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Vérification de contrats hybride par
simplification symbolique

Résumé : 1l est difficile de détecter des erreurs dans des programmes, ou de
démontrer leur absence. Permettre aux programmeurs d’écrire des spécifications
formelles et précises, en particulier sous la forme de contrats, est une approche
commune pour vérifier des programmes et trouver des erreurs. Nous formalisons
et proposons une implémentation d’un vérificateur hybride de contrats pour un
sous-ensemble d’OCaml. La technique principale que nous mettons en ceuvre est
la simplification symbolique, qui permet de combiner facilement les vérifications
statiques et dynamiques de contrats. La technique que nous proposons consiste
a vérifier qu'une fonction satisfait son contrat ou indique quelle est la fonction
a lorigine de sa violation. Quand la satisfaction d’un contrat n’est pas décid-
able statiquement, du code de test est ajouté au programme afin d’effectuer les
vérifications & l’exécution.

Mots-clés : la sémantique du contrat, statique, dynamique, hybride, langage
fonctionnel, vérification, débogage
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1 Introduction

Constructing reliable software is difficult even with functional languages. For-
mulating and checking (statically or dynamically) logical assertions [18] 15} 2|
5, [35], especially in the form of contracts [28, 13| [7, 14}, 9], is one popular
approach to error discovery. Static contract checking can catch all contract
violations but may give false alarm and can only check restricted properties;
dynamic checking can check more expressive properties but consumes run-time
cycles and only checks the actual executed paths, thus is not complete. Static
and dynamic checking can be complementary. In this paper, we formalize hy-
brid (i.e. static followed by dynamic) contract checking for a subset of OCaml.
Thus, no (potential) contract violations can escape and yet expressive properties
can be expressed.
Consider an OCaml program augmented with a contract declaration:

(¥ val £f1 : int -> int -> int *)

contract f1 = ({x | x >= 0} -> {y | y >= 0})
-> {z | z >= 0}

let f1g=(gl) -1

let f2 = f1 (fun x -> x - 1)

The contract of £1 says that if £1 takes a function that returns a non-negative
number when given a non-negative number, the function f1 itself returns a
non-negative number. Both a static checker and a dynamic checker are able
to report that f1 fails its postcondition: the static checker relies on the in-
validity of Vg : int — int, (9 1) > 0 = (g 1) — 1 > 0 while the dynamic
checker evaluates (((fun x -> x - 1) 1) - 1) to -1, which violates the con-
tract {z | z >= 0}. However, a dynamic checker cannot tell that the argument
(fun x -> x - 1) fails £f1’s precondition because there is no witness at run-
time, while a static checker can report this contract violation because z —1 > 0
does not hold for all = of int to satisfy the postcondition {y | y > 0}. On
the other hand, a static checker usually gives three outcomes: (a) definitely no
bug; (b) definitely a bug; (c) possibly a bug. Here, a bug refers to a contract
violation. If we get many alarms (c), it may take us a lot of time to check which
one is a real bug and which one is a false alarm. We may want to invoke a
dynamic checker when the outcome is (c).

Following the formalization in [39], but this time for a strict language. We
first give a denotational semantics to contract satisfaction. That is to define
what it means by an expression e satisfies its contract ¢ (written e € t) without
knowing its implementation. Next, we define a wrapper > that takes an expres-
sion e and its contract ¢ and produces a term e >t such that contract checks
are inserted at appropriate places in e. If a contract check is violated, a special
constructor BAD! signals the violation. As the term et is a term in the same
language as e, all we have to do is to check the reachability of BAD'. If a BAD
is reachable, we know a contract is violated and the label [ precisely captures
the function at fault. We symbolically simplify the term e>¢ aiming to simplify
BADs away. In case there is any BAD left, we either report it as a compile-time
error or leave the residual code for dynamic checking. We make the following
contributions:

e We clarify the relationship between static contract checking and dynamic
contract checking (§2). A new observation is that, after static checking,
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we should prune away some more unreachable code before go on dynamic
checking. Such unreachable code however is essential during static check-
ing. We prove the correctness of this pruning (§6) with the telescoping
property studied (but not used for such purpose) in [7, 39].

e We define e € t and e>t and prove a theorem “ep>t is crash-free <= e € ¢”
(§4). The “crash-free” means “BAD is not reachable under all contexts”.
Such a formalization is tricky and its correctness proof is non-trivial. We
re-do the kind of proofs in [40] for a strict language.

e We design a novel SL machine that augments symbolic simplification with
contextual information synthesis for checking the reachability of BAD stat-
ically (§8). The difficulty lies in the reasoning about non-total terms. The
checking is automatic and modular and we prove is soundness. Moreover,
the SL machine produces residual code for dynamic checking. We compare
our framework with other approaches in §71

e We design a logicization technique that transforms expressions to logical
formulae, inspired by [20, 19] and axiomatization of functions that inter-
active theorem provers perform before calling SMT sovlers. However, we
have to deal with non-total terms and that is the key contribution of the
logicization (§5).

2 Overview

Assertions [18] state logical properties of an execution state at arbitrary points in
a program; contracts specify agreements concerning the values that flow across a
boundary between distinct parts of a program (modules, procedures, functions,
classes). If an agreement is violated, contract checking is supposed to precisely
blame the function at fault. Contracts were first introduced to be checked at
run-time [28, 13]. To perform dynamic contract checking (DCC), a function
must be called to be checked. For example:

contract inc = {x | x > 0} -> {y | y > 0}
let inc = fun v -> v + 1
let t1 = inc O

A dynamic checker wraps the inc in t1 with its contract tiqc:

BADL

let t1 = (inc pq tipc) O
BADLI

where [ is (2,5, “inc”) indicating the source location where inc is defined
(row:2,col:5) and I’ is (3,10, “t1”) indicating the location of the call site with
caller’s name. This wrapped t1 expands to:
(Ar1. let y = inc: (let z =um; in
. if 2 > 0 then z else BAD(3:10-"E17)

In the upper box, the argument of inc is guarded by the check 2 > 0; in the lower
box, the result of inc is guarded by the check y > 0. If a check succeeds, the
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original term is returned; otherwise, the special constructor BAD is reached and a
blame is raised. In this case, t1 calls inc with 0, which fails inc’s precondition.
Running the above wrapped code, we get BADG10:“t1") "which precisely blames
tl.

The DCC algorithm is like this. Given a function f and a contract ¢, to
check that the callee f and its caller agree on the contract ¢ dynamically, a
checker wraps each call to f with its contract:

BAD‘f

=
which behaves the same as f except that (a) if f disobeys ¢, it blames f, signaled
by BAD/; (b) if the context uses f in a way not permitted by ¢, it blames the
caller of f, signaled by BAD’ where “?” is filled with a caller name and the call
site location.

Later, |7, [39] give formal declarative semantics for contract satisfaction that
not only allow us to prove the correctness of DCC w.r.t. this semantics, but
also to check contracts statically.

The essence of static contract checking (SCC) is:

BADf BADf UI\IRf
splitting > into half: ept=e bq and eqt=e bq L.

The > (“ensures”) and the < (“requires”) are dual to each other. The special
constructor UNR (pronounced “unreachable”), does not raise a blame, but stops
an execution. (One, who is familiar with assert and assume, can think of
(if p then e else BAD) as (assert p; e) and (if p then e else UNR) as
(assume p; e).)

SCC is modular and performed at definition site of each function. For ex-
ample, (Av.v + 1) > tine expands to:

Azy. lety = (Aww+1)
(let x = 21 in if > 0 then z else UNR?) in
if y > 0 then y else BAD(?5“10C7)

At the definition site of a function, f = ¢, we assume f’s precondition holds
and assert its postcondition. If all BADs in e >t are not reachable, we know f
satisfies its contract t. One way to check reachability of BAD is to symbolically
simplify the fragment. In the above case, inlining z, we get:

Ar1. let y =(M.v+ 1) (if 1 > 0 then z; else UNR’) in
if y > 0 then y else BAD(?5“10C7)

Unlike [37] in a lazy setting, we cannot apply beta-reduction in a strict lan-
guage if an argument is not a value as it may not preserve the semantics. In
this paper, besides symbolic simplification, we collect contextual information in
logical formula form and consult an SMT solver to check the reachability of BAD.
An SMT solver usually deals with formulae in first order logic (FOL), §5l gives
the details of the generation of formulae in FOL. As an overview, we present
formulae in higher order logic (HOL). For the two subexpressions of the RHS
of y, we have:
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Avv+1 | Fzg, (Yo, 22(v) =v +1)
if 21 > 0 then x; else UNR’ | 33, (z; > 0 = 23 = 21)V
(not(x1 > 0) = false)

One can think of the existentially quantified 25 (and x3) denoting the expression
itself. For the RHS of y, we have logical formula:

Yy, Jxa, (Vv,22(v) = v+ 1) A (Fzs, (1 > 0= 23 = 271)
A(not(zy > 0) = false) Ny = xa(x3)) [Q1]

We check the validity of Vz1,Q1 = y > 0 by consulting an SMT solver. As
Vz1,Q1 = y > 0 is valid, we know the BAD(3:%“10C") ig not, reachable, thus inc
satisfies its contract.

Consider the function £1 and its contract t¢4 in §Il So firtsq is (Ag.(g 1) —
D>{{z|z>0}—={y|y>0})— {z|z> 0}, which expands to:

Axy. let z= (Ag.(g1)—1)
(Ax2. let y =121 ( let x = a9 in
if £ > 0 then z
else BAD(4517)) in
if y > 0 then y else UNR’) in
if z > 0 then z else BAD(*>"/17)

After applying some conventional simplification rules, we have:

Rl1: Axy. let z= lety=ux; 11in
if y > 0 then y — 1 else UNR’
if z > 0 then z else BAD(%:5,“/17)

We see that the inner BAD(*5“f17) has been simplified away, because x = x5 = 1
and (if 1 > 0 then 1 else BAD(**"/1")) is simplified to 1. As we cannot prove
Va1,Vz,(Jy,y =21 1IN (y > 0= 2=y —1)) = z > 0 to be valid, the other
BAD(45:“f1") remains. We can either report this potential contract violation at
compile-time or leave this residual code R1 for DCC to achieve hybrid checking.

Hybrid contract checking (HCC) performs SCC first and runs the residual
code as in DCC. In SCC, £1>t¢q checks whether f£1 satisfies its postcondition
by assuming its precondition holds. At each call site of £1, we wrap the function
with <. For example:

contract £f3 = {v | v >= 0}
let £f3 = f1 zut

where zut is a difficult function for an SMT solver and zut’s contract is {z |
true}. Say zut < {z | true} = zut, we then have the term £3> t¢g to be:

((f1<tgq) zut)>{v]| v >0}

which requires £3 to satisfy £1’s precondition and assumes f1 satisfies its post-
condition because f£1>t¢q has been checked. During SCC, a top-level function
is never inlined. We do not have to know its detailed implementation at its call
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site as it has been guarded by its contract with f < ¢. The £3>t¢3 expands to:

letv= letz= f1
(Axg.let y = zut (let z = x9 in
if x > 0 then z
else UNR(T-10:°A17)) in
if y > 0 then y else BAD(10:“/s7)) in
if 2 > 0 then z else UNR(7:10.%f17)
if v > 0 then v else BAD(7:10,%f5")

As < is dual to >, the RHS of v is actually a copy of the earlier £1 > ¢¢¢ but
swapping the BAD and UNR and substituting x; with zut. We now know the
source location of the call site of £1 and its caller’s name, the UNR’ becomes
BAD(7:10:“3") and the BAD(*% “/1") hecomes UNR(7-10:“/1") " At definition site where
the caller is unknown, we use the location of £1, i.e. (4,5, “f1”). Once its caller
is known, we use (7,10, “f1”). It is easy to get source location, which is for
the sake of error message reporting. So we do not elaborate the source location
further.

As an SMT solver says valid for Vv.(3z.2 > 0Av = z) = v > 0, the £3>t¢3
can be simplified to (say R2):

let z = f1
(Azg. let y = zut (let x = x5 in
if > 0 then z
else UNR(7’1O’“f1”)) in
if y > 0 then y else BAD(1%:"/3")) in
if z > 0 then z else UNR("-10:"/17)

One BAD remains. We can either report this potential contract violation at
compile-time or continue a DCC. For SCC, we have checked £1>t¢4, but for
DCC, to invoke f1>t¢q, we must use the residual code R1. However, the UNR
clauses are useful for SCC, but redundant for DCC. We can remove UNRs with
a simplification rule:

(if ep then e; else UNR) = e; [rmUNR]

(We shall explain why it is valid to apply this rule even if eg may diverge or crash
in §8l Intuitively, UNR is indeed unreachable and ey has been checked before this
program point.) Applying the rule [rmUNR] to R1 and R2 and simplify a bit,
we get:
fif = Axy. let z=(let y=(2; 1) iny—1) in
if 2 > 0 then z else BAD(4:5:“f17)
fo = f1f (A\xg.let y = zut a9 in
if y > 0 then y else BAD(7:10:"f37))
respectively, which is the residual code being run. We show in §6] that HCC
blames a function f; iff DCC blames f;.

Summary Given a definition f = e and a contract ¢, to check e satisfies ¢
(written e € t), we perform these steps. (1) Construct e>¢. (2) Simplify e ¢
as much as possible to €', consulting an SMT solver when necessary. (3) If no
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BAD is in €/, then there is no contract violation; if there is a BAD in ¢’ but no
function call in €/, then it is definitely a bug and report it at compile-time; if
there is a BAD and function call(s) in ¢/, then it is a potential bug. (4) For each
function f, create its residual code ff by simplifying ¢’ with the rule [rmUNR],

and run the program with each f being replaced by ft.

3 The language

The language presented in this paper, named M, is pure and strict, a subset of

OCaml, including parametric polymorphism.

3.1 Syntax

z, f € Variables

T € Type constructors
K € Data constructors

pgm == def,...,def, Program

T s= 7 T|mn —m Types

t € Contracts

t = {z|p} predicate contract
|zt >t dependent function contract
| (2: t1,t2) dependent tuple contract
| Any polymorphic Anycontract

def € Definitions

%
def == type'aT = K of 7
| contract f=t
|  let f 7= top-level function
| let rec f T =e top-level recursive function
a,e,p € Exp Expressions
a,e,p = n integers
| r blame
| z|Az").e|er e
| matchegwithalt pattern-matching
| K7€ constructor
r = BAD' | UNR! Blames
l = (n1,ne,String) Label
alt == K («],...,z]") — e  Alternatives
val nlz|r|K v |MaT).e Values

Figure 1: Syntax of the language M
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Figure [l gives the syntax of language M. A program contains a set of data
type declarations, contract declarations and function definitions. Expressions
include variables, lambda abstractions, applications, constructors and match-
expressions. Base types such as int and bool are data types with no parameter.
Pairs are a special case of constructed terms, i.e. (e1,ea) is Pair (e, e2) with
type (’a,’b) product = Pair of ’a * ’b. We have top-level let rec, but
for the ease of presentation, we omit local let rec. (It is possible to allow
local let rec by either assuming that a local recursive function is given a
contract or using contract inference [2I] to infer its contract. Even if [21] is
not modular, it is good enough to infer a contract for a local function.) A
local let-expression let © = e; in es is a syntactic sugar for (A\z.eq) e;. An
if-expression if ey then e; else es is syntactic sugar for match ey with {true
— e1;false — ea}.

We assume all top-level functions are given a contract. Contract checking is
done after the type checking phase in a compiler so we assume all expressions,
contexts and contracts are well-typed and use its type information (presented
as superscript, e.g. e” or t7) whenever necessary.

The two contract exceptions (also called blames) BAD! and UNR! are adapted
from [39]. They are for internal usage, not visible to programmers. The label
[ contains information such as function name and source code location, which
is useful for error reporting as well as for examination of the correctness of
blaming. But we may omit the label [ when it is not the focus of the discussion.

It is possible for programmers to write:

let head xs = match xs with
| [ -> raise Emptylist
I

x::1 -> x

where raise : Va. Exception — «. The Exception is a built-in data type for
exceptions and Emptylist has type Exception. As we do not have try-with in
language M (leaving it as future work), a preprocessing converts raise Emptylist
to BAphead,

We have four forms of contracts. The p in a predicate contract {x | p} refers
to a boolean expression in the same language M. Dependent function contracts
allow us to describe dependency between input and output of a function. For
example, z: {y | y > 0} — {2z | z > x} says that, the input is greater than 0 and
the output is greater than the input. We can use a shorthand {z | z > 0} — {2z |
z > x} by assuming z scopes over the RHS of —. The — is right associative.
Similarly, dependent tuple contracts allow us to describe dependency between
two components of a tuple. For example, (z:{y | y > 0},{z | z > z}) whose
short hand is ({z | « > 0},{z | # > z}). Contract Any is a universal contract
that any expression satisfies. We support higher order contracts, e.g. k: ({x |
x>0} ={y|ly>z}) = {z]k5>—1} for a function let f g = g 2.

3.2 Type checking rules for expression

The language M is statically typed in the conventional way. Figure 2l gives type
checking rules. A type judgement has the form

T'ke
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which states that given I" (which is a mapping from variable to its type), e has
type 7 assuming that any free variable in it has type given by I'. If ' = ), we
omit, the I", and write - e7.

I'+BAD:: 7 [T-BAD] I'-UNR::7 [T-UNR]
22l v TFOGT e (TEA
I'ke; ::;L—(;Z'z@) :;1;2'_ €2 11 T1 [T-APP]

K : ??E;% y TF§7 5 7 [T-Con]
FheuT 7 F,{UET?},{W}F@“T [T-MATCH]

't (case ¢g of (vT ?) {K; 7 — e}) T

Figure 2: Type Checking Rules

As we do type checking before contract checking, we assume all expressions
are well-typed (i.e. no type error) in the rest of this paper. Note that nothing
substantial in the paper depends delicately on the type system. The reason
we ask that programs are well-typed is to avoid the technical inconvenience
in designing the semantics of contracts if, say, evaluation finds an ill-typed
expression (3 True).

3.3 Operational semantics

The semantics of our language is given by reduction rules in Figure[3l For a top-
level function, we fetch its definition from the evaluation envrionment A. We
adapt some basic definitions from [39]. Definition [I] defines the usual contextual
equivalence. Two expressions are said to be semantically equivalent, if under all
(closing) contexts, if one evaluates to a blame r, the other also evaluates to the
same 7.

Definition 1 (Semantically Equivalent). Two ezpressions e; and es are seman-
tically equivalent, namely ey =4 ea, iff for all closing C, for all v, Clei] —*
r <= C(Cle] =*r

Our framework only guarantees partial correctness. A diverging program
does not crash.

Definition 2 (Diverges). A closed expression e diverges, written e?, iff either
e —* UNR, or there is no value val such that e —* val.
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let (rec) f=e€ A
f—e

[E-top]

(Ax.e) val — e[val/x] [E-beta]

H
match K val with K 7 — e — e[val/z] [E-match]

€1 — €o

Tl = cle] Tt Cll—r [Frexn]

%
Contexts C == [o] |C e|wval C_|>K val C @
| match C with alt

Figure 3: Semantics of the language M

3.4 Crashing

We use BAD to signal that something has gone wrong in the program, which can
be a program failure or a contract violation.

Definition 3 (Crash). A closed term e crashes iff e —* BAD.

At compile-time, one decidable way to check the safety of a program is to
see whether the program is syntactically safe.

Definition 4 (Syntactic safety). A (possibly-open) expression e is syntactically
safe iff BAD ¢ e. Similarly, a context C is syntactically safe iff BAD ¢, C.

The notation BAD ¢, e means BAD does not syntactically appear anywhere
in e, similarly for BAD ¢, C. For example, Az.z is syntactically safe while
Az. (BAD, z) is not.

Definition 5 (Crash-free expression). A (possibly-open) expression e is crash-
free iff : for all C such that BAD ¢, C and - C[e] :: bool, C[e] /* BAD.

The notation - C[e] :: bool means C[e] is closed and well-typed. The
quantified context C serves the usual role of a probe that tries to provoke e into
crashing. Note that a crash-free expression may not be syntactically safe, e.g.
Ax.if x *x > 0 then x + 1 else BAD.

Lemma 1 (Syntactically safe expression is crash-free).
e is syntactically safe = e is crash-free

Proof. Since there is no BAD syntactically in e, for all context C, such that
there is no BAD syntatically in C, then C[e] +4* BAD. By definition [l (Crash-free
expression), e is crash-free. [l

For ease of presentation, when we do not give label [ to BAD or UNR, we mean
BAD or UNR for any [. Moreover, expressions BAD' and UNR! are closed expressions
even if [ is not explicitly bound.

Lemma 2 (Neutering). If e is crash-free, then |e] =5 e.
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Proof. Since e is crash-free, all BADs in e are not reachable so by converting all
BADs in e to UNR by |.| does not change the semantics of e. Formally, we prove
this by induction on reduction rules. O

Lemma 3 (Crash-free Preservation). Given e; — es,
ey is crash-free <> ey is crash-free

Proof. We prove two directions by contradiction.

=)

Suppose es is not, crash-free. By Definition Hm (Crash-free Expression), there
exists a C such that BAD ¢, C and C[es] —* BAD. By [E-ctx| and e; — e2 and
Clez] —* BAD, we have: C[e;] —* C[ex] —* BAD. As we know e; is crash-free,
we reach contradiction. Thus, we are done.

(<)

Suppose e; is not crash-free. By Definition Hm (Crash-free Expression), there
exists a C such that BAD ¢, C and C[e;] —* BAD. By [E-ctx| and e; — e2 and
confluence of the language, we have C[es] —* BAD. With the assumption that
e is crash-free, we reach contradiction. Thus, we are done. O

Lemma 4 (Crash-free function). For all (possibly-open) terms A\x.e,

Az.e is crash-free
—
for all (possibly-open) crash-free €', e[e’ /x| is crash-free.

Proof. We prove two directions separately.
(=)

Azx.e is crash-free

= (By Lemmal2 ~, ¢’ is crash-free = [¢/| =, ¢
and by the definition of crash-free expression)
for all crash-free €', e[e’/x] is crash-free

(<) We have the following proof.

for all cf €', e[e’/x] is crash-free

(By Lemma ﬁm)

for all cf €', (A\x.e) €' is crash-free

(By Definition B (Crash-free Expression))
for all cf ¢/,VC, BAD ¢, C, C[(\z.e) €'] /4* BAD
=  (By Lemma[™, ¢ is crash-free = |¢'| =, ¢)
VC, BAD ¢, C, C[(\z.e) |€e’']] /~* BAD
=  (ByBAD ¢; |€/])
VC, BAD ¢, C, C[(Az.e)] /~* BAD
<= (By Definition B (Crash-free Expression))
Az.e is crash-free

!

!
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3.5 Behaves-the-same

We define an ordering, named Behaves-the-same, which is useful in later sec-
tions.

Definition 6 (Behaves the same). Fzpression e; behaves the same as es w.r.t.
a set of exceptions R, written e1 <pg e, iff for all contexts C, such that Vi €
{1,2}. +C[e;] :: bool

Clezs] »*reR = C(Clea] ="r

Definition IZif:IE says that e; either behaves the same as e or throws an ex-
ception from R. (The definition does not look as strong as that, but as every
theorist knows, it is. For example, could e; produce true while es produces
false? No, because we could find a context C that would make C[es] throw an
exception while C[e1] does not.) In our framework, there are only two excep-
tional values in R: BAD and UNR. Certainly, if es itself throws an exception, then
e1 must throw the same exception.

As we only have two exceptional values BAD, UNR (which are dual to each
other) in R, this yields Lemma B™. We omit {} if there is only one element in
R.

Lemma 5 (Properties of Behaves-the-same). For all closed e1 and es,
e Kpm €2 = €3 i €1

Proof. We prove two directions separately.
(=) We have the following proof:

e1 <um €2
<= (By defn of <)

VC. Clez] —* UNR = C[e;] —* UNR
< (By logic)

VC. Cle1] #+* UNR = C[e2] /* UNR

We want to show that VD. D[e;] —* BAD = D[es] —* BAD.
Assume D[e;] —* BAD.
Let C = match (D[e]) with {DEFAULT — UNR}
Now we have C[e;] —* BAD = C[ez] #* UNR.
Since C[ez] = case D[es] with {DEFAULT — UNR}, we have D[es] —* BAD.
So we have
VD. D[e1] —* BAD = D[es] —* BAD

(<) By replacing BAD by UNR and UNR by BAD in the above proof for the
direction (=), we get the proof for the direction («<). O
3.6 Crashes-more-often

We study a specialized ordering crashes-more-often, which plays a crucial role
in proving our main theorems.

Definition 7 (Crashes-more-often). An ezpression ey crashes more often than
eq, written e1 = es, iff e1 Kz €2-
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Informally, e; crashes more often than es if they behave in exactly the same
way except that e; may crash when e; does not. By Definition Iﬂml, Lemma
also says that:

e Ly €2 = €3 X €1

Theorem 1 (Crashes-more-often is AntiSymmetric). For all expressions ey and
€2, €1 < eg and ex < ey iff e1 =5 es.

Proof. Tt follows immediately from the definition of = (Definition IIfm) and the
definition of <. O

The crashes-more-often operator has many properties. Lemmal@ ~ says that
BAD crashes-more-often then all expressions; all expressions crash more often
then a diverging expression. Lemma gives more intuitive properties.

Lemma 6 (Properties of Crashes-more-often - I).

(a) BAD < e
(b) e; = eg Zf ex T

Proof. We prove each property separately (all by contradiction) and we assume
type soundness.

(a) Assume there exists a context C such that C[ez] —* BAD and C[BAD] A*
BAD. There are two possibilities for C[es] —* BAD: (1) the BAD is from the
context C; (2) the BAD is from the hole e;. For case (1), we must have
C[BAD] —* BAD since we use the same context C. For case (2), if the hole
is evaluated, we reach BAD immediately. So we reach a contradiction and
we are done.

(b) Given ez T, assume there exists a context C such that Clez] —* BAD and
Clex] #4* BAD. Since ez T and Clez] —* BAD, we know the BAD is from
the context C. So no matter what e; is, we have C[e;] —* BAD. Thus, we
again reach a contradiction and we are done.

O

Lemma 7 (Properties of Crashes-more-often - II). If e; < €2

(a) er > K fi = ey —=*K fy ores?
(b) e1rt = et

(¢) ey is crash-free = eq is crash-free

(d) e1 —* Ax.el = ey =* Aw.eh orext

Proof. We prove each property separately (all by contradiction):

(a) Given e; —* K f;, assume neither e —* K fy nor ez 7. Then we must
have es —* BAD. By the definition of < and the fact that e; < eo, if
es —* BAD, then e; —* BAD. Since ey —»* K ﬁ, we reach a contradiction
and we are done.

(b) Given e; 1, assume ea ¥. Then e; —* val and there exists a syntactically
safe context C such that Cles] —* BAD. But C[e;] always diverges as e;
diverges if BAD ¢, C. By the fact that e; < ea and by the definition of <,
we reach a contradiction and we are done.
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(c) Given ey is crash-free, assume ey is not crash-free. By Definition 5
(Crash-free Expression), there exists a syntactically safe context C such
that Cles] —* BAD. By the fact that e; < es and by the definition of =,
we have C[e;] —* BAD. This contradicts with another assumption that e;
is crash-free. Since we reach a contradiction, we are done.

(d) The proof is similar to that in (a).

4 Contracts

Findler and Felleisen (FF) first introduced an algorithm for dynamic higher
order contract checking [I3]. Blume and McAllester [7] then define a semantics
for contract satisfaction and show its sound-and-completeness with respect to
the FF-algorithm. As the algorithm and the contract semantics are defined
by two groups of people, there are some mismatches addressed in [12]. Later,
[39] defines both a contract semantics and a (static) checking algorithm for
a lazy language. In this paper, we follow the style in [39], design contract
satisfaction and checking algorithm for a strict language. As diverging contracts
make dynamic contract checking unsound (explained in Section .5) and we do
hybrid checking, we focus on total contracts.

Definition 8 (Total contract). A contract t is total iff

t is {x | p} and \x.p is total (i.e. crash-free, terminating)
or tisx:ty =ty and ty is total and
for all valy € t1,t2[valy/x] is total
or tis (x:t1,t2) and t1 is total and
for all valy € t1,t2[valy/x] is total
or t is Any

Our definition of total contract is different from that in [7], but close to the
crash-free contract in [39] with an additional condition that Az.p is a terminating
function. For example, contract {z | z # [1} — {y | head = > y} is total in
our framework because head = does not crash for all z satisfying {x | = # [1}.
Such a contract is not total in [7] because a crashing function head is called in
a predicate contract.

4.1 Type checking for contracts
A contract type judgement has the form

'k ter

which states that given I'" (a mapping from program variable to its type, and
from type variable « to its kind k), e has type 7 assuming that any free variable
in it has type given by I'. Contract type checking rules are shown in Figure @l
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Tackb.ter
ke Va ko t) T

[C-FORALL]

T'x:7F.e: Bool

Pk, Any:: 7 [C-ANY] TF. {zel o7

[C-ONE]

Ikotyom Txombotynm
I'Fex:ity 2t = 1

[C-Fun]

Iketyom Txombotynm
Dhe(x:t1,t2) 2 (11, 72)

[C-TUPLE]

Figure 4: Type Checking Rules for Contract

For a well-typed expression e, define e € ¢ thus:

ee{z|p} <= et or (eis crash-free and [A1]
ple/x] —* true)

e€x:ty =ty <= el or(e—*Ar.eg and [A2]
Yvaly € t1. (e valy) € talvaly/x])

e € (x:t1,t2) <= e? or (e =" (vali,valy) and [A3]
valy € t1 and vals[valy /z] € ta[valy /x))

e € Any <= true [A4]

Figure 5: Contract Satisfaction

4.2 A semantics for contract satisfaction

We give the semantics of contracts by defining “e satisfies t" (written e € t)
in Figure [l inspired by [7, B9]. Here are some consequences: (1) a divergent
expression satisfies any contract, hence all contracts are inhabited; (2) only
crash-free expression satisfies a predicate contract; (3) any expression satisfies
contract Any; (4) BAD only satisfies contract Any.

One difference from [39] is that, we do not allow ple/x] in [A1] to diverge
while [39] allows because they only do static checking. We support dependent
tuple contracts, that are not in [7, [39]. One difference from [7] is that, they
say that a crashing expression does not satisifay any contract; we say that a
crashing expression satisfy the universal contract Any. Having a top ordering
contract is debated in [12] where a subcontract ordering is defined below. It is
obvious that Any is useful in a lazy language [39] as we may want to ignore some
subcomponents of a constructor. We explain why Any is also useful for a strict
language in Section

Definition 9 (Subcontract). For all closed contracts t; and to, t1 is a subcon-
tract of to, written t1 < to, iff Ve.e €t = e € ty
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4.3 The wrappers

Baplt uel2
ebt=e pq t edt=e pq t
unel2 Bap1
T
e%{ﬂﬂp} = let x =e in if p then z elser; [P1]

T
epéx:tlﬁtgzlety:ein
T2

Az1((y (21 0 t1)) s tol (w1 b 1) /7)) [P2]
T1 T2 1
e ;é (z:t1,t2) = match e with
2
T T T
(z1,22) = (21 0 b1, 2 0 2[(21 b £1)/2]) [P3]
T2 T2 T_l
1
€ pa Any = ro [P4]
2

Figure 6: Contract checking with the wrappers

As mentioned in Section [2] the essence of contract checking is the two wrap-
pers > and <, which are dual to each other (defined in Figure [d). We omit the
labels for > and < whose full versions are l>§; and <1§; respectively. The wrapped

. 1 . . .
expression e q t expands to a particular expression, which behaves the same as
T2

e except that it raises blame r; if e does not obey ¢ and raise - if the wrapped
term is used in a way disobeying t.

From [P1] to [P3], if e crashes, the wrapped term crashes; if e diverges, the
wrapped term diverges. Whenever an r; is reached, we know the property p
does not evaluate to true (as in [P1]). The wrappers are defined such that
Theorem [2] holds.

Theorem 2 (Sound-and-completeness of contract checking). For all closed ex-
pression €7, closed and total contract t™,

(e>t) is crash-free <= e€t

The superscript 7 says both e and ¢ are well-typed and have the same type
7. The full proof of Theorem 2is in Appendix[A] which is similar to that in [40].
In practice, we only need Thereom [, i.e. one direction of Thereom 2L

Theorem 3 (Soundness of contract checking). For all closed expression €7,
closed and terminating contract t”,

(e>t) is crash-free = e€t

Note that, if ¢ is terminating and et is crash-free, then ¢ is total. Unlike [13],
which assumes there is no exception from a contract itself, our contract checking
algorithm helps programmers to ensure it by detecting exceptions in contracts

themselves. The term t5[(v pq t1/2] in [P2] and [P3] says that, we wrap each
Ty

(function) call in a contract with its contract so that if there is any contract
violation in a contract, we report this error. For example:
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contract f =k:({x | x>0} >{yly>0D}
>{z | k0> -1}

let f g=g 2

let t2 = f (fun x -> x)

a contract violation occurs in {z | k 0 > -1} because the call k 0 fails k’s
precondition {x | x > 0}. As addressed in [I0], we should blame the contract.
We omit passing around the name of the contract in this paper as our focus is
to check the reachability of BAD. Instead, we use 7; to indicate that the label of
ry is replaced by the name of the contract.

4.4 Open expressions and contracts

For open expressions, we use the same idea in [39]. Suppose the declared con-
tracts for £ and g are t¢,t, respectively, and the definition of g is g = e, where
f is called in e4. Then, instead of checking that e, € ¢4, we check that

(M. eg) € by =1

That means we simply lambda-abstract over any variables free in e;. The same
idea applies for the recursive functions. If the programmer specifies the contract
ty for a definition £ = e, then it suffices to check that

Afe € tp =ty

which is easier because Af.e does not call f recursively. There is nothing new
here — it is just the standard technique of loop invariants in another guise — but
it is packaged very conveniently.

In other words, imagine we have a contract judgement:

Aleect

which states that given A, which is a mapping from variable to its type, contract
and definition.

Definition 10 (Contract judgement). We write A F e € t to mean that e
has contract t assuming that any free variable in e has contract given by A
and any free variable in t has definition given by A. Suppose A = {f1 —
(T1,t1,€1)y -+ fn = (Tnytn, en)}, we define:

AlFeect < Afy..... fne€ty — - —t, >t

This means, in theory (i.e. in the formalization of the verification), we only
need to deal with closed expressions; in practice (i.e. in the implementation),
we may refer to the environment A when necessary. We can simply check crash-
freeness of e[(g<ty)/g]>tr[(g<ty)/g) where a call to g is replaced by g<t,. This
idea holds for recursive calls of f in e as well, we check e[f <t;/f]>t;. (Note
that f is not allowed to be used in ¢y.)

4.5 Terminating contracts

We want p in {z | p} to be terminating because a divergent contract hides
crashes. For example:

RR n°® 7794



Hybrid Contract Checking 20

let rec loop x = loop x
contract fb = {x | loop x} -> {y | true}
let fb x = head []

b tep is Azp.((Ax.head []) (if loop x; then z7 else BAD)), which diverges
whenever applied because of the loop. However, the function £b is not crash-
free.

Consider the higher order function f in Section E3] one might wonder
whether we have to check the argument of the higher order function f to be
terminating because k is called in the contract. The answer is no. By inspect-
ing [P1] and [P2], we can see that an argument is always evaluated earlier than
the x in t2. So we will not encounter the situation that a divergent contract
hides a crash.

We only have to prove termination of functions used in contracts, not all the
functions in a program. We can adapt ideas in [26] [34, [4] to build an efficient
automatic termination checker.

4.6 Contract Any

There is a debate in [I2] on whether it is useful to have a top ordering contract
Any. We want Any because we want to give a function, that always fails, a
contract to satisfy, so that we do not blame it at its definition site during SCC
because Ve, e>Any = UNR, which is crash-free. Consider a popular OCaml library
function:

contract failwith = {x | true} -> Any
let failwith str = raise (Failure str)

where Failure has type Exception. A caller of failwith always violates the
contract Any because Ve, e < Any = BAD. For example:

let get a i = if i >= 0 and i < Array.length a - 1
then a. (i) else failwith "Out of bound"

Whenever the else-branch is reached (either in SCC or DCC), the caller get is
blamed because a safe program is meant not to invoke a function that fails. It
is not useful to blame the failwith itself. Certainly, programmers’ intention is
not to have an index out of bound so they may give get a contract:

{a|true} —» {i|i>0Ai<Array.lengtha— 1} — {2z | true}

so that a caller of get will be blamed if it fails get’s precondition.
The example under debate in [12] is something like:

contract id = ({x | x /= 0} -> {y | truel}) -> Any
let id x = x
let t3 = let invert y = 1/y in (id invert) O

If programmers’ intention is not to define a function that always fails, they
should replace Any by {z | truel}, which never assigns blame because Ve, ex{z |
true} = e < {z | true} = e. With this new contract, id is blamed in either
SCC or DCC for violating its contract because id cannot guarantee a crash-free
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result (required by {z | true}) when taking a non-crash-free function as its
argument.

With the declarative semantics for contract satisfaction, contracts can be ex-
ported for separate compilation. An implementation of a function may change
over time (e.g. having a more efficient implementation), but its exported con-
tract may not change. In our framework, we respect a function’s contract more
than its implementation. This is different from the original purpose in [13],
which only uses contracts for dynamic blaming.

We have a simple lemma for contract Any.

Lemma 8 (Contract Any). (a) If BAD € ¢, then t = Any.
(b) If BAD®>t is crash-free, then t = Any.

Proof. (a) By inspecting the definition of €, the only contract that BAD satis-
fies is Any.

(b) By inspecting the definition of i, for all ¢ such that ¢ # Any, BAD>¢ —* BAD
which is not crash-free. And we have BAD> Any = UNR which is crash-free,

so we are done.
O

4.7 Contract ordering

the subcontract relation can be illustrated in rule-form shown in Figure[ll Each
rule in Figure[7is a theorem. The relation p =. ¢ in rule [C-Pred] is defined
in Definition M1l Rule [C-Any] follows directly from the definition of <. We
now study the rules [C-Pred|, [C-DepFun| and [C-DepTup|. We assume the
statement above the line is true, and prove the statement below the line is true.
We leave the proof of other direction as a open problem.

P=ed [C-PrED] ¢ < Any [C-ANY]

{z]p}={z|q}

t1 étg Veetl,tg[e/x] §t4[€/$]
(x:t1,t2) < (x: ts,tq)

[C-DEPTUP]

t3 § t1 Ve € ts3, tg[e/x] § t4[€/$]
Tty = ta Sxity =iy

[C-DEPFUN]

Figure 7: Subcontract Relation

Definition 11 (Boolean Expression Implication). For all boolean expressions p

ifqthen())j<ifpthen()>

and q, we say p implies q (writtenp =. q) zﬁ( alse BAD olse BAD

From Definition [T[™", for example, we know {z]z<10} = {z |z <12}
The substitution for contracts is defined in Figure[8l Here, we assume each
bound variable has a unique name.
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{z [ pile/y] { | ple/yl}

(x:t1 = ta)[e/y] = x:tile/y] — tale/y]
(t1,t2)[e/y] = (t1le/y], eale/y])
Anyle/y] = Any

Figure 8: Substitution for Contracts

4.7.1 Predicate Contract Ordering
We prove that the rule [C-Pred] is sound; that is we prove Theorem @™ .

Theorem 4 (Predicate Contract Ordering). For all expressions p, q, if p = q
then {z | p} = {z | q}.

Proof. We have the following proof for all ¢1,to,t3,t4:

pP=eq
<= (By Definition ™ (Boolean Expression Implication), let
case p of case g of
e1 = True — () and eg = True — () )
False — BAD False — BAD
ez X ep

<= (By Definition ™ (Crashes-more-often))
VC. Clez] —* BAD = C[e1] —* BAD
=  (By (*) below)
Ve. e is crash-free and (e1]e/x] /* {BAD,False} = es[e/x] /~* {BAD,False})

<= (By logic and definition of € in Figure [
Vecee{x|er} = ec{x|e}
& (By Definition @™ (Subcontract))

{z]e} = {z|es}

(*) We know Ve, a,z. ela/x] =5 let x = a in e.
Assuming for all crash-free e:
(1) ¥C. C[ez2] —* BAD = C[e1] —* BAD
(2) (let z =€ in ey) 4™ {BAD,False})
we want to show (let x = e in ey) /~* {BAD,False}

Suppose (let z = e in e3) —* BAD

By (1), let C be let # = ¢ in e, we have C[e;] —* BAD.

That means (let = e in e;) —* BAD.

This contradicts with (2) so our assumption is wrong and we are done.

Suppose (let z = e in e3) —* False

By (1), let C be case (let z = e in o) of {False — BAD}, we have C[e;] —* BAD.
That means (case (let © = e in e;) of {False — BAD}) —* BAD.

That means (let z = e in e;) —* {BAD,False}.

This contradicts with (2) so our assumption is wrong and we are done.

End of proof. O
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4.7.2 Dependent Function Contract Ordering
We prove that the rule [C-DepFun] is sound; that is we prove Theorem B .

Theorem 5 (Dependent Function Contract Ordering). For all t1,to,t3,t4.
if ts Sty and Ve € t3. tale/x] < tale/x], then z:ty = ta S ity — 1y
Proof. We have the following proof for all ¢1,to, 3, t4:

ts < t1 and Ve € t3. tafes/x] < tales/x]
<= (By Definition o™ (Subcontract))
(t1) Vej.e1 €tz = e1 € t1 and Ves € t3.Veq. €3 € tales/x] = eq € tyfes/x]
(By the (*) below)
(t2) Ve.Vey €ty1. (e e1) € taler/x] = Ves € t3. (e e3) € ta[es/x]
(By definition of € in Figure 5]
Ve.e€x:ti >la=ecx:tly >ty

(By Definition @~ (Subcontract))
ity —ta S xity =ty

!

() For all e, assuming;:
(1) Vej.e1 €tz =e1 €ty (first clause of the line 71)
(2) Veg € t3, Ves. ea € tales/x] = ea € tyleg/x] (second clause of the line 1)
(3) Vey € tl.(e 61) € to [61/:6] (LHS of the line TQ)
we show Ves. eg € t3 = (e e3) € tales/x]as follows.
es € t3

< (By (1))
< (By(3))
-
We are done.( e O

4.7.3 Dependent tuple contract ordering
We prove the rule [C-DepTup] is sound by showing;:

For all tl,tg,tg,ﬁ4. if t1 § t3 and to § t4, then (tl,tg) é (t3,t4)

Proof. For all e, if e diverges, then for all t1,t2,t3,t4, € € (t1,t2) and e € (¢3,t4)
because a divergent expression satisfies all contracts. By the definition of <,
we have the desired result (¢1,t2) < (t3,t4). Now, we prove the case when

RR n°® 7794



Hybrid Contract Checking 24

e —* (e1, e2) as follows.

tq é t3 and to é ty
(By Definition o™ (Subcontract))
Vei.e1 €t = e1 €tz and Ves. €5 €19 = €9 € 1y
(By logic (Vx.A) A (Vy.B) =Vz,y. ANBify ¢ fuv(A) and = & fu(B))
Vel,eg. el €ty = e €3 and eg € tg = €9 €ty
= (Bylogic (A= B)A(C= D))= (AANC)= (BAD)))

Ve. e —* (e1,e2) and ((e; € 1 and ey € t2) = (e1 € t3 and ey € t4))
= (By logic (AN(B=C))= ((AAB)= (AN(C)))

Ve. (e =* (e1,e2) and eg € t; and e3 € t9)

= (e =" (e1,e2) and ey € t5 and ey € t4)

!

!

<= (By definition of € in Figure ()
Ye. e € (tl,tg) = ec (t3,t4)
& (By Definition @™ (Subcontract))

(tla t2) g (t3at4)
[l

Note that some tuple contracts are not comparable by <, for example:
(0k, Any) £ (Any, 0k) and (Any, 0k) £ (0k, Any).

4.8 Contract equivalence

In this section we give formal definition of the equivalence of two contracts.

Definition 12 (Contract Equivalence). Two closed contracts t1 and ta are
equivalent, namely t1 = to, iff

Ve.e €t <= e €ty

Contract equivalence =; refers to semantic equivalence, not equality. For
example, {x | false} — {z | true} < {z | false} — {z | false} and {x |
false} — {z | false} < {x | false} — {z | true}, and {z | false} — {z |
true} =; {x | false} — {z | false}, but {z | false} — {z | true} # {z |
false} — {z | false}.

Theorem 6 (Subcontract is antisymmetric). For all closed contracts t; and ts,
tl § t2 and t2 § tl Zﬁ tl =¢ t2.

Proof.
tq é to and to é tq
< (By Definition @™ (Subcontract))
Ve.e€ti=>ectrandVe.e€itya =>e €ty
<= (By logic (Vz. A(x) = B(z)) A (Vz. B(z) = A(z)) =Vz. A(z) < B(x))
Ve.e €t <= e €ty
<= (By Definition ™= (Contract Equivalence))
l1 =t b2
End of proof. O
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For open contracts ¢, we assume implicitly that there is an environment
A, which is a mapping from variable to its type, contract and definition (See

Definition [0 in Section [4).

Lemma 9 (Predicate Contract Equivalence). For all expressions e; and es, if
e1 =s ez, then {z | e1} =¢ {x ] e2}.

Proof. We have the following proof:

€1 =s €2

<~ (By Theorem [ (Crashes-more-often is antisymmetric))
e; Regand ez < e

<~ (By Theorem @™ (Predicate contract ordering))
{zlei} ={x[ez} and {z | e2} = {x]er}

<~ (By Theorem B~ (Subcontract is antisymmetric))

{z]er} = {x e}
O

Lemma 10 (Dependent Function Contract Equivalence). For all contracts
ti,ta,ta, ta, if t1 =¢ t3 and Ve € t1. tale/x] =; tale/x], then x:t; — t3 =
Tty — ty.

Proof. We have the following proof.

t1 =¢ ts and Ve € t1. tale/x] = tale/x]
<= (By Theorem [ (Subcontract is Antisymmetric))
t1 § t3 and t3 § tq and
(Ve € t1. tale/x] < tale/x] and Ve € ty. tale/z] < tale/x))
1 (Since t1 =1 t3,e €t <— eetg.)
ts <t and Ve € ty. tale/x] < tale/x] and
tl § t3 and Ve € tl. t4[€/1'] § tg[e/:c]
= (By [C-DepFun] in Figure[T)
it >t Sxity>tgand w:tz3 =t Sx:ty — to
<= (By Theorem [ (Subcontract is Antisymmetric))
Tt > lo=tx:lyg >ty

We are done. O

Lemma 11 (Dependent Tuple Contract Equivalence). For all contracts tq,to,t3,1t4,
if t1 =t t3 and Ve € ty. tole/x] = tae/x], then (x: t1,t2) =¢ (x: t3,t4).
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Proof. We have the following proof.

t1 =t t3 and Ve € t1. tae/x] = tale/x]
<= (By Theorem 6= (Subcontract is Antisymmetric))
tq § t3 and t3 § tq and
(Ve € t1. tale/x] < tale/x] and Ve € ty. tale/z] < tale/x))
1 (Since t1 =1 t3,e €t <— eetg.)
ts < t1 and Ve € ty. tale/x] < tyle/x] and
t1 < ts and Ve € t1. tale/z] < tale/x]
= (By [C-DepFun] in Figure[7)
(.TZ tl,tg) § (.TZ t3,t4) and (.TZ tg,t4) é (.TZ tl,tg)
<= (By Theorem B~ (Subcontract is Antisymmetric))
(.TZ tl,tg) =¢ ($2 t3,t4)

We are done. O

Theorem 7 (Subcontract and Crashes-more-often Ordering). For all t1 and
t27
Ve.ebtljebtg = t1§t2

Proof. We have the following proof:

Ve.ebt; R ed>ty

=  (By Lemmalll™ (c) (Properties of Crashes-more-often - II))
Ve. et is crash-free = e >ty is crash-free

= (By Theorem i (grand theorem))
Ve.e €t1 = e €ty

<= (By Definition o™ (Subcontract))
t1 S to

5 Static contract checking and residualization

Thanks to the ground-breaking higher order contract wrappers > (first intro-
duced in [13]), which makes the analysis of higher order program much easier.
From Theorem [B, all we need is to show that e > ¢ is crash-free. That is to
check the reachability of BAD as each BAD signals a contract violation. We can
symbolically simplify e>¢ as much as possible to e’ and check for occurrence of
BAD in €'.

We introduce an SL machine (Figure[IQ) which combines symbolic simplifica-
tion and contextual information (ctx-info) synthesis with logical formulae. The
novelty of our work is to combine them in a way to achieve verification, blaming
and residualization in one-go. The SL machine takes an expression e and pro-
duces its semantically equivalent and simplified version. A 4-tuple (H|e|S| L)
is pronounced simplify and a 4-tuple (H | e | S| L)) is pronounced rebuild where

e 7{ is an environment mapping variables to trivial values;
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(Hn|S|L)~{(HIn]|S|L) [S-const]
(HIr|STL)y~{(HIr|S|L) [S-exn]
(Hla > tval] | 2| S | L) ~ (H[z — tval | tval | S | £) [S-var1]
fogH,  (Hla|S|L) ~(H|z]|S|L) [S-var2]
(M| A" | S| L)~ (H|e| (\v.e) S| LV [r]) [S-lam|
(Hlerea| STL)~ (H|er](oe2)=:S|L) [S-app]

(H | match eg with alts | S| £)
~ (H | eo| (match o with alts):: S| L) [S-match]

(H| K (a1,...,€i...,en) | S| L)

~ (H|e | (K (a1,...,0,....e)]) =S| L) [S-K]
if & fu(e),

(H||letx=ej iney|(oee) S| L)

~(H|letx=e; inese| S| L) [S-letL)]

if fo(e) Nz =0,
(H | (match eg with K 7 — ;) | (e €) = S| L)

~ (H | match eg with K 7 — e; e | S| L) [S-matchL)]
if 2 & fv(a),

(H|val| (e (lLet x =e1 iney)) = S| L)

~ (H|letz=e; inval es | S| L) [S-letR]

if fu(val) N2 =10,
(H | val | (e (match ep with K 7 - e) S| L)
—
~ (H | match eg with K 7 —wval e | S| L) [S-matchR]

if fu(alts)N @ =0,

match eg with
(H |

K7 —e
match ey with

K 7 — match e with alts

| (match e with alts):: S| L)

| S| L) [S-match-match]

~

if ¢ & fu(alts),
(H|let z =€) in ey | (match e withalts):: S| L)
~ (H | let © = e; in match ey with alts | S| £) [S-match-let]

Figure 9: SL machine part (a)
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(Hlallll£L)~a [R-done]
if (s # match e with K 7 — (9,5, L)),
(Hlrls=SIL)~{(H]|r|S]|L) [Rr]
(Hla] Az.e) S| LY ~ (H ]| \.a|S]|LY [R-lam]
Rules below: a ¢ {BAD!, UNR'}

(Hla]|(ee):S|L)~ (Hez|(ae):S]L) [R-fun]

(Hval | (Az.a1) @) =S| LY ~ (Hlz—wval] | a1 | S| L) [R-beta]

if a1 # Ax.d’ or a # val,

(Hlal(are)=S|L)~(H]|aalS]|L) [R-app]

(Hlan| (K ai...0)=S| L)~ (H|KT|S]|L) [R-K]

(H| K @ | (match o with {...;K @ —e;...}) =S| L)

w (H|letz=dine| S| L) [R-K-match]

if exists (K 3?) such that £ = (3z : [7], [a](kx =));

(H ] a| (match o with K 2% — ¢) = S | £)

~ H el S| L3 ], [a](x 2)) [R-s-match]

if for all (K a?) such that £ # (3z : [7], [al(x 2));

(H]a| (match o with K 27 — ¢) = S | £)

— . (match a with K ot L,3x : 7], s-save
el Sesepal) D il ! fosavel

(| a| (match ap with K 7 — (8,8,L)) = S"| L)

~ (M | match ag with K @ — a | S| L) for some S’ and £’ [R-match)]

(H]la] (let 2" =eines) :: S| LY
~ (H|ex| (let z=aine):: S| L,3x: [7],[a]z)

[R-let-save]

Figure 10: SL machine part (b)

e ¢ is the expression under simplification (or being rebuilt);

e S is a stack which embodies the simplification context, or continuation

that will consume a simplified expression;
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(letx=ejiney) e=—letx =e; inese [letL)]

if fu(e)N @ =10,
(match e with K @ — ¢;) e

.
— match ey with K 7 — (e; e) [matchl]
it 2 ¢ fole),
tval (let © = ey in e3) = let x = e; in tval ey [letR]
if fo(tval) ¢ 7,
val (match eg with K 7 — )

7
— match eg with K 2 — val e [matchR)

if fu(alts) N2 =0,
—_
match (match eg with K 2 — e) with alts

— match e, with K 7 — match e with alts [match-match]

if © ¢ fu(alts),
match (let = e7 in eg) with alts
= let 2 = e¢; in match ey with alts [match-let)

match K a;...ap, with {.. ;K z1...2, > €;...}
— letxy =a; in ... let x,, = a, ine [scrut-match)]

Figure 11: Simplification Rules

e L is a logical store which contains the ctx-info in logical formula form; its
syntax is
Lo=0|Vz:7,L]|¢, L

where ¢ is a predicate in Figure

The job of SL machine is to simplify an expression as much as possible, con-
sulting the logical store when necessary; when it cannot simplify the expression
further, rebuilds the expression.

5.1 The SL machine

In Figure [0 the constant n and blame r cannot be simplified further, thus
being rebuilt as shown in [S-const] and [S-exn] respectively. One might ask why
we rebuild rather than return a blame. There are two reasons: (a) it gives
more information for static error reporting, i.e. we know conditions leading to
a reachable BAD; (b) as we do hybrid contract checking, we want to send the
residual code with undischarged blames to a dynamic checker.

As we perform symbolic simplification rather than evaluation (as in CEK
machine [I6]), we only put a variable in the environment # if it denotes a
trivial value. A variable denoting a top-level function is not put in . Variables
in A are inlined by [S-varl] while variables not in # are rebuilt by [S-var2].
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Each element on the stack is called a stack frame where the hole e in a stack
frame refers to the expression under simplification or being rebuilt. We use a
to represent an expression that has been simplified. the syntax of a stack frame
sin S is

su=[]|(ee)::s|(eo)::s|(Ax.e)::s|letxz=eine
| (natch e withalt)::s|letz=eine
ey
| (match ep with K 7 — (8,8, L)) == s

The transitions [S-app], [S-match] and [S-K] implement the context reduction in
Figure Bl The transitions [S-letL], [S-matchL], [S-letR], [S-matchR], [S-match-
match], [S-match-let] implement the conventional simplification rules in Fig-
ure [[11 Here, 7 abbreviates a sequence of x1,...,z,. We use let instead of
lambda for easy reading. Rules [letL] and [matchL] push the argument into the
let-body and match-body respectively. Rules [letR] and [matchR] push the func-
tion into the let-body and match-body. The rules [match-match] and [match-let]
are to make an expression less nested. Rule [K-match] allows us to simplify

match Some e with {Some x — 5;None — BAD}

(where e is a crash-free expression, not a value) to let z = e in 5 which is
crash-free.

What does rebuild do? If the stack is empty ([R-done]), which indicates the
end of the whole simplification process, we return the expression. Otherwise,
we examine the stackframe. By [E-exn], the transitions [R-r-match], [R-r-let],
[R-r-fun| and [R-r-arg] rebuild UNR (or BAD) with the rest of the stack. After we
finish simplifying one subexpression, we start to simplify another subexpression
(e.g. [R-fun]). When all subexpressions are simplified, we rebuild the expression
(e.g. [R-lam] and [R-app]). If current simplified expression is a value and
we have stack frame lambda on S, we use [R-beta]; together with [S-varl],
they implement a beta-reduction [E-beta]. Bound variables are renamed when
necessary.

The logical store £ captures all the ctx-info up to the program point being
simplified. (We use if-expression to save space, but refer to match-transitions.)
Consider:

(Ar. if z >0 then (ifz+1>0
(H | then 5 else BAD) | []]®)
else UNR)

The [S-lam]| puts Vz : int in £, which is initially empty:

(if x>0

then (if z+1>0
then 5 else BAD)

else UNR)

(H | | (Az.e) ::[]]|Va : int)

The [S-match]| starts to simplify the scrutinee x > 0, which is being rebuilt after
a few trivial steps.

(if e then (ifz+1>0
(Hlx>0] then 5 else BAD) | Vz : int))
else UNR) :: (Az.e) :: []
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Before applying the transition [R-s-save|, we check whether z > 0 or not(x >
0) is implied by £ to see whether the transition [R-s-match] can be applied.
The transition [R-s-match| implements [E-match], where the side condition
“f K T), L= [al(x =" checks if there is any branch K 7 that matches the
scrutinee. But the current information in £ is not enough to show the validity
of either z > 0 or not(x > 0). By [R-s-save], we convert this scrutinee to log-
ical formula with [a] ; ) (explained later) and put it in £ and simplify both
branches. Note that, we put # > 0 in £ for the true branch while not(z > 0)
for the false branch.

[ | ifz+1>0 | (if > 0 then o) " Va :int,
then 5 else BAD i (Az.e) i [] x>0
(H|UNR| (if x > 0 else o) : S | Vx : int, not(z > 0))]

);

In the true branch, after a few steps, we rebuild the scrutinee = + 1 > 0.
In this case, Vz : int,z > 0 = 2 + 1 > 0 is valid. By [R-s-match], we take the
true branch, which is a constant 5. As both 5 and UNR cannot be simplified
further, we rebuild them by [S-const] and [S-unr] respectively and obtain:

(if > 0 then e}) | Vz:int,z > 0,

[(# 151 i (Az.e) i [] " (x+1>0) s
utom) G250 T

By [R-match], we combine both simplified branches to rebuild the match-
expression:

(H]if 2 >0 then 5 else UNR| (Azx.e) :: [] |V : int))
We continue to rebuild the expression by [R-lam]:
{(H ] Ax.if >0 then 5 else UNR| [] | Vz : int))
and terminate (by [R-done]) with a syntactically safe expression:
Az. if x > 0 then 5 else UNR.

Besides [R-s-save], another transition that saves ctx-info to £ is [R-let-save].
Consider an example:

Av.let y=v+ 1 in if y > v then y else BAD
After a few simplification steps, we have:

(Hlv+1] (lety=einify>w | Yo : int))
then y else BAD) :: (A\v.e) :: []

The rule [R-let-save] saves the information y = v + 1 to £, which allows us to
check the validity of the scrutinee y > v later.

if y> . Vv :int,
- 1I:heynyv | (lety=v+11ine) | Ezziit >
else BAD i (Az-e) ] y=v+1
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Since Vv : int, 3y : int,y = v + 1 = y > v is valid, by [R-s-match]|, we only
need to simplify the true branch:

(lety=v+1 ine) Vv : int, Jy : int,
Hlvl i (Av.e) ] | y=v+1,y>v )

which leads to the final result Av. let y = v+ 1 in y, which is syntactically
safe.

Theorem 8 (SL machine terminates). For all expression e, there exists an
expression a such that (0 | e | []]0) ~* a.

Proof. See Appendix O

Intuitively, SL machine behaves like CEK machine [16], but does not inline
top-level functions and we do not have local let rec in our language. We
also call SMT solver Alt-ergo with an option “-stop <time-bound>" or “-steps
<bound>" to make sure the SMT solver terminates. So there is no element
causing non-termination.

*

Theorem 9 (Correctness of SL machine). For all expression e, if (0| e|[]]0) ~
a, then e =5 a.

Proof. See Appendix [B.2 O

The SL is designed in a way such that the simplified a preserves the semantics
of the original expression e. The proof of Therem [ (in Appendix [B.2) uses the
fact that, if there exists eg such that (H |e; | S| L) ~* (H | es | S| L) and
(Hlex | S|L)~*(H|es|S|L), then e; =5 ea.

Theorem 10 (Soundness of static contract checking). For all closed expression
e, and closed and terminating contract t,

@D]evt][]]0)~"¢e andBAD¢se’ = ect

Proof. By Theorem [@, Lemma [l and Theorem [3l O

5.2 Logicization

We now explain the mysterious convertion [.] s, which we call logicization. Fig-
ure gives the abstract syntax of the logical formula supported by an SMT
solver named Alt-ergo [8], which is an automatic theorem prover for polymor-
phic first order logic modulo theories. It uses classical logic and assumes all
types are inhabited. First, data type declaration in language M, e.g.

type ’a list = Nil | Cons of ’a * (’a list)
is converted to Alt-ergo code with type and logic declarations:

type ’a list
logic nil : ’a list
logic cons : ’a , ’a list -> ’a list
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x, 8,1, f € Identifier

file == decly,...,decl,
bty == int|bool |i| i |bty i Base type
Ity == bty |ty -> bty Logic type
ty == o (tyr,...,tyn) s Types
decl 1= type s
| logici :lty|axiomi: ¢ |goali: ¢
& = |- x|/
O == =|<>|<|<=]>]>=
®p u= =->|<->]|or|and
m == nl|xz|mi & mo|-m|fm Term
10) true | false | f Predicate

my O ma | ¢1 ©p P2 | not(o)
forall 7 : ty.¢ | exists @ : ty.¢

Figure 12: Syntax of logic declaration

Data type in language I\E> R
type’as=Kjof t1 |- - | K, of t,
Corresponding alt-ergo code: type ’a s
. - =
logic Ky :t1 ->as

' = =
logic Ky ity ->’a s

Figure 13: Converting data type to Alt-ergo code

As Alt-ergo supports only first order logic (FOL), arguments of a logical function
are a tuple, e.g. ’a , ’a list. The type variable ’a is assumed universally
quantified at top-level. The convertion algorithm for an arbitrary user-defined
data type is in Figure [13

Moreover, we introduce a first order function type:

type (’a, ’b) arrow

which allows us to encode the function type in the langugage M to Alt-ergo’s
first order type where the ’a and ’b refer to a function’s input type and output
type respectively. We also introduce a logical function apply:

logic apply : (’a, ’b) arrow , ’a -> ’b

where encoding with apply is conventional [22]. Converting types in the lan-
guage M is straight forward (Figure [I4]).

[[Tl---Tn T]] [[Tl]]...[[Tn]]T
[rn— 7] = ([r],[r2]) arrow

Figure 14: Converting higher order type to first order type
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We now give an example showing that the SL machine is better than the
unrolling approach in [37, 40.

(* val len : ’a list -> int *)
contract len = {x | true} -> {y | y >= 0}
let len s = match s with | [] -> 0

| x::u -> 1 + len u

(* val append : ’a list -> ’a list -> ’a list *)
contract append = {xs | true} -> {ys | true}
-> {len rs = len xs + len ys}
let append xs ys = match xs with
[ ] -> ys
| x::u -> x :: append u ys

The function len computes the length of a list and the function append appends
two lists. Let ea and ta stand for the definition and contract of append respec-
tively. Applying only simplification rules (including reduction rules) to ea b ta,
we get (R3):

Av1.A\vg.match v; with
| [] — if len vy = len v; + len vy then vy else BAD'!
|z:u— if (len (z =
(if len (append u v2) = len u + len vy
then append u v2 else UNR))
= len vy + len vy)
then 7 :: append u vy else BAD'

The simplification approach in [37] and the model checking approach in [32]
involve inlining top-level functions, while we do not. Instead, we axiomatize top-
level function definitions called in contracts and lift expressions under checking
to logic level and consult an SMT solver. The chanllenge is to deal with non-
total expressions (e.g. BAD) in our source code. In the literature of converting
functional code (in an interactive theorem prover) to SMT formula [11, @, 27, [6],
they convert expression to a logical form directly. In [I], given a non-recursive
function definition f = e, they first n-expand e to get f = Azy...xz,.¢ where
e’ does not contain J; if it is a recursive function, they assume e is in a par-
ticular form such that all lambdas are at top-level and the function perform-
ing an immediate case-analysis over one of its arguments. Then, they form
VI, f(x1,...,2n) = [¢/] where [.] converts an expression to logical form. (On
the other hand, [6] uses A-lifting method: A-abstractions are translated from
inside out, each A-abstraction is replaced by a call to a newly defined func-
tions. That is to form V?,fn(zl, cooyxy) = [€'];.. sV, f = fi(x1) .) This
is fine for converting total terms, e.g. [5] = 5 and [z] = z, etc., but what are
[BAD] and [UNR]? Our key idea is not to convert an expression directly to a
corresponding logical term, but form equality with [.]; recursively (defined in
Figure [[5). The subscript f in [e]; denotes the expression e. Moreover, we
perform neither n-expansion (which does not preserve semantics in the presence
of non-total terms) nor A-lifting, and yet we allow arbitrary forms of recursive
functions. We have such flexibility because we convert A-abstraction and partial

Unrolling approach may suit a lazy language better.
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application directly with the help of apply. (Note that our logicization [.]; can
also produce HOL formula for interactive proving by replacing (apply(f,x))
by (f(x)) and not converting the types.) No logicization work in the litera-
ture (including [9}, B3, 27, 6]) deal with non-total terms. The work [6] uses
approaches in [9] 27] to deal with polymorphism while Alt-ergo itself supports
polymorphism.

Our framework can systematically generate Alt-ergo code, like below, to
show that those BADs in R3 are unreachable.

logic len: (’a list, int) arrow
logic append: (’a list,
(’a list,’a list) arrow) arrow

axiom len_def_1 : forall s:’a list. s = nil ->
apply(len,s) = 0

axiom len_def_2 : forall s:’a list. forall x:’a.
forall 1l:’a list. s = cons(x,1) ->
apply(len,s) = 1 + apply(len,l)

goal app_1 : forall vi,v2:’a list. vl = nil ->
apply(len,v2) = apply(len,vl) + apply(len,v2)

goal app_2 : forall vi,v2,1:’a list.forall x:’a.
vl = cons(x,1l) ->
apply(len,apply(apply (append,l) ,v2))
= apply(len,l) + apply(len,v2) ->
(exists y:’a list. y = apply(apply(append,l),v2)
and apply(len,cons(x, y))
= apply(len,vl) + apply(len,v2))

To make an SMT solver’s life easier (i.e. multiple small axioms are better than
one big axiom), we have two axioms for len, one for each branch, which are
self-explanatory. As a constructor is always fully applied, we do not encode its
application with apply. The -> (in axioms and goals) is a logical implication.
For example, in the goal app_1, the ctx-info vi=nil is from the pattern match-
ing match vl with {[] -> ....}; the query is the scrutinee apply(len,v2)
= apply(len,vl) + apply(len,v2). Alt-ergo says valid for both goals.

First, how to systematically convert a function definition to an axiom (e.g.
len_def_1)? Figure[I5] gives an operator [.]; that converts an expression to a
logical formula. The subscript f in [e]; denotes the expression e. For example,
we can get len_def_1 thus:

[[)\s’a 118t patch s with {Nil = 0}]1en
= Vs:’a list.[match s with {Nil — 0}]apply(len,s)
= Vs:’a list. dzg:’a list.[s], A
(zo =nil -> HO]](apply(len,s)))
= Vs:’a list. dxg:’a list.xp=s A
(o = nil -> apply(len, s) = 0)

Let xg be s, we get a more readable version (axiom len_def_1).
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@ e[+, —,%/] ® € > < =]
[l : Expression — Formula
[let (rec) f=e€]y = [e]s top-level defn
! - true for axioms
[BAD]; = false for goals
[UNRl]; = false
[s]; = f==
[n]y = f=mn
lef®erly = Fxi:[r], 3z : 7],
([[61 21 N [[62]]12 ANf=x1®x2)
[[e'lr © eg]]f = dai: [[T e1 FIA
Azs : [1], [e2]azaN
((x1 ©® 22 A f = true)V
(not(x1 ® x2) A f = false))
[Aa7.el; = Va:[r], [[e]](apply(f,m))
[Let 2™ =€ in 62]]f = Jx:[7], [[61]]1 A [[62]]f
[ei' e’y = Fza:[nl, [ e1 A\
31‘2 [[TQ]] €9 xz/\
[ =apply(z1,22)
[[K 6'{1 ...ef{"]]f = dxy: [[Tl]] [[61]]Z1 SEWAN
s lenlen Af =K (x1,...,20)
match e’ with B ﬂxo : o], Teo)ze A
= b=
Kzt —e (/\V:m zofK? = [ely)

Figure 15: Convert expression to logical formula

Theorem 11 (Logicization for axioms). Given definition f = €7, Vfv(e),3f: 7, [e]s
is valid.

Proof. See Appendix [B.1l O

Next, what query (i.e. goal) shall we make? All we want is to check the
branch leading to BAD is reachable or not. So our task is to examine the
scrutinee of a match-expression. For example, in the goal app_1, the ctx-
info vi=nil is from the pattern matching match vi with {[] -> ....}; the
query is apply(len,v2) = apply(len,vl) + apply(len,v2). The goalapp_1
states the ctx-info £ implies the scrutinee. We have £ = Vv, : ’a list, Vs :
’a list,v; = nil by [S-lam] and [R-s-save]. The scrutinnee is [len v =
len v + len vo}]true- That is, we want to check whether len vy = len v1 +
len vy is equivalent to true. Sending the Alt-ergo code in this paper to Alt-ergo
solver, it replies walid for both goals. Thus, we know both BAD'" and BAD'? are
not reachable.

Theorem 12 (Logicization for goals: validity preservation). For all (possibly
open) ea:pression e, 3f : 1, if Vfv(e) : 7,[e]y is valid and e — €' for some €,
then Yfu(e'), [€']y is valid.

Proof. See Appendix [B.1l O

There are a few things to note about logicization.
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Syntax abbreviation The Alt-ergo syntax

logic z : lty; axioma;:¢@;; goal g;: ¢

— = = —
is semantically the same as Vz : lty, ¢; = ¢; where ¢ means a conjunction of
a set of logical formulae.

Only functions called in contracts are converted to Alt-ergo axioms
To check a function (say append) satisfies its contract, we do not convert its defi-
nition to axioms. As the wrappers >, < have inserted contract checking obligation
appropriately such that function calls (including recursive calls) are guarded by
their contracts.

Crashing functions called in contracts In Figure [[3 there are two con-
vertions for BAD, true for axioms and false for goals. For example, we may
have:

contract g = {x | x /= [1} -> {y | head x > y}

In this case, the contract of g is crash-free even if a partial function head is
called in the contract. The logicization of head gives:

logic head : (’a list, ’a) arrow

axiom head_def_1 : forall x:’a list. x=[] -> true

axiom head_def_2 : forall x,l:’a list.forall y:’a.
x = cons(y,l) -> apply(head, x) =y

The key thing is that the axiom head_def_1 is not a false axiom, it just does
not give us any information, which is what we want.

Contracts that diverge Suppose divergent functions loop and nloop are
used in a contract.

let rec loop x = loop x
let rec nloop x = not (nloop x)

Logicization gives:

logic loop : ’a -> ’a

axiom loop_def_1 : forall x:’a.
apply(loop, x) = apply(loop, x)

logic nloop : bool -> bool

axiom nloop_def_1 : forall x:bool.
apply(nloop, x) = not(apply(nloop, x))

Axiom loop_def_1 is same as stating true, which does not hurt. But axiom
nloop_def_1 is same as stating false, which we must not allow. Fortunately,
we only convert functions used in contracts that can be proved terminating (in
Section [H]) to axioms. We will not generate the axiom nloop_def_1.
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BAD and UNR For goals, the [e]; collects ctx-info before a scrutinee of a
match-expression, thus, [BAD]; = [UNR]; = false, which implies everything. For
example:

fun x -> let y = if x > 0 then x else UNR in
if y +1 > 0 then y + 1 else BAD

The ctx-info £ before y+1 > 0is Va: int, Jy: int, (x > 0 = y = z) A (not(x >
0) = false). So L =y + 1> 01is Vz: int,Jy: int, (x > 0 = y = z) A (not(x >
0) = false) = y+1 > 0, which is valid. It means, if not(x > 0) holds, y+1 > 0
will not be reached. Similar reasoning applies if we replace the UNR by BAD in
the above example.

5.3 Discussion and preliminary experiments

One might notice that SL machine simplifies terms under lambda and the body
of match-expression while we do not have such execution rules in Figure 3l As
we rebuild blames and do not inline recursive functions (i.e. no crashing and
no looping during simplification), SL machine does not violate call-by-value
execution.

A(n) n [D1]

Alz) = z ifxé¢dom(A)or[z— L]CA [D2]

Alz = m](z) = m [D3]

ARz :ty,z =mAd1) = Alz Am)](¢1) [D4]
A(m1 Ot mg) = A(ml) on A(mg) [D5]

A(gr Op d2) = Al¢1) ©p Alg2) [D6]

A(Vz :ty. 1) = Va:ty, Al¢r) [D7]

Figure 16: Partial elimination of 3 quantifiers

One might notice that the logicization generates some existentially quantified
variables and simple equalities which can be easily eliminated. By observing
the conversion in Figure [I3] we may encounter some sub-formula in this form:
Jz : ty,x = m A ¢, which can be simplified to ¢[m/x]. A simple J-elimination
algorithm in Figure[I6lis good enough to eliminate some (but not all) existential
quantifiers from the formula. The environment A captures the maping from an
3-bound variable to a term. For example:

A(Vy : int, 3z : int,z = y A (Jz : int,z =8 Ax > 6))
= (By [D7])

Vy :int, A(Jz :int,z =y A (3x : int,z =8 Az > 6))
= (By [D4])

Yy : int, Alz — y](Fz : int,z =8 Az > 6)
= (By [D4])

Yy : int, Alz — 8](z > 6)
= (By [D5])

Vy @ int, Alz — 8](z) > Az — 8](6)
= (By [D1] and [D0])

Vy :int,8 > 6
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The Alz — A(m)] means that, if z ¢ dom(A), we extend the environment
A with [z — A(m)]; if x € dom(A), we update x with the term A(m). The
rest is self-explanatory.

Theorem 13 (Correctness of 3 quantifiers elimination). For all FOL formula
o, A(p) is valid if and only if ¢ is valid.

Proof. The only change to the formula ¢ is to substitute the existentially quan-
tified z by m. Since we have the equality x = m and the conjunction, it is
immediate that the substitution is correct. [l

One might worry that the rule [match-match| causes exponential code ex-
plosion for static analysis (although no run-time overhead). For example, h; =
if (if a then b else ¢) then d else e, where a, b, ¢, d, e are expressions. At pro-
gram point d, the ctx-info is (a = b) A (not(a) = cf8. Applying [match-match]
to hi1, we get: ho = if a then (if b then d else ¢) else (if ¢ then d else e).
The d is duplicated and the ctx-info for the first d is a A b while for the second
d is not(a) A c. With [match-match], we send smaller formula to an SMT solver
(which is good for an SMT solver), but we may communicate with the SMT
solver more often. From our current observation, it is quite often that the c¢ is
BAD or UNR, the SLL machine immediately rebuilds the blame with the rest of the
stack, and we get: if a then (if b then d else ) else c. So d is not duplicated
and we have smaller formula for the SMT solver.

One advantage of the SL machine is to allow adding or removing a rule easily.
In the inc example in §2] with rule [matchR], we can simplify

(M.v +1) (if 21 > 0 then x; else UNR')

to if x; > 0 then (Av.w + 1) 1 else (\w.v + 1) UNR’. As the variable x,
and the contract exception UNR’ are values, performing beta-reduction, we get:
if x; > 0 then x; + 1 else UNR’. Now, we have a logical formula (denoted by
Q2):

Jy, (x1 > 0=y =121+ 1) A (not(z1 > 0) = false) [Q2]

which is equivalent but smaller than the Q1 in §2]

We have implemented a prototyp based on the source code of ocamlc-
3.11.2. Table[shows the results of preliminary experiments, which are done on
a PC running Ubuntu Linux with quadcore 2.93GHz CPU and 3.2GB memory.
We take some examples from [25] and OCaml stdlib and time the static checking.
The column Ann gives the LOC for contract annotations.

The preliminary result is promising: it checks a hundred lines of code (LOC)
in a few seconds. This paper focuses on the theory of hybrid contract checking,
we leave more optimization and rigorous experimentation on tuning the strength
of symbolic simplification and the frequency of calling an SMT solver as future
work.

2To illustrate the idea with less cluttered form, we omit the conversion notation [.]f for a,
b, c, d, e.
3http://gallium.inria.fr/~ naxu/research /hce.html
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Table 1: Results of preliminary experiments

program total LOC | Ann LOC | Time (sec)
introl23, neg 23 4 0.08
McCarthy’s 91 4 1 0.02
ack, fhnhn 12 2 0.06
arith, sum, max 26 4 0.20
zipunzip 12 2 0.10
OCaml stdlib/list.ml 81 16 0.72

6 Hybrid contract checking

We have explained with examples how SCC, DCC, HCC work in Section 2.
Programmers may choose to have SCC only, DCC only, or HCC. In this section,
we summarize their algorithm. Given a program f; € t;, fi = ¢; for 1 < i < n.
Suppose f; is the current function under contract checking; f; is a function called
in f; (including f;’s recursive call); s1 is the SL machine; rmUNR implements the
rule [rmUNR] (mentioned earlier in Section [2]).

(if ep then e; else UNR) = ¢; [rmUNR]
We have:

[SCC] = s1(ei(f; <F t5,)/fi]52 1)

Bap’J

DCCT s eil(f; 'Sy t1,)/45
[HOC s fif = NemOR(s2(ei[((f4 “1.7) af t1,)/ 1) o] 1)

In [HCC], the residual code f;#’s parameter “?" waits for a caller’s name. For
example, if an STM solver cannot prove the goal app_2 in Section [5.2] (although
it can), recalling R3 in Section [5.2] the residual code appendf is:

A?.\vi. A\vg.match v; with

| [] = v

| z::l— if len (z :: append ¢ v2) = len v;+1len vy
then 7 :: append ¢ vy else BAD'

which says that we only have to check postcondition for the second branch. (If
all BADs are simplified away during SCC, a residual code of a function is its
original definition.)

Lemma 12 (Telescoping property [7, [39]). For all expression e, total contract
t, blames r1,r2,73,74, (€ oy t) bt =epgt.
To T4 T4

Precondition of a function is checked at caller sites. An f;f is the simplified
f; D;j ty;, inspecting [HCC], each f; at caller sites is replaced by (f; D;j ty, )<1§j ty;,

Ban?. e/
which is (f; D<f1] ty) D<f1] ty,. By the telescoping property, we have:

pan’J e’ san’J
(fi bg ) by ty, =fi vg by, [T

UNRY 2
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which is the same as in DCC. This shows that [HCC] blames f if and only if
[DCC] blames f.

Moreover, [T1] justifies the correctness of applying the rule [rmUNR] because
all UNRs are indeed unreachable as BAD' is invoked before UNR! for the same I.
That is, (if p then e; else BAD') is invoked before (if p then e else UNR')
for the same p, maybe different e. So it is safe to apply the rule [rmUNR]
even if p diverges or crashes because the same p in (if p then e; else BAD)
diverges or crashes first. It is easy to see if t = {« | p}. If t = t; — t2, then

Ban’J

ol
(e >q t1 — t2) [><]] t1 — to expands to
mmr/i fi

BAD” 2

o/ Ban’J s’ ueli
)\’1}2.(()\1)1.(6 (’Ul ngj tl)) mi?i tg) (’Ug m,l?jj tl)) 85’% tQ

Focusing on the BADs and UNRs above i, inspecting [P1] and [P2] in Figure [6]
we can see that BAD is invoked before UNR'S and BAD/i is invoked before UNRY:.

7 Related work

Contract semantics were first formalized in [7, [12] for a strict language and later
in [39] for a lazy language. This paper adapt and re-formalize some of their
ideas on contract satisfaction and contract checking. Detailed design deference
is explained in §4l

Pre/post-condition specification using logical formulae |18, [15] 2 B3] allows
programmers to existentially quantify over infinite domains or express meta-
properties that are not expressible in contracts. However, such property cannot
be converted to program code for dynamic checking. As automatic static check-
ing always has its limitation, being able to convert some difficult checks to
dynamic checks is practical. Refinement types and contracts can be enhanced
in many ways like we did for types, e.g. subcontract relation [12], [40], recur-
sive contracts [7], polymorphic contracts [3]. Contracts also enjoy interesting
mathematical properties [7), [12], 39, B8]. We like the idea of ghost refinement
in [35] that separates properties that can be converted to program code from
the meta-properties logical formulae.

One might recall the hybrid refinement type checking (HTC) [14], ?]. In the-
ory, [17] shows that (picky/indy, i.e. our) contract checking is able to give more
blame than refinement type checking in the presence of higher order dependent
function contracts. That is partly why [35] invents a Kind checker to report
ill-formed refinement types. As discussed in §4.3] we check et to be crash-free
in one-go and do not have to check t to be crash-free separately. In practice, the
‘H and L in the SL machine serve the similar purpose as the typing environment
in HTC. But the symbolic simplification gives more flexibility such as teasing
out the path sensitivity analysis with the rule [match-match], etc. We hope
this work opens a venue to compare HCC and HTC in practice, such as the
kind of properties we can verify, the speed of static checking, the size and speed
of the residual code generated, etc. Notably, VeriFast [?] (for verifying C and
Java code) suggests that symbolic execution is faster than verification condition
generation method [15] 2].

The work [23] mixes type checking and symbolic execution. However, [23]
requires programmers to place block annotations {; ;} for type checking and
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{s s} for symbolic execution while our SL machine systematically simplifies
subterms and consults the logical store for checking at the appropriate program
point. The [23] does not generate residual code while we do. Moreover, their
symbolic expression is in linear arithmetics, which is more restrictive than ours.

Our approach is different from [35], which extracts proofs of refinement types
from an SMT solver and injects them as terms in the generated bytecode RDCIL
(like proof carrying code) during refinement type checking. It is for security
purpose.

Some work [31], 24, [32] 25] suggest to convert program to higher order re-
cursive scheme (HORS), which generates (possibly infinite) trees, and specify
properties in a form of trivial automaton and do model checking to know whether
HORS satisfies its desired property. Our approaches are completely different al-
though we both do reachability checking. They work on automaton while we
work on program directly. Our approach is modular (no top-level function is
inlined) while theirs is not. They deal with local let rec (i.e. invariant infer-
ence) while we do not, but we could infer local contract with method in [21]
or inline the local let rec function for a fixed number of times. They deal with
protocol checking while we do not unless a protocol checking problem can be
converted to checking the reachability of BAD. SL machine (in §5) can be used
for any problem that checks the reachability of BAD in general.

The contextual information synthesis and conversion of expression to logical
formula is inspired by the use of the application e in [20, [19], which makes
conversion of higher order functions easier. But we use the technique in different
contexts.

Many papers on program verification [36, [15], (2, [30} [29] 11] focus on mem-
ory leak, array bound checks, etc. and few handle higher order functions and
recursive predicates. Our work focus on more advanced properties and blame
precisely functions at fault. Contract checking in the imperative world is lead
by [11], which statically checks contract satisfaction at bytecode CIL level and
run dynamic checking separately. Residualization has not been done in [II].
We may adapt some ideas in [?] to extend our framework for program with side
effects.

8 Conclusion

We have formalized a contract framework for a pure strict higher order subset
of OCaml. We propose a natural integration of static contract checking and
dynamic contract checking. With SL machine, our approach gives precise blame
at both compile-time and run-time in the presence of higher order functions. In
near future, besides rigorous experimentation and case-studies, we plan to add
user-defined exceptions; allow side-effects in program and hidden side-effects in
contracts; do contract or invariant inference as [1T}, 29, [2T] are inspiring.

Acknowledgement I would like to thank Xavier Leroy, Francois Pottier,
Nicolas Pouillard, Martin Berger, Simon Peyton Jones and Michael Greenberg
for their feedback.
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A Proof for the main theorem

The proof in this Section is similar to the one in [40] but for a call-by-value
language.

Contract — Int

-
{z | p}

= 1
|$Zt1*>t2| = |t1|+|t2|+1
|(t1,22)] = [|ta] +]t2| +1
|Any| =1

Figure 17: Size of Contract

As some of the proofs involve the structural induction on the size of contract,
we define it in Figure {7l To make the proof look less clustered, we use the
following shorthands:

cf : crash-free

ss : syntatically safe
defn : definition

cl : closed

tl : total

Figure 18: Dependency of Theorems and Lemmas in Appendix A

To make the dependency of theorems and lemmas clear, a dependency dia-
gram is shown in Figure I8 For many theorems and lemmas, we prove them
by induction on the size of contract ¢t. The dashed directed edge shows that
the size of the contract decreases, i.e. for a function contract z: t; — t3, we
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call another lemma (or theorem) with ¢ = ¢; or ¢ = t5. The solid directed edge
shows the size of the contract is preserved. This makes the proof well-founded
even though there are cycles in the dependencies (examined in Section [A3)).

Theorem [2] (Soundness and Completeness of Contract Checking (grand
theorem)) For all closed expression €7, closed and total contract ¢7,

(e>t) is crash-free <= ect

There are two directions to be proved:

e ¢ €t = et is crash-free. The difficulty lies in the proof for dependent
function contracts. We appeal to a key lemma (LemmalfljfCEBJ [Key lemma)]

in Section [A.2]).

e c>t is crash-free = e € t. The difficulty also lies in the proof for dependent
function contracts. We appeal to three things:

— definition and properties of crashes-more-often (Definition[d, Lemmal[d ).

— projection pair property of > and < (Theorem 5™ in Section [A35);
— congruence of crashes-more-often (Theorem 2™ in Section [AA).

Proof. The notation ™ and ¢t™ mean that both the expression e and the contract
t are well-typed and they have the same type 7. The proof begins by dealing
with two special cases:

e Case e —* BAD: We prove the two directions separately.

=)

ep>tiscf

(By Lemma™ (preservation of crash-freeness)
and Lemma 8™ (b) (about Any))

t = Any

(By defn of €, every expression satisfies Any)
ect

ect

(By Lemma B (preservation of crash-freeness)
and Lemma ISrm(a) (about Any))

t = Any

(By defn of )

e > Any is crash-free

e Case e T: By inspecting the definition of > and €, for all ¢, if e, then
(ext)1 and e € t. Thus, we are done.

Hence, for the rest of the proof, we assume that e —* val ¢ {BAD, UNR}.
The rest of the proof is by induction on the size of ¢.
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e Casetis {z|p}

e>{x|p}iscf

< (By defn of )
let x =€ in
match p with

is cf
| true — x
| false — BAD
<= (Since e —»* val ¢ {BAD,UNR})
e is cf and p /4* {BAD, false}
<= (By defn of €)

e € {z|p}
e Casetis xz:t; — ty: we want to prove that

(epx:t;y > ta)isct < ecx:t1 =ty

We have the following induction hypotheses:

Veler, egptiiscef < e €4 [TH1]
Vel e, cltl e’ ea>tofe’/x] is ef <= eq € to]e’/x] [TH2]

We have the following proof:

ep>x:t] — ty is cf.

(By defn of p)

let y = e in \x1.(y (21 <t1)) > tof(z1 < t1)/x] is cf.
(Since e —* val ¢ {BAD, UNR})

Al'l. (6 (1‘1 <1t1)) Dtg[(l'l <1t1)/£6] is cf.

(By Lemma g™ (crash-free function))
Vef €. (e (€' <atq)) > ta[(ef <t1)/x] is cf.

=l 1 1

Now the proof splits into two. In the reverse direction, we start with the
assumption e € x: t; — to:

eex:ty =t

<= (Bydefn of €)
Vey € t1. (e e1) € taler/x]

= (By Lemma [ (Key lemma), let e; = e’ <t7)
Vef €. (e (e/ aty)) € ta[(e <t1)/x])

—  (By[m2)

(t)  Vefe. (e (e/<ty))>taf(ef <ty)/x] is cf.

Now we have reached the desired conclusion (}). The key step is the use
of Lemma ™ (Key lemma) (see Section [A.2]).
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In the forward direction, we start with (}):

Vef €. (e (e/ <ty)) > ta(ef <ty)/x] is cf.
=  (By [IH1],e; € t1 = (e1>t1) is cf so we replace ¢’ by e; >t1)
Ver € t1. (e ((ex>t1) <ty)) > taf(er >ty <ty)/x] is cf
= (By (Theorem ™ (projection pair) and
Theorem (congruence of <) and
Lemma 7 (c) (property of <)) twice)
Vey € t1. (e e1) > taer/x]) is cf
= (By [IH2])
Vei € ty. (6 61) S tg[el/x])
<= (by definition of €)
ecx:ty = to

There are two key steps: one is to choose a particular crash-free e/, namely
(e1 > 1) where ey € t1; the other one is the appeal to Theorem mm, the
projection pair property of > and < (see Section [AF).

e tis (x:t1,t2): We have the following induction hypotheses:

Velej.egbtiisef & e €ty [TH1]
Vel eg, cl tl €. eg > tafe’/x] is of <= eqle’/x] € ta]e’/x] [TH2)

We prove it as follows.

e>(x: ty,t2) is cf

<= (By defn of )
match e with {(.Tl,l'g) — (.Tl >, X2 l>t2[$1 qtl/x])} is cf
<= (By [E-match] and defn of cf)

e —* (e1,e2) and e; and eq are cf and
(61 l>t1) is cf and (62 l>t2[61 <1t1/:c]) is cf
< (By[IH1])
(f) e —*(e1,e2) and e; and eq are cf and
e €t and (62 Dtg[el <1t1/1']) is cf

Now the proof splits into two. In the forward direction, we start with (f):

(f) e —*(e1,e2) and e; and eq are cf and
e €t and €9 [>t2[61 <1t1/1'] is cf
= (By Lemma [I§ (Conditional projection) (a) and
Theorem & (congruence of <) and
Lemma 7 (c) (property of <))
e —* (e1,e2) and ey € t; and ey > taler/x] is cf

<= (By [IH1] and [TH2])
e —* (e1,e2) and ey € t1 and eg € tofey /2]
<= (By definition of €)

e € (z: t1,t2)

The key step is the use of Lemma 6 (a) (see Section [A.G]).
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Now we prove the reverse direction. We use the fact that (z: t1,t2) is
total. By definition of total contract, ¢; is total and for all e € ¢y, t2[e/x]

is total.
We have:
e € (x: t1,t2)
<= (By definition of €)
e —* (e1,e2) and e € t; and ey € toler/x]
<~ (By Lemma 2™ (Key lemma), let e; =€’ <t7)
e —* (e1,e2) and ey € t; and Jcf €', eq € tale’ <ty /2]
<— (By [IH1])

e —* (e1,e2) and ey >t is cf and Jef €, ey € tole’ <ty /7]
= (e1 >ty is ef and by [TH2])
e —* (e1,e2) and ey >t is cf and eq > tale >ty <ty /2] is cf

(By Lemma [[5 (Idempotency)

<~

Theorem [[2™* (congruence of <) and

Lemmal[7 ™ (c) (property of <))

e —* (e1,e2) and eg >t is cf and es > tafe; >ty <ty <ty /] is cf
<= (By Theorem I]Hm (Projection pair), ey >ty <4t =< eq,

Theorem [&™ (congruence of <) and

Lemma [ (c) (property of <))
e —* (61,62) and e1>t is cf and €9 [>t2[61 <1t1/1'] is cf

The key steps are using Lemma, ™ (Key lemma), apply Lemma =
(Idempotency) and use Theorem 15 (Projection pair).

e tis Any: We have:

e> Any is cf

<= (By definition of )
UNR is cf

<= (By definition of €, and UNR € Any)
e € Any

A.1 Telescoping Property

The telescoping property is adapted from [7] and we found that this property
makes the proofs of many lemmas shorter. However, it is not used in any proof
in [7].

Lemma 13 (Telescoping Property). For all expression e, and total contract t,
(epat)pat =epat
T2 T4 T4

Proof. Before we start the proof, by definition of let, [E-exn] and [E-match],
we know two facts:
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[Factl] Ve'. (let = BAD in e’) — BAD
[Fact2] Valts, (match BAD with alts) — BAD
The proof begins by dealing with two special cases.

e Case e —* BAD: Based on [Factl] and [Fact2], for all ¢ # Any, by in-
specting the definition of q, we know (e b t) —* BAD for all i,5. So

Tj

LHS=RHS=BAD for ¢t # Any. In the case ¢t = Any, we have:

1 T3
(e pa Any) g Any
T2 T4
T3
= 72 pqAny
T4

T3
€ q Any
T4

e ¢7. Similar to the arguments in the case e —* BAD.

Hence for the rest of the proof we assume that e —* val ¢ {BAD, UNR}.
The rest of the proof is by induction on the size of t.

o tis {z]|p}:

(epa{z | p}) o x| p}
T2 T4
(By definition of )
1et:c:( let z = e in if p then x else 7y )
in if p then x else r3
= (We float let x = e out)
let z = e in if p then (let x = x in if p then z else r3)
else (let x =y in if p then x else r3)
= (This is not let rec, so inline z in the then branch.
By [E-beta] and [Factl].)
let z = e in if p then (if p then = else r3)
else r
= (propagating the true value of p to sub-branches)
let x =€ in if p then z
else nrm

= (By defn of )
e ;é t
T4
e tis x:t; — to: We have the following induction hypotheses:
Ve,tl tl, (e[gé]t1>£i]t1:€;é]t1 [IH].]
T2 T4 T4

Ve, e € ty,tl ta]e'/x], (e N tole’ /z)) %tz [¢/z] = e m tole’ /] [TH2|
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We have the following proof:

(egi]q:: t1 —>t2)£zx: t1 — to
T2 T4
= (By defn of )
let y=epqm:ty — by in Az1. (y (210 t1)) 0 tof(21 1) /2]
T2 r3 T4 r3
= (By defn of > again)

1

let y = e in let y = Aza. ((y (a2 ;1 t1)) éqtg[(:cg ;1 t1)/z]) in
1 1

Azi ((y (210d1)) l% ta[(1 £ t1)/])
T3 8 T3
= (By p-reduction)
let y =€ in

Az1. ((y (21 %tl) %tl)) %tz[(ﬂﬂl %tl %tl)/wl) % ta[(z1 %tl)/w]
= (By induction hypothesis with ¢ = 1)
let y = e in Azy. ((y (a1 %tl)) %tg[(zl %tl)/z]) %tg[(zl %tl)/z]
= (By call-by-value, r; in to (for all ¢) are not reachable, replace r3 by 1)
let y = e in Azy. ((y (a1 %tl)) %tg[(zl %tl)/z]) %tg[(zl %tl)/z]
= (By induction hypothesis [IH2]: ¢ = to[(x1 %tl)/z]
to[(z1 % t1)/x] is tl because r; in to (for all ¢) are not reachable)
let y = e in Azy. (y (21 N t1)) N tol(x1 pa t1) /]
= (By defn of =) ' ' b
e % Tt — to

Although the B-reduction is done in the body of a let-expression, it is
valid because we know e —* wval ¢ {BAD,UNR} and it does not violate
call-by-value execution.

e tis (x:t1,t2): We have the following induction hypotheses:

Ve, tlty, (epaty) pats = e paty [TH1]
T2 T4 T4

Ve, e € ty,t] o] /2], (e N tole’ /x)) N tale'/z] = e N tole’ /] [TH2]
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We have the following proof:

T3

(6 gi] ($2 tl,tg)) > (.TZ tl,tg)
T2 T4

(By defn of )
T1 T1 T2 r3

(match e with (x1,x2) — (21 > t1, To > ta[(xq > t1)/z])) > (x: t1,t2)
2 2 1 4

(By defn of < again)

match (match e with (z1,22) — (21 04 t1, T2 ba t2[(21 ba t1)/])) with

T2 ) 1
(w3, 24) — (23 bt T4 b ta[(xs3 - t1)/z])
T4 T4 T3

(By simpl rule [match-match] and [E-match])
match e with

(z1,22) = (21 pat1) pa t1, (T2 o ta] (21 ba t1) /7)) oo to](21 o0t oa t1)/2])
T T4 T T1 T4 T2 r3

(By induction hypothesis [TH1].
match e with

(x1,22) = (11 % t1, (z2 % t2[(z1 ?1 t1)/z]) % t2[(z1 % t1)/z])
4 2 1 4 3
(Due to x4 %tl, for all 4, j, the r;,7; in [z éq t1/x] cannot be reached.)
J
match e with
(@1, 22) = (21 l% t1, (z2 o ta[(x1 - t1)/x]) - ta[(x1 - t1)/x])
4 T2 T1 T4 1
T
(By induction hypothesis [TH2]: t = to[(x1 pa t1)/2].)
T1
match e with
™1 ™1 T4
(.Tl,l'g) — (.Tl |7>§] t1,$2 |7>§] tg[(,Tl Ef tl)/l'])
efn of projection
(By defn of projection)

e[;] (x: t1,t2)
4

e {is Any:
LHS . vy
(e > Any) pq Any
T2 T4
T3
= T2 Any
T4
= 7"4
RHS .
e Dil Any
r4
= T4

Since LHS = RHS, we are done.

A.2 Key Lemma

Lemma 14 (Key lemma). For all crash-free e and total contract t, such that
FexTandbF.t:T,
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Proof. First, we have the following derivation (named D1).
e<t)

BAD )
By Lemma I:I:Srm (Telescoping Property))
e ><] t

(

= (By defn of < and »)
(e b
(

Now, we have the following proof.

e is cf

= (Since t is total, t = |t]. By the defn of >, the context (e pq |£])

is syntactically safe. By defn of cf, we have below)
e ﬂ tis cf

(By derivation D1)

e<t)>tis cf

(
(By Theorem 2™ (grand theorem))
(e<t)

!

!

A.3 Examination of Cyclic Dependencies

Recall the dependency graph in Figure 18] there are two cycles:
(1) T2 - L15 — T2
(2) T2 - L17 — L19 — T2

cycle (1) cycle (2)

Figure 19: Cyclic Dependency of Three Lemmas

Each cycle is shown in Figure The dashed directed edge indicates a
decrease in size of ¢ while the solid directed edge shows a preservation of the
size of t. We can see that, in each cycle, there is an edge that decreases the size of
t. Cycle (1) is well-founded because the size of t (where t = x: t; — t3) decreases
(to t1) when Theorem 2™ calls Lemma I2/™. Cycle (2) is well-founded because
the size of ¢ (where t = x: t; — t2) decreases (to t1) when Theorem 2™ calls
Lemma mm Although there are cyclic dependencies among these theorems
and lemmas, on each cyclic path, there is a decrease in the size of ¢. Thus, our
proof on induction of the size of ¢ is well-founded.
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A.4 Congruence of Crashes-More-Often
Theorem 14 (Congruence of Crashes-More-Often).

V€1,€2. e1 ey <~ VC, C[[el]] = C[[eg]]

Proof. We prove two directions separately:
(=) For an arbitrary B, we prove Ble;] < Blez]. We have the following
proof:

€1 = e
<= (By definition [7])
VC.C[ez] —* BAD = C[e;] —* BAD
= VC,D.(C =D[B[e]]) = (Clez] —* BAD = C[e;1] —* BAD)
= VD. D[B[ez]] —* BAD = D[B[e1]] —* BAD
= VB.B[ei] = Bes2]

Note that we assume for all i = 1, 2:
F Cle;] :: bool, F D[e;] :: bool and + E[e;] :: bool

(<) It is trivially true, because we can choose an empty context (i.e. C =
o). O

A.5 Projection Pair and Closure Pair

Recall the definition of projection pair. Let D and E be complete partial order’s.
If f: D— F and g : E — D are continuous functions such that fo g C id,
then (f,g) is called a projection pair. If id C fog, then (f,g) is called a closure
pair. In this section, we are not going to explore the theory in depth. We only
notice that in some way (e >t <t < id) and (id < e <t >t) match the definition
of projection pair and closure pair respectively.

Theorem 15 (A projection pair). For all expression e and contract t, such that
d.Tktexz7Tand k.t T

(evpt)at <e
Proof. We have the following proof:

ept)<
By defn of > and <)

BAD ) UNR

By Lemma ﬂm

BAD
epqt

BAD

<} (By Lemma m‘m)
e

(
(
(epg
(

By definition of <), we get the desired result. ([
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Theorem 16 (A Closure Pair). For all expression e and contract t, such that
d.TrexTand k. tT

ex(eqt)>t
Proof. We have the following proof:

(eat)

= (B Y defn of < and »)
(epq
(

) BAD

BAD UNR

By Lemma mm)

UNR

epqt

UNR

<im} (By Lemmamm)
e
By definition of <z}, we get the desired result. ([

A.6 Contracts are Projections

Recall the definition of projection, a projection p is a function that has two
properties:

1. p=pop
2.pC1

The first one is called the retract property and says that projections are idempo-
tent on their range. The second one says that the result of a projection contains
no more information than its input.

We would like to show that if e € ¢, then (e <t) is an error projection while
(e>t) is a safe projection. By error projection, we mean e <t either behaves
the same as e or returns BAD. Similarly, by safe projection, we mean e >t either
behaves the same as e or returns UNR.

Findler and Blume [12] are the first to discover that contracts are pairs
of projections. However, they assume that the e is a non-crashing term and
the only error raised are contract violations. We assume that a program may
contain errors and may crash. We give error a contract Any. Moreover, we prove
different theorems from [12].

Theorem 17 (Error Projection). For all closed e and closed t, if e € t, (e <t)
1S a projection.

Proof. By Lemma i (a) (Idempotency) and Lemma, e ™ (a). O

Theorem 18 (Safe Projection). For all closed e and closed t, if e € t, (e1>1)
1S a projection.

Proof. By Lemma i (b) (Idempotency) and Lemma 6™ (b). O

Lemma 15 (Idempotence). For all closed e, t,

€|><]t[><]t—€|><]t

T2 )
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Proof. 1t follows directly from LemmaﬁmI (telescoping property). O

Lemma 16 (Conditional projection). For all closed e, closed and total t, if
e €t, then
(a) e<t=<e (b) e=<ept

Proof. We prove each of them separately.
(a) Given e € t, we have:

edt
= (By defn of > in Figure [6])

UNR
epqt

BAD

. (By Lemma[I8™ (Exception III))

BAD

epqt

(By Lemma [0 (Behaviour of projection) and Definition [ (<))

e

PN

(b) Given e € t, we have:

e>t
= (By defn of > in Figure [6])

BAD
epqt

UNR

s (By Lemma 8™ (Exception III))

UNR

epqt

(By Lemma [0 (Behaviour of projection) and Definition [ (<))
e

Y

O

Lemma 17 (ExceptionI). VC. (C[UNR,BAD] és cf = Vrq, 72 € {BAD,UNR}. C[UNR, r1] =,
C[UNR, r3])

Proof. The intuition is that the BAD in the hole cannot be reached, so we can
replace it by any exceptional value. This reasoning in turn relies on the absence
of a "catch" primitive that can transform BAD into something non-BAD.
Formally, we can prove the lemma by case splitting on whether C[UNR, BAD]
terminates, and if it does, by induction on the number of steps of reduction. O

UNR

Lemma 18 (Exception III). Ve, t.c € t = Vr. e E|>A4D t=sepqt
r s
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Proof. For all expression e, contract ¢, we have:

ect

<= (By Theorem ™ (Grand Theorem))
e>tiscf

<= (By defn of > and cf)

VC, BAD ¢ C. C[e qu t] /* BAD
<— (By Lemma 7™ (Exception I))

VC, BAD & C. Ce pa t] =s Cle pa t]
~  (LetC—e) '

BAD UNR

epqt=sepqt
T T

We are done. O

A.7 Behaviour of Projections

We have seen that in Section [A.5] we make use of the property of behaves-the-
same (<) (Lemmalﬂfm). In this section, we give its detailed proof. Lemma
says that an expression wrapped with a contract behaves either the same as the
original expression or returns one of the exceptions which can be either BAD or
UNR.

Lemma 19 (Behaviour of projection). For all 71, 2, e, total t, such thatt e :: 7
and .t :: 7, and 1,9 € {BAD, UNR},

1
e 2;] U< ry ) €

Proof. The proof begins by dealing with two special cases: e, e —* BAD. In
both cases, by Definition of <1, we know e bgt =5 e and we are done.
T2

Hence, for the rest of the proof we assume that e —* val ¢ {BAD,UNR}. We
prove it by induction on the size of t. Let R be {ry,r2}.

e tis {z|p}: we have

e % {z|p} = 1letxz=ein match ple/z] with
| true — e
| false — 1y

Since t is total, ple/x] /* BAD. So there are two cases to consider:
— If ple/x] —* false, then e x4 {z | p} —* r1 and we are done.
T2
— If ple/x] —* true, € {z | p} —* ¢ and we are done.
T2
o tisx:t; — to: We have
1 . T2 T1 T2
epqzity >t = lety=einv. ((y (v > t1)) > ta[(v > t1)/x])
1 2 1

r2
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Since e —* val ¢ {BAD,UNR}, e —* Az.¢/ and (e pq x: t1 — t3) —*
T2
M. (e (viath)) patal(vea th)/]).
T1 T2 T1

We want to show that VC. C[e] —* r € R = C[\v. ((e (v pat1)) s t2](v o

t1)/z]]) —=* r. We prove it by induction on contexts. There are 3 cases to

consider:
1. C = [e];
2. C = D[match e with alts];
3.C= D[[O 63]].

Case 1 and 2 are trivially true by inspecting the operational semantics of
match. For Case 3, since we prove it by induction on the size of context,
we have the following induction hypothesis:

VD[e] =" r = Do e3] =" r [IH]
So all we need to prove is that for all eg,

(Av. (e (vea 1)) s tal(v e h)/a]) es < e ey

T2

By p-reduction, it means we want to show

(e (es % t1)) - tal(es > t1)/x] <r (e e3) (%)
T T2 1
By induction hypotheis where ¢ = t5[(es pq t1) /2], we have
T1

(e (es % t1)) l% ta[(e3 %tl)/x] < (e (e3 éz t1)) (1)

2 1

By induction hypothesis where ¢t = t1, we have

T2
€3 > t1 <R e3
1

By Lemma 20 (Congruence of <g), we have
e (e3 lgé t1) <pees (2)
1

By (1) and (2) and Lemma2I ™ (Transitivity of <), we get (*). By [IH],
we have the desired result VC. C[e] —* r € R = Cle pq @: t1 — ta] —* 7.
T2

o tis (z:ty,t2): We have

r
e (t1,t2) = matche with
™

(x1,22) = (21 pa t1, T2 pa to[(21 pa t1)/2])
T2 ) T1

If e —»* val ¢ {BAD,UNR}, then e —* {e1, e2}. By the induction hypotheses
where t = ¢; and t = ty respectively, we know e gé t1 €<gr ep and
r2

e é; to KR ea. Therefore, by Definition [, we have e ;é (t1,t2) <R e.
T2 T2
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e t is Any: Since we have e Q] Any = r9, we know e Q] Any —* ro. By
T2 T2
Definition Iﬁfm, we are done.
O

Lemma 20 (Congruence of Behaves-the-same). Ife; < ez, thenVC, Cle1] <r
C[[GQ]].
Proof. we have the following proof:
e1 <R €2
<= (By definition [G])
vC, CIISQ]] —*re R= C[[el]] —*r
= (Choose C be D[C[E]e])
VD,VE, D[E[e2]] —=* r € R = D[E]e1]] =* r
<= (By definition [6])
VC, Cle1] <r Cle2]

Note that we assume for all i = 1, 2:
- Cled s O, F Dlei] s () and + Efe] = ()
([l
Lemma 21 (Transitivity of <g). If e; g es and es <y e3, then e; g e3.
Proof. By Definition W‘E, we have

(1) VCC[[GQ]] %*TGR:>C[[€1]] —*r
(2) VC.Cles] —* 1 € R = Cles] —*

For all C, assuming Cles] —* r € R, we want to show C[e;] —* r. We have the
following proof:
vC. C[[eg]] —*reR

= (By (2)

Cle2] =»*r€R
= (By (1))

Clei] =* r

B Correctness of SLL machine

B.1 Correctness of Logicization

Theorem [I1] (Logicization for axioms) Given a definition f = e”, the logical
formula Vfv(e),3f : 7.[e] s is valid.

Proof. We prove it by structural induction on the size of the (possiblly open)
expression e. As UNR is for internal usage, we do not have UNR in e.

e Case e is BAD'. We have [BAD']; = true, which is valid.
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e Case eis x. We have Af.f = z. Let f be x, we have x = x, which is valid.
e Case eisn. We have 3f.f = n. Let f be n, we have n = n, which is valid.

o Caseeise] @el. It is semantically equivalent to let 1 = e; in let zo =
es in x1 ® x3. From x; = ej, by induction hypothesis, (1) [e1]., is
valid. From 25 = e;, by induction hypothesis, (2) [ez]., is valid. Let the
existentially quantified f be z1 @ x2, we have (3) z1 ® 22 = x1  x2. From
(1), (2), (3), we know 3f : 7.3z : [7], Jx2 : [7], (Je1]ar A le2]es A f =
x1 @ x2) is valid.

o Caseeise] @el. It is semantically equivalent to let 1 = e; in let zo =
es in 1 ® x3. From x; = ej, by induction hypothesis, (1) [e1]., is
valid. From x2 = ey, by induction hypothesis, (2) [e2]s, is valid. If
et © es? evaluates to true x1 © a2 is valid and not(z; © x2) is invalid.
So 3f : 7,3x1 : [7], [e1]s, A 3xe : [7], [e2]ws A (1 ©@ 2 A f = true) V
(not(:cl @ z2) A f = false)) deduces to 3f : 7,3x1 : [11], [e1]ey A Fz2 :
[2], [e2]zs A (z1 © z2 A f = true). Let the existentially quantified f be
true. From (1), (2) and true = true, we know [e] @ el]; is valid. If
' ©®el? evaluates to false, we apply the similar reasoning as above with
the exitentially quantified f being false.

o Case e is Az™.ej’. We have 3f : 71 = 72, Vo : [7], [e]app1y(s.a)- Let
the existentially quantified f be Ax.es.

o Case eis let ™ = e; in e}?. It is semantically equivalent to let 2™ =
e1 in let x3? = ey in x2. We have [let 2™ = e; in let z? =
er in o]y = 3z : [7], [er]e A Jz2 : [7], [e2]ss A f = 5. From defi-
nitions 27 = ey and x3? = ey, by induction hypothesis, (1) 3z : 71, [e1]
is valid and (2) Jzg : 72, [e2]s, is valid Let 25 be f. From (1), (2) and
f=f,weknow 3f : 70,3z : [7], « AJxo : [7], [e2]ws A f = 22 is valid.

o Caseeis (e7' e5?). It is semantically equivalent to let ;1 = e; in let xg =
ez in x1 z2. We have [let 1 = ey in let zy = ey in 1 a2]f =
Jz1 ¢ 71, [ea]e, A Fzo T2y [e2]z, A f = apply(z1,x2). From definitions
21 = e; and xa = eg, by induction hypothesis, (1) Jz1 : 71, [e1], is
valid and (2) 3z : 72, [e2]s, is valid. Let the existentially quantified f be
apply(z1,x2). From (1), (2) and apply(z1,x2) = apply(z1,x2), we know
Az1 : 71, [e1]wy, A Txa i T2, [e2]z, A f = apply(xy, x2) is valid.

o Caseeis K7 e]'...el. It is semantically equivalent to let ;1 = e; in...

let ©, = e, in K z7...2,. We have [let 1 = e; in...let z, =
e, in K xl...xn]]f = dxq : Tl,[[el]]zl A Adzy o 7'1,[[61]]31 /\f =
K(x1,...,2,). From definitions z; = e; for 1 < ¢ < n, by induc-

tion hypothesis, we know (i) Jz;.[e;].; is valid. Let f be K(z1,...,x,).
From (i) and K(z1,...,z,) = K(z1,...,2,), we know 3f : 7,3z :
71, [e1]s, A ATxr i1, [er]s, A f = K(z,. .., 2y) is valid.

—_—
e Case e is match ef® with K 2™ — e7. It is semantically equivalent to

—
let 2’ = e¢p inmatch g with K 27" — let y = e in y. We have [let z’ =

—
eo in match xo with K 2™ — lety=einy[; = Jzo : 70, [€0]s, A
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(A Vm, (zo=K @) = 3y :7,[e]y A f =y). From definitions o = eg
and y = e, by induction hypothesis, (1) Jzo : 70, [eo], is valid and (2)
Jy : 7,[e]y is valid. Let y be f. From (2) and f = f, the RHS of
= in the logical formula is valid. Together with (1), we know Jzq :

70, [€0]ze A (/\vm, (zo=K 7)) = Jy:7[e]y A f =) is valid.

O

Theorem 12 (Logicization for goals: validity preservation) For all (possibly
open) expression e”, if 3f : 7, [e] s is valid and e — ¢’ for some €', then [¢'] is

valid.

Proof. We prove it by structural induction on the size of e. The lemma holds
vacuriously for expressions BAD, UNR, x, n, e; ® es. We focus on two cases where
a redex occurs. The rest of the cases can be proved easily by applying induction

hypotheses.

e Case e is (A\x".e1) ea. We have

!

[
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[(Az7.e1)™ e3?] s is valid

(By definition of [.]f)

Az : [m], [(Az7.e1)]ay A xa : [72], [e2] 2/

f = apply(x1, x2) is valid

(By definition of [.].,)

Jo1 : [1], V2™, [er] appiy (e, o) A F22 [72] [e2] 2

f = apply(xy,x9) is valid

(By Logic: P A3z, Q(z) < 3Jz, P A Q(x) where z is not in P)
Iz : [m], Fao : [r2], Va2, [[el]](apply(zl,z)) A le2]za N

f = apply(x1,x2) is valid

(Let x be x2)

Joy : [m], Jz2 « [2], [e1](apply(er wo))[@2/2] A le2]wa
f = apply(x1,x9) is valid

(Since f = apply(x1,2), replace apply(z1,z2) by f)
zq : [m], Fxo : [12], [ea] flae/z] A [e2] s, is valid
(Rename 2 to z)

Iz : [m], 3z : [7=], [er] s A [ez] is valid

(By Logic: 3z, P <= P where z is not in P)

Jz : 2], [e1] s A [e2]= is valid

(By definition of [.]f)

[let = e2 in eq]y is valid

(let & = e2 in e; is semantically equivalent to eq[es/x])
lei[ea/z]] s is valid
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e Case e ismatch K EZ with K :? — ¢e;. We have
[match (K val)™ with K T — e)]s is valid
<= (By definition of [.]y)
x0 : o]l [K valleg A AV < [7), (20 = K 7) = [ei]) is valid
<= (By definition of [.].,)
320 : [70], 3y« [, [vall, Ao = K TA

(AVz: [7], (xo = K @) = [ei] ;) is valid
=  (Let Z be ¥)

D
zo : [r0], 3y : [7], [val]y Azo = K YA
Ao =K ) = [eilsly/a]) is valid

= (By Logic: P/\(P:>QZ/\(ﬁP:>R) <~ PAQ)

: o], Jy : [7], [val] /\xO—K7/\[[e]]fy/x is valid
= (By Logic: Jz 3y, P(y) A P(z,y) < 3y, P(y) A3z, P(x,y))
Ty

—
Jy : [r], [val]y A 3o : [r0], 20 = K Y Aes]fly/2] is valid
<« (Let o be K 3. By Logic: true A P <= P)
ey
—
Jy : [7], [val]y A el rly/x] is valid
< (Rename ¥ to 7
AR A
3z : 7], [val]s A [ei] s is valid
<~ (B iti
(By definition of [.]f)
[let z =wal in e;];
— ——
<= (let z =wal in e; is semantically equivalent to e;[val/z])
[ei[va / s is valid

B.2 Transition rules

The SL machine does not inline top-level functions. We do not have local
let rec in our language and we only inline trivial values. Moreover, we set
a stop-bound for the SMT solver Alt- ergo with an option “-stop <n>”" (which
restrict the total amount of time) or “-steps <n>” (which restrict the total
number of steps) so that the SMT solver always terminates. Thus, there is no
element in the SL machine causing non-termination.

Theorem [] (SL machine terminates) For all H, e, S, L, there exists an ex-
pression a such that (H |e| S|
lgc) ~* a.

Proof. The rebuilding rules either lead to the end state ([R-done]) or reduce the
number of stack frames ([R-r], [R-lam], [R-betal], [R-app], [R-K], [R-K-match],
[R-s-match], [R-s-save]) or reduce the size of the stack frame on top of the stack
([R-fun]. [R-match], [R-let-save]).
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The simplification rules either lead directly to a rebuild rule ([R-const], [R-
exn], [R-varl], [R-var2]) or lead to a simplification rule that reduces the size of
the expression under simplification ([S-lam], [S-app], [S-match], [S-K]) or lead
to a simplification rule that reduces the size of the stack ([S-letL], [S-matchL],
[S-letR], [S-matchR], [S-match-match], [S-match-let]). O

For the cases that corresponding to simplification rules in Figure [Tl we use
the fact: [EqFact] e = eq if Jes,e; —* e3 and ea —* e3. Moreover, if any of
the subexpression is an exception r, it is easy to show that both sides evaluate
to the same r. So we only consider the case that none of the subexpression is
an exception r.

Theorem [0 (Correctness of SL machine) For all closed expression e, if
@lell]]0)~*a,then e =4 a.

Proof. We prove it by induction on the number of transition steps. We have the
following induction hypothesis: for all H, e, S, L, there exists Ha, €2, Sz, L2, such
that (H | e | S| L)~ (Ha|ea | Sa| L2) or (H|e| S| L)~ (Ha|ea|Sa| L2)),

(Halex | S| L2) »*aNes=sa [IH]
By Lemma, aii (Correctness of rebuilding), we know
(Haole2 | S2 | L2)) ~" anes=sa [RB]

For cases [S-const], [S-exn], [S-varl] [S-var2], by induction hybothesis, we get
the desired result. We now focus on slightly non-obvious transitions.

o Case [S-lam]|. We first have:

H | e |[]10)

By [H], (H]e| (Ax.®) : S| L,Vr:7) ~*ahe=;a)
(Hlal o) []|Ve:T)
~  (By [R-lam])

(H|Az.a|[]]Ve:7)

~»  (By [R-done])
A\T.a

(
(
<HI6|| (Az.e) :: []| Ve :7)
(
{

We now have:

e=sa
<~ (By Definition [ =)

VC,r,Cle] =*r < Cla] =* r
< (C =D z.e])

VD,r, D[ zx.e] =* r < D[ z.a] =*r
<~ (By Definition ™ =)

AL.e =4 A\x.a
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e Case [S-app|. If e; is r, it is easy. By [S-app| and [R-r-fun]|, we get
(H|rea][]]0) ~*r, which is semantically equivalent to r e3. We now
consider the case where e; is not ». We have:

Hlerea|[1]0)
~  (By [S-app])
Hlei|(oe2) = []]0)
~* (By [IH], (H | e1 | (o e2
(Hlar](eex) = []]0)
~>  (By [R-fun])
Hlez| (a1 o) []]0)
~* (By [TH], (H | ez | (a1 @) = []|0) ~* az Aea =5 as)
(Haz| (a1 o) []]0)
~  (By [R-app])
(Hlaraz | [1]0)
~»  (By [R-done])

ap az

) [1]0) ~* a1 Ney =, ar)

Given e; =; a1 and e3 =; ag, by congruence of =5, we know €1 es =5 a1 as.

e Case [S-match].

(H | match e with alts | []] @)
~»  (By [S-match])

(H ] eo | (match e with alts)::[]]0)
~* (By [TH], (H | eo | (match e w1th alts) = []] 0) ~* ap A ey =5 ao)
(1) (H|ao]| (match e with alts)::[]] D)

There are two subcases: either [R-s-match] or [R-s-save] is applied. Let
e

alts be K 3? — €.

— there exists a branch (K :z?) such that £ = (Jz : [7], [ao](x 2))-
We continue from (7):

—_—
(H ] ao | (match o with K 27 — e;) =[] 0)
~»  (By [R-s-match])
(H e | 111327, [aok 2)
% (By [TH], (H | e; | [11327, laolc 2y) ~* a5 A e =, as)
(H ] a; | (11327, laodx )

~»  (By [R-done])

’L

Given £ = (3 : [7], [ao](x =)), by Theorem mﬁﬂl, we know ag =,
K :? for some 7. Together with ey =5 a¢ and e; =, a;, by congru-
=
ence of =,, we have match ey with K 2" — e; =5 a;.
— there is no branch (K ') such that £ = laol(x 2)-
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We continue from (7):

——
{(H]ao| (match e with K 7 —¢;) == []] 0)
~>  (By [R-s-save])
(H ] e | (matchawitth?—> (0,8,£)) =[] L, 3z : [7],
[[a]](K £
o (By [H], (1| | (mavehawitn K & | 30y e,
— (0,8,L£)) =[] lal(x =)
Ne; =g ai)
{(H ] a; | (match a with K 9? — (0,8,L)) = []] L,3x : 1],
a]](K )

~»  (By [R-match])
e —
{(H | match ap with K 7 = a; [ [1]£,3z: [ ,[[a]](K 7)))
~  (By [R-done])
match ag with K 7 = a;

From ey =, a¢p and e; =4 a;, by congruence of =, we have
Ty ey
match ey with K 7 - e; =s match ag with K 7 — a;.

e Case [S-K]. The proof is similar to the case [S-app]. Simplification of
each component e; to a; is semantically preserving. After applying induc-
tion hypothesis, we apply [R-K]. Given e; =4 a;, by congruence of =g,
Kei...ep,=sKayr...ay.

e Case [S-letL]. We want to show that (let x = e; in e3) e =, let =
e; in ey e. We have:

(let z =e€7 ineq) €
(let © =wal; in eq) e
es[valy /x] e

(Ay.afvaly /x]) e
(Ay.alvaly /x]) val
alvaly [z, val /y]

Lildd

and

let x =e€e1 ineg e
let x =wal; ines €
(e2 e)[valy /x]
((Ay-a) e)[valy/z]
((Ay.a) val)[valy [z
alval /y,valy /x]
alvaly /z,val /y]

*

*

*

el Ll d

By [EqFact], we are done.
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e Case [S-matchL]|. We want to show that if fu(e)NZ = (), then (match ep with
e
K7 — e;) e =smatch eg with K 7 = (e; e). We have:

—_—
(match ep with K @ — e;) e
— —_—
(match K val, with K 7 — e;) e
—
e;[val;/x] e
—
(My.ealval,/x]) e
—5
(N\y.ealval, /x]) val
Sty
es[valy [z, val /y)

*

*

A

and SN
match eg with K @ — (e; e)
—
* match K val, with K 2 — (e; €)
—
(e; e)valy /)
S R
* (A\y.eq e)val, /]

*

L Ll

(Ay.e2 val)[val, /]
es[valy [z, val /y]

*

J

By [EqFact], we are done.

e Case [S-letR]. We want to show that if « & fu(e), then A\y.e (let z =
e1 in ey) =5 let © = e1 in Ay.e ea. We have:

Ay.e (let © = ey in eg)
Ay.e (let © = wval; in es)
Ay.e (ez[valy/z])

Ay.e (valz[valy /z])
e[vala[valy /x]/y)
e[vala/y][valy /x]

*

el

and

let x = e in (\y.e) ey

let z = valy in (\y.e) e

((Ay-e) e)[valy /z]

* ((Ay.e) vala)[valy /]
e[vals /y][valy /z)

*

Ll

By [EqFact], we are done.

e Case [S-match-match]. We want to show that if fu(alts) N Z = 0, then
—_—
match (match eg with K 7 — ) with alts =,
match e, with K 7 — match e with alts. We have:

—_—
match (match eg with K 2 — e) with alts
— _
—* match (match K valy with K 2 — ¢) with alts
—  match efvalp/x] with alts
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and

match e, with K 7 — match e with alts
—
* match K walp with K 7 — match e with alts
—
(match e with alts)[valy/x]
(By fulalts) N @ = 0)
—

match efvalp/x] with alts

(R

By [EqFact], we are done.

e Case [S-match-let]. We want to show if « ¢ fv(alts), then match (let © =
e1 in ey) with alts =5 let © = e; in match ey with alts. We have:

match (let z = e; in eg) with alts
—* match (let z = val; in es) with alts
—  match eg[valy /x| with alts

and
let x = e; in match e; with alts

let x = vwal; in match es with alts
(match ey with alts)[valy/x]
(By z ¢ fu(alts))

match eg[valy /x] with alts

Iyl

By [EqFact], we are done.
O

Lemma 22 (Correctness of rebuilding). For all H,a1,S,L, if (H | a1 | s =
S| LY ~* a, then a1 =; a.

Proof. We prove it by induction on the number of transition steps. We have the
following induction hypothesis: for all H,aq,S, L, there exists Ho, as, Sz, Lo,
such that (H | a1 | S| L) ~ (Ho | as | S2 | L2) or {(H | a1 | S| L) ~
(Ha | az | S2 | L2),

<<H2 | as || Sy | Eg» ~*aNas =5 a [IH]

The base case is [R-done]. As two expressions a at both LHS and RHS of ~~ are
syntactically the same, they are semantically equivalent, so we have the desired
result. By [E-exn], [E-ctx], definition of contexts and induction hypothesis [IH],
we get the desired result for [R-r-match], [R-r-let], [R-r-fun], [R-r-arg], [R-r-K].
The e in a stack frame indicates the original position of the expression being
simplified. It is easy to check that [R-lam], [R-fun], [R-app] and [R-K] just
put the simplifed expression back to the e so they are correct. By [E-beta]
and [S-varl], [R-beta] is correct. We now consider those slightly non-obvious
transitions.

e Case [R-K-match]. This transition implements the simplification rule [K-
match] in Figure Il We want to show that match K a;...a, with
{.Kxi...0p > e...} =5 let 11 = a1 in ... let z, = a, in e.
We have:

match K a;...ap with {.. ;K z1...2, > €;...}
—* match K valy...val, with {.. ;K z1...2, > €;...}
—
—  elval/z]
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and
let xr1 =ay1 in ... let ¢, = a, ine
—* let xy =waly in ... let z, = wal, ine
o
—  elval/z]

By [EqFact], we are done.

o Case [R-s-match|. Given £ = 3z : [7], [a]x # is valid and a —* K, val
for some 1@, by Theorem Djm, L= 37, [K; ﬁ]]K — is valid. From
Figure I3, we know K; = K. By [E-match], we get the body e in the
branch K. Since £ = 37, [a]x » implies £ A 37, [a] x =, [R-s-match]
is correct.

e Case [R-s-save]. This transition simplifies each branches with the as-
sumption that 377, lal(x =) Given £ A Jz:[r],[a]x 7 is valid and

a —* K; val for some @, by Theorem IIZTEI, LATFT[K; EHK - is
valid. From Figure [[3] we know K; = K. By [E-match], we get the body
e in the branch K. So [R-s-save] is correct.

e Case [R-match]. This rule just put back each simplified branch to its
original position indicated by the e. The S and L keep the stack and
logical store before each branches are simplified. So [R-match] is correct.

e Case [R-let-save]. The local 1let defines x, by Theorem Em, Az : [7], [a]
is valid. So [R-let-save] is correct.

O
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