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Abstract
Inverse computation has many applications such as serializa-
tion/deserialization, providing support for undo, and test-case gen-
eration for software testing. In this paper, we propose an inverse
computation method that always terminates for a class of functions
known as parameter-linear macro tree transducers, which involve
multiple data traversals and the use of accumulations. The key to
our method is the observation that a function in the class can be
regarded as a non-accumulative context-generating transformation
without multiple data traversals. Accordingly, we demonstrate that
it is easy to achieve terminating inverse computation for the class
by context-wise memoization of the inverse computation results.
We also show that when we use a tree automaton to express the
inverse computation results, the inverse computation runs in time
polynomial to the size of the original output and the textual pro-
gram size.

Categories and Subject Descriptors I.2.2 [Artificial Intelligence]:
Automatic Programming—Program transformation; D.1.1 [Pro-
gramming Techniques]: Applicative (Functional) Programming

General Terms Languages, Theory

Keywords Program Inversion, Inverse Computation, Program
Transformation, Functional Programming, Tree Automata, Tree
Transducers

1. Introduction
The problem of inverse computation [1, 15–17, 19, 24, 27, 32]—
finding an input s for a program f and a given output t such that
f(s) = t—has many applications, including test-case generation
in software testing, supporting undo/redo, and obtaining a deserial-
ization from a serialization program.

Let us illustrate the problem with an example. Suppose that
we want to write an evaluator for a simple arithmetic expression
language defined by the following datatype. (We basically follow
the Haskell syntax [4] even though we target an untyped first-order
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functional language with call-by-value semantics.)

data V = Z | S(V )
data E = Zero | One | Add(E,E) | Dbl(E)

Informally, Z and Zero represent 0, One represents 1, S(n) means
n+ 1 (the successor of n), Add(n1, n2) adds the numbers n1 and
n2, and Dbl(n) doubles the number n.

An evaluator eval :: E → V of the expressions can be
implemented as follows.

eval(x) = evalA(x,Z)

evalA(Zero, y) = y
evalA(One, y) = S(y)
evalA(Add(x1, x2), y) = evalA(x1, evalA(x2, y))
evalA(Dbl(x), y) = evalA(x, evalA(x, y))

Here, eval uses evalA that uses accumulations for efficiency.
The function evalA satisfies the invariant that evalA(e,m) =
eval(e) + m, where “+” is the addition operator for values. This
invariant enables us to read the definition intuitively; e.g., the case
of Dbl can be read as eval(Dbl(x))+ y = eval(x)+ eval(x)+ y.

The inverse computation of eval , which enumerates the inputs
{s | eval(s) = t} for a given t, is sometimes useful for testing
computations on E. For example, suppose that we write an opti-
mizer f that converts all the expressions e satisfying eval(e) =
S2n(Z) into Dbln(One), and we want to test if the optimizer
works correctly or not, i.e., whether eval(e) = S2n(Z) implies
f(e) = Dbln(One) or not.2 A solution would involve randomly
generating or enumerating expressions e, filtering out the es that do
not satisfy eval(e) = S2n(Z), and checking f(e) = Dbln(One).
However, it is unsatisfactory because it is inefficient; the majority
of the expressions do not evaluate to S2n(Z). Inverse computation
enables us to generate only the test-cases that are relevant to the
test. A test with inverse computation can be efficiently performed
by (1) picking up a number m of the form S2n(Z), (2) picking
up an expression e from the set obtained from the inverse compu-
tation for m, and (3) checking if the optimizer f converts e into
Dbln(One). Here, all the picked up (randomly generated or enu-
merated) data are relevant to the final check in the Step (3). Small-
Check and EasyCheck use inverse computation for efficient test-
case generation [6, 29], which of course has to be supported by
efficient inverse computation.

However, there are as yet no systematic efficient inverse compu-
tation methods that can handle eval . One reason is that evalA con-
tains accumulations and multiple data traversals. It is so far unclear
how to perform tractable terminating inverse computation for func-

2 We use the shorthand notation gn(x) to stand for g(. . . (g
︸ ︷︷ ︸

n

(x)) . . .).



tions with accumulations and multiple data traversals (Section 2).
Some of the existing methods [1, 16, 24] do not terminate for func-
tions with accumulations. Some approaches [15, 26, 27] can handle
certain accumulative computations efficiently, but they do not work
for non-injective functions such as eval . Although some inverse
computation methods terminate for accumulative functions [13,
20], the complexity upper bound is unclear when there are also
multiple data traversals.

In this paper, we propose an inverse computation method that
can handle a class of accumulative functions like eval that have
multiple data traversals, namely deterministic macro tree transduc-
ers [11] with the restriction of parameter-linearity (Section 3). In
this class of functions, one cannot copy variables for accumulation
(such as y in evalA) but one can traverse inputs (such as x, x1, x2

in evalA) many times. Our method computes the set {s | f(s) = t}
as a tree automaton [7] for a given function f and an output y in
time polynomial to the size of y (Section 4). The key to our inverse
computation is the observation that a program in the parameter-
linear macro tree transducers is indeed a non-accumulative trans-
formation that generates contexts (i.e., trees with holes) without
multiple data traversals. From this viewpoint, we can do the in-
verse computation through a variant of the existing inverse com-
putation methods [1, 3]. Note that viewing a program as a context-
generating transformation is not new. What is new in our paper is to
use this view to achieve polynomial-time inverse computation for
the class of accumulative functions with multiple data traversals.

Our main contributions are summarized as follows.

• We demonstrate that simply viewing a function as a context-
generating transformation helps us to achieve a systematic in-
verse computation method for accumulative functions. After
converting a program into a context-generating one, it is easy
to perform inverse computation for the program.

• We show that, for parameter-linear macro tree transducers, our
inverse computation method runs in time polynomial to the
size of the output and the textual program size, and in time
exponential to the number of the functions in the program.

The rest of the paper is organized as follows. Section 2 shows
an overview of our proposal. Section 3 defines the target lan-
guage, parameter-linear macro tree transducers. Section 4 formally
presents our inverse computation method. Section 5 shows two ex-
tensions of our proposal, and Section 6 shows the relationship be-
tween ours and the other research. Section 7 concludes the paper
and outlines future work.

2. Overview
In this section, we give a brief overview of our proposal.

2.1 Review: When Inverse Computation Terminates
Let us begin with an illustrative example showing when a simple in-
verse computation [1, 3] terminates. The following function parity
takes a natural number n and returns n mod 2.

parity(Z) = Z
parity(S(x)) = aux (x)

aux(Z) = S(Z)
aux(S(x)) = parity(x)

What should we do for inverse computation of parity given an
original output t? In [1], a symbolic computation method called
(needed) narrowing [3] is used as a simple way to find a substitu-
tion θ such that parity(x)θ ?

= t, where ?
= represents an equiva-

lence check of (first-order) values defined in a standard way (e.g.,
Z

?
= Z ≡ �). The same idea is also shared among logic program-

ming languages such as Curry and Prolog. Roughly speaking, a

narrowing is a substitution followed by a reduction, and it can re-
duce an expression with free variables. For example, parity(x) is
not reducible, but, if we substitute Z to x, we can reduce the expres-
sion to Z. Such a reduction after a substitution is a narrowing that
can be written as parity(x) �x �→Z Z. The notion can naturally be
extended to equivalence checks, such as (parity(x) ?

= Z) �x �→Z

(Z
?
= Z) ≡ �. By using narrowing, we can obtain the correspond-

ing input by collecting the substitutions used in the narrowing. For
example, consider the inverse computation of parity for an output
Z. Since we have3

(parity(x)
?
= Z) �x �→Z �

we know that parity(Z) = Z, and since we have

(parity(x)
?
= Z) �x �→S(x) (aux (x)

?
= Z)

�x �→S(x) (parity(x)
?
= Z) �x �→Z �

we know that parity(S(S(Z))) = Z.
Sometimes, the simple inverse computation does not terminate;

this happens especially when we give it an output that has no
corresponding inputs. For example, the simple inverse computation
of parity for an output S(S(Z)) runs infinitely:

(parity(x)
?
= S2(Z)) �x �→S(x) (aux (x)

?
= S2(Z))

�x �→S(x) (parity(x)
?
= S2(Z)) �x �→S(x) . . .

One might notice that the check (parity(x)
?
= S2(Z)) occurs twice

in the sequence.
Actually, with memoization, the simple inverse computation

for parity always terminates. For the above narrowing sequence,
by memoizing all the checks in the sequence, we can tell that
the same check (parity(x)

?
= S2(Z)) occurs twice, and hence

the narrowing sequence cannot produce any result. In general, the
number of equality checks occurring in the inverse computation
is finite because it always has the form f(x)

?
= t (up to α-

renaming), where t is a subterm of the original output given to the
inverse computation. Thus, the simple inverse computation always
terminates with memoization for parity .

This observation also gives an upper bound of the worst-case
complexity of inverse computation of parity ; it runs in constant
time regardless the size of the original output because the checks in
the narrowing have the form of either parity(x) ?

= t or aux (x) ?
=

t, where t is the original output.

2.2 Problem: Non-Termination due to Accumulations and
Multiple Data Traversals

Consider a simplified version of eval :

ev(x) = evA(x,Z)

evA(One, y) = S(y)
evA(Add(x1, x2), y) = evA(x1, evA(x2, y))
evA(Dbl(x), y) = evA(x, evA(x, y))

Though simplified, this function still contains the challenging is-
sues: accumulations and multiple data traversals. Since we have{
s | ev(s) = S2(Z)

}
= {Dbl(One),Add(One,One)} for exam-

ple, the inverse computation of ev for S2(Z) should result in the
set.

Unlike parity , the simple inverse computation method does not
always terminate. For example, the simple inverse computation of

3 Here, we implicitly apply the reduction rules of ?
= as much as possible.



ev for Z does not terminate.

(ev(x)
?
= Z) � (evA(x,Z)

?
= Z)

�x �→Dbl(x) (evA(x, evA(x,Z))
?
= Z) �x �→Dbl(x) . . .

Memoization is no longer useful for making the simple inverse
computation terminate because there are no repeated checks in the
infinite sequence.

The following issues make it difficult for the inverse computa-
tion to terminate and even harder to run it in polynomial time.

• Accumulations, a sort of call-time computation commonly used
in tail recursion, increase the size of the terms in the narrowing
process. For example, evA contains the accumulations

evA(Dbl(x), y) = evA(x, evA(x, y))

which increase the term-size in the following narrowing steps.

(evA(x,Z)
?
= Z) �x �→Dbl(x) (evA(x, evA(x,Z))

?
= Z)

We can see that the second argument of evA (underlined above)
gets bigger in narrowing.

• Multiple data traversals make things much worse. It prevents
us from considering function calls separately. For example, we
have to track the two calls evA(x, evA(x, y)) simultaneously.
We can see that the number of function calls we have to track
simultaneously increases in narrowing. To clarify the problem
caused by multiple data traversals, we will look at the issue
of accumulations in the absence of multiple data traversals.
Suppose that ev does not have the case for Dbl and thus does
not contain multiple data traversals. Although there are still an
infinite narrowing sequence

(ev(x)
?
= Z) � (evA(x,Z)

?
= Z)

�x �→Add(x1,x2) (evA(x1, evA(x2,Z))
?
= Z) � . . . ,

one can make the simple inverse computation terminate by de-
composing (evA(x1, evA(x2,Z))

?
= Z) into evA(x1, z)

?
= Z∧

evA(x2,Z)
?
= z and by observing that, for evA(x1, z)

?
= z′,

we only need to consider the substitutions that map z and z′

to subterms of the output fed to the inverse computation, i.e.,
Z. Thus, we can substitute a concrete subterm to z and check
evA(x1,Z)

?
= t and evA(x2, t)

?
= Z separately for a concrete

t (a more refined idea can be found in [13, 20]), and we can
bound the complexity of inverse computation in a similar way
as we did for parity . However, this idea does not scale for func-
tions with multiple data traversals, in which many function calls
are tracked simultaneously in narrowing. Although the existing
approaches [13, 20] achieve terminating inverse computation of
certain accumulative functions with multiple data traversals, it
is unclear whether there are polynomial-time inverse computa-
tions for functions with multiple data traversals.

2.3 Our Idea
One might have noticed that the result of evA(s, t) can be written
as Ks[t] whatever t is, where Ks is a context (i.e., a tree with holes
like S(•)) determined by s and Ks[t] is the tree obtained from
Ks by replacing • with t. For example, we have evA(One,Z) =
S(Z), evA(One,S(Z)) = S(S(Z)), where we have underlined
the hole position of the context. More generally, for a context
KOne = S(•), we have evA(One, t) = KOne[t] for any t. Thus, we
can define a context-generating version evAc of evA that satisfies
evAc(One) = S(•), for example. The functions ev c and evAc can

be defined as follows.

evc(x) = k[Z] where k = evAc(x)

evAc(One) = S(•)
evAc(Add(x1, x2)) = k1[k2[•]] where {ki = evAc(xi)}i=1,2

evAc(Dbl(x)) = k[k[•]] where k = evAc(x)

There are no accumulations or multiple data traversals. That
is, evAc is indeed a non-accumulative and input-linear context-
generating transformation! Note that ev c(x) = ev(x) holds for
any x.

Now the simple inverse computation terminates again! For ex-
ample, the inverse computation of ev c for S2(Z) is as follows.

(evc(x)
?
= S2(Z))

� {because (k[Z]
?
= S2(Z)) ≡ (k

?
= S2(•)) }

(evAc(x)
?
= S2(•))

�x �→Dbl(x) {because (k[k[•]] ?
= S2(•)) ≡ (k

?
= S[•])}

(evAc(x)
?
= S(•))

�x �→One �

The only difference is that now ?
= takes care of the contexts.

Notice that the checks occurring in the narrowing have the form
fc(x)

?
= K, where K is a subcontext of the original output. Since

this generally holds for evc, the termination property of the simple
inverse computation is now recovered!

Besides the new point of view, our approach also involves a
new way to express the memoized narrowing computation. Instead
of using (a variant of) the existing method directly, we use a tree
automaton [7]; it is more suitable for a theoretical treatment than
side-effectful memoized narrowing, and can express an infinite set
of inputs (note that in general the number of corresponding inputs is
infinite as in the case of parity ). For example, inverse computation
of ev c for S2(Z) can be expressed by the following automaton
where each state is of the form qf−1(K).

q
ev−1

c (S2(Z))
← q

evA−1
c (S2(•))

q
evA

−1
c (S2(•)) ← Dbl(q

evA
−1
c (S(•)))

q
evA−1

c (S2(•)) ← Add(q
evA−1

c (•), qevA−1
c (S2(•)))

q
evA−1

c (S2(•)) ← Add(q
evA−1

c (S(•)), qevA−1
c (S(•)))

q
evA−1

c (S2(•)) ← Add(q
evA−1

c (S2(•)), qevA−1
c (•))

q
evA−1

c (S(•)) ← One

Note that f(x) ?
= K can be regarded as x

?
= f−1(K). We write

qf−1(K) for a state instead of q
f(x)

?
=K

because an automaton con-
structed in this way can be regarded as all the possible reductions
starting with f−1(K). This automaton contains the state q

evA−1
c (•)

that accepts no trees, which intuitively means that the evaluation of
evA−1

c (•) fails; i.e., the narrowing from evAc(x)
?
= • fails. The

size of the resulting automaton is bounded linearly by the size of
the original output of ev . It is also worth noting that we can extract
a tree from an automaton in time linear to the size of the automa-
ton [7].

All of the above results are obtained by just a simple observa-
tion: a program like ev is a non-accumulative context-generating
transformation without multiple data traversals.

3. Target Language
In this section, we formally describe the programs we target, which
are written in an (untyped) first-order functional programming lan-
guage with certain restrictions.



program ::= rule1 . . . rulen
rule ::= f(p, y1, . . . , ym) = e
p ::= x | σ(x1, . . . , xn)
e ::= σ(e1, . . . , en) (Constructor Application)

| f(x, e1, . . . , em) (Function Call)
| y (Parameter Use)

Figure 1. Syntax of the target language: σ is an n-ary constructor,
and f is an (m+ 1)-ary function.

Γ;Δ � {y �→ v} � y ↓ v

{Γ;Δ � ei ↓ ti}1≤i≤n

Γ;Δ � σ(e) ↓ σ(t)

∃(f(x, y) = e)
{Γ;Δ � ei ↓ ti}1≤i≤|e| {x �→ s} ;{y �→ t

} � e ↓ v

Γ � {x �→ s} ;Δ � f(x, e) ↓ v

∃(f(σ(x), y) = e). s = σ(s)
{Γ;Δ � ei ↓ ti}1≤i≤|e| {x �→ s} ; {y �→ t

} � e ↓ t

Γ � {x �→ s} ;Δ � f(x, e) ↓ t

Figure 2. Call-by-value semantics of the target language: here, we
abuse the notation to write {x �→ s} for {x1 �→ s1, . . . , xn �→ sn}
where n = |x| = |s|.

3.1 Values: Trees
The values of the language are trees consisting of constructors (i.e.,
a ranked alphabet).

Definition 1 (Trees). A set of trees TΣ over constructors Σ is
defined inductively as follows: for every σ ∈ Σ(0), σ ∈ TΣ, and for
every σ ∈ Σ(n) and t1, . . . , tn ∈ TΣ (n > 0), σ(t1, . . . , tn) ∈ TΣ,
where Σ(n) is the set of the constructors with arity n.

For constructors Z,Zero,One,Nil ∈ Σ(0), S ∈ Σ(1) and
Cons,Add ∈ Σ(2) , examples of trees are S(Z), Cons(Z,Nil),
and Add(Add(Zero,One),Zero). We shall fix the set Σ of the
constructors throughout the paper for simplicity of presentation.
The size of a tree t is the number of the constructor occurrences
in t. For example, the size of S(Z) is 2.

In what follows, we shall use vector notation: t represents a
sequence t1, . . . , tn and |t| denotes its length n.

3.2 Programs: Macro Tree Transducers
The syntax of the language is shown in Figure 1. A program
consists of a set of rules, and each rule has the form of either
f(σ(x1, . . . , xn), y1, . . . , ym) = e or f(x, y1, . . . , ym) = e.
There are two kinds of variable: input and output. Input variables,
denoted by x in Figure 1, can be decomposed by pattern-matching
but cannot be used to compose a result. Output variables, denoted
by y in Figure 1, can be used to compose a result but cannot be de-
composed. Output variables are sometimes called (accumulation)
parameters. A program in the language is nothing but a (stay) macro
tree transducer (MTT) [11]. Thus, a program written in the target
language is called an MTT in this paper.

Example 1. Simple example of an accumulative function written
in the target language is reverse . The following function reverse
reverses a list of natural numbers expressed by S and Z.

reverse(x) = rev(x,Nil)

rev(Nil, y) = y
rev(Cons(a, x), y) = rev(x,Cons(nat(a), y))

nat(Z) = Z
nat(S(x)) = S(nat(x))

The function nat just copies an input. This function is necessary
because we prohibit using an input directly to produce a result in
the language (see Figure 1).

Example 2 (eval ). The eval program in Section 1 is an example
of an MTT program. So is its simplified version ev .

Example 3 (mirror ). The following function mirror mirrors a
list.

mirror(x) = app(x, rev(x,Nil))

app(Nil, y) = y
app(Cons(a, x), y) = Cons(nat(a),app(x, y))

We omit the rules for rev and nat because they are the same as
those in Example 1. Unlike ev and eval , mirror traverses an input
twice with the different functions (app and rev ). The function app
is the so-called “append” function.

The size of a program is defined by the total number of function,
constructor, and variable occurrences in the program. The intuition
behind this definition is to approximate the size of program code in
text. Note that the number of function or constructor occurrences is
different from the number of functions or constructors. For exam-
ple, the number of functions in reverse is 3, whereas the number
of function occurrences is 9.

The language has a standard call-by-value semantics, as shown
in Figure 2. A judgment Γ;Δ 	 e ↓ t means that under an
input-variable environment Γ and output-variable environment Δ,
an expression e is evaluated to a value t. Programs are assumed to
be deterministic; i.e., for each f , either f has at most one rule of
the form f(x, y1, . . . , ym) = e or has at most one rule of the form
f(σ(x1, . . . , xn), y1, . . . , ym) = e for each σ. The semantics of a
function f is defined by

[[f ]](s, t) =

{
t if {x �→ s} ; ∅ 	 f(x, t) ↓ t for fresh x,
⊥ otherwise.

Note that we allow partial functions; e.g., we have [[nat ]](Nil) = ⊥.
We shall sometimes abuse the notation and simply write f for [[f ]].
The semantics is nothing but IO-production [11].

In addition, we also assume that every input variable must oc-
cur in the corresponding right-hand-side expression. This restric-
tion does not change the expressiveness; we can convert any pro-
gram to one satisfying this restriction by introducing the func-
tion ign satisfying [[ign]](s, t) = t for any s and t and defined
by ign(σ(x1, . . . , xn), y) = ign(x1, . . . ign(xn, y) . . .) for every
σ ∈ Σ. All the previous examples satisfy these assumptions.

A program is called parameter-linear if every output variable
y occurring on the left-hand side occurs exactly once on the corre-
sponding right-hand side of each rule.4 All the previous examples
are parameter-linear. Our polynomial time inverse computation de-
pends on parameter-linearity.

4. Polynomial-Time Inverse Computation
In this section, we formally describe our inverse computation. As
briefly explained in Section 2, first, we convert an MTT program
into a non-accumulative context-generating program without mul-
tiple data traversals, such as ev c in Section 2.3. Then, we perform
inverse computation with memoization. More precisely, we con-
struct a tree automaton [7] that represents the inverse computation
result, whose run implicitly corresponds to (a context-aware ver-
sion of) the existing inverse computation process with memoiza-
tion [1, 3].

4 Our definition of parameter-linearity is stronger than “single-use restricted
on the parameters” [8] and “non-copying” [31]; they require that each
parameter is used at most once.



Our inverse computation consists of three steps:

1. We convert a parameter-linear MTT into a non-accumulative
context-generating program.

2. We apply tupling [5, 18] to eliminate multiple data traversals.

3. We construct a tree automaton that represents the inverse com-
putation result.

The first two steps are to obtain a non-accumulative context-
generating program without multiple data traversals. The third step
represents memoized inverse computation. The rest of this section
explains each step in detail.

4.1 Conversion to Context-Generating Program
The first and most important step is to convert an MTT program
into a non-accumulative context-generating program. This transfor-
mation is also useful for removing certain multiple data traversals,
as shown in the example of ev in Section 2. Moreover, this makes it
easy to apply tupling [5, 18] to programs. Note that viewing MTT
programs as non-accumulative context-generating transformations
is not a new idea (see Section 3.1 of [8] for example). The seman-
tics of the context-generating programs shown later is nothing but
using Lemma 3.4 of [8] to evaluate MTT programs.

First, we will give a formal definition of contexts.

Definition 2. An (n-hole) context K is a tree in K ∈ TΣ∪{•1,...,•n}
where •1, . . . , •n are nullary symbols such that •1, . . . , •n 
∈ Σ.

An n-hole context K is linear if each •i (1 ≤ i ≤ n) occurs
exactly once in K. We write K[t1, . . . , tn] for the tree obtained
by replacing •i with ti for each 1 ≤ i ≤ n. For example,
K = Cons(•1, •2) is a 2-hole context and K[Z,Nil] is the tree
Cons(Z,Nil). For 1-hole contexts, •1 is sometimes written as •.

We showed that ev is indeed a non-accumulative context-
generating transformation in Section 2. In general, any MTT pro-
gram can be regarded as a non-accumulative context-generating
transformation in the sense that, since output variables cannot be
pattern-matched, the values bound to the output variables appear
as-is in the computation result. Formally, we can state the following
fact (Engelfriet and Vogler [11]; Lemma 3.19).

Fact 1. [[f ]](s, t) = t if and only if there is K such that [[f ]](s, •) =
K and t = K[t].

Accordingly, we can convert an MTT program into a non-
accumulative context-generating program, as shown below.

Algorithm 1 (Conversion to Context-Generating Programs).
Input: An MTT program
Output: A non-accumulative context-generating program
Procedure:
For each rule f(p, y1, . . . , ym) = e of the input program, construct
a rule

fc(p) = e′ where kg1,x1 = g1c(x1), . . . , kgn,xn = gnc(xn)

where

• g1(x1), . . . , gn(xn) are all the function calls that occur as
gi(xi, . . .) in e,

• kgi,xi (1 ≤ i ≤ n) represents a fresh variable name determined
by gi and xi, and

• e′ is obtained from e by replacing each yj (1 ≤ j ≤ m) by •j
and replacing each call gi(xi, ei) (1 ≤ i ≤ n) by kgi,xi [e

′
i],

where e′i are the results obtained by recursively applying the
conversion to ei.

As a result of the above, in a converted program, the arguments
of every function are variables, and the return value of a function

cannot be traversed again. This rules out any accumulative compu-
tation.

Example 4 (reverse ). The reverse program can be converted into
the following program.

reversec(x) = k[Nil] where k = rev c(x)

rev c(Nil) = •1
rev c(Cons(a, x)) = k2[Cons(k1, •1)]

where k1 = natc(a), k2 = rev c(x)

natc(Z) = Z
natc(S(x)) = S(k)where k = natc(x)

The converted program has no accumulative computation.

Example 5 (eval ). The eval program in Section 1 can be converted
into the following program.

eval c(x) = k[Z] where k = evalAc(x)

evalAc(Zero) = •1
evalAc(One) = S(•1)
evalAc(Add(x1, x2)) = k1[k2[•1]]

where k1 = evalAc(x1), k2 = evalAc(x2)
evalAc(Dbl(x)) = k[k[•1]] where k = evalAc(x)

Note that the two occurrences of the function call evalA(x, . . .) on
the right-hand side of the rule evalA(Dbl(x)) = . . . are unified into
the single call k = evalAc(x). Recall that Algorithm 1 generates a
new variable kf,x for a pair of a function f and its input x, but not
for its occurrence. Applying the same function to the same input
results in the same context in a context-generating program, even
though different accumulating arguments are passed in the original
program. As a side effect, certain multiple data traversals, i.e.,
traversals of the same input by the same function, are eliminated
through this conversion.

Example 6 (mirror ). The mirror program in Section 3 can be
converted into the following program.

mirrorc(x) = k1[k2[Nil]]
where k1 = appc(x), k2 = rev c(x)

appc(Nil) = •1
appc(Cons(a, x)) = Cons(k1, k2[•1])

where k1 = natc(a), k2 = appc(x)

We have omitted the definitions of rev c and natc because they
are the same as in Example 4. Some multiple data traversals still
remain as k1 = appc(x), k2 = rev c(x). However, thanks to the
conversion, this sort of multiple data traversal is easy to eliminate
by tupling [5, 18] (see the next subsection).

For formal discussion, we define the syntax and the semantics
of the non-accumulative context-generating programs in Figure 3.
Since contexts are bound to context variables k, the semantics
uses second-order substitutions [8] that are mappings from vari-
ables to contexts. The application eΘ of a second-order substi-
tution Θ to a term e is inductively defined by: σ(e1, . . . , en)Θ =
σ(e1Θ, . . . , enΘ) and k[e1, . . . , en]Θ = K[e1Θ, . . . , enΘ]where
K = Θ(k). Similarly to MTT, we write [[f ]] for the semantics of f .

Now, we can show that the conversion is sound; it does not
change the semantics of the functions.

Lemma 1. For any tree s, [[f ]](s, •) = [[fc]](s).

Together with Fact 1, we have [[f ]](s, t) = K[t] with K =
[[fc]](s) for every tree s and t.

4.2 Tupling
Tupling is a well-known semantic-preserving program transforma-
tion that can remove some of the multiple data traversals [5, 18].



Syntax

prog ::= rule1 . . . rulen
rule ::= f(p) = e where k1 = f1(x1), . . . , kn = fn(xn)
p ::= x | σ(x1, . . . , xn)
e ::= •j | σ(e1, . . . , en) | k[e1, . . . , en]

Semantics
∃(f(x) = ewhere k = g(z)) l = |k = g(z)|

{{x �→ s} �c gi(zi) ↓ Ki}1≤i≤l Θ = {k �→ K} K = eΘ

Γ � {x �→ s} �c f(x) ↓ K

∃(f(σ(x)) = ewhere k = g(z)). s = σ(s) l = |k = g(z)|
{{x �→ s} �c gi(zi) ↓ Ki}1≤i≤l Θ = {k �→ K} K = eΘ

Γ � {x �→ s} �c f(x) ↓ K

Figure 3. Syntax and semantics of the converted programs: here,
we abuse the notation to write k = g(z) for sequence k1 =

g1(z1), . . . , kl = gl(zl) where l = |k = g(z)| and write {x �→ s}
as in Figure 2.

Roughly speaking, tupling transforms a rule

h(x) = . . . k1 . . . k2 . . . where k1 = f(x), k2 = g(x)

into

h(x) = . . . k1 . . . k2 . . . where (k1, k2) = 〈f, g〉(x).
Here, 〈f, g〉 is a function name introduced by tupling, and it is
expected to satisfy 〈f, g〉(x) = (f(x), g(x)). Tupling tries to find
a recursive definition of 〈f, g〉(x) recursively. For example, the
following program for mirror is obtained by tupling.

mirror c(x) = k1[k2[Nil]]
where (k1, k2) = 〈appc, rev c〉(x)

〈appc, rev c〉(Nil) = (•1, •1)
〈appc, rev c〉(Cons(a, x)) = (Cons(k1, k2[•1]), k3[Cons(k1, •1)])

where k1 = natc(a), (k2, k3) = 〈appc, rev c〉(x)
We shall not explain the tupling in detail because it has been
well-studied in the literature of functional programming [5, 18].
Moreover, we shall omit the formal definition of the syntax and the
semantics of tupled programs because they are straightforward.

Note that we tuple only the functions that need to be tupled, i.e.,
the functions that traverse the same input, for the sake of simplicity
of our inverse computation method that we will discuss later. For
example, appc and rev c are tupled because they traverse the same
input, whereas natc and appc are not tupled. Thus, the tupling step
does not change the reversec and eval c programs. In the tupled
program obtained in this way, for any call of a tupled function
(k1, . . . , kn) = 〈f1, . . . , fn〉(x), each variable ki (1 ≤ i ≤ n)
occurs at least once in the corresponding expression.

Thanks to the conversion described in the previous section, tu-
pling can eliminate all the multiple data traversals from the con-
verted programs. After tupling, a rule has the form of either

f(x) = e where k = g(x)

or

f(σ(x1, . . . , xn)) = e where k1 = g1(x1), . . . , kn = gn(xn).

Here, f , g, g1, . . . , gn are tupled functions. In other words, the tu-
pled programs are always input linear; that is, every input variable
occurring on the left-hand side also occurs exactly once on the cor-
responding right-hand side of each rule.

Tupling may cause size blow-up of a program: a tupled program
is at worst 2F -times as big as the original program; F here is
the number of functions in the original program. Recall that we

tuple only the functions that traverse the same input, not all the
functions in a program. Note that only one of 〈rev c, appc〉 and
〈appc, rev c〉 can appear in a tupled program. Thus, the tupled
functions 〈f1, . . . , fn〉 are as numerous as the sets of the original
functions {f1, . . . , fn}.

4.3 Tree Automata Construction as Memoized Inverse
Computation

We perform inverse computation with memoization after all the
preprocessing steps have been completed. However, as mentioned
in Section 2, unlike the existing inverse computation methods [1,
3], we use a tree automaton [7] to express the memoized-inverse-
computation result for the following reasons.

• A tree automaton is more suitable for a theoretical treatment
than a side-effectful memoization table.

• The set {s | f(s) = t} may be infinite (e.g., eval ).
• We can extract a tree from an automaton in time linear to the

size of the automaton [7].
• In some applications such as test-case generation, it is more

useful to enumerate the set of the corresponding inputs instead
of returning one of the corresponding inputs.

Thus, the use of memoization is implicit in our inverse computa-
tion, and we shall not mention narrowing � and check ?

= in this
formal development. Note that tree automata are used in the in-
verse computation because they are convenient rather than neces-
sary; even without them, we can use (a memoized and context-
aware version of) the existing inverse computation methods [1, 3].

First of all, we review the definition of tree automata. A tree
automaton [7] A is a triple (Σ, Q,R), where Σ is a ranked alpha-
bet, Q is a finite set of states, and R is a finite set of transition rules
each having the form of either q ← q′ or q ← σ(q1, . . . , qn) where
σ ∈ Q(n). We write [[q]]A for the trees accepted by state q inA, i.e.,
{t | q ←∗ t} where we take← as rewriting.

We shall roughly explain the construction of a tree automa-
ton as inverse computation by using the example of ev c given in
Section 2. We construct an automaton whose states have the form
qf−1(K) that represents the evaluation of f−1(K), or the inverse
computation result of f for K. Consider inverse computation of
evc for S2(Z). The idea behind the construction is to track the eval-
uation of ev−1(S2(Z)). Since the right-hand side of ev c is k[Z],
where k = evAc(x), the evaluation ev−1

c (S2(Z)) invokes the eval-
uation of evA−1

c (k) for k such that k[Z] = S2[Z]. In this case, we
have only such a k = S2(•). Thus, we generate a transition rule,

q
ev−1

c (S2(Z))
← q

evA−1
c (S2(•)).

Next, let us focus on how evA−1
c (S2(•)) is evaluated. There are

three rules of evAc. The first one has the right-hand side S(•),
the second one has the right-hand side k1[k2[•]] where k1 =
evAc(x1) and k2 = evAc(x2), and the third one has the right-
hand side k[k[•]] where k = evAc(x). Then, we shall consider
the matching between the context S2(•), the argument of evA−1

c ,
and the right-hand sides. The right-hand side of the first rule does
not match the context. For the second rule, there are possibly
three (second-order) substitutions obtained from matching S2(•)
with k1[k2[•]]: k1 = •, k2 = S2(•), k1 = S(•), k2 = S(•),
and k1 = S2(•), k2 = •. Recall that k1 and k2 are defined by
k1 = evAc(x1) and k2 = evAc(x2), and x1 and x2 come from the
pattern Add(x1, x2). Thus, we generate the following rules.

q
ev−1

c (S2(•)) ← Add(q
ev−1

c (•), qev−1
c (S2(•)))

q
ev−1

c (S2(•)) ← Add(q
ev−1

c (S(•)), qev−1
c (S(•)))

q
ev−1

c (S2(•)) ← Add(q
ev−1

c (S2(•)), qev−1
c (•))



Similarly, for the third rule, since there is only one substitution
k = S(•) obtained from matching S2(•) with k[k[•]], we generate
the following rule.

q
evA−1

c (S2(•)) ← Dbl(q
evA−1

c (S(•)))

Now that we have obtained the transition rules corresponding to
the call evA−1

c (S2(•)), we focus on evA−1
c (S(•)). A similar dis-

cussion to the one above enables us to generate the following rule.

qevAc(S(•))−1 ← One

After that, we move to the rules of evA−1
c (•), but nothing is

generated because no right-hand side matches with •. Thus, the
inverse computation of evc for S2(Z) is complete. Let AI be the
automaton constructed by gathering the generated rules. We can
see that [[ev−1

c (S2(Z))]]AI
= {Dbl(One),Add(One,One)}.

This automaton construction is formalized as follows.

Algorithm 2.
Input: A tupled program and a tree t.
Output: A tree automaton AI = (Σ, Q,R).
Procedure: Construct Q and R as follows.

• Q is the set of states of the form q〈f1,...,fn〉−1(K1,...,Kn), where
〈f1, . . . , fn〉 is a function occurring in the tupled program, Ki

(1 ≤ i ≤ n) is a (ai − 1)-hole linear subcontext of t, and
ai is the arity of fi. Here, K is called a subcontext of t if
t = K′[K[t1, . . . , tm]] holds for some linear context K′ and
trees t1, . . . , tm.

• R is the set of transition rules constructed from the rules of the
tupled program and the tuples of the linear subcontexts of t, in
the following way.

For each rule of the form f(x) = e where k = g(x) and
subcontexts K of t, and for every second-order substitution
Θ such that eΘ = K , we construct a rule

qf−1(K) ← qg−1(K
′
)

where K′ = kΘ.
For each rule of the form f(σ(x1, . . . , xn)) = ewhere k1 =
g1(x1), . . . , kn = gn(xn) and contexts K , and for every
second-order substitution Θ such that eΘ = K , we con-
struct a rule

qf−1(K) ← σ(q
g−1
1 (K′

1)
, . . . , q

g−1
n (K′

n)
)

where K′
i = kiΘ for each 1 ≤ i ≤ n.

Note that in the actual construction we do not generate any state
that cannot reach qf−1(t), where f is the function to be inverted
and t is the original output. Note that a tree is a 0-hole context.

Example 7 (reversec). The following automaton AI is obtained
from reversec and t = Cons(S(Z),Cons(Z,Nil)).

q
reverse−1

c (t)
← q

rev−1
c (Cons(S(Z),Cons(Z,•1)))

q
rev−1

c (Cons(S(Z),Cons(Z,•1)))
← Cons(q

nat−1
c (Z)

, q
rev−1

c (Cons(S(Z),•1)))
q
rev−1

c (Cons(S(Z),•1))
← Cons(q

nat−1
c (S(Z))

, q
rev−1

c (•1))
q
rev−1

c (•1) ← Nil

q
nat−1

c (S(Z))
← S(q

nat−1
c (Z)

)

q
nat−1

c (Z)
← Z

We have [[q
reverse−1

c (t)
]]AI

= {Cons(Z,Cons(S(Z),Nil))}, which

means that there is only one input s = Cons(Z,Cons(S(Z),Nil))
satisfying reverse(s) = reversec(s) = t.

Example 8 (eval c). The following automaton AI, where qi stands
for state q

evalA−1
c (Si(•1)), is obtained from eval and S2(Z).

q
eval−1

c (S2(Z))
← q2

q2 ← Add(q2, q0)
q2 ← Add(q1, q1)
q2 ← Add(q0, q2)
q2 ← Dbl(q1)

q1 ← One
q1 ← Add(q1, q0)
q1 ← Add(q0, q1)

q0 ← Zero
q0 ← Add(q0, q0)
q0 ← Dbl(q0)

Intuitively, qi represents the set of the arithmetic expressions that
evaluate to Si(Z).

Example 9 (mirror c). The following automaton AI is obtained
from mirrorc and Cons(Z,Cons(Z,Nil)).

q
mirror−1

c (Cons(Z,Cons(Z,Nil)))

← q〈appc,revc〉−1(Cons(Z,Cons(Z,•1)),•1)
q
mirror−1

c (Cons(Z,Cons(Z,Nil)))

← q〈appc,revc〉−1(Cons(Z,•1),Cons(Z,•1))
q
mirror−1

c (Cons(Z,Cons(Z,Nil)))

← q〈appc,revc〉−1(•1,Cons(Z,Cons(Z,•1)))
q〈appc,revc〉−1(Cons(Z,•1),Cons(Z,•1))
← Cons(q

nat−1
c (Z)

, q〈appc,revc〉−1(•1,•1))
q〈appc,revc〉−1(•1,•1) ← Nil
q
nat−1

c (Z)
← Z

We have [[q
mirror−1

c (Cons(Z,Cons(Z,Nil)))
]]AI

= {Cons(Z,Nil)}. Note
that some states occurring on the right-hand side do not occur on
the left-hand side. An automaton with such states commonly appear
when we try to construct an automaton for a function f and a tree t
that is not in the range of f . For example, the following automaton
AI is obtained from mirror c and Cons(Z,Nil).

q
mirror−1

c (Cons(Z,Nil))
← q〈appc,revc〉−1(Cons(Z,•1),•1)

q
mirror−1

c (Cons(Z,Nil))
← q〈appc,revc〉−1(•1,Cons(Z,•1))

We have [[q
mirror−1

c (Cons(Z,Nil))
]]AI

= ∅.

Our inverse computation is correct in the following sense.

Theorem 1 (Soundness and Completeness). For an input-linear
tupled program, s ∈ [[q〈f〉−1

(K)
]]
AI

if and only if [[〈f〉]](s) = (K).

Proof. Straightforward by induction.

4.4 Complexity Analysis of our Inverse Computation
We show that the inverse computation runs in time polynomial to
the size of the original output and the size of the program, but in
time exponential to the number of functions and the maximum arity
of the functions and constructors. We state as such in the following
theorem.

Theorem 2. Given a parameter-linear MTT program that defines a
function f and a tree t, we can construct an automaton representing
the set {s | f(s) = t} in time O(2Fm(2FnMF )N+1nc) where c is
some constant, F is the number of the functions in the program, n
is the size of t, N is the maximum arity of constructors in Σ, m is
the size of the program, and M is the maximum arity of functions.

Proof. First, let us examine the cost of our preprocessing. The con-
version into context-generating transformation does not increase
the program size and can be done in time linear to the program
size. In contrast, the tupling may increase the program size to 2Fm.
Thus, the total worst-case time complexity for preprocessing is
O(2Fm).

Next, let us examine the cost of the inverse computation. The
constructed automaton has at most 2FnMF states because every



state is in the form 〈g1, . . . , gl〉−1(K1, . . . , Kl), the number of
〈g1, . . . , gl〉 is smaller than 2F , the number of Ki is smaller than
nM , and l is no more than F . Note that the number of k-hole sub-
contexts in t is at most nk+1 and the contexts occurring in our in-
verse computation have at most (M − 1) kinds of holes. Since the
number of the states in an automaton is bounded by P = 2FnMF

and the transition rules are obtained from the rules of the tupled pro-
grams that are smaller than 2Fm, the number of the transition rules
is bounded by 2FmPN+1. Each rule construction takes O(nc)
time, where c is the maximum number of context compositions
on the right-hand side, which intuitively represents the maximum
degree of freedom in finding second-order substitutions. Thus, an
upper bound of the worst-case cost of the inverse computation is
O(2Fm(2FnMF )N+1nc).

Therefore, the total worst-case time complexity of our method
is bounded by O(2Fm(2FnMF )N+1nc).

It is remarkable that if we start from input-linear tupled context-
generating programs, the cost is O(m(FnMd)N+1nc), where d is
the maximum number of components of the tuples in the program
fed to the inverse computation. Note that the above approximation
is quite rough. For example, our method runs in time linear to the
size of the original output for reverse , and runs in time quadratic
to the size for mirror and eval .

5. Extensions
We shall discuss two extensions of the inverse computation.

5.1 Pattern Guards
Sometimes it is useful to define a function with pattern guards. For
example, let us consider extending the simple arithmetic expression
language shown in Section 1 to include a conditional expression
that branches by checking if a number is even or odd:

data E = . . . | CaseParity(E,E,E)

According to the change, eval can also be naturally extended by
using pattern guards:

eval(x) = evalA(x,Z)
...

evalA(CaseParity(x, x1, x2), y) | even(x) = evalA(x1, y)
evalA(CaseParity(x, x1, x2), y) | odd(x) = evalA(x2, y)

Here, we have omitted the definition of even /odd that evaluates n
and checks if the result is even/odd or not. We shall not discuss how
they are defined at this point.

This extension can be achieved by using the known notion of
MTT called look-ahead [11]. With regular look-ahead, we can test
an input by using a tree automaton before we choose a rule. For
example, even and odd can be seen as look-ahead because they
can be expressed by the following tree automaton.

even ← Zero
odd ← One
even ← Add(even , even)
even ← Add(odd , odd)
odd ← Add(even , odd)
odd ← Add(odd , even)

even ← Dbl( )
even ← CaseParity(even , even , )
even ← CaseParity(odd , , even)
odd ← CaseParity(even , odd , )
odd ← CaseParity(odd , , odd)
( = even , odd)

Some pattern guards can be expressed by using regular look-ahead.
To handle regular look-ahead, we have to change the inverse

computation method a bit. Consider a rule of the form,

f(x) | q(x) = g(x).

What transition rule should we produce from this f and a given K?
Producing a rule qf−1(K) ← qg−1(K) as the method discussed in

Section 4.3 is unsatisfactory because the rule f(x) | q(x) = g(x)
is applicable only if x is accepted in q. Thus, we must embed the
look-ahead information in the transition rule. This embedding can
be naturally expressed by using an alternating tree automaton [7]:

qf−1(K) ← qg−1(K) ∧ q

However, using an alternating tree automaton does not fit our pur-
pose because extracting a tree from an alternating tree automaton
takes at worst time exponential to the size of the alternating tree
automaton [7]; thus, it is difficult to bound the cost of our inverse
computation polynomially to the original output size. Moreover, it
also reduces the simplicity of the inverse computation method.

To keep our inverse computation method simple, we can spe-
cialize [23] the functions in a program to look-ahead as a prepro-
cess. In a specialized program, for any function call g(x, e) in a
rule f(p, . . .) | . . . q(x) . . . = . . . g(x, e) . . ., the domain of the
function must be accepted by the look-ahead; i.e., [[g]](s, t) = t im-
plies s ∈ [[q]]. Thus, in a specialized program, look-ahead cannot
affect the inverse computation results. For example, the specialized
version of evalA is

evalA(Zero, y) = y
...

evalA(CaseParity(x, x1, x2), y)
| even(x) = igne(x, ign(x2, evalA(x1, y)))
| odd(x) = igno(x, ign(x1, evalA(x2, y)))

Recall that we use ign because of the restriction that a program
must use every input variable at least once. The functions igne

and igno are specialized versions of ign (to even and odd respec-
tively):

igne(Zero, y) = y
igne(Add(x1, x2), y)
| even(x1) ∧ even(x2) = igne(x1, igne(x2, y))
| odd(x1) ∧ odd(x2) = igno(x1, igno(x2, y))

igne(Dbl(x), y) = ign(x)
igne(CaseParity(x, x1, x2), y)
| even(x) ∧ even(x1) = igne(x, igne(x1, ign(x2, y)))
| odd(x) ∧ even(x2) = igno(x, ign(x1, igne(x2, y)))

igno(One, y) = y
...

Here, we have omitted most of the definition of igno.
The specialization of a program increases the program size [21,

23]. In the worst case, a specialized program is |Q|N times as
big as the original one, assuming that look-ahead is defined by a
deterministic [7] tree automaton with the states Q, where N is the
maximum arity of the constructors. Since this only increases the
program size, our method still runs in time polynomial to the size
of the original output.

5.2 Bounded Use of Parameters
The notion of look-ahead can relax the parameter-linearity restric-
tion to finite-copying-in-parameter [8]. An MTT is called finite-
copying-in-parameter [8] if there is a constant b such that K ob-
tained by [[f ]](s, •1, . . . , •m) = K uses each hole •j (1 ≤ j ≤ m)
at most b times for every function f of arity m + 1 and s. It is
known that every finite-copying-in-parameter MTT can be con-
verted into a parameter-linear MTT with look-ahead (see the proof
of Lemma 6.3 in [8]). For example, the following MTT copies a
parameter zero times or twice.

f(x) = g(x,A) g(A, y) = C(y, y) g(B, y) = D



By using look-ahead, we can convert it into a parameter-linear
MTT.

f(x) | q2(x) = g2(x,A,A)
f(x) | q0(x) = g0(x)
g2(A, y1, y2) = C(y1, y2)
g0(B) = D

q2 ← A
q0 ← B

Here, gi means g that copies the output variable i times and qi
means the set of the inputs for which g copies the output variable i
times.

We can easily extend the method in Lemma 6.3 of [8] to gen-
erate specialized functions. A converted program can be (b +
1)MF (N+1)-times as big as the original one, where b is the bound
of the parameter copies, N is the maximum arity of the construc-
tors, F is the number of functions, and M is the maximum arity of
the functions.

6. Related Work
6.1 Inverse Computation
There have been many studies on the inverse computation problem
[1, 15–17, 19, 24, 27, 32]. They can be categorized into ones on left-
inverse computation and ones on right-inverse computation. Left-
inverse computation [15–17, 19, 27] focuses on injective functions
and tries to make an efficient inverse computation based on injec-
tivity analysis, but it can only handle provably-injective functions.
Right-inverse computation [1, 24, 32] including ours can handle
more functions than left-inverse computation does—it works even
for non-injective functions—but the yielded inverse-computation
process is usually much slower than that of left-inverse compu-
tation. Another important difference is that left-inverse computa-
tion is compositional; if we have effective left-inverse computation
methods for f and g, we have an effective left-inverse computa-
tion method for f ◦g. On the other hand, right-inverse computation
may not be compositional; even if we have right-inverse compu-
tation methods for f and g, then right-inverse computation may
happen to be undecidable for f ◦ g. Left-inverse computation is
suitable for applications in which efficiency is the biggest concern,
such as in serialization/deserialization. On the other hand, right-
inverse computation is suitable for applications in which one wants
to invert non-injective function to enumerate all the corresponding
inputs, such as in test-case generation [6, 29]. It is worth noting that
checking the injectivity of a function is generally undecidable. For
parameter-linear MTTs in particular, the injectivity check is unde-
cidable even if it has no output-variables [14] or it has no multiple
data traversals (we can reduce the emptiness check of the inter-
section of two context-free languages, which is known to be un-
decidable [2], to the problem). Thus, any left-inverse computation
method essentially has a function written in parameter-linear MTT
that cannot be inverted by it.

To the best of our knowledge, there are few discussions on the
topic of multiple data traversals, except for Eppstein’s work [12].
He demonstrated the usefulness of tupling [5, 18] that can make an
injective function from non-injective functions.

Regarding accumulations, studies on left-inverse computation
have treated them heuristically [15, 26, 27] because the injectivity
check is usually undecidable with them. Glück and Kawabe [15]
uses the LR-parsing technique. In their system, if the grammar ob-
tained from a program is LR-parsable, inverse program based on
LR-parsing is derived. Nishida and Vidal [27] and Mogensen [26]
focus on the special tail-recursive (thus usually accumulative) pat-
tern and discuss the inverse computation of the pattern. Regarding
right-inverse computation, although there are few studies focusing
on accumulative functions, the approaches [13, 20] regarding the
inverse-image computation have a strong connection to this work
and will be discussed later in this section.

6.2 Results on Tree Transducers and Formal Language
We assumed that the programs are deterministic and showed that
a tractable inverse computation is possible for parameter-linear
MTTs. However, this result does not scale to nondeterministic
programs. Even for MTTs without output variables, the problem of
checking whether an inverse-computation result is empty or not is
known to be NP-complete [28]. This means the complexity of the
inverse computation problem of the nondeterministic MTTs even
without output variables is NP-hard.

The problem of the inverse computation takes a function f and
an output tree t and returns the trees s such that f(s) = t. A similar
problem, the inverse-image computation problem—computation of
the set {s | f(s) ∈ T} for a given f and T—has been studied on
tree transducers (for example, [11, 13, 20]). The difference from the
inverse computation problem is that the inverse computation takes
one tree but inverse-image computation takes a set of trees, and
this difference is a key to our polynomial-time result. The complex-
ity of the inverse-image computation is EXPTIME-complete even
for the parameter-linear MTTs without output variables which are
thus non-accumulative, when T and the result set are given in tree
automata [22]. Roughly speaking, their EXPTIME-hard result is
caused by intersections; for an expression like . . . f(x) . . . f(x) . . .
we essentially have to compute the intersection {s | f(s) ∈ T1} ∩
{s | f(s) ∈ T2} in the inverse-image computation [22]. On the
other hand in our method, we do not need to compute the intersec-
tion because, for trees t1 and t2, {s | f(s) = t1}∩{s | f(s) ∈ t2}
equals {s | f(s) = t1} if t1 = t2, and otherwise it is empty. This is
implicitly expressed by the transformation in Section 4.1, in which
we replace . . . f(x) . . . f(x) . . . by . . . k . . . k . . . where k =
f(x); a multiple data traversal is replaced by an output copying.

The observation that an MTT program is a non-accumulative
context-generating transformation plays an important role in our
method. A similar but different idea is exploited in inverse-image
computation [13, 20]. Unlike ours, they view an MTT program as
a non-accumulative mapping-generating transformation, where a
mapping is represented by input-output pairs. A context is different
from a mapping; it contains more information than a mapping, e.g.,
the information about the positions of holes. This difference results
in the difference in inverse computation between ours and theirs.
From the mapping-generation view, they consider mappings from
a tuple of subtrees of t to a subtree of t for the original output t,
which are indeed partially-applied functions such as λy.[[f ]](s, y)
used to generate t. However, the number of m-ary mappings on the
subtrees of t is exponential to the size of t [13, 20]. Although they
can perform polynomial-time inverse computation if there are no
multiple data traversals [13], it is unclear whether they can achieve
polynomial-time inverse computation for functions with multiple-
data traversals. In contrast, we exploit the linearity of the holes—
a context contains this information but a mapping does not—to
achieve polynomial-time inverse computation for parameter-linear
MTTs, in which a function can have multiple data traversals. Note
that, like m-ary functions, the number of non-linear m-hole sub-
contexts in a tree is bounded exponentially by the size of the tree,
whereas the number of linear ones is bounded polynomially by the
size.

Regarding inverse computation of general MTTs, there is an-
other polynomial-time inverse computation method besides ours
that works for a subset of MTTs. The method of [13], as mentioned
in the previous paragraph, runs in polynomial time for MTTs with-
out multiple data traversals, i.e., MTTs with the restriction of finite-
input-copying-in-the-inputs [8]. In the restricted class of MTTs, we
can copy an output unboundedly many times but we can traverse
an input in only a bounded number of times. For example, reverse
and mirror are finite-copying-in-the-inputs, but eval is not. In con-
trast, our method runs in polynomial time for (deterministic) MTTs



with the restriction of finite-copying-in-the-output (Section 5.2), in
which we can traverse an input unboundedly many times but we
can copy an output only a bounded number of times. Whether we
can perform polynomial-time inverse computation for general de-
terministic MTTs or not is still an open problem. It is worth noting
that many useful functions can be written in MTT in which both
the input traversals and the output copies are bounded [8–10, 20],
and thus inverse computation for the functions can be performed
in polynomial time both by theirs and ours. Thus, the difference
in expressiveness between ours and other methods is rather small,
though not negligible. However, we claim that our method stands
out by being systematic and simple.

7. Conclusion
We have shown that viewing a function as a context-generating
transformation simplifies inverse computation of accumulative
functions with multiple data traversals. Accordingly, we can achieve
systematic polynomial-time inverse computation with small modi-
fications to the existing techniques.

A future direction is to develop a systematic program inversion
method for accumulative functions based on the view point. Since
now an accumulative function can be viewed as non-accumulative
context-generating functions, we hope that we can extend usual
range-analysis-based program-inversion methods [16, 19, 24] to
those functions, and hope that a program-inversion method devel-
oped in this way would be a good alternative to the existing ap-
proaches [15, 26, 27]. Another future direction is to develop an in-
verse computation method that can handle more kinds of copying.
One sort of the interesting copying in practice is those introduced
by “join” operation in database query. Although this study is the
first one to tackle the problem of “copies” in inverse computation,
still there is a large gap between our results and the general “join”
functions used in practice. Since tree transducers are hardly able
to express “join”-like transformation [25], the next step in our re-
search would be to identify what “join”s we should treat by design-
ing an appropriate language.
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