard problem of checking whether 0 is reachable from an
initial vector ~n0. To do this we construct a multi-wait program PA
and a local valuation ` which is reachable in PA if and only if the
configuration q0 is reachable from q~n0 in A.

We will construct PA such that the number of pending tasks
in a configuration is equal to the sum of vector components in a
corresponding configuration of A. We then simulate each step of
A, which subtracts ~n1 ∈ Nk and adds ~n2 ∈ Nk, by consuming∑
i ~n1(i) tasks and posting

∑
i ~n2(i) tasks, while ensuring each

task consumed (resp., posted) corresponds to a subtraction (resp., ad-
dition) to the correct vector-component.

For each transition di = 〈q, ~n1, ~n2, q〉 we define the sequence
σi ∈ [1, k]∗ of counter decrements as

σi
def
= 11 . . . 11︸ ︷︷ ︸

~n1(1) times

22 . . . 22︸ ︷︷ ︸
~n1(2) times

. . . kk . . . kk︸ ︷︷ ︸
~n1(k) times

.

We assume, without loss of generality, that each transition has a
non-zero decrement vector, i.e., ~n1 6= 0 and thus |σi| > 0. We
will use return-value handlers to ensure that a |σi|-length sequence
of consecutively-consumed tasks corresponds the decrement of
transition di. For each j ∈ {1, . . . , |σi|}, let di,j(v) be the return-
value handler defined by

assume cur_tx = i;
assume cur_pos = j;
if cur_pos = |σi| then

assume v = true;
cur_tx := ?;
cur_pos := 1

else
assume v = false;
cur_pos := cur_pos + 1,

which checks that consuming a given task corresponds to a decre-
ment (by one) of the σi(j)th component of the decrement vector of
di ∈ δ. For each increment vector ~n (i.e., 〈q, ~n1, ~n, q〉 ∈ δ for some
~n1 ∈ Nk), or initial vector ~n = ~n0, we declare the procedure

proc inc~n ()
for var idx := 1 to k do

for var cnt := 1 to ~n(idx) do
let tx = ?
and pos = ? in
assume σtx(pos) = idx;
post r ← ptx ? dtx,pos.

which posts ~n(m) tasks for each m ∈ {1, . . . , k}, to be consumed
later by arbitrary positions j of the decrement sequences σi (since
pos is assigned ?) of arbitrary transitions di (since tx is assigned ?)
such that σi(j) = m—this ensures that the subsequent consumption
of a task with handler di,j corresponds to decrementing the mth

component of ~n. To perform the increment of transition di ∈ δ by
vector ~n2, we declare the procedure pi, which non-deterministically
calls inc~n2 , as

proc pi ()
if ? then

call inc~n2 ();
return true

else
return false.

Note that the Boolean return value is used by the attached return-
value handler di,j (for some j ∈ {1, . . . , |σi|}) to ensure that the
increment is only performed once per transition di, by the last-
consumed task in the |σi|-length sequence.

Finally, the initial procedure main simply adds tasks correspond-
ing to the initial vector ~n0 to an initially-empty region container,
then loops until every task has been consumed:

proc main ()
var cur_tx := ? ;
var cur_pos = 1;
var empty := false;
call inc~n0 ();
await r;

// check: is this point reachable?
empty := true;
return.

Checking that PA faithfully simulates A is easily done by noticing
the correspondence between configurations q~n of A and configu-
rations of PA with

∑
i ~n pending tasks. Since empty = true is

only reachable when there are no pending tasks, reachability to
empty = true implies 0 is reachable in A. Furthermore, if 0 is
reachable in A, a run of PA will eventually proceed past the await
statement without pending tasks, setting empty = true.

Proposition A.7.I. The configuration q0 is reachable in A from
q~n0 if and only if empty = true is reachable in PA.

Since the size of PA is polynomial in A, we have a polynomial-
time reduction for deciding configuration-reachability in A.
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