
appor t
de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
77

94
--

F
R

+
E

N
G

Programs, Verification and Proofs

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Hybrid Contract Checking via Symbolic
Simplification

Dana N. Xu

N° 7794

Novembre 2011

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Hybrid Contrat Cheking via SymboliSimpli�ationDana N. XuTheme : Programs, Veri�ation and ProofsAlgorithmis, Programming, Software and ArhitetureÉquipes-Projets GalliumRapport de reherhe n° 7794 � Novembre 2011 � 69 pages
Abstrat: Program errors are hard to detet and to prove absent. Contratheking allows us to (a) statially verify that a funtion satis�es its ontrat; (b)preisely blame funtions at fault both statially and dynamially when thereis a ontrat violation. Stati ontrat heking athes all bugs but an onlyhek restrited properties while dynami heking an hek more expressiveproperties, but is not omplete. In this paper, we integrate stati and dynamiontrat heking for a subset of OCaml. We exploit a stati heker as muh aspossible and leave the residual ontrat satisfation heks to run-time. Thus,no (potential) bugs an esape and yet expressive properties an be expressed.Key-words: ontrat semantis, stati, dynami, hybrid, ontrat heking,funtional language, veri�ation, debugging

Véri�ation de ontrats hybride parsimpli�ation symboliqueRésumé : Il est di�ile de déteter des erreurs dans des programmes, ou dedémontrer leur absene. Permettre aux programmeurs d'érire des spéi�ationsformelles et préises, en partiulier sous la forme de ontrats, est une approheommune pour véri�er des programmes et trouver des erreurs. Nous formalisonset proposons une implémentation d'un véri�ateur hybride de ontrats pour unsous-ensemble d'OCaml. La tehnique prinipale que nous mettons en ÷uvre estla simpli�ation symbolique, qui permet de ombiner failement les véri�ationsstatiques et dynamiques de ontrats. La tehnique que nous proposons onsisteà véri�er qu'une fontion satisfait son ontrat ou indique quelle est la fontionà l'origine de sa violation. Quand la satisfation d'un ontrat n'est pas déid-able statiquement, du ode de test est ajouté au programme a�n d'e�etuer lesvéri�ations à l'exéution.Mots-lés : la sémantique du ontrat, statique, dynamique, hybride, langagefontionnel, véri�ation, débogage

Hybrid Contrat Cheking 3Contents1 Introdution 42 Overview 53 The language 93.1 Syntax . 93.2 Type heking rules for expression 103.3 Operational semantis . 113.4 Crashing . 123.5 Behaves-the-same . 143.6 Crashes-more-often . 144 Contrats 164.1 Type heking for ontrats . 164.2 A semantis for ontrat satisfation 174.3 The wrappers . 184.4 Open expressions and ontrats 194.5 Terminating ontrats . 194.6 Contrat Any . 204.7 Contrat ordering . 214.7.1 Prediate Contrat Ordering 224.7.2 Dependent Funtion Contrat Ordering 234.7.3 Dependent tuple ontrat ordering 234.8 Contrat equivalene . 245 Stati ontrat heking and residualization 265.1 The SL mahine . 295.2 Logiization . 325.3 Disussion and preliminary experiments 386 Hybrid ontrat heking 407 Related work 418 Conlusion 42A Proof for the main theorem 46A.1 Telesoping Property . 50A.2 Key Lemma . 53A.3 Examination of Cyli Dependenies 54A.4 Congruene of Crashes-More-Often 55A.5 Projetion Pair and Closure Pair 55A.6 Contrats are Projetions . 56A.7 Behaviour of Projetions . 58B Corretness of SL mahine 60B.1 Corretness of Logiization . 60B.2 Transition rules . 63RR n° 7794

Hybrid Contrat Cheking 41 IntrodutionConstruting reliable software is di�ult even with funtional languages. For-mulating and heking (statially or dynamially) logial assertions [18, 15, 2,5, 35℄, espeially in the form of ontrats [28, 13, 7, 14, 39℄, is one popularapproah to error disovery. Stati ontrat heking an ath all ontratviolations but may give false alarm and an only hek restrited properties;dynami heking an hek more expressive properties but onsumes run-timeyles and only heks the atual exeuted paths, thus is not omplete. Statiand dynami heking an be omplementary. In this paper, we formalize hy-brid (i.e. stati followed by dynami) ontrat heking for a subset of OCaml.Thus, no (potential) ontrat violations an esape and yet expressive propertiesan be expressed.Consider an OCaml program augmented with a ontrat delaration:(* val f1 : int -> int -> int *)ontrat f1 = ({x | x >= 0} -> {y | y >= 0})-> {z | z >= 0}let f1 g = (g 1) - 1let f2 = f1 (fun x -> x - 1)The ontrat of f1 says that if f1 takes a funtion that returns a non-negativenumber when given a non-negative number, the funtion f1 itself returns anon-negative number. Both a stati heker and a dynami heker are ableto report that f1 fails its postondition: the stati heker relies on the in-validity of ∀g : int → int, (g 1) ≥ 0 ⇒ (g 1) − 1 ≥ 0 while the dynamiheker evaluates (((fun x -> x - 1) 1) - 1) to -1, whih violates the on-trat {z | z >= 0}. However, a dynami heker annot tell that the argument(fun x -> x - 1) fails f1's preondition beause there is no witness at run-time, while a stati heker an report this ontrat violation beause x− 1 ≥ 0does not hold for all x of int to satisfy the postondition {y | y ≥ 0}. Onthe other hand, a stati heker usually gives three outomes: (a) de�nitely nobug; (b) de�nitely a bug; () possibly a bug. Here, a bug refers to a ontratviolation. If we get many alarms (), it may take us a lot of time to hek whihone is a real bug and whih one is a false alarm. We may want to invoke adynami heker when the outome is ().Following the formalization in [39℄, but this time for a strit language. We�rst give a denotational semantis to ontrat satisfation. That is to de�newhat it means by an expression e satis�es its ontrat t (written e ∈ t) withoutknowing its implementation. Next, we de�ne a wrapper ⊲ that takes an expres-sion e and its ontrat t and produes a term e ⊲ t suh that ontrat heksare inserted at appropriate plaes in e. If a ontrat hek is violated, a speialonstrutor BADl signals the violation. As the term e ⊲ t is a term in the samelanguage as e, all we have to do is to hek the reahability of BADl. If a BADis reahable, we know a ontrat is violated and the label l preisely apturesthe funtion at fault. We symbolially simplify the term e ⊲ t aiming to simplifyBADs away. In ase there is any BAD left, we either report it as a ompile-timeerror or leave the residual ode for dynami heking. We make the followingontributions:� We larify the relationship between stati ontrat heking and dynamiontrat heking (�2). A new observation is that, after stati heking,RR n° 7794

Hybrid Contrat Cheking 5we should prune away some more unreahable ode before go on dynamiheking. Suh unreahable ode however is essential during stati hek-ing. We prove the orretness of this pruning (�6) with the telesopingproperty studied (but not used for suh purpose) in [7, 39℄.� We de�ne e ∈ t and e⊲t and prove a theorem �e⊲t is rash-free ⇐⇒ e ∈ t�(�4). The �rash-free� means �BAD is not reahable under all ontexts�.Suh a formalization is triky and its orretness proof is non-trivial. Were-do the kind of proofs in [40℄ for a strit language.� We design a novel SL mahine that augments symboli simpli�ation withontextual information synthesis for heking the reahability of BAD stat-ially (�5). The di�ulty lies in the reasoning about non-total terms. Theheking is automati and modular and we prove is soundness. Moreover,the SL mahine produes residual ode for dynami heking. We ompareour framework with other approahes in �7.� We design a logiization tehnique that transforms expressions to logialformulae, inspired by [20, 19℄ and axiomatization of funtions that inter-ative theorem provers perform before alling SMT sovlers. However, wehave to deal with non-total terms and that is the key ontribution of thelogiization (�5).2 OverviewAssertions [18℄ state logial properties of an exeution state at arbitrary points ina program; ontrats speify agreements onerning the values that �ow aross aboundary between distint parts of a program (modules, proedures, funtions,lasses). If an agreement is violated, ontrat heking is supposed to preiselyblame the funtion at fault. Contrats were �rst introdued to be heked atrun-time [28, 13℄. To perform dynami ontrat heking (DCC), a funtionmust be alled to be heked. For example:ontrat in = {x | x > 0} -> {y | y > 0}let in = fun v -> v + 1let t1 = in 0A dynami heker wraps the in in t1 with its ontrat tin:let t1 = (in BADl
⊲⊳BADl′ tin) 0where l is (2, 5, “in”) indiating the soure loation where in is de�ned(row:2,ol:5) and l′ is (3, 10, “t1”) indiating the loation of the all site withaller's name. This wrapped t1 expands to:

(λx1. let y = in (let x = x1 inif x > 0 then x else BAD(3,10,“t1”))in if y > 0 then y else BAD(2,5,“in”)) 0In the upper box, the argument of in is guarded by the hek x > 0; in the lowerbox, the result of in is guarded by the hek y > 0. If a hek sueeds, theRR n° 7794

Hybrid Contrat Cheking 6original term is returned; otherwise, the speial onstrutor BAD is reahed and ablame is raised. In this ase, t1 alls in with 0, whih fails in's preondition.Running the above wrapped ode, we get BAD(3,10,“t1”), whih preisely blamest1. The DCC algorithm is like this. Given a funtion f and a ontrat t, tohek that the allee f and its aller agree on the ontrat t dynamially, aheker wraps eah all to f with its ontrat:
f

BADf
⊲⊳BAD? twhih behaves the same as f exept that (a) if f disobeys t, it blames f , signaledby BADf ; (b) if the ontext uses f in a way not permitted by t, it blames thealler of f , signaled by BAD? where �?� is �lled with a aller name and the allsite loation.Later, [7, 39℄ give formal delarative semantis for ontrat satisfation thatnot only allow us to prove the orretness of DCC w.r.t. this semantis, butalso to hek ontrats statially.The essene of stati ontrat heking (SCC) is:splitting BADf

⊲⊳BAD? into half: e ⊲ t = e
BADf
⊲⊳UNR? t and e ⊳ t = e

UNRf
⊲⊳BAD? t.The ⊲ (�ensures�) and the ⊳ (�requires�) are dual to eah other. The speialonstrutor UNR (pronouned �unreahable�), does not raise a blame, but stopsan exeution. (One, who is familiar with assert and assume, an think of(if p then e else BAD) as (assert p; e) and (if p then e else UNR) as(assume p; e).)SCC is modular and performed at de�nition site of eah funtion. For ex-ample, (λv.v + 1) ⊲ tin expands to:

λx1. let y = (λv.v + 1)
(let x = x1 in if x > 0 then x else UNR?) inif y > 0 then y else BAD(2,5,“in”)At the de�nition site of a funtion, f = e, we assume f 's preondition holdsand assert its postondition. If all BADs in e ⊲ t are not reahable, we know fsatis�es its ontrat t. One way to hek reahability of BAD is to symboliallysimplify the fragment. In the above ase, inlining x, we get:

λx1. let y =(λv.v + 1) (if x1 > 0 then x1 else UNR?) inif y > 0 then y else BAD(2,5,“in”)Unlike [37℄ in a lazy setting, we annot apply beta-redution in a strit lan-guage if an argument is not a value as it may not preserve the semantis. Inthis paper, besides symboli simpli�ation, we ollet ontextual information inlogial formula form and onsult an SMT solver to hek the reahability of BAD.An SMT solver usually deals with formulae in �rst order logi (FOL), �5 givesthe details of the generation of formulae in FOL. As an overview, we presentformulae in higher order logi (HOL). For the two subexpressions of the RHSof y, we have:RR n° 7794

Hybrid Contrat Cheking 7
λv.v + 1 ∃x2, (∀v, x2(v) = v + 1)if x1 > 0 then x1 else UNR? ∃x3, (x1 > 0 ⇒ x3 = x1)∨

(not(x1 > 0) ⇒ false)One an think of the existentially quanti�ed x2 (and x3) denoting the expressionitself. For the RHS of y, we have logial formula:
∀y, ∃x2, (∀v, x2(v) = v + 1) ∧ (∃x3, (x1 > 0 ⇒ x3 = x1)
∧(not(x1 > 0) ⇒ false) ∧ y = x2(x3)) [Q1℄We hek the validity of ∀x1,Q1 ⇒ y > 0 by onsulting an SMT solver. As

∀x1,Q1 ⇒ y > 0 is valid, we know the BAD(2,5,“in”) is not reahable, thus insatis�es its ontrat.Consider the funtion f1 and its ontrat tf1 in �1. So f1⊲tf1 is (λg.(g 1)−
1) ⊲ ({x | x ≥ 0} → {y | y ≥ 0}) → {z | z ≥ 0}, whih expands to:

λx1. let z = (λg.(g 1)− 1)
(λx2. let y = x1 (let x = x2 inif x ≥ 0 then xelse BAD(4,5,“f1”)) inif y ≥ 0 then y else UNR?) inif z ≥ 0 then z else BAD(4,5,“f1”)After applying some onventional simpli�ation rules, we have:R1 : λx1. let z = let y = x1 1 inif y ≥ 0 then y − 1 else UNR?if z ≥ 0 then z else BAD(4,5,“f1”)We see that the inner BAD(4,5,“f1”) has been simpli�ed away, beause x = x2 = 1and (if 1 ≥ 0 then 1 else BAD(4,5,“f1”)) is simpli�ed to 1. As we annot prove

∀x1, ∀z, (∃y, y = x1 1 ∧ (y ≥ 0 ⇒ z = y − 1)) ⇒ z ≥ 0 to be valid, the otherBAD(4,5,“f1”) remains. We an either report this potential ontrat violation atompile-time or leave this residual ode R1 for DCC to ahieve hybrid heking.Hybrid ontrat heking (HCC) performs SCC �rst and runs the residualode as in DCC. In SCC, f1 ⊲ tf1 heks whether f1 satis�es its postonditionby assuming its preondition holds. At eah all site of f1, we wrap the funtionwith ⊳. For example:ontrat f3 = {v | v >= 0}let f3 = f1 zutwhere zut is a di�ult funtion for an SMT solver and zut's ontrat is {x |true}. Say zut ⊳ {x | true} = zut, we then have the term f3 ⊲ tf3 to be:
((f1 ⊳ tf1) zut) ⊲ {v | v > 0}whih requires f3 to satisfy f1's preondition and assumes f1 satis�es its post-ondition beause f1 ⊲ tf1 has been heked. During SCC, a top-level funtionis never inlined. We do not have to know its detailed implementation at its all

RR n° 7794

Hybrid Contrat Cheking 8site as it has been guarded by its ontrat with f ⊳ t. The f3 ⊲ tf3 expands to:let v = let z = f1
(λx2.let y = zut (let x = x2 inif x ≥ 0 then xelse UNR(7,10,“f1”)) inif y ≥ 0 then y else BAD(7,10,“f3”)) inif z ≥ 0 then z else UNR(7,10,“f1”)if v ≥ 0 then v else BAD(7,10,“f3”)As ⊳ is dual to ⊲, the RHS of v is atually a opy of the earlier f1 ⊲ tf1 butswapping the BAD and UNR and substituting x1 with zut. We now know thesoure loation of the all site of f1 and its aller's name, the UNR? beomesBAD(7,10,“f3”) and the BAD(4,5,“f1”) beomes UNR(7,10,“f1”). At de�nition site wherethe aller is unknown, we use the loation of f1, i.e. (4, 5, “f1”). One its alleris known, we use (7, 10, “f1”). It is easy to get soure loation, whih is forthe sake of error message reporting. So we do not elaborate the soure loationfurther.As an SMT solver says valid for ∀v.(∃z.z ≥ 0∧ v = z) ⇒ v ≥ 0, the f3 ⊲ tf3an be simpli�ed to (say R2):let z = f1

(λx2. let y = zut (let x = x2 inif x > 0 then xelse UNR(7,10,“f1”)) inif y ≥ 0 then y else BAD(7,10,“f3”)) inif z ≥ 0 then z else UNR(7,10,“f1”)One BAD remains. We an either report this potential ontrat violation atompile-time or ontinue a DCC. For SCC, we have heked f1 ⊲ tf1, but forDCC, to invoke f1 ⊲ tf1, we must use the residual ode R1. However, the UNRlauses are useful for SCC, but redundant for DCC. We an remove UNRs witha simpli�ation rule:
(if e0 then e1 else UNR) =⇒ e1 [rmUNR](We shall explain why it is valid to apply this rule even if e0 may diverge or rashin �6. Intuitively, UNR is indeed unreahable and e0 has been heked before thisprogram point.) Applying the rule [rmUNR℄ to R1 and R2 and simplify a bit,we get: f1♯ = λx1. let z = (let y = (x1 1) in y − 1) inif z ≥ 0 then z else BAD(4,5,“f1”)f2♯ = f1♯ (λx2.let y = zut x2 inif y ≥ 0 then y else BAD(7,10,“f3”))respetively, whih is the residual ode being run. We show in �6 that HCCblames a funtion fi i� DCC blames fi.Summary Given a de�nition f = e and a ontrat t, to hek e satis�es t(written e ∈ t), we perform these steps. (1) Construt e ⊲ t. (2) Simplify e ⊲ tas muh as possible to e′, onsulting an SMT solver when neessary. (3) If noRR n° 7794

Hybrid Contrat Cheking 9BAD is in e′, then there is no ontrat violation; if there is a BAD in e′ but nofuntion all in e′, then it is de�nitely a bug and report it at ompile-time; ifthere is a BAD and funtion all(s) in e′, then it is a potential bug. (4) For eahfuntion f , reate its residual ode f♯ by simplifying e′ with the rule [rmUNR℄,and run the program with eah f being replaed by f♯.3 The languageThe language presented in this paper, named M, is pure and strit, a subset ofOCaml, inluding parametri polymorphism.3.1 Syntax
x, f ∈ Variables

T ∈ Type constructors

K ∈ Data constructors

pgm ::= def1 , . . . , defn Program

τ ::= −→τ T | τ1 → τ2 Types

t ∈ Contracts

t ::= {x | p} prediate ontrat
| x : t1 → t2 dependent funtion ontrat
| (x : t1, t2) dependent tuple ontrat
| Any polymorphi Anyontrat

def ∈ Definitions

def ::= type −→
′α T =

−−−−−→
K of −→τ

| ontrat f = t
| let f −→x = e top-level funtion
| let re f −→x = e top-level reursive funtion

a, e, p ∈ Exp Expressions

a, e, p ::= n integers
| r blame
| x | λ(xτ).e | e1 e2

| math e0 with−→alt pattern-mathing
| K −→e onstrutor

r ::= BADl | UNRl Blames

l ::= (n1, n2, String) Label

alt ::= K (xτ1
1 , . . . , xτn

n) → e Alternatives

val ::= n | x | r | K −→v | λ(xτ).e ValuesFigure 1: Syntax of the language MRR n° 7794

Hybrid Contrat Cheking 10Figure 1 gives the syntax of language M. A program ontains a set of datatype delarations, ontrat delarations and funtion de�nitions. Expressionsinlude variables, lambda abstrations, appliations, onstrutors and math-expressions. Base types suh as int and bool are data types with no parameter.Pairs are a speial ase of onstruted terms, i.e. (e1, e2) is Pair (e1, e2) withtype ('a,'b) produt = Pair of 'a * 'b. We have top-level let re, butfor the ease of presentation, we omit loal let re. (It is possible to allowloal let re by either assuming that a loal reursive funtion is given aontrat or using ontrat inferene [21℄ to infer its ontrat. Even if [21℄ isnot modular, it is good enough to infer a ontrat for a loal funtion.) Aloal let-expression let x = e1 in e2 is a syntati sugar for (λx.e2) e1. Anif-expression if e0 then e1 else e2 is syntati sugar for math e0 with {true
→ e1; false→ e2}.We assume all top-level funtions are given a ontrat. Contrat heking isdone after the type heking phase in a ompiler so we assume all expressions,ontexts and ontrats are well-typed and use its type information (presentedas supersript, e.g. eτ or tτ) whenever neessary.The two ontrat exeptions (also alled blames) BADl and UNRl are adaptedfrom [39℄. They are for internal usage, not visible to programmers. The label
l ontains information suh as funtion name and soure ode loation, whihis useful for error reporting as well as for examination of the orretness ofblaming. But we may omit the label l when it is not the fous of the disussion.It is possible for programmers to write:let head xs = math xs with| [℄ -> raise Emptylist| x::l -> xwhere raise : ∀α. Exeption → α. The Exeption is a built-in data type forexeptions and Emptylist has type Exeption. As we do not have try-with inlanguageM (leaving it as future work), a preproessing onverts raise Emptylistto BADhead.We have four forms of ontrats. The p in a prediate ontrat {x | p} refersto a boolean expression in the same language M. Dependent funtion ontratsallow us to desribe dependeny between input and output of a funtion. Forexample, x : {y | y > 0} → {z | z > x} says that, the input is greater than 0 andthe output is greater than the input. We an use a shorthand {x | x > 0} → {z |
z > x} by assuming x sopes over the RHS of →. The → is right assoiative.Similarly, dependent tuple ontrats allow us to desribe dependeny betweentwo omponents of a tuple. For example, (x : {y | y > 0}, {z | z > x}) whoseshort hand is ({x | x > 0}, {z | z > x}). Contrat Any is a universal ontratthat any expression satis�es. We support higher order ontrats, e.g. k : ({x |
x > 0} → {y | y > x}) → {z | k 5 > −1} for a funtion let f g = g 2.3.2 Type heking rules for expressionThe language M is statially typed in the onventional way. Figure 2 gives typeheking rules. A type judgement has the form

Γ ⊢ eτRR n° 7794

Hybrid Contrat Cheking 11whih states that given Γ (whih is a mapping from variable to its type), e hastype τ assuming that any free variable in it has type given by Γ. If Γ = ∅, weomit the Γ, and write ⊢ eτ .
Γ ⊢ BAD :: τ [T-BAD] Γ ⊢ UNR :: τ [T-UNR]

v :: τ ∈ Γ
Γ ⊢ v :: τ

[T-Var] Γ, x :: τ1 ⊢ e :: τ2
Γ ⊢ (λ(xτ1).e) :: τ1 → τ2

[T-Lam]
Γ ⊢ e1 :: τ1 → τ2 Γ ⊢ e2 :: τ1

Γ ⊢ (e1 e2) :: τ2
[T-App]

K :: −→τ → T ∈ Γ Γ ⊢ −→e :: −→τ
Γ ⊢ K −→e :: T −→α

[T-Con]
Γ ⊢ e0 :: T −→τ Γ, {v :: T −→τ }, {

−−−−−−−−−→
Ki

−→xi :: T
−→τ } ⊢ ei :: τ

Γ ⊢ (ase e0 of (vT
−→τ) {Ki

−→xi → ei}) :: τ
[T-Math]Figure 2: Type Cheking RulesAs we do type heking before ontrat heking, we assume all expressionsare well-typed (i.e. no type error) in the rest of this paper. Note that nothingsubstantial in the paper depends deliately on the type system. The reasonwe ask that programs are well-typed is to avoid the tehnial inonvenienein designing the semantis of ontrats if, say, evaluation �nds an ill-typedexpression (3 True).3.3 Operational semantisThe semantis of our language is given by redution rules in Figure 3. For a top-level funtion, we feth its de�nition from the evaluation envrionment ∆. Weadapt some basi de�nitions from [39℄. De�nition 1 de�nes the usual ontextualequivalene. Two expressions are said to be semantially equivalent, if under all(losing) ontexts, if one evaluates to a blame r, the other also evaluates to thesame r.De�nition 1 (Semantially Equivalent). Two expressions e1 and e2 are seman-tially equivalent, namely e1 ≡s e2, i� for all losing C, for all r, C[[e1]] →∗

r ⇐⇒ C[[e2]] →∗ rOur framework only guarantees partial orretness. A diverging programdoes not rash.De�nition 2 (Diverges). A losed expression e diverges, written e↑, i� either
e →∗ UNR, or there is no value val suh that e →∗ val.
RR n° 7794

Hybrid Contrat Cheking 12let (re) f = e ∈ ∆
f → e

[E-top℄
(λx.e) val → e[val/x] [E-beta℄math K

−→
val with −−−−−−→

K −→x → e → e[
−−−→
val/x] [E-math℄

e1 → e2
C[[e1]] → C[[e2]]

[E-tx℄ C[[r]] → r [E-exn℄Contexts C ::= [[•]] | C e | val C | K
−→
val C −→e

| math C with −→
altFigure 3: Semantis of the language M3.4 CrashingWe use BAD to signal that something has gone wrong in the program, whih anbe a program failure or a ontrat violation.De�nition 3 (Crash). A losed term e rashes i� e →∗ BAD.At ompile-time, one deidable way to hek the safety of a program is tosee whether the program is syntatially safe.De�nition 4 (Syntati safety). A (possibly-open) expression e is syntatiallysafe i� BAD /∈s e. Similarly, a ontext C is syntatially safe i� BAD /∈s C.The notation BAD /∈s e means BAD does not syntatially appear anywherein e, similarly for BAD /∈s C. For example, λx.x is syntatially safe while

λx. (BAD, x) is not.De�nition 5 (Crash-free expression). A (possibly-open) expression e is rash-free i� : for all C suh that BAD /∈s C and ⊢ C[[e]] :: bool, C[[e]] 6→∗ BAD.The notation ⊢ C[[e]] :: bool means C[[e]] is losed and well-typed. Thequanti�ed ontext C serves the usual role of a probe that tries to provoke e intorashing. Note that a rash-free expression may not be syntatially safe, e.g.
λx.if x ∗ x ≥ 0 then x+ 1 else BAD.Lemma 1 (Syntatially safe expression is rash-free).

e is syntatially safe ⇒ e is rash-freeProof. Sine there is no BAD syntatially in e, for all ontext C, suh thatthere is no BAD syntatially in C, then C[[e]] 6→∗ BAD. By de�nition 5 (Crash-freeexpression), e is rash-free.For ease of presentation, when we do not give label l to BAD or UNR, we meanBAD or UNR for any l. Moreover, expressions BADl and UNRl are losed expressionseven if l is not expliitly bound.Lemma 2 (Neutering). If e is rash-free, then ⌊e⌋ ≡s e.RR n° 7794

Hybrid Contrat Cheking 13Proof. Sine e is rash-free, all BADs in e are not reahable so by onverting allBADs in e to UNR by ⌊.⌋ does not hange the semantis of e. Formally, we provethis by indution on redution rules.Lemma 3 (Crash-free Preservation). Given e1 → e2,
e1 is rash-free ⇐⇒ e2 is rash-freeProof. We prove two diretions by ontradition.(⇒)Suppose e2 is not rash-free. By De�nition 5p12 (Crash-free Expression), thereexists a C suh that BAD /∈s C and C[[e2]] →∗ BAD. By [E-tx℄ and e1 → e2 and

C[[e2]] →
∗ BAD, we have: C[[e1]] →

∗ C[[e2]] →
∗ BAD. As we know e1 is rash-free,we reah ontradition. Thus, we are done.(⇐)Suppose e1 is not rash-free. By De�nition 5p12 (Crash-free Expression), thereexists a C suh that BAD /∈s C and C[[e1]] →∗ BAD. By [E-tx℄ and e1 → e2 andon�uene of the language, we have C[[e2]] →∗ BAD. With the assumption that

e2 is rash-free, we reah ontradition. Thus, we are done.Lemma 4 (Crash-free funtion). For all (possibly-open) terms λx.e,
λx.e is rash-free

⇐⇒for all (possibly-open) rash-free e′, e[e′/x] is rash-free.Proof. We prove two diretions separately.(⇒)
λx.e is rash-free

⇒ (By Lemma 2p12, e′ is rash-free ⇒ ⌊e′⌋ ≡s e
′and by the de�nition of rash-free expression)for all rash-free e′, e[e′/x] is rash-free(⇐) We have the following proof.for all cf e′, e[e′/x] is rash-free

⇐⇒ (By Lemma 3p13)for all cf e′, (λx.e) e′ is rash-free
⇐⇒ (By De�nition 5p12 (Crash-free Expression))for all cf e′, ∀C, BAD /∈s C, C[[(λx.e) e′]] 6→∗ BAD
⇒ (By Lemma 2p12, e′ is rash-free ⇒ ⌊e′⌋ ≡s e

′)
∀C, BAD /∈s C, C[[(λx.e) ⌊e′⌋]] 6→∗ BAD

⇒ (By BAD /∈s ⌊e′⌋)
∀C, BAD /∈s C, C[[(λx.e)]] 6→∗ BAD

⇐⇒ (By De�nition 5p12 (Crash-free Expression))
λx.e is rash-free

RR n° 7794

Hybrid Contrat Cheking 143.5 Behaves-the-sameWe de�ne an ordering, named Behaves-the-same, whih is useful in later se-tions.De�nition 6 (Behaves the same). Expression e1 behaves the same as e2 w.r.t.a set of exeptions R, written e1 ≪R e2, i� for all ontexts C, suh that ∀i ∈
{1, 2}. ⊢ C[[ei]] :: bool

C[[e2]] →
∗ r ∈ R ⇒ C[[e1]] →

∗ rDe�nition 6p14 says that e1 either behaves the same as e2 or throws an ex-eption from R. (The de�nition does not look as strong as that, but as everytheorist knows, it is. For example, ould e1 produe true while e2 produesfalse? No, beause we ould �nd a ontext C that would make C[[e2]] throw anexeption while C[[e1]] does not.) In our framework, there are only two exep-tional values in R: BAD and UNR. Certainly, if e2 itself throws an exeption, then
e1 must throw the same exeption.As we only have two exeptional values BAD, UNR (whih are dual to eahother) in R, this yields Lemma 5p14. We omit {} if there is only one element in
R.Lemma 5 (Properties of Behaves-the-same). For all losed e1 and e2,

e1 ≪UNR e2 ⇐⇒ e2 ≪BAD e1Proof. We prove two diretions separately.(⇒) We have the following proof:
e1 ≪UNR e2

⇐⇒ (By defn of ≪UNR)
∀C. C[[e2]] →∗ UNR ⇒ C[[e1]] →∗ UNR

⇐⇒ (By logi)
∀C. C[[e1]] 6→∗ UNR ⇒ C[[e2]] 6→∗ UNRWe want to show that ∀D. D[[e1]] →

∗ BAD⇒ D[[e2]] →
∗ BAD.Assume D[[e1]] →∗ BAD.Let C = math (D[[•]]) with {DEFAULT→ UNR}Now we have C[[e1]] →∗ BAD⇒ C[[e2]] 6→∗ UNR.Sine C[[e2]] = ase D[[e2]] with {DEFAULT→ UNR}, we have D[[e2]] →∗ BAD.So we have

∀D. D[[e1]] →
∗ BAD ⇒ D[[e2]] →

∗ BAD(⇐) By replaing BAD by UNR and UNR by BAD in the above proof for thediretion (⇒), we get the proof for the diretion (⇐).3.6 Crashes-more-oftenWe study a speialized ordering rashes-more-often, whih plays a ruial rolein proving our main theorems.De�nition 7 (Crashes-more-often). An expression e1 rashes more often than
e2, written e1 � e2, i� e1 ≪BAD e2.RR n° 7794

Hybrid Contrat Cheking 15Informally, e1 rashes more often than e2 if they behave in exatly the sameway exept that e1 may rash when e2 does not. By De�nition 7p14, Lemma 5p14also says that:
e1 ≪UNR e2 ⇐⇒ e2 � e1Theorem 1 (Crashes-more-often is AntiSymmetri). For all expressions e1 and

e2, e1 � e2 and e2 � e1 i� e1 ≡s e2.Proof. It follows immediately from the de�nition of ≡s (De�nition 1p11) and thede�nition of �.The rashes-more-often operator has many properties. Lemma 6p15 says thatBAD rashes-more-often then all expressions; all expressions rash more oftenthen a diverging expression. Lemma 7p15 gives more intuitive properties.Lemma 6 (Properties of Crashes-more-often - I).
(a) BAD � e2
(b) e1 � e2 if e2 ↑Proof. We prove eah property separately (all by ontradition) and we assumetype soundness.(a) Assume there exists a ontext C suh that C[[e2]] →∗ BAD and C[[BAD]] 6→∗BAD. There are two possibilities for C[[e2]] →∗ BAD: (1) the BAD is from theontext C; (2) the BAD is from the hole e2. For ase (1), we must have

C[[BAD]] →∗ BAD sine we use the same ontext C. For ase (2), if the holeis evaluated, we reah BAD immediately. So we reah a ontradition andwe are done.(b) Given e2 ↑, assume there exists a ontext C suh that C[[e2]] →∗ BAD and
C[[e1]] 6→∗ BAD. Sine e2 ↑ and C[[e2]] →∗ BAD, we know the BAD is fromthe ontext C. So no matter what e1 is, we have C[[e1]] →∗ BAD. Thus, weagain reah a ontradition and we are done.Lemma 7 (Properties of Crashes-more-often - II). If e1 � e2

(a) e1 →∗ K f1 ⇒ e2 →∗ K f2 or e2 ↑
(b) e1 ↑ ⇒ e2 ↑
(c) e1 is rash-free ⇒ e2 is rash-free
(d) e1 →∗ λx.e′1 ⇒ e2 →∗ λx.e′2 or e2 ↑Proof. We prove eah property separately (all by ontradition):(a) Given e1 →∗ K f1, assume neither e2 →∗ K f2 nor e2 ↑. Then we musthave e2 →∗ BAD. By the de�nition of � and the fat that e1 � e2, if

e2 →∗ BAD, then e1 →∗ BAD. Sine e1 →∗ K f1, we reah a ontraditionand we are done.(b) Given e1 ↑, assume e2 6 ↑. Then e2 →∗ val and there exists a syntatiallysafe ontext C suh that C[[e2]] →∗ BAD. But C[[e1]] always diverges as e1diverges if BAD /∈s C. By the fat that e1 � e2 and by the de�nition of �,we reah a ontradition and we are done.RR n° 7794

Hybrid Contrat Cheking 16() Given e1 is rash-free, assume e2 is not rash-free. By De�nition 5p12(Crash-free Expression), there exists a syntatially safe ontext C suhthat C[[e2]] →∗ BAD. By the fat that e1 � e2 and by the de�nition of �,we have C[[e1]] →∗ BAD. This ontradits with another assumption that e1is rash-free. Sine we reah a ontradition, we are done.(d) The proof is similar to that in (a).4 ContratsFindler and Felleisen (FF) �rst introdued an algorithm for dynami higherorder ontrat heking [13℄. Blume and MAllester [7℄ then de�ne a semantisfor ontrat satisfation and show its sound-and-ompleteness with respet tothe FF-algorithm. As the algorithm and the ontrat semantis are de�nedby two groups of people, there are some mismathes addressed in [12℄. Later,[39℄ de�nes both a ontrat semantis and a (stati) heking algorithm fora lazy language. In this paper, we follow the style in [39℄, design ontratsatisfation and heking algorithm for a strit language. As diverging ontratsmake dynami ontrat heking unsound (explained in Setion 4.5) and we dohybrid heking, we fous on total ontrats.De�nition 8 (Total ontrat). A ontrat t is total i�
t is {x | p} and λx.p is total (i.e. rash-free, terminating)or t is x : t1 → t2 and t1 is total andfor all val1 ∈ t1, t2[val1/x] is totalor t is (x : t1, t2) and t1 is total andfor all val1 ∈ t1, t2[val1/x] is totalor t is AnyOur de�nition of total ontrat is di�erent from that in [7℄, but lose to therash-free ontrat in [39℄ with an additional ondition that λx.p is a terminatingfuntion. For example, ontrat {x | x 6= [℄} → {y | head x > y} is total inour framework beause head x does not rash for all x satisfying {x | x 6= [℄}.Suh a ontrat is not total in [7℄ beause a rashing funtion head is alled ina prediate ontrat.4.1 Type heking for ontratsA ontrat type judgement has the form

Γ ⊢c t ∈ τwhih states that given Γ (a mapping from program variable to its type, andfrom type variable α to its kind k), e has type τ assuming that any free variablein it has type given by Γ. Contrat type heking rules are shown in Figure 4.
RR n° 7794

Hybrid Contrat Cheking 17
Γ, α :: k ⊢c t :: τ

Γ ⊢c (∀α :: k. t) :: τ
[C-Forall]

Γ ⊢c Any :: τ [C-Any] Γ, x :: τ ⊢c e :: Bool
Γ ⊢c {x | e} :: τ

[C-One]
Γ ⊢c t1 :: τ1 Γ, x :: τ1 ⊢c t2 :: τ2

Γ ⊢c x : t1 → t2 :: τ1 → τ2
[C-Fun]

Γ ⊢c t1 :: τi Γ, x :: τ1 ⊢c t2 :: τ2
Γ ⊢c (x : t1, t2) :: (τ1, τ2)

[C-Tuple]Figure 4: Type Cheking Rules for ContratFor a well-typed expression e, de�ne e ∈ t thus:
e ∈ {x | p} ⇐⇒ e↑ or (e is rash-free and [A1℄

p[e/x] →∗ true)
e ∈ x : t1 → t2 ⇐⇒ e↑ or (e →∗ λx.e2 and [A2℄

∀val1 ∈ t1. (e val1) ∈ t2[val1/x])

e ∈ (x : t1, t2) ⇐⇒ e↑ or (e →∗ (val1, val2) and [A3℄
val1 ∈ t1 and val2[val1/x] ∈ t2[val1/x])

e ∈ Any ⇐⇒ true [A4℄Figure 5: Contrat Satisfation4.2 A semantis for ontrat satisfationWe give the semantis of ontrats by de�ning �e satis�es t" (written e ∈ t)in Figure 5 inspired by [7, 39℄. Here are some onsequenes: (1) a divergentexpression satis�es any ontrat, hene all ontrats are inhabited; (2) onlyrash-free expression satis�es a prediate ontrat; (3) any expression satis�esontrat Any; (4) BAD only satis�es ontrat Any.One di�erene from [39℄ is that, we do not allow p[e/x] in [A1℄ to divergewhile [39℄ allows beause they only do stati heking. We support dependenttuple ontrats, that are not in [7, 39℄. One di�erene from [7℄ is that, theysay that a rashing expression does not satisifay any ontrat; we say that arashing expression satisfy the universal ontrat Any. Having a top orderingontrat is debated in [12℄ where a subontrat ordering is de�ned below. It isobvious that Any is useful in a lazy language [39℄ as we may want to ignore somesubomponents of a onstrutor. We explain why Any is also useful for a stritlanguage in Setion 4.6.De�nition 9 (Subontrat). For all losed ontrats t1 and t2, t1 is a subon-trat of t2, written t1 ≦ t2, i� ∀e. e ∈ t1 ⇒ e ∈ t2RR n° 7794

Hybrid Contrat Cheking 184.3 The wrappers
e ⊲ t = e

BADl1
⊲⊳UNRl2 t e ⊳ t = e

UNRl2
⊲⊳BADl1 t

e
r1
⊲⊳
r2

{x | p} = let x = e in if p then x else r1 [P1]

e
r1
⊲⊳
r2

x : t1 → t2 = let y = e in
λx1.((y (x1

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x]) [P2]

e
r1
⊲⊳
r2

(x : t1, t2) = math e with
(x1, x2) → (x1

r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x]) [P3]

e
r1
⊲⊳
r2

Any = r2 [P4]Figure 6: Contrat heking with the wrappersAs mentioned in Setion 2, the essene of ontrat heking is the two wrap-pers ⊲ and ⊳, whih are dual to eah other (de�ned in Figure 6). We omit thelabels for ⊲ and ⊳ whose full versions are ⊲l1l2 and ⊳l1l2 respetively. The wrappedexpression e
r1
⊲⊳
r2

t expands to a partiular expression, whih behaves the same as
e exept that it raises blame r1 if e does not obey t and raise r2 if the wrappedterm is used in a way disobeying t.From [P1℄ to [P3℄, if e rashes, the wrapped term rashes; if e diverges, thewrapped term diverges. Whenever an ri is reahed, we know the property pdoes not evaluate to true (as in [P1℄). The wrappers are de�ned suh thatTheorem 2 holds.Theorem 2 (Sound-and-ompleteness of ontrat heking). For all losed ex-pression eτ , losed and total ontrat tτ ,

(e ⊲ t) is rash-free ⇐⇒ e ∈ tThe supersript τ says both e and t are well-typed and have the same type
τ . The full proof of Theorem 2 is in Appendix A, whih is similar to that in [40℄.In pratie, we only need Thereom 3, i.e. one diretion of Thereom 2.Theorem 3 (Soundness of ontrat heking). For all losed expression eτ ,losed and terminating ontrat tτ ,

(e ⊲ t) is rash-free ⇒ e ∈ tNote that, if t is terminating and e⊲t is rash-free, then t is total. Unlike [13℄,whih assumes there is no exeption from a ontrat itself, our ontrat hekingalgorithm helps programmers to ensure it by deteting exeptions in ontratsthemselves. The term t2[(v
r2
⊲⊳
r1

t1/x] in [P2℄ and [P3℄ says that, we wrap eah(funtion) all in a ontrat with its ontrat so that if there is any ontratviolation in a ontrat, we report this error. For example:RR n° 7794

Hybrid Contrat Cheking 19ontrat f = k:({x | x > 0 } -> {y | y > 0 })-> {z | k 0 > -1}let f g = g 2let t2 = f (fun x -> x)a ontrat violation ours in {z | k 0 > -1} beause the all k 0 fails k'spreondition {x | x > 0}. As addressed in [10℄, we should blame the ontrat.We omit passing around the name of the ontrat in this paper as our fous isto hek the reahability of BAD. Instead, we use r1 to indiate that the label of
r1 is replaed by the name of the ontrat.4.4 Open expressions and ontratsFor open expressions, we use the same idea in [39℄. Suppose the delared on-trats for f and g are tf , tg respetively, and the de�nition of g is g = eg wheref is alled in eg. Then, instead of heking that eg ∈ tg, we hek that

(λf. eg) ∈ tf → tgThat means we simply lambda-abstrat over any variables free in eg. The sameidea applies for the reursive funtions. If the programmer spei�es the ontrat
tf for a de�nition f = e, then it su�es to hek that

λf.e ∈ tf → tfwhih is easier beause λf.e does not all f reursively. There is nothing newhere � it is just the standard tehnique of loop invariants in another guise � butit is pakaged very onveniently.In other words, imagine we have a ontrat judgement:
∆ ⊢ e ∈ twhih states that given∆, whih is a mapping from variable to its type, ontratand de�nition.De�nition 10 (Contrat judgement). We write ∆ ⊢ e ∈ t to mean that ehas ontrat t assuming that any free variable in e has ontrat given by ∆and any free variable in t has de�nition given by ∆. Suppose ∆ = {f1 7→

(τ1, t1, e1), . . . , fn 7→ (τn, tn, en)}, we de�ne:
∆ ⊢ e ∈ t ⇐⇒ λf1.fn.e ∈ t1 → · · · → tn → tThis means, in theory (i.e. in the formalization of the veri�ation), we onlyneed to deal with losed expressions; in pratie (i.e. in the implementation),we may refer to the environment ∆ when neessary. We an simply hek rash-freeness of e[(g ⊳ tg)/g]⊲ tf [(g ⊳ tg)/g] where a all to g is replaed by g ⊳ tg. Thisidea holds for reursive alls of f in e as well, we hek e[f ⊳ tf/f] ⊲ tf . (Notethat f is not allowed to be used in tf .)4.5 Terminating ontratsWe want p in {x | p} to be terminating beause a divergent ontrat hidesrashes. For example:RR n° 7794

Hybrid Contrat Cheking 20let re loop x = loop xontrat fb = {x | loop x} -> {y | true}let fb x = head [℄fb ⊲ tfb is λx1.((λx.head []) (if loop x1 then x1 else BAD)), whih divergeswhenever applied beause of the loop. However, the funtion fb is not rash-free.Consider the higher order funtion f in Setion 4.3, one might wonderwhether we have to hek the argument of the higher order funtion f to beterminating beause k is alled in the ontrat. The answer is no. By inspet-ing [P1℄ and [P2℄, we an see that an argument is always evaluated earlier thanthe x in t2. So we will not enounter the situation that a divergent ontrathides a rash.We only have to prove termination of funtions used in ontrats, not all thefuntions in a program. We an adapt ideas in [26, 34, 4℄ to build an e�ientautomati termination heker.4.6 Contrat AnyThere is a debate in [12℄ on whether it is useful to have a top ordering ontratAny. We want Any beause we want to give a funtion, that always fails, aontrat to satisfy, so that we do not blame it at its de�nition site during SCCbeause ∀e, e⊲Any = UNR, whih is rash-free. Consider a popular OCaml libraryfuntion:ontrat failwith = {x | true} -> Anylet failwith str = raise (Failure str)where Failure has type Exeption. A aller of failwith always violates theontrat Any beause ∀e, e ⊳ Any = BAD. For example:let get a i = if i >= 0 and i < Array.length a - 1then a.(i) else failwith "Out of bound"Whenever the else-branh is reahed (either in SCC or DCC), the aller get isblamed beause a safe program is meant not to invoke a funtion that fails. Itis not useful to blame the failwith itself. Certainly, programmers' intention isnot to have an index out of bound so they may give get a ontrat:
{a | true} → {i | i ≥ 0 ∧ i < Array.length a− 1} → {z | true}so that a aller of get will be blamed if it fails get's preondition.The example under debate in [12℄ is something like:ontrat id = ({x | x /= 0} -> {y | true}) -> Anylet id x = xlet t3 = let invert y = 1/y in (id invert) 0If programmers' intention is not to de�ne a funtion that always fails, theyshould replae Any by {z | true}, whih never assigns blame beause ∀e, e⊲{z |true} = e ⊳ {z | true} = e. With this new ontrat, id is blamed in eitherSCC or DCC for violating its ontrat beause id annot guarantee a rash-freeRR n° 7794

Hybrid Contrat Cheking 21result (required by {z | true}) when taking a non-rash-free funtion as itsargument.With the delarative semantis for ontrat satisfation, ontrats an be ex-ported for separate ompilation. An implementation of a funtion may hangeover time (e.g. having a more e�ient implementation), but its exported on-trat may not hange. In our framework, we respet a funtion's ontrat morethan its implementation. This is di�erent from the original purpose in [13℄,whih only uses ontrats for dynami blaming.We have a simple lemma for ontrat Any.Lemma 8 (Contrat Any). (a) If BAD ∈ t, then t = Any.(b) If BAD ⊲ t is rash-free, then t = Any.Proof. (a) By inspeting the de�nition of ∈, the only ontrat that BAD satis-�es is Any.(b) By inspeting the de�nition of ⊲, for all t suh that t 6= Any, BAD⊲t →∗ BADwhih is not rash-free. And we have BAD ⊲ Any = UNR whih is rash-free,so we are done.4.7 Contrat orderingthe subontrat relation an be illustrated in rule-form shown in Figure 7. Eahrule in Figure 7 is a theorem. The relation p ⇒e q in rule [C-Pred℄ is de�nedin De�nition 11. Rule [C-Any℄ follows diretly from the de�nition of ≦. Wenow study the rules [C-Pred℄, [C-DepFun℄ and [C-DepTup℄. We assume thestatement above the line is true, and prove the statement below the line is true.We leave the proof of other diretion as a open problem.
p ⇒e q

{x | p} ≦ {x | q}
[C-Pred] t ≦ Any [C-Any]

t1 ≦ t3 ∀e ∈ t1, t2[e/x] ≦ t4[e/x]
(x : t1, t2) ≦ (x : t3, t4)

[C-DepTup]
t3 ≦ t1 ∀e ∈ t3, t2[e/x] ≦ t4[e/x]

x : t1 → t2 ≦ x : t3 → t4
[C-DepFun]Figure 7: Subontrat RelationDe�nition 11 (Boolean Expression Impliation). For all boolean expressions pand q, we say p implies q (written p ⇒e q) i� (if q then ()else BAD)

�

(if p then ()else BAD)From De�nition 11p21, for example, we know {x | x < 10} ⇒e {x | x < 12}.The substitution for ontrats is de�ned in Figure 8. Here, we assume eahbound variable has a unique name.RR n° 7794

Hybrid Contrat Cheking 22
{x | p}[e/y] = {x | p[e/y]}
(x : t1 → t2)[e/y] = x : t1[e/y] → t2[e/y]
(t1, t2)[e/y] = (t1[e/y], e2[e/y])Any[e/y] = AnyFigure 8: Substitution for Contrats4.7.1 Prediate Contrat OrderingWe prove that the rule [C-Pred℄ is sound; that is we prove Theorem 4p22.Theorem 4 (Prediate Contrat Ordering). For all expressions p, q, if p ⇒ qthen {x | p} ≦ {x | q}.Proof. We have the following proof for all t1, t2, t3, t4:

p ⇒e q

⇐⇒ (By De�nition 11p21 (Boolean Expression Impliation), let
e1 =

ase p ofTrue→ ()False→ BAD

 and e2 =

ase q ofTrue → ()False→ BAD

)

e2 � e1

⇐⇒ (By De�nition 7p14 (Crashes-more-often))
∀C. C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD

⇒ (By (*) below)
∀e. e is rash-free and (e1[e/x] 6→∗ {BAD, False} ⇒ e2[e/x] 6→∗ {BAD, False})

⇐⇒ (By logi and de�nition of ∈ in Figure 5)
∀e. e ∈ {x | e1} ⇒ e ∈ {x | e2}

⇐⇒ (By De�nition 9p17 (Subontrat))
{x | e1} ≦ {x | e2}(*) We know ∀e, a, x. e[a/x] ≡s let x = a in e.Assuming for all rash-free e:

(1) ∀C. C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD
(2) (let x = e in e1) 6→

∗ {BAD, False})we want to show (let x = e in e2) 6→∗ {BAD, False}Suppose (let x = e in e2) →∗ BADBy (1), let C be let x = e in •, we have C[[e1]] →∗ BAD.That means (let x = e in e1) →∗ BAD.This ontradits with (2) so our assumption is wrong and we are done.Suppose (let x = e in e2) →
∗ FalseBy (1), let C be ase (let x = e in •) of {False→ BAD}, we have C[[e1]] →∗ BAD.That means (ase (let x = e in e1) of {False→ BAD}) →∗ BAD.That means (let x = e in e1) →∗ {BAD, False}.This ontradits with (2) so our assumption is wrong and we are done.End of proof.RR n° 7794

Hybrid Contrat Cheking 234.7.2 Dependent Funtion Contrat OrderingWe prove that the rule [C-DepFun℄ is sound; that is we prove Theorem 5p23.Theorem 5 (Dependent Funtion Contrat Ordering). For all t1, t2, t3, t4.if t3 ≦ t1 and ∀e ∈ t3. t2[e/x] ≦ t4[e/x], then x : t1 → t2 ≦ x : t3 → t4Proof. We have the following proof for all t1, t2, t3, t4:
t3 ≦ t1 and ∀e3 ∈ t3. t2[e3/x] ≦ t4[e3/x]

⇐⇒ (By De�nition 9p17 (Subontrat))
(†1) ∀e1. e1 ∈ t3 ⇒ e1 ∈ t1 and ∀e3 ∈ t3.∀e2. e2 ∈ t2[e3/x] ⇒ e2 ∈ t4[e3/x]

⇒ (By the (*) below)
(†2) ∀e. ∀e1 ∈ t1. (e e1) ∈ t2[e1/x] ⇒ ∀e3 ∈ t3. (e e3) ∈ t4[e3/x]

⇐⇒ (By de�nition of ∈ in Figure 5)
∀e. e ∈ x : t1 → t2 ⇒ e ∈ x : t3 → t4

⇐⇒ (By De�nition 9p17 (Subontrat))
x : t1 → t2 ≦ x : t3 → t4

(∗) For all e, assuming:
(1) ∀e1. e1 ∈ t3 ⇒ e1 ∈ t1 (�rst lause of the line †1)
(2) ∀e3 ∈ t3, ∀e2. e2 ∈ t2[e3/x] ⇒ e2 ∈ t4[e3/x] (seond lause of the line †1)
(3) ∀e1 ∈ t1.(e e1) ∈ t2[e1/x] (LHS of the line †2)we show ∀e3. e3 ∈ t3 ⇒ (e e3) ∈ t4[e3/x]as follows.

e3 ∈ t3

⇐⇒ (By (1))
e3 ∈ t1

⇐⇒ (By (3))
(e e3) ∈ t2[e3/x]

⇐⇒ (By (2))
(e e3) ∈ t4[e3/x]We are done.4.7.3 Dependent tuple ontrat orderingWe prove the rule [C-DepTup℄ is sound by showing:For all t1, t2, t3, t4. if t1 ≦ t3 and t2 ≦ t4, then (t1, t2) ≦ (t3, t4)Proof. For all e, if e diverges, then for all t1, t2, t3, t4, e ∈ (t1, t2) and e ∈ (t3, t4)beause a divergent expression satis�es all ontrats. By the de�nition of ≦,we have the desired result (t1, t2) ≦ (t3, t4). Now, we prove the ase when

RR n° 7794

Hybrid Contrat Cheking 24
e →∗ (e1, e2) as follows.

t1 ≦ t3 and t2 ≦ t4

⇐⇒ (By De�nition 9p17 (Subontrat))
∀e1. e1 ∈ t1 ⇒ e1 ∈ t3 and ∀e2. e2 ∈ t2 ⇒ e2 ∈ t4

⇐⇒ (By logi (∀x.A) ∧ (∀y.B) ≡ ∀x, y. A ∧B if y /∈ fv(A) and x 6∈ fv(B))
∀e1, e2. e1 ∈ t1 ⇒ e1 ∈ t3 and e2 ∈ t2 ⇒ e2 ∈ t4

⇒ (By logi ((A ⇒ B) ∧ (C ⇒ D)) ⇒ ((A ∧C) ⇒ (B ∧D)))
∀e. e →∗ (e1, e2) and ((e1 ∈ t1 and e2 ∈ t2) ⇒ (e1 ∈ t3 and e2 ∈ t4))

⇒ (By logi (A ∧ (B ⇒ C)) ⇒ ((A ∧B) ⇒ (A ∧ C)))
∀e. (e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2)
⇒ (e →∗ (e1, e2) and e1 ∈ t3 and e2 ∈ t4)

⇐⇒ (By de�nition of ∈ in Figure 5)
∀e. e ∈ (t1, t2) ⇒ e ∈ (t3, t4)

⇐⇒ (By De�nition 9p17 (Subontrat))
(t1, t2) ≦ (t3, t4)Note that some tuple ontrats are not omparable by ≦, for example:

(Ok, Any) 6≦ (Any, Ok) and (Any, Ok) 6≦ (Ok, Any).4.8 Contrat equivaleneIn this setion we give formal de�nition of the equivalene of two ontrats.De�nition 12 (Contrat Equivalene). Two losed ontrats t1 and t2 areequivalent, namely t1 ≡t t2, i�
∀e. e ∈ t1 ⇐⇒ e ∈ t2Contrat equivalene ≡t refers to semanti equivalene, not equality. Forexample, {x | false} → {x | true} ≦ {x | false} → {x | false} and {x |false} → {x | false} ≦ {x | false} → {x | true}, and {x | false} → {x |true} ≡t {x | false} → {x | false}, but {x | false} → {x | true} 6= {x |false} → {x | false}.Theorem 6 (Subontrat is antisymmetri). For all losed ontrats t1 and t2,

t1 ≦ t2 and t2 ≦ t1 i� t1 ≡t t2.Proof.
t1 ≦ t2 and t2 ≦ t1

⇐⇒ (By De�nition 9p17 (Subontrat))
∀e. e ∈ t1 ⇒ e ∈ t2 and ∀e. e ∈ t2 ⇒ e ∈ t1

⇐⇒ (By logi (∀x. A(x) ⇒ B(x)) ∧ (∀x. B(x) ⇒ A(x)) ≡ ∀x. A(x) ⇐⇒ B(x))
∀e. e ∈ t1 ⇐⇒ e ∈ t2

⇐⇒ (By De�nition 12p24 (Contrat Equivalene))
t1 ≡t t2End of proof.RR n° 7794

Hybrid Contrat Cheking 25For open ontrats t, we assume impliitly that there is an environment
∆, whih is a mapping from variable to its type, ontrat and de�nition (SeeDe�nition 10p19 in Setion 4.4).Lemma 9 (Prediate Contrat Equivalene). For all expressions e1 and e2, if
e1 ≡s e2, then {x | e1} ≡t {x | e2}.Proof. We have the following proof:

e1 ≡s e2

⇐⇒ (By Theorem 1p15 (Crashes-more-often is antisymmetri))
e1 � e2 and e2 � e1

⇐⇒ (By Theorem 4p22 (Prediate ontrat ordering))
{x | e1} ≦ {x | e2} and {x | e2} ≦ {x | e1}

⇐⇒ (By Theorem 6p24 (Subontrat is antisymmetri))
{x | e1} ≡t {x | e2}Lemma 10 (Dependent Funtion Contrat Equivalene). For all ontrats

t1, t2, t3, t4, if t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x], then x : t1 → t2 ≡t

x : t3 → t4.Proof. We have the following proof.
t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x]

⇐⇒ (By Theorem 6p24 (Subontrat is Antisymmetri))
t1 ≦ t3 and t3 ≦ t1 and
(∀e ∈ t1. t2[e/x] ≦ t4[e/x] and ∀e ∈ t1. t4[e/x] ≦ t2[e/x])

⇐⇒ (Sine t1 ≡t t3, e ∈ t1 ⇐⇒ e ∈ t3.)
t3 ≦ t1 and ∀e ∈ t1. t2[e/x] ≦ t4[e/x] and
t1 ≦ t3 and ∀e ∈ t1. t4[e/x] ≦ t2[e/x]

⇒ (By [C-DepFun℄ in Figure 7)
x : t1 → t2 ≦ x : t3 → t4 and x : t3 → t4 ≦ x : t1 → t2

⇐⇒ (By Theorem 6p24 (Subontrat is Antisymmetri))
x : t1 → t2 ≡t x : t3 → t4We are done.Lemma 11 (Dependent Tuple Contrat Equivalene). For all ontrats t1, t2, t3, t4,if t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x], then (x : t1, t2) ≡t (x : t3, t4).

RR n° 7794

Hybrid Contrat Cheking 26Proof. We have the following proof.
t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x]

⇐⇒ (By Theorem 6p24 (Subontrat is Antisymmetri))
t1 ≦ t3 and t3 ≦ t1 and
(∀e ∈ t1. t2[e/x] ≦ t4[e/x] and ∀e ∈ t1. t4[e/x] ≦ t2[e/x])

⇐⇒ (Sine t1 ≡t t3, e ∈ t1 ⇐⇒ e ∈ t3.)
t3 ≦ t1 and ∀e ∈ t1. t2[e/x] ≦ t4[e/x] and
t1 ≦ t3 and ∀e ∈ t1. t4[e/x] ≦ t2[e/x]

⇒ (By [C-DepFun℄ in Figure 7)
(x : t1, t2) ≦ (x : t3, t4) and (x : t3, t4) ≦ (x : t1, t2)

⇐⇒ (By Theorem 6p24 (Subontrat is Antisymmetri))
(x : t1, t2) ≡t (x : t3, t4)We are done.Theorem 7 (Subontrat and Crashes-more-often Ordering). For all t1 and

t2,
∀e. e ⊲ t1 � e ⊲ t2 ⇒ t1 ≦ t2Proof. We have the following proof:

∀e. e ⊲ t1 � e ⊲ t2

⇒ (By Lemma 7p15 () (Properties of Crashes-more-often - II))
∀e. e ⊲ t1 is rash-free⇒ e ⊲ t2 is rash-free

⇒ (By Theorem 2p18 (grand theorem))
∀e. e ∈ t1 ⇒ e ∈ t2

⇐⇒ (By De�nition 9p17 (Subontrat))
t1 ≦ t2

5 Stati ontrat heking and residualizationThanks to the ground-breaking higher order ontrat wrappers ⊲⊳ (�rst intro-dued in [13℄), whih makes the analysis of higher order program muh easier.From Theorem 3, all we need is to show that e ⊲ t is rash-free. That is tohek the reahability of BAD as eah BAD signals a ontrat violation. We ansymbolially simplify e ⊲ t as muh as possible to e′ and hek for ourrene ofBAD in e′.We introdue an SL mahine (Figure 10) whih ombines symboli simpli�a-tion and ontextual information (tx-info) synthesis with logial formulae. Thenovelty of our work is to ombine them in a way to ahieve veri�ation, blamingand residualization in one-go. The SL mahine takes an expression e and pro-dues its semantially equivalent and simpli�ed version. A 4-tuple 〈H || e || S || L〉is pronouned simplify and a 4-tuple 〈〈H || e || S || L〉〉 is pronouned rebuild where� H is an environment mapping variables to trivial values;RR n° 7794

Hybrid Contrat Cheking 27
〈H || n || S || L〉 〈〈H || n || S || L〉〉 [S-onst℄
〈H || r || S || L〉 〈〈H || r || S || L〉〉 [S-exn℄
〈H[x 7→ tval] || x || S || L〉 〈〈H[x 7→ tval] || tval || S || L〉〉 [S-var1℄if x /∈ H, 〈H || x || S || L〉 〈〈H || x || S || L〉〉 [S-var2℄
〈H || λxτ .e || S || L〉 〈H || e || (λx.•) :: S || L, ∀x : [[τ]]〉 [S-lam℄
〈H || e1 e2 || S || L〉 〈H || e1 || (• e2) :: S || L〉 [S-app℄
〈H || math e0 with alts || S || L〉
 〈H || e0 || (math • with alts) :: S || L〉 [S-math℄
〈H || K (a1, . . . , ei, . . . , en) || S || L〉
 〈H || ei || (K (a1, . . . , •, . . . , en)]) :: S || L〉 [S-K℄if x 6∈ fv(e),
〈H || let x = e1 in e2 || (• e) :: S || L〉
 〈H || let x = e1 in e2 e || S || L〉 [S-letL℄if fv (e) ∩ −→xi = ∅,

〈H || (math e0 with −−−−−−−→
K −→x → ei) || (• e) :: S || L〉

 〈H || math e0 with −−−−−−−−→
K −→x → ei e || S || L〉 [S-mathL℄if x 6∈ fv(a),

〈H || val || (• (let x = e1 in e2)) :: S || L〉
 〈H || let x = e1 in val e2 || S || L〉 [S-letR℄if fv(val) ∩−→x = ∅,

〈H || val || (• (math e0 with −−−−−−→
K −→x → e)) :: S || L〉

 〈H || math e0 with −−−−−−−−−−→
K −→x → val e || S || L〉 [S-mathR℄if fv (alts) ∩ −→x = ∅,

〈H ||
math e0 with
−−−−−−→
K −→x → e

|| (math • with alts) :: S || L〉

 〈H ||
math e0 with
−−−−−−−−−−−−−−−−−−−−→
K −→x → math e with alts

|| S || L〉 [S-math-math℄if x 6∈ fv(alts),
〈H || let x = e1 in e2 || (math • with alts) :: S || L〉
 〈H || let x = e1 in math e2 with alts || S || L〉 [S-math-let℄Figure 9: SL mahine part (a)RR n° 7794

Hybrid Contrat Cheking 28
〈〈H || a || [] || L〉〉 a [R-done℄if (s 6= math e with K −→x → (•,S,L)),
〈〈H || r || s :: S || L〉〉 〈〈H || r || S || L〉〉 [R-r℄
〈〈H || a || (λx.•) :: S || L〉〉 〈〈H || λx.a || S || L〉〉 [R-lam℄Rules below: a /∈ {BADl, UNRl}
〈〈H || a || (• e2) :: S || L〉〉 〈H || e2 || (a •) :: S || L〉 [R-fun℄
〈〈H || val || ((λx.a1) •) :: S || L〉〉 〈〈H[x 7→ val] || a1 || S || L〉〉 [R-beta℄if a1 6= λx.a′ or a 6= val,
〈〈H || a || (a1 •) :: S || L〉〉 〈〈H || a1 a || S || L〉〉 [R-app℄
〈〈H || an || (K a1 . . . •) :: S || L〉〉 〈〈H || K −→a || S || L〉〉 [R-K℄
〈〈H || K −→a || (math • with {. . . ;K −→x → e; . . . }) :: S || L〉〉
 〈H || let −−−→x = a in e || S || L〉 [R-K-math℄if exists (K −→

xτ) suh that L ⇒ (∃
−−−−→
x : [[τ]], [[a]](K −→x)),

〈〈H || a || (math • with −−−−−−−→
K

−→
xτ → e) :: S || L〉〉

 〈H || e || S || L, ∃
−−−−→
x : [[τ]], [[a]](K −→x)〉 [R-s-math℄if for all (K −→

xτ) suh that L 6⇒ (∃
−−−−→
x : [[τ]], [[a]](K −→x)),

〈〈H || a || (math • with −−−−−−−→
K

−→
xτ → e) :: S || L〉〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈H || e ||
(math a with K

−→
xτ

→ (•,S,L)) :: []
|| L, ∃

−−−−→
x : [[τ]],

[[a]](K −→x)

〉 [R-s-save℄
−−→
〈〈H || a || (math a0 with K −→x → (•,S,L)) :: S ′ || L′〉〉

 〈〈H || math a0 with −−−−−−−→
K −→x → a || S || L〉〉 for some S ′ and L′ [R-math℄

〈〈H || a || (let xτ = • in e2) :: S || L〉〉
 〈H || e2 || (let x = a in •) :: S || L, ∃x : [[τ]], [[a]]x〉 [R-let-save℄Figure 10: SL mahine part (b)� e is the expression under simpli�ation (or being rebuilt);� S is a stak whih embodies the simpli�ation ontext, or ontinuationthat will onsume a simpli�ed expression;

RR n° 7794

Hybrid Contrat Cheking 29
(let x = e1 in e2) e =⇒ let x = e1 in e2 e [letL]if fv (e) ∩ −→x = ∅,

(math e0 with −−−−−−−→
K −→x → ei) e

=⇒ math e0 with −−−−−−−−−−→
K −→x → (ei e) [mathL]if x 6∈ fv (e),

tval (let x = e1 in e2) =⇒ let x = e1 in tval e2 [letR]if fv (tval) /∈ −→x ,

val (math e0 with −−−−−−→
K −→x → e)

=⇒ math e0 with −−−−−−−−−→
K −→x → val e [mathR]if fv (alts) ∩ −→x = ∅,math (math e0 with −−−−−−→

K −→x → e) with alts

=⇒ math eo with −−−−−−−−−−−−−−−−−−−−→
K −→x → math e with alts [math-math]if x /∈ fv (alts),math (let x = e1 in e2) with alts

=⇒ let x = e1 in math e2 with alts [math-let]math K a1 . . . an with {. . . ;K x1 . . . xn → e; . . . }
=⇒ let x1 = a1 in . . . let xn = an in e [srut-math]Figure 11: Simpli�ation Rules� L is a logial store whih ontains the tx-info in logial formula form; itssyntax is

L ::= ∅ | ∀x : τ,L | φ,Lwhere φ is a prediate in Figure 12.The job of SL mahine is to simplify an expression as muh as possible, on-sulting the logial store when neessary; when it annot simplify the expressionfurther, rebuilds the expression.5.1 The SL mahineIn Figure 10, the onstant n and blame r annot be simpli�ed further, thusbeing rebuilt as shown in [S-onst℄ and [S-exn℄ respetively. One might ask whywe rebuild rather than return a blame. There are two reasons: (a) it givesmore information for stati error reporting, i.e. we know onditions leading toa reahable BAD; (b) as we do hybrid ontrat heking, we want to send theresidual ode with undisharged blames to a dynami heker.As we perform symboli simpli�ation rather than evaluation (as in CEKmahine [16℄), we only put a variable in the environment H if it denotes atrivial value. A variable denoting a top-level funtion is not put in H. Variablesin H are inlined by [S-var1℄ while variables not in H are rebuilt by [S-var2℄.RR n° 7794

Hybrid Contrat Cheking 30Eah element on the stak is alled a stak frame where the hole • in a stakframe refers to the expression under simpli�ation or being rebuilt. We use ato represent an expression that has been simpli�ed. the syntax of a stak frame
s in S is

s ::= [] | (• e) :: s | (e •) :: s | (λx.•) :: s | let x = • in e
| (math • with alt) :: s | let x = e in •

| (math e0 with −−−−−−−−−−−−→
K −→x → (•,S,L)) :: sThe transitions [S-app℄, [S-math℄ and [S-K℄ implement the ontext redution inFigure 3. The transitions [S-letL℄, [S-mathL℄, [S-letR℄, [S-mathR℄, [S-math-math℄, [S-math-let℄ implement the onventional simpli�ation rules in Fig-ure 11. Here, −→x abbreviates a sequene of x1, . . . , xn. We use let instead oflambda for easy reading. Rules [letL℄ and [mathL℄ push the argument into thelet-body and math-body respetively. Rules [letR℄ and [mathR℄ push the fun-tion into the let-body and math-body. The rules [math-math℄ and [math-let℄are to make an expression less nested. Rule [K-math℄ allows us to simplifymath Some e with {Some x → 5; None → BAD}(where e is a rash-free expression, not a value) to let x = e in 5 whih isrash-free.What does rebuild do? If the stak is empty ([R-done℄), whih indiates theend of the whole simpli�ation proess, we return the expression. Otherwise,we examine the stakframe. By [E-exn℄, the transitions [R-r-math℄, [R-r-let℄,[R-r-fun℄ and [R-r-arg℄ rebuild UNR (or BAD) with the rest of the stak. After we�nish simplifying one subexpression, we start to simplify another subexpression(e.g. [R-fun℄). When all subexpressions are simpli�ed, we rebuild the expression(e.g. [R-lam℄ and [R-app℄). If urrent simpli�ed expression is a value andwe have stak frame lambda on S, we use [R-beta℄; together with [S-var1℄,they implement a beta-redution [E-beta℄. Bound variables are renamed whenneessary.The logial store L aptures all the tx-info up to the program point beingsimpli�ed. (We use if-expression to save spae, but refer to math-transitions.)Consider:

〈H ||
(λx. if x > 0 then (if x+ 1 > 0then 5 else BAD)else UNR) || [] || ∅〉The [S-lam℄ puts ∀x : int in L, whih is initially empty:

〈H ||

(if x > 0then (if x+ 1 > 0then 5 else BAD)else UNR) || (λx.•) :: [] || ∀x : int〉The [S-math℄ starts to simplify the srutinee x > 0, whih is being rebuilt aftera few trivial steps.
〈〈H || x > 0 ||

(if • then (if x+ 1 > 0then 5 else BAD)else UNR) :: (λx.•) :: [] || ∀x : int〉〉RR n° 7794

Hybrid Contrat Cheking 31Before applying the transition [R-s-save℄, we hek whether x > 0 or not(x >
0) is implied by L to see whether the transition [R-s-math℄ an be applied.The transition [R-s-math℄ implements [E-math℄, where the side ondition�if ∃(K −→x), L ⇒ [[a]](K −→x)" heks if there is any branhK −→x that mathes thesrutinee. But the urrent information in L is not enough to show the validityof either x > 0 or not(x > 0). By [R-s-save℄, we onvert this srutinee to log-ial formula with [[a]](K −→x) (explained later) and put it in L and simplify bothbranhes. Note that, we put x > 0 in L for the true branh while not(x > 0)for the false branh.

[〈H ||
if x+ 1 > 0then 5 else BAD ||

(if x > 0 then •)
:: (λx.•) :: []

||
∀x : int,
x > 0

〉;

〈H || UNR || (if x > 0 else •) :: S || ∀x : int, not(x > 0)〉]In the true branh, after a few steps, we rebuild the srutinee x + 1 > 0.In this ase, ∀x : int, x > 0 ⇒ x+ 1 > 0 is valid. By [R-s-math℄, we take thetrue branh, whih is a onstant 5. As both 5 and UNR annot be simpli�edfurther, we rebuild them by [S-onst℄ and [S-unr℄ respetively and obtain:
[〈〈H || 5 ||

(if x > 0 then •})
:: (λx.•) :: []

||
∀x : int, x > 0,
(x+ 1 > 0)

〉〉;

〈〈H || UNR ||
(if x > 0 else •})
:: (λx.•) :: []

||
∀x : int,
not(x > 0)

〉〉]By [R-math℄, we ombine both simpli�ed branhes to rebuild the math-expression:
〈〈H || if x > 0 then 5 else UNR || (λx.•) :: [] || ∀x : int〉〉We ontinue to rebuild the expression by [R-lam℄:

〈〈H || λx. if x > 0 then 5 else UNR || [] || ∀x : int〉〉and terminate (by [R-done℄) with a syntatially safe expression:
λx. if x > 0 then 5 else UNR.Besides [R-s-save℄, another transition that saves tx-info to L is [R-let-save℄.Consider an example:

λv. let y = v + 1 in if y > v then y else BADAfter a few simpli�ation steps, we have:
〈〈H || v + 1 || (let y = • in if y > vthen y else BAD) :: (λv.•) :: [] || ∀v : int〉〉The rule [R-let-save℄ saves the information y = v + 1 to L, whih allows us tohek the validity of the srutinee y > v later.
〈H ||

if y > vthen yelse BAD ||
(let y = v + 1 in •)
:: (λx.•) :: []

||
∀v : int,
∃y : int,
y = v + 1

〉RR n° 7794

Hybrid Contrat Cheking 32Sine ∀v : int, ∃y : int, y = v + 1 ⇒ y > v is valid, by [R-s-math℄, we onlyneed to simplify the true branh:
〈H || y ||

(let y = v + 1 in •)
:: (λv.•) :: []

||
∀v : int, ∃y : int,
y = v + 1, y > v

〉whih leads to the �nal result λv. let y = v + 1 in y, whih is syntatiallysafe.Theorem 8 (SL mahine terminates). For all expression e, there exists anexpression a suh that 〈∅ || e || [] || ∅〉 ∗ a.Proof. See Appendix B.2.Intuitively, SL mahine behaves like CEK mahine [16℄, but does not inlinetop-level funtions and we do not have loal let re in our language. Wealso all SMT solver Alt-ergo with an option �-stop <time-bound>� or �-steps<bound>� to make sure the SMT solver terminates. So there is no elementausing non-termination.Theorem 9 (Corretness of SL mahine). For all expression e, if 〈∅ || e || [] || ∅〉 ∗

a, then e ≡s a.Proof. See Appendix B.2.The SL is designed in a way suh that the simpli�ed a preserves the semantisof the original expression e. The proof of Therem 9 (in Appendix B.2) uses thefat that, if there exists e3 suh that 〈H || e1 || S || L〉 ∗ 〈H || e3 || S || L〉 and
〈H || e2 || S || L〉 ∗ 〈H || e3 || S || L〉, then e1 ≡s e2.Theorem 10 (Soundness of stati ontrat heking). For all losed expression
e, and losed and terminating ontrat t,

〈∅ || e ⊲ t || [] || ∅〉 ∗ e′ and BAD /∈s e
′ ⇒ e ∈ tProof. By Theorem 9, Lemma 1 and Theorem 3.5.2 LogiizationWe now explain the mysterious onvertion [[.]]f , whih we all logiization. Fig-ure 12 gives the abstrat syntax of the logial formula supported by an SMTsolver named Alt-ergo [8℄, whih is an automati theorem prover for polymor-phi �rst order logi modulo theories. It uses lassial logi and assumes alltypes are inhabited. First, data type delaration in language M, e.g.type 'a list = Nil | Cons of 'a * ('a list)is onverted to Alt-ergo ode with type and logi delarations:type 'a listlogi nil : 'a listlogi ons : 'a , 'a list -> 'a listRR n° 7794

Hybrid Contrat Cheking 33
x, s, i, f ∈ Identifier

file ::= decl1, . . . , decln

bty ::= int | bool | i | 'i | −→bty i Base type

lty ::= bty | ~ty -> bty Logic type

ty ::= α | (ty1, . . . , tyn) s Types

decl ::= type ~'i s
| logi~i : lty | axiom i : φ | goal i : φ

⊕ ::= + | - | * | /
⊙t ::= = | <> | < | <= | > | >=
⊙p ::= -> | <-> | or | and
m ::= n | x | m1 ⊕ m2 | - m | f −→m Term

φ ::= true | false | f −→m Predicate

| m1 ⊙t m2 | φ1 ⊙p φ2 | not(φ)
| forall ~x : ty.φ | exists ~x : ty.φFigure 12: Syntax of logi delarationData type in language M:type −→'a s = K1 of −→

t1 | · · · | Kn of −→
tnCorresponding alt-ergo ode: type −→'a slogiK1 :
−→
t1 -> −→'a s

:logiKn :
−→
tn -> −→'a sFigure 13: Converting data type to Alt-ergo odeAs Alt-ergo supports only �rst order logi (FOL), arguments of a logial funtionare a tuple, e.g. 'a , 'a list. The type variable 'a is assumed universallyquanti�ed at top-level. The onvertion algorithm for an arbitrary user-de�neddata type is in Figure 13.Moreover, we introdue a �rst order funtion type:type ('a, 'b) arrowwhih allows us to enode the funtion type in the langugage M to Alt-ergo's�rst order type where the 'a and 'b refer to a funtion's input type and outputtype respetively. We also introdue a logial funtion apply:logi apply : ('a, 'b) arrow , 'a -> 'bwhere enoding with apply is onventional [22℄. Converting types in the lan-guage M is straight forward (Figure 14).

[[τ1 . . . τn T]] = [[τ1]] . . . [[τn]] T
[[τ1 → τ2]] = ([[τ1]], [[τ2]]) arrowFigure 14: Converting higher order type to �rst order typeRR n° 7794

Hybrid Contrat Cheking 34We now give an example showing that the SL mahine is better than theunrolling approah in [37, 40℄1.(* val len : 'a list -> int *)ontrat len = {x | true} -> {y | y >= 0}let len s = math s with | [℄ -> 0| x::u -> 1 + len u(* val append : 'a list -> 'a list -> 'a list *)ontrat append = {xs | true} -> {ys | true}-> {len rs = len xs + len ys}let append xs ys = math xs with| [℄ -> ys| x::u -> x :: append u ysThe funtion len omputes the length of a list and the funtion append appendstwo lists. Let ea and ta stand for the de�nition and ontrat of append respe-tively. Applying only simpli�ation rules (inluding redution rules) to ea ⊲ ta,we get (R3):
λv1.λv2.math v1 with
| [] → if len v2 = len v1 + len v2 then v2 else BADl1
| x :: u → if (len (x ::

(if len (append u v2) = len u+ len v2then append u v2 else UNR))
= len v1 + len v2)then x :: append u v2 else BADl2The simpli�ation approah in [37℄ and the model heking approah in [32℄involve inlining top-level funtions, while we do not. Instead, we axiomatize top-level funtion de�nitions alled in ontrats and lift expressions under hekingto logi level and onsult an SMT solver. The hanllenge is to deal with non-total expressions (e.g. BAD) in our soure ode. In the literature of onvertingfuntional ode (in an interative theorem prover) to SMT formula [1, 9, 27, 6℄,they onvert expression to a logial form diretly. In [1℄, given a non-reursivefuntion de�nition f = e, they �rst η-expand e to get f = λx1 . . . xn.e

′ where
e′ does not ontain λ; if it is a reursive funtion, they assume e is in a par-tiular form suh that all lambdas are at top-level and the funtion perform-ing an immediate ase-analysis over one of its arguments. Then, they form
∀−→x , f(x1, . . . , xn) = [[e′]] where [[.]] onverts an expression to logial form. (Onthe other hand, [6℄ uses λ-lifting method: λ-abstrations are translated frominside out, eah λ-abstration is replaed by a all to a newly de�ned fun-tions. That is to form ∀−→x , fn(x1, . . . , xn) = [[e′]]; . . . ; ∀x1, f = f1(x1) .) Thisis �ne for onverting total terms, e.g. [[5]] = 5 and [[x]] = x, et., but what are
[[BAD]] and [[UNR]]? Our key idea is not to onvert an expression diretly to aorresponding logial term, but form equality with [[.]]f reursively (de�ned inFigure 15). The subsript f in [[e]]f denotes the expression e. Moreover, weperform neither η-expansion (whih does not preserve semantis in the preseneof non-total terms) nor λ-lifting, and yet we allow arbitrary forms of reursivefuntions. We have suh �exibility beause we onvert λ-abstration and partial1Unrolling approah may suit a lazy language better.RR n° 7794

Hybrid Contrat Cheking 35appliation diretly with the help of apply. (Note that our logiization [[.]]f analso produe HOL formula for interative proving by replaing (apply(f, x))by (f(x)) and not onverting the types.) No logiization work in the litera-ture (inluding [9, 33, 27, 6℄) deal with non-total terms. The work [6℄ usesapproahes in [9, 27℄ to deal with polymorphism while Alt-ergo itself supportspolymorphism.Our framework an systematially generate Alt-ergo ode, like below, toshow that those BADs in R3 are unreahable.logi len: ('a list, int) arrowlogi append: ('a list,('a list,'a list) arrow) arrowaxiom len_def_1 : forall s:'a list. s = nil ->apply(len,s) = 0axiom len_def_2 : forall s:'a list. forall x:'a.forall l:'a list. s = ons(x,l) ->apply(len,s) = 1 + apply(len,l)goal app_1 : forall v1,v2:'a list. v1 = nil ->apply(len,v2) = apply(len,v1) + apply(len,v2)goal app_2 : forall v1,v2,l:'a list.forall x:'a.v1 = ons(x,l) ->apply(len,apply(apply(append,l),v2))= apply(len,l) + apply(len,v2) ->(exists y:'a list. y = apply(apply(append,l),v2)and apply(len,ons(x, y))= apply(len,v1) + apply(len,v2))To make an SMT solver's life easier (i.e. multiple small axioms are better thanone big axiom), we have two axioms for len, one for eah branh, whih areself-explanatory. As a onstrutor is always fully applied, we do not enode itsappliation with apply. The -> (in axioms and goals) is a logial impliation.For example, in the goal app_1, the tx-info v1=nil is from the pattern math-ing math v1 with {[℄ ->}; the query is the srutinee apply(len,v2)= apply(len,v1) + apply(len,v2). Alt-ergo says valid for both goals.First, how to systematially onvert a funtion de�nition to an axiom (e.g.len_def_1)? Figure 15 gives an operator [[.]]f that onverts an expression to alogial formula. The subsript f in [[e]]f denotes the expression e. For example,we an get len_def_1 thus:
[[λs'a list. math s with {Nil → 0}]]len

= ∀s :'a list.[[math s with {Nil → 0}]](apply(len,s))
= ∀s :'a list. ∃x0 :'a list.[[s]]x0

∧
(x0 = nil -> [[0]](apply(len,s)))

= ∀s :'a list. ∃x0 :'a list. x0 = s ∧
(x0 = nil -> apply(len, s) = 0)Let x0 be s, we get a more readable version (axiom len_def_1).RR n° 7794

Hybrid Contrat Cheking 36
⊕ ∈ [+,−, ∗, /] ⊙ ∈ [>,<,=]

[[.]]f : Expression → Formula

[[let (re) f = e]]f = [[e]]f top-level defn
[[BADl]]f =

{

true for axioms
false for goals

[[UNRl]]f = false

[[x]]f = f = x
[[n]]f = f = n

[[eτ1 ⊕ eτ2]]f = ∃x1 : [[τ]], ∃x2 : [[τ]],
([[e1]]x1

∧ [[e2]]x2
∧ f = x1 ⊕ x2)

[[eτ1 ⊙ eτ2]]f = ∃x1 : [[τ]], [[e1]]x1
∧

∃x2 : [[τ]], [[e2]]x2
∧

((x1 ⊙ x2 ∧ f = true)∨
(not(x1 ⊙ x2) ∧ f = false))

[[λxτ .e]]f = ∀x : [[τ]], [[e]](apply(f,x))
[[let xτ = e1 in e2]]f = ∃x : [[τ]], [[e1]]x ∧ [[e2]]f

[[eτ11 eτ22]]f = ∃x1 : [[τ1]], [[e1]]x1
∧

∃x2 : [[τ2]], [[e2]]x2
∧

f = apply(x1, x2)
[[K eτ11 . . . eτnn]]f = ∃x1 : [[τ1]], [[e1]]x1

∧ · · · ∧
∃xn : [[τn]], [[en]]xn

∧ f = K (x1, . . . , xn)

[[
math eτ00 with
−−−−−−−→
K

−→
xτ → e

]]f =
∃x0 : [[τ0]], [[e0]]x0

∧

(
∧

−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ]], (x0 = K −→x) ⇒ [[e]]f)Figure 15: Convert expression to logial formulaTheorem 11 (Logiization for axioms). Given de�nition f = eτ , ∀fv (e), ∃f : τ, [[e]]fis valid.Proof. See Appendix B.1.Next, what query (i.e. goal) shall we make? All we want is to hek thebranh leading to BAD is reahable or not. So our task is to examine thesrutinee of a math-expression. For example, in the goal app_1, the tx-info v1=nil is from the pattern mathing math v1 with {[℄ ->}; thequery is apply(len,v2) = apply(len,v1) + apply(len,v2). The goal app_1states the tx-info L implies the srutinee. We have L = ∀v1 : 'a list, ∀v2 :'a list, v1 = nil by [S-lam℄ and [R-s-save℄. The srutinnee is [[len v2 =len v1 + len v2}]]true. That is, we want to hek whether len v2 = len v1 +len v2 is equivalent to true. Sending the Alt-ergo ode in this paper to Alt-ergosolver, it replies valid for both goals. Thus, we know both BADl1 and BADl2 arenot reahable.Theorem 12 (Logiization for goals: validity preservation). For all (possiblyopen) expression eτ , ∃f : τ , if ∀fv (e) : τ, [[e]]f is valid and e → e′ for some e′,then ∀fv(e′), [[e′]]f is valid.Proof. See Appendix B.1.There are a few things to note about logiization.RR n° 7794

Hybrid Contrat Cheking 37Syntax abbreviation The Alt-ergo syntax
−−−−−−−−−→logi x : lty;

−−−−−−−−−→axiom ai : φi;
−−−−−−−−→goal gj : φjis semantially the same as ∀−−−→x : lty,

−→
φi ⇒

−→
φj where −→

φ means a onjuntion ofa set of logial formulae.Only funtions alled in ontrats are onverted to Alt-ergo axiomsTo hek a funtion (say append) satis�es its ontrat, we do not onvert its de�-nition to axioms. As the wrappers ⊲, ⊳ have inserted ontrat heking obligationappropriately suh that funtion alls (inluding reursive alls) are guarded bytheir ontrats.Crashing funtions alled in ontrats In Figure 15, there are two on-vertions for BAD, true for axioms and false for goals. For example, we mayhave:ontrat g = {x | x /= [℄} -> {y | head x > y}In this ase, the ontrat of g is rash-free even if a partial funtion head isalled in the ontrat. The logiization of head gives:logi head : ('a list, 'a) arrowaxiom head_def_1 : forall x:'a list. x=[℄ -> trueaxiom head_def_2 : forall x,l:'a list.forall y:'a.x = ons(y,l) -> apply(head, x) = yThe key thing is that the axiom head_def_1 is not a false axiom, it just doesnot give us any information, whih is what we want.Contrats that diverge Suppose divergent funtions loop and nloop areused in a ontrat.let re loop x = loop xlet re nloop x = not (nloop x)Logiization gives:logi loop : 'a -> 'aaxiom loop_def_1 : forall x:'a.apply(loop, x) = apply(loop, x)logi nloop : bool -> boolaxiom nloop_def_1 : forall x:bool.apply(nloop, x) = not(apply(nloop, x))Axiom loop_def_1 is same as stating true, whih does not hurt. But axiomnloop_def_1 is same as stating false, whih we must not allow. Fortunately,we only onvert funtions used in ontrats that an be proved terminating (inSetion 4.5) to axioms. We will not generate the axiom nloop_def_1.
RR n° 7794

Hybrid Contrat Cheking 38BAD and UNR For goals, the [[e]]f ollets tx-info before a srutinee of amath-expression, thus, [[BAD]]f = [[UNR]]f = false, whih implies everything. Forexample:fun x -> let y = if x > 0 then x else UNR inif y + 1 > 0 then y + 1 else BADThe tx-info L before y+1 > 0 is ∀x : int, ∃y : int, (x > 0 ⇒ y = x)∧ (not(x >
0) ⇒ false). So L ⇒ y + 1 > 0 is ∀x : int, ∃y : int, (x > 0 ⇒ y = x) ∧ (not(x >
0) ⇒ false) ⇒ y+1 > 0, whih is valid. It means, if not(x > 0) holds, y+1 > 0will not be reahed. Similar reasoning applies if we replae the UNR by BAD inthe above example.5.3 Disussion and preliminary experimentsOne might notie that SL mahine simpli�es terms under lambda and the bodyof math-expression while we do not have suh exeution rules in Figure 3. Aswe rebuild blames and do not inline reursive funtions (i.e. no rashing andno looping during simpli�ation), SL mahine does not violate all-by-valueexeution.

∆(n) = n [D1℄
∆(x) = x if x /∈ dom(∆) or [x 7→ ⊥] ⊆ ∆ [D2℄

∆[x 7→ m](x) = m [D3℄
∆(∃x : ty, x = m ∧ φ1) = ∆[x 7→ ∆(m)](φ1) [D4℄

∆(m1 ⊙t m2) = ∆(m1)⊙t ∆(m2) [D5℄
∆(φ1 ⊙p φ2) = ∆(φ1)⊙p ∆(φ2) [D6℄

∆(∀x : ty. φ1) = ∀x : ty, ∆(φ1) [D7℄Figure 16: Partial elimination of ∃ quanti�ersOne might notie that the logiization generates some existentially quanti�edvariables and simple equalities whih an be easily eliminated. By observingthe onversion in Figure 15, we may enounter some sub-formula in this form:
∃x : ty, x = m ∧ φ, whih an be simpli�ed to φ[m/x]. A simple ∃-eliminationalgorithm in Figure 16 is good enough to eliminate some (but not all) existentialquanti�ers from the formula. The environment ∆ aptures the maping from an
∃-bound variable to a term. For example:

∆(∀y : int, ∃x : int, x = y ∧ (∃x : int, x = 8 ∧ x > 6))
= (By [D7℄)

∀y : int,∆(∃x : int, x = y ∧ (∃x : int, x = 8 ∧ x > 6))
= (By [D4℄)

∀y : int,∆[x 7→ y](∃x : int, x = 8 ∧ x > 6)
= (By [D4℄)

∀y : int,∆[x 7→ 8](x > 6)
= (By [D5℄)

∀y : int,∆[x 7→ 8](x) > ∆[x 7→ 8](6)
= (By [D1℄ and [D0℄)

∀y : int, 8 > 6RR n° 7794

Hybrid Contrat Cheking 39The ∆[x 7→ ∆(m)] means that, if x /∈ dom(∆), we extend the environment
∆ with [x 7→ ∆(m)]; if x ∈ dom(∆), we update x with the term ∆(m). Therest is self-explanatory.Theorem 13 (Corretness of ∃ quanti�ers elimination). For all FOL formula
φ, ∆(φ) is valid if and only if φ is valid.Proof. The only hange to the formula φ is to substitute the existentially quan-ti�ed x by m. Sine we have the equality x = m and the onjuntion, it isimmediate that the substitution is orret.One might worry that the rule [math-math℄ auses exponential ode ex-plosion for stati analysis (although no run-time overhead). For example, h1 =if (if a then b else c) then d else e, where a, b, c, d, e are expressions. At pro-gram point d, the tx-info is (a ⇒ b) ∧ (not(a) ⇒ c)2. Applying [math-math℄to h1, we get: h2 = if a then (if b then d else e) else (if c then d else e).The d is dupliated and the tx-info for the �rst d is a ∧ b while for the seond
d is not(a)∧ c. With [math-math℄, we send smaller formula to an SMT solver(whih is good for an SMT solver), but we may ommuniate with the SMTsolver more often. From our urrent observation, it is quite often that the c isBAD or UNR, the SL mahine immediately rebuilds the blame with the rest of thestak, and we get: if a then (if b then d else e) else c. So d is not dupliatedand we have smaller formula for the SMT solver.One advantage of the SL mahine is to allow adding or removing a rule easily.In the in example in �2, with rule [mathR℄, we an simplify

(λv.v + 1) (if x1 > 0 then x1 else UNR?)to if x1 > 0 then (λv.v + 1) x1 else (λv.v + 1) UNR?. As the variable x1and the ontrat exeption UNR? are values, performing beta-redution, we get:if x1 > 0 then x1 + 1 else UNR?. Now, we have a logial formula (denoted byQ2):
∃y, (x1 > 0 ⇒ y = x1 + 1) ∧ (not(x1 > 0) ⇒ false) [Q2℄whih is equivalent but smaller than the Q1 in �2.We have implemented a prototype3 based on the soure ode of oaml-3.11.2. Table 1 shows the results of preliminary experiments, whih are done ona PC running Ubuntu Linux with quadore 2.93GHz CPU and 3.2GB memory.We take some examples from [25℄ and OCaml stdlib and time the stati heking.The olumn Ann gives the LOC for ontrat annotations.The preliminary result is promising: it heks a hundred lines of ode (LOC)in a few seonds. This paper fouses on the theory of hybrid ontrat heking,we leave more optimization and rigorous experimentation on tuning the strengthof symboli simpli�ation and the frequeny of alling an SMT solver as futurework.2To illustrate the idea with less luttered form, we omit the onversion notation [[.]]f for a,

b, c, d, e.3http://gallium.inria.fr/�naxu/researh/h.html
RR n° 7794

Hybrid Contrat Cheking 40Table 1: Results of preliminary experimentsprogram total LOC Ann LOC Time (se)intro123, neg 23 4 0.08MCarthy's 91 4 1 0.02ak, fhnhn 12 2 0.06arith, sum, max 26 4 0.20zipunzip 12 2 0.10OCaml stdlib/list.ml 81 16 0.726 Hybrid ontrat hekingWe have explained with examples how SCC, DCC, HCC work in Setion 2.Programmers may hoose to have SCC only, DCC only, or HCC. In this setion,we summarize their algorithm. Given a program fi ∈ ti, fi = ei for 1 ≤ i ≤ n.Suppose fi is the urrent funtion under ontrat heking; fj is a funtion alledin fi (inluding fi's reursive all); sl is the SL mahine; rmUNR implements therule [rmUNR℄ (mentioned earlier in Setion 2).
(if e0 then e1 else UNR) =⇒ e1 [rmUNR]We have: [SCC℄ : sl(ei[(fj ⊳fjfi tfj)/fj] ⊲fi? t)[DCC℄ : ei[(fj

BADfj
⊲⊳BADfi tfj)/fj][HCC℄ : fi♯ = λ?.rmUNR(sl(ei[((fj♯ “fi”) ⊳fjfi tfj)/fj] ⊲fi? t))In [HCC℄, the residual ode fi♯'s parameter �?" waits for a aller's name. Forexample, if an STM solver annot prove the goal app_2 in Setion 5.2 (althoughit an), realling R3 in Setion 5.2, the residual ode append♯ is:

λ?.λv1.λv2.math v1 with
| [] → v2;
| x :: l → if len (x :: append t v2) = len v1+len v2then x :: append t v2 else BADlwhih says that we only have to hek postondition for the seond branh. (Ifall BADs are simpli�ed away during SCC, a residual ode of a funtion is itsoriginal de�nition.)Lemma 12 (Telesoping property [7, 39℄). For all expression e, total ontrat

t, blames r1, r2, r3, r4, (e
r1
⊲⊳
r2

t)
r3
⊲⊳
r4

t = e
r1
⊲⊳
r4

t.Preondition of a funtion is heked at aller sites. An fj♯ is the simpli�ed
fj ⊲

fj
fi
tfj , inspeting [HCC℄, eah fj at aller sites is replaed by (fj ⊲

fj
fi
tfj)⊳

fj
fi
tfj ,whih is (fj BADfj

⊲⊳UNRfi tfj) UNRfj
⊲⊳BADfi tfj . By the telesoping property, we have:

(fj
BADfj
⊲⊳UNRfi tfj) UNRfj

⊲⊳BADfi tfj = fj
BADfj
⊲⊳BADfi tfj [T1℄RR n° 7794

Hybrid Contrat Cheking 41whih is the same as in DCC. This shows that [HCC℄ blames f if and only if[DCC℄ blames f .Moreover, [T1℄ justi�es the orretness of applying the rule [rmUNR℄ beauseall UNRs are indeed unreahable as BADl is invoked before UNRl for the same l.That is, (if p then e1 else BADl) is invoked before (if p then e else UNRl)for the same p, maybe di�erent e. So it is safe to apply the rule [rmUNR℄even if p diverges or rashes beause the same p in (if p then e1 else BAD)diverges or rashes �rst. It is easy to see if t = {x | p}. If t = t1 → t2, then
(e

BADfj
⊲⊳UNRfi t1 → t2)

UNRfj
⊲⊳BADfi t1 → t2 expands to

λv2.((λv1.(e (v1
UNRfi
⊲⊳BADfj t1))

BADfj
⊲⊳UNRfi t2) (v2 BADfi

⊲⊳UNRfj t1))
UNRfj
⊲⊳BADfi t2Fousing on the BADs and UNRs above ⊲⊳, inspeting [P1℄ and [P2℄ in Figure 6,we an see that BADfj is invoked before UNRfj and BADfi is invoked before UNRfi .7 Related workContrat semantis were �rst formalized in [7, 12℄ for a strit language and laterin [39℄ for a lazy language. This paper adapt and re-formalize some of theirideas on ontrat satisfation and ontrat heking. Detailed design defereneis explained in �4.Pre/post-ondition spei�ation using logial formulae [18, 15, 2, 33℄ allowsprogrammers to existentially quantify over in�nite domains or express meta-properties that are not expressible in ontrats. However, suh property annotbe onverted to program ode for dynami heking. As automati stati hek-ing always has its limitation, being able to onvert some di�ult heks todynami heks is pratial. Re�nement types and ontrats an be enhanedin many ways like we did for types, e.g. subontrat relation [12, 40℄, reur-sive ontrats [7℄, polymorphi ontrats [3℄. Contrats also enjoy interestingmathematial properties [7, 12, 39, 38℄. We like the idea of ghost re�nementin [35℄ that separates properties that an be onverted to program ode fromthe meta-properties logial formulae.One might reall the hybrid re�nement type heking (HTC) [14, ?℄. In the-ory, [17℄ shows that (piky/indy, i.e. our) ontrat heking is able to give moreblame than re�nement type heking in the presene of higher order dependentfuntion ontrats. That is partly why [35℄ invents a Kind heker to reportill-formed re�nement types. As disussed in �4.3, we hek e ⊲ t to be rash-freein one-go and do not have to hek t to be rash-free separately. In pratie, the

H and L in the SL mahine serve the similar purpose as the typing environmentin HTC. But the symboli simpli�ation gives more �exibility suh as teasingout the path sensitivity analysis with the rule [math-math℄, et. We hopethis work opens a venue to ompare HCC and HTC in pratie, suh as thekind of properties we an verify, the speed of stati heking, the size and speedof the residual ode generated, et. Notably, VeriFast [?℄ (for verifying C andJava ode) suggests that symboli exeution is faster than veri�ation onditiongeneration method [15, 2℄.The work [23℄ mixes type heking and symboli exeution. However, [23℄requires programmers to plae blok annotations {t t} for type heking andRR n° 7794

Hybrid Contrat Cheking 42
{s s} for symboli exeution while our SL mahine systematially simpli�essubterms and onsults the logial store for heking at the appropriate programpoint. The [23℄ does not generate residual ode while we do. Moreover, theirsymboli expression is in linear arithmetis, whih is more restritive than ours.Our approah is di�erent from [35℄, whih extrats proofs of re�nement typesfrom an SMT solver and injets them as terms in the generated byteode RDCIL(like proof arrying ode) during re�nement type heking. It is for seuritypurpose.Some work [31, 24, 32, 25℄ suggest to onvert program to higher order re-ursive sheme (HORS), whih generates (possibly in�nite) trees, and speifyproperties in a form of trivial automaton and do model heking to know whetherHORS satis�es its desired property. Our approahes are ompletely di�erent al-though we both do reahability heking. They work on automaton while wework on program diretly. Our approah is modular (no top-level funtion isinlined) while theirs is not. They deal with loal let re (i.e. invariant infer-ene) while we do not, but we ould infer loal ontrat with method in [21℄or inline the loal let re funtion for a �xed number of times. They deal withprotool heking while we do not unless a protool heking problem an beonverted to heking the reahability of BAD. SL mahine (in �5) an be usedfor any problem that heks the reahability of BAD in general.The ontextual information synthesis and onversion of expression to logialformula is inspired by the use of the appliation • in [20, 19℄, whih makesonversion of higher order funtions easier. But we use the tehnique in di�erentontexts.Many papers on program veri�ation [36, 15, 2, 30, 29, 11℄ fous on mem-ory leak, array bound heks, et. and few handle higher order funtions andreursive prediates. Our work fous on more advaned properties and blamepreisely funtions at fault. Contrat heking in the imperative world is leadby [11℄, whih statially heks ontrat satisfation at byteode CIL level andrun dynami heking separately. Residualization has not been done in [11℄.We may adapt some ideas in [?℄ to extend our framework for program with sidee�ets.8 ConlusionWe have formalized a ontrat framework for a pure strit higher order subsetof OCaml. We propose a natural integration of stati ontrat heking anddynami ontrat heking. With SL mahine, our approah gives preise blameat both ompile-time and run-time in the presene of higher order funtions. Innear future, besides rigorous experimentation and ase-studies, we plan to adduser-de�ned exeptions; allow side-e�ets in program and hidden side-e�ets inontrats; do ontrat or invariant inferene as [11, 29, 21℄ are inspiring.Aknowledgement I would like to thank Xavier Leroy, Franois Pottier,Niolas Pouillard, Martin Berger, Simon Peyton Jones and Mihael Greenbergfor their feedbak.
RR n° 7794

Hybrid Contrat Cheking 43Referenes[1℄ Niolas Ayahe and Jean-Christophe Filliatre. Combining the Coq proofassistant with �rst-order deision proedures. Unpublished, 2006.[2℄ Mike Barnett, K. Rustan M. Leino, and Wolfram Shulte. The Spe#programming system: An overview. CASSIS, LNCS 3362, 2004.[3℄ João Filipe Belo, Mihael Greenberg, Atsushi Igarashi, and Benjamin C.Piere. Polymorphi ontrats. In Gilles Barthe, editor, ESOP, volume6602 of Leture Notes in Computer Siene, pages 18�37. Springer, 2011.[4℄ Amir M. Ben-Amram and Chin Soon Lee. Program termination analysis inpolynomial time. ACM Trans. Program. Lang. Syst., 29:5:1�5:37, January2007.[5℄ Jesper Bengtson, Karthikeyan Bhargavan, Cédri Fournet, Andrew D. Gor-don, and Sergio Ma�eis. Re�nement types for seure implementations.ACM Trans. Program. Lang. Syst., 33:8:1�8:45, February 2011.[6℄ Jasmin Christian Blanhette, Sasha Böhme, and Lawrene C. Paulson.Extending sledgehammer with smt solvers. In Nikolaj Bjørner and VioriaSofronie-Stokkermans, editors, CADE, volume 6803 of Leture Notes inComputer Siene, pages 116�130. Springer, 2011.[7℄ Matthias Blume and David A. MAllester. Sound and omplete models ofontrats. J. Funt. Program., 16(4-5):375�414, 2006.[8℄ Sylvain Conhon, Evelyne Contejean, and Johannes Kanig. Ergo : a theo-rem prover for polymorphi �rst-order logi modulo theories, 2006.[9℄ Jean-François Couhot and Stéphane Lesuyer. Handling polymorphism inautomated dedution. In Frank Pfenning, editor, CADE, volume 4603 ofLeture Notes in Computer Siene, pages 263�278. Springer, 2007.[10℄ Christos Dimoulas, Robert Brue Findler, Corma Flanagan, and MatthiasFelleisen. Corret blame for ontrats: no more sapegoating. In Proeed-ings of the 38th annual ACM SIGPLAN-SIGACT symposium on Priniplesof programming languages, POPL '11, pages 215�226, New York, NY, USA,2011. ACM.[11℄ Manuel Fähndrih and Franeso Logozzo. Stati ontrat heking withabstrat interpretation. In Bernhard Bekert and Claude Marhé, editors,FoVeOOS, volume 6528 of Leture Notes in Computer Siene, pages 10�30.Springer, 2010.[12℄ Robert Brue Findler and Matthias Blume. Contrats as pairs of pro-jetions. In Funtional and Logi Programming, pages 226�241. SpringerBerlin / Heidelberg, 2006.[13℄ Robert Brue Findler and Matthias Felleisen. Contrats for higher-orderfuntions. In ICFP '02: Proeedings of the seventh ACM SIGPLAN inter-national onferene on Funtional programming, pages 48�59, New York,NY, USA, 2002. ACM Press.RR n° 7794

Hybrid Contrat Cheking 44[14℄ Corma Flanagan. Hybrid type heking. In POPL '06: Conferene reordof the 33rd ACM SIGPLAN-SIGACT symposium on Priniples of program-ming languages, pages 245�256, New York, NY, USA, 2006. ACM Press.[15℄ Corma Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,James B. Saxe, and Raymie Stata. Extended stati heking for Java. InPLDI '02: Proeedings of the ACM SIGPLAN 2002 Conferene on Pro-gramming language design and implementation, pages 234�245, New York,NY, USA, 2002. ACM Press.[16℄ Corma Flanagan, Amr Sabry, Brue F. Duba, and Matthias Felleisen.The essene of ompiling with ontinuations. In Proeedings of the ACMSIGPLAN 1993 onferene on Programming language design and imple-mentation, PLDI '93, pages 237�247, New York, NY, USA, 1993. ACM.[17℄ Mihael Greenberg, Benjamin C. Piere, and Stephanie Weirih. Contratsmade manifest. In Proeedings of the 37th annual ACM SIGPLAN-SIGACTsymposium on Priniples of programming languages, POPL '10, pages 353�364, New York, NY, USA, 2010. ACM.[18℄ C. A. R. Hoare. An axiomati basis for omputer programming. Commun.ACM, 12:576�580, Otober 1969.[19℄ Kohei Honda, Martin Berger, and Nobuko Yoshida. Desriptive and relativeompleteness of logis for higher-order funtions. In Mihele Bugliesi, BartPreneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP (2), volume4052 of Leture Notes in Computer Siene, pages 360�371. Springer, 2006.[20℄ Kohei Honda and Nobuko Yoshida. A ompositional logi for polymorphihigher-order funtions. In PPDP '04: Proeedings of the 6th ACM SIG-PLAN international onferene on Priniples and pratie of delarativeprogramming, pages 191�202, New York, NY, USA, 2004. ACM Press.[21℄ Ranjit Jhala, Rupak Majumdar, and Andrey Rybalhenko. Hm: Verifyingfuntional programs using abstrat interpreters. In the 15th internationalonferene on Computer Aided Veri�ation CAV, pages 262�274, 2011.[22℄ Manfred Kerber. How to prove higher order theorems in �rst order logi.In IJCAI, pages 137�142, 1991.[23℄ Yit Phang Khoo, Bor-Yuh Evan Chang, and Je�rey S. Foster. Mixing typeheking and symboli exeution. In Proeedings of the 2010 ACM SIG-PLAN onferene on Programming language design and implementation,PLDI '10, pages 436�447, New York, NY, USA, 2010. ACM.[24℄ Naoki Kobayashi. Types and higher-order reursion shemes for veri�a-tion of higher-order programs. In Proeedings of the 36th annual ACMSIGPLAN-SIGACT symposium on Priniples of programming languages,POPL '09, pages 416�428, New York, NY, USA, 2009. ACM.[25℄ Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. Prediate abstra-tion and egar for higher-order model heking. In Proeedings of the 32ndACM SIGPLAN onferene on Programming language design and imple-mentation, PLDI '11, pages 222�233, New York, NY, USA, 2011. ACM.RR n° 7794

Hybrid Contrat Cheking 45[26℄ Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-hange priniple for program termination. In Proeedings of the 28th ACMSIGPLAN-SIGACT symposium on Priniples of programming languages,POPL '01, pages 81�92, New York, NY, USA, 2001. ACM.[27℄ K. Rustan M. Leino and Philipp Rümmer. A polymorphi intermediateveri�ation language: Design and logial enoding. In Javier Esparza andRupak Majumdar, editors, TACAS, volume 6015 of Leture Notes in Com-puter Siene, pages 312�327. Springer, 2010.[28℄ Bertrand Meyer. Ei�el: the language. Prentie-Hall, In., Upper SaddleRiver, NJ, USA, 1992.[29℄ Matthew Might. Logi-�ow analysis of higher-order programs. In Proeed-ings of the 34th annual ACM SIGPLAN-SIGACT symposium on Priniplesof programming languages, POPL '07, pages 185�198, New York, NY, USA,2007. ACM.[30℄ Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphismand separation in Hoare type theory. In John H. Reppy and Julia L. Lawall,editors, ICFP, pages 62�73. ACM, 2006.[31℄ C.-H. Luke Ong. On model-heking trees generated by higher-order reur-sion shemes. In LICS, pages 81�90. IEEE Computer Soiety, 2006.[32℄ C.-H. Luke Ong and Steven James Ramsay. Verifying higher-order fun-tional programs with pattern-mathing algebrai data types. In Proeedingsof the 38th annual ACM SIGPLAN-SIGACT symposium on Priniples ofprogramming languages, POPL '11, pages 587�598, New York, NY, USA,2011. ACM.[33℄ Yann Régis-Gianas and François Pottier. A hoare logi for all-by-valuefuntional programs. In Philippe Audebaud and Christine Paulin-Mohring,editors, MPC, volume 5133 of Leture Notes in Computer Siene, pages305�335. Springer, 2008.[34℄ Damien Sereni and Neil D. Jones. Termination analysis of higher-orderfuntional programs. In Kwangkeun Yi, editor, APLAS, volume 3780 ofLeture Notes in Computer Siene, pages 281�297. Springer, 2005.[35℄ Nikhil Swamy, Juan Chen, Cedri Fournet, Pierre-Yves Strub, KarthikeyanBhargavan, and Jean Yang. Seure distributed programming with value-dependent types. In Proeedings of the 16th ACM SIGPLAN internationalonferene on Funtional programming, 2011.[36℄ Hongwei Xi and Frank Pfenning. Dependent types in pratial program-ming. In POPL '99: Proeedings of the 26th ACM SIGPLAN-SIGACTsymposium on Priniples of programming languages, pages 214�227, NewYork, NY, USA, 1999.[37℄ Dana N. Xu. Extended stati heking for haskell. In Proeedings of theACM SIGPLAN workshop on Haskell, pages 48�59, New York, NY, USA,2006.RR n° 7794

Hybrid Contrat Cheking 46[38℄ Dana N. Xu. Hybrid ontrat heking. INRIA researh report, 2011.[39℄ Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Stati ontratheking for Haskell. In Proeedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Priniples of programming languages, POPL '09,pages 41�52, New York, NY, USA, 2009. ACM.[40℄ Na Xu. Stati Contrat Cheking for Haskell. Ph.D. thesis, August 2008.A Proof for the main theoremThe proof in this Setion is similar to the one in [40℄ but for a all-by-valuelanguage.
|.| :: Contract → Int

|{x | p}| = 1
|x : t1 → t2| = |t1|+ |t2|+ 1
|(t1, t2)| = |t1|+ |t2|+ 1
|Any| = 1Figure 17: Size of ContratAs some of the proofs involve the strutural indution on the size of ontrat,we de�ne it in Figure 17. To make the proof look less lustered, we use thefollowing shorthands:

cf : rash-free
ss : syntatially safedefn : de�nition
cl : losed
tl : total

T2

L3 L8 L4L15

t = t 1

T13 T12 L7

L18

L17

t = t 1

L14 L20 L19

L21 L22

T14

T15

L16

T16

Figure 18: Dependeny of Theorems and Lemmas in Appendix ATo make the dependeny of theorems and lemmas lear, a dependeny dia-gram is shown in Figure 18. For many theorems and lemmas, we prove themby indution on the size of ontrat t. The dashed direted edge shows thatthe size of the ontrat dereases, i.e. for a funtion ontrat x : t1 → t2, weRR n° 7794

Hybrid Contrat Cheking 47all another lemma (or theorem) with t = t1 or t = t2. The solid direted edgeshows the size of the ontrat is preserved. This makes the proof well-foundedeven though there are yles in the dependenies (examined in Setion A.3).Theorem 2 (Soundness and Completeness of Contrat Cheking (grandtheorem)) For all losed expression eτ , losed and total ontrat tτ ,
(e ⊲ t) is rash-free ⇐⇒ e ∈ tThere are two diretions to be proved:� e ∈ t ⇒ e ⊲ t is rash-free. The di�ulty lies in the proof for dependentfuntion ontrats. We appeal to a key lemma (Lemma 14p53 [Key lemma℄in Setion A.2).� e⊲t is rash-free ⇒ e ∈ t. The di�ulty also lies in the proof for dependentfuntion ontrats. We appeal to three things:� de�nition and properties of rashes-more-often (De�nition 7p14, Lemma 7p15).� projetion pair property of ⊲ and ⊳ (Theorem 15p55 in Setion A.5);� ongruene of rashes-more-often (Theorem 14p55 in Setion A.4).Proof. The notation eτ and tτ mean that both the expression e and the ontrat

t are well-typed and they have the same type τ . The proof begins by dealingwith two speial ases:� Case e →∗ BAD: We prove the two diretions separately.(⇒)
e ⊲ t is f

⇒ (By Lemma 3p13 (preservation of rash-freeness)and Lemma 8p21(b) (about Any))
t = Any

⇒ (By defn of ∈, every expression satis�es Any)
e ∈ t(⇐)
e ∈ t

⇒ (By Lemma 3p13 (preservation of rash-freeness)and Lemma 8p21(a) (about Any))
t = Any

⇒ (By defn of ⊲)
e ⊲ Any is rash-free� Case e ↑: By inspeting the de�nition of ⊲ and ∈, for all t, if e ↑, then

(e ⊲ t)↑ and e ∈ t. Thus, we are done.Hene, for the rest of the proof, we assume that e →∗ val 6∈ {BAD, UNR}.The rest of the proof is by indution on the size of t.
RR n° 7794

Hybrid Contrat Cheking 48� Case t is {x | p}:
e ⊲ {x | p} is cf

⇐⇒ (By defn of ⊲)

let x = e inmath p with
| true → x
| false→ BAD

is cf
⇐⇒ (Sine e →∗ val 6∈ {BAD, UNR})

e is cf and p 6→∗ {BAD, false}
⇐⇒ (By defn of ∈)

e ∈ {x | p}� Case t is x : t1 → t2: we want to prove that
(e ⊲ x : t1 → t2) is f ⇐⇒ e ∈ x : t1 → t2We have the following indution hypotheses:

∀cl e1, e1 ⊲ t1 is f ⇐⇒ e1 ∈ t1 [IH1]
∀cl e2, cl tl e′. e2 ⊲ t2[e′/x] is f ⇐⇒ e2 ∈ t2[e

′/x] [IH2]We have the following proof:
e ⊲ x : t1 → t2 is f.

⇐⇒ (By defn of ⊲)let y = e in λx1.(y (x1 ⊳ t1)) ⊲ t2[(x1 ⊳ t1)/x] is f.
⇐⇒ (Sine e →∗ val 6∈ {BAD, UNR})

λx1. (e (x1 ⊳ t1)) ⊲ t2[(x1 ⊳ t1)/x] is f.
⇐⇒ (By Lemma 4p13 (rash-free funtion))
(†) ∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is f.Now the proof splits into two. In the reverse diretion, we start with theassumption e ∈ x : t1 → t2:
e ∈ x : t1 → t2

⇐⇒ (By defn of ∈)
∀ e1 ∈ t1. (e e1) ∈ t2[e1/x]

⇒ (By Lemma 14p53 (Key lemma), let e1 = e′ ⊳ t1)
∀cf e′. (e (e′ ⊳ t1)) ∈ t2[(e

′ ⊳ t1)/x])

⇐⇒ (By [IH2℄)
(†) ∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is f.Now we have reahed the desired onlusion (†). The key step is the useof Lemma 14p53 (Key lemma) (see Setion A.2).
RR n° 7794

Hybrid Contrat Cheking 49In the forward diretion, we start with (†):
∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is f.
⇒ (By [IH1℄, e1 ∈ t1 ⇒ (e1 ⊲ t1) is cf so we replae e′ by e1 ⊲ t1)

∀e1 ∈ t1. (e ((e1 ⊲ t1) ⊳ t1)) ⊲ t2[(e1 ⊲ t1 ⊳ t1)/x] is f
⇒ (By (Theorem 15p55 (projetion pair) andTheorem 14p55 (ongruene of �) andLemma 7p15 () (property of �)) twie)

∀e1 ∈ t1. (e e1) ⊲ t2[e1/x]) is f
⇒ (By [IH2℄)

∀ e1 ∈ t1. (e e1) ∈ t2[e1/x])

⇐⇒ (by de�nition of ∈)
e ∈ x : t1 → t2There are two key steps: one is to hoose a partiular rash-free e′, namely

(e1 ⊲ t1) where e1 ∈ t1; the other one is the appeal to Theorem 15p55, theprojetion pair property of ⊲ and ⊳ (see Setion A.5).� t is (x : t1, t2): We have the following indution hypotheses:
∀cl e1. e1 ⊲ t1 is f ⇐⇒ e1 ∈ t1 [IH1]
∀cl e2, cl tl e′. e2 ⊲ t2[e′/x] is f ⇐⇒ e2[e

′/x] ∈ t2[e
′/x] [IH2]We prove it as follows.

e ⊲ (x : t1, t2) is cf
⇐⇒ (By defn of ⊲)math e with {(x1, x2) → (x1 ⊲ t1, x2 ⊲ t2[x1 ⊳ t1/x])} is cf
⇐⇒ (By [E-math℄ and defn of f)

e →∗ (e1, e2) and e1 and e2 are cf and
(e1 ⊲ t1) is cf and (e2 ⊲ t2[e1 ⊳ t1/x]) is cf

⇐⇒ (By [IH1℄)
(†) e →∗ (e1, e2) and e1 and e2 are cf and

e1 ∈ t1 and (e2 ⊲ t2[e1 ⊳ t1/x]) is cfNow the proof splits into two. In the forward diretion, we start with (†):
(†) e →∗ (e1, e2) and e1 and e2 are cf and

e1 ∈ t1 and e2 ⊲ t2[e1 ⊳ t1/x] is cf
⇒ (By Lemma 16p57 (Conditional projetion) (a) andTheorem 14p55 (ongruene of �) andLemma 7p15 () (property of �))

e →∗ (e1, e2) and e1 ∈ t1 and e2 ⊲ t2[e1/x] is cf
⇐⇒ (By [IH1℄ and [IH2℄)

e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2[e1/x]

⇐⇒ (By de�nition of ∈)
e ∈ (x : t1, t2)The key step is the use of Lemma 16p57 (a) (see Setion A.6).RR n° 7794

Hybrid Contrat Cheking 50Now we prove the reverse diretion. We use the fat that (x : t1, t2) istotal. By de�nition of total ontrat, t1 is total and for all e ∈ t1, t2[e/x]is total.We have:
e ∈ (x : t1, t2)

⇐⇒ (By de�nition of ∈)
e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2[e1/x]

⇐⇒ (By Lemma 14p53 (Key lemma), let e1 = e′ ⊳ t1)
e →∗ (e1, e2) and e1 ∈ t1 and ∃cf e′, e2 ∈ t2[e

′ ⊳ t1/x]

⇐⇒ (By [IH1℄)
e →∗ (e1, e2) and e1 ⊲ t1 is cf and ∃cf e′, e2 ∈ t2[e

′ ⊳ t1/x]

⇒ (e1 ⊲ t1 is f and by [IH2℄)
e →∗ (e1, e2) and e1 ⊲ t1 is cf and e2 ⊲ t2[e1 ⊲ t1 ⊳ t1/x] is cf

⇐⇒ (By Lemma 15p56 (Idempoteny)Theorem 14p55 (ongruene of �) andLemma 7p15 () (property of �))
e →∗ (e1, e2) and e1 ⊲ t1 is cf and e2 ⊲ t2[e1 ⊲ t1 ⊳ t1 ⊳ t1/x] is cf

⇐⇒ (By Theorem 15p55 (Projetion pair), e1 ⊲ t1 ⊳ t1 � e1,Theorem 14p55 (ongruene of �) andLemma 7p15 () (property of �))
e →∗ (e1, e2) and e1 ⊲ t1 is cf and e2 ⊲ t2[e1 ⊳ t1/x] is cfThe key steps are using Lemma 14p53 (Key lemma), apply Lemma 15p56(Idempoteny) and use Theorem 15p55 (Projetion pair).� t is Any: We have:

e ⊲ Any is cf
⇐⇒ (By de�nition of ⊲)UNR is cf
⇐⇒ (By de�nition of ∈, and UNR ∈ Any)

e ∈ AnyA.1 Telesoping PropertyThe telesoping property is adapted from [7℄ and we found that this propertymakes the proofs of many lemmas shorter. However, it is not used in any proofin [7℄.Lemma 13 (Telesoping Property). For all expression e, and total ontrat t,
(e

r1
⊲⊳
r2

t)
r3
⊲⊳
r4

t = e
r1
⊲⊳
r4

tProof. Before we start the proof, by de�nition of let, [E-exn℄ and [E-math℄,we know two fats:RR n° 7794

Hybrid Contrat Cheking 51[Fat1℄ ∀e′. (let x = BAD in e′) → BAD[Fat2℄ ∀alts, (math BAD with alts) → BADThe proof begins by dealing with two speial ases.� Case e →∗ BAD: Based on [Fat1℄ and [Fat2℄, for all t 6= Any, by in-speting the de�nition of ⊲⊳, we know (e
ri
⊲⊳
rj

t) →∗ BAD for all i, j. SoLHS=RHS=BAD for t 6= Any. In the ase t = Any, we have:
(e

r1
⊲⊳
r2

Any) r3
⊲⊳
r4

Any
= r2

r3
⊲⊳
r4

Any
= r4

= e
r3
⊲⊳
r4

Any� e↑. Similar to the arguments in the ase e →∗ BAD.Hene for the rest of the proof we assume that e →∗ val 6∈ {BAD, UNR}.The rest of the proof is by indution on the size of t.� t is {x | p}:
(e

r1
⊲⊳
r2

{x | p})
r3
⊲⊳
r4

{x | p}

= (By de�nition of ⊲⊳)let x =
(let x = e in if p then x else r1

)in if p then x else r3
= (We �oat let x = e out)let x = e in if p then (let x = x in if p then x else r3)else (let x = r1 in if p then x else r3)
= (This is not let re, so inline x in the then branh.By [E-beta℄ and [Fat1℄.)let x = e in if p then (if p then x else r3)else r1
= (propagating the true value of p to sub-branhes)let x = e in if p then xelse r1
= (By defn of ⊲⊳)

e
r1
⊲⊳
r4

t� t is x : t1 → t2: We have the following indution hypotheses:
∀e, tl t1, (e

r1
⊲⊳
r2

t1)
r3
⊲⊳
r4

t1 = e
r1
⊲⊳
r4

t1 [IH1℄
∀e, e′ ∈ t1, tl t2[e

′/x], (e
r1
⊲⊳
r2

t2[e
′/x])

r3
⊲⊳
r4

t2[e
′/x] = e

r1
⊲⊳
r4

t2[e
′/x] [IH2℄

RR n° 7794

Hybrid Contrat Cheking 52We have the following proof:
(e

r1
⊲⊳
r2

x : t1 → t2)
r3
⊲⊳
r4

x : t1 → t2

= (By defn of ⊲⊳)let y = e
r1
⊲⊳
r2

x : t1 → t2 in λx1. (y (x1
r4
⊲⊳
r3

t1))
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x]

= (By defn of ⊲⊳ again)let y = e in let y = λx2. ((y (x2
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x2
r2
⊲⊳
r1

t1)/x]) in
λx1. ((y (x1

r4
⊲⊳
r3

t1))
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x])

= (By β-redution)let y = e in
λx1. ((y ((x1

r4
⊲⊳
r3

t1)
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r3

t1
r2
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x]

= (By indution hypothesis with t = t1)let y = e in λx1. ((y (x1
r4
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x]

= (By all-by-value, ri in t2 (for all i) are not reahable, replae r3 by r1)let y = e in λx1. ((y (x1
r4
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x]

= (By indution hypothesis [IH2℄: t = t2[(x1
r4
⊲⊳
r1

t1)/x]

t2[(x1
r4
⊲⊳
r1

t1)/x] is tl beause ri in t2 (for all i) are not reahable)let y = e in λx1. (y (x1
r4
⊲⊳
r1

t1))
r1
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x]

= (By defn of ⊲⊳)
e

r1
⊲⊳
r4

x : t1 → t2Although the β-redution is done in the body of a let-expression, it isvalid beause we know e →∗ val /∈ {BAD, UNR} and it does not violateall-by-value exeution.� t is (x : t1, t2): We have the following indution hypotheses:
∀e, tl t1, (e

r1
⊲⊳
r2

t1)
r3
⊲⊳
r4

t1 = e
r1
⊲⊳
r4

t1 [IH1℄
∀e, e′ ∈ t1, tl t2[e

′/x], (e
r1
⊲⊳
r2

t2[e
′/x])

r3
⊲⊳
r4

t2[e
′/x] = e

r1
⊲⊳
r4

t2[e
′/x] [IH2℄

RR n° 7794

Hybrid Contrat Cheking 53We have the following proof:
(e

r1
⊲⊳
r2

(x : t1, t2))
r3
⊲⊳
r4

(x : t1, t2)

= (By defn of ⊲⊳)

(math e with (x1, x2) → (x1
r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x]))
r3
⊲⊳
r4

(x : t1, t2)

= (By defn of ⊲⊳ again)math (math e with (x1, x2) → (x1
r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])) with
(x3, x4) → (x3

r3
⊲⊳
r4

t1, x4
r3
⊲⊳
r4

t2[(x3
r4
⊲⊳
r3

t1)/x])

= (By simpl rule [math-math℄ and [E-math℄)math e with
(x1, x2) → ((x1

r1
⊲⊳
r2

t1)
r3
⊲⊳
r4

t1, (x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r1
⊲⊳
r2

t1
r4
⊲⊳
r3

t1)/x])

= (By indution hypothesis [IH1℄.math e with
(x1, x2) → (x1

r1
⊲⊳
r4

t1, (x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r1
⊲⊳
r3

t1)/x])

= (Due to x1
r1
⊲⊳
r4

t1, for all i, j, the ri, rj in [x1
ri
⊲⊳
rj

t1/x] annot be reahed.)math e with
(x1, x2) → (x1

r1
⊲⊳
r4

t1, (x2
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x])

= (By indution hypothesis [IH2℄: t = t2[(x1
r4
⊲⊳
r1

t1)/x].)math e with
(x1, x2) → (x1

r1
⊲⊳
r4

t1, x2
r1
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x])

= (By defn of projetion)
e

r1
⊲⊳
r4

(x : t1, t2)� t is Any:LHS
(e

r1
⊲⊳
r2

Any) r3
⊲⊳
r4

Any
= r2

r3
⊲⊳
r4

Any
= r4RHS

e
r3
⊲⊳
r4

Any
= r4Sine LHS ≡ RHS, we are done.A.2 Key LemmaLemma 14 (Key lemma). For all rash-free e and total ontrat t, suh that

⊢ e :: τ and ⊢c t :: τ ,
e ⊳ t ∈ tRR n° 7794

Hybrid Contrat Cheking 54Proof. First, we have the following derivation (named D1).
(e ⊳ t) ⊲ t

= (By defn of ⊳ and ⊲)

(e
UNR
⊲⊳BAD t) BAD

⊲⊳UNR t
= (By Lemma 13p50 (Telesoping Property))

e
UNR
⊲⊳UNR tNow, we have the following proof.

e is f
⇒ (Sine t is total, t ≡ ⌊t⌋. By the defn of ⊲⊳, the ontext (• UNR

⊲⊳UNR ⌊t⌋)is syntatially safe. By defn of f, we have below)
e

UNR
⊲⊳UNR t is f

⇐⇒ (By derivation D1)
(e ⊳ t) ⊲ t is f

⇐⇒ (By Theorem 2p18 (grand theorem))
(e ⊳ t) ∈ tA.3 Examination of Cyli DependeniesReall the dependeny graph in Figure 18, there are two yles:(1) T2 → L15 → T2(2) T2 → L17 → L19 → T2

T2 L15
t = t 1

T2

L17t = t 1

L19yle (1) yle (2)Figure 19: Cyli Dependeny of Three LemmasEah yle is shown in Figure 19. The dashed direted edge indiates aderease in size of t while the solid direted edge shows a preservation of thesize of t. We an see that, in eah yle, there is an edge that dereases the size of
t. Cyle (1) is well-founded beause the size of t (where t = x : t1 → t2) dereases(to t1) when Theorem 2p18 alls Lemma 14p53. Cyle (2) is well-founded beausethe size of t (where t = x : t1 → t2) dereases (to t1) when Theorem 2p18 allsLemma 16p57. Although there are yli dependenies among these theoremsand lemmas, on eah yli path, there is a derease in the size of t. Thus, ourproof on indution of the size of t is well-founded.RR n° 7794

Hybrid Contrat Cheking 55A.4 Congruene of Crashes-More-OftenTheorem 14 (Congruene of Crashes-More-Often).
∀e1, e2. e1 � e2 ⇐⇒ ∀C, C[[e1]] � C[[e2]]Proof. We prove two diretions separately:(⇒) For an arbitrary B, we prove B[[e1]] � B[[e2]]. We have the followingproof:

e1 � e2

⇐⇒ (By de�nition 7)
∀C.C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD

⇒ ∀C,D. (C = D[[B[[•]]]]) ⇒ (C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD)
⇒ ∀D. D[[B[[e2]]]] →∗ BAD⇒ D[[B[[e1]]]] →∗ BAD
⇒ ∀B.B[[e1]] � B[[e2]]Note that we assume for all i = 1, 2:

⊢ C[[ei]] :: bool, ⊢ D[[ei]] :: bool and ⊢ E [[ei]] :: bool(⇐) It is trivially true, beause we an hoose an empty ontext (i.e. C =
•).A.5 Projetion Pair and Closure PairReall the de�nition of projetion pair. Let D and E be omplete partial order's.If f : D → E and g : E → D are ontinuous funtions suh that f ◦ g ⊆ id,then (f ,g) is alled a projetion pair. If id ⊆ f ◦ g, then (f ,g) is alled a losurepair. In this setion, we are not going to explore the theory in depth. We onlynotie that in some way (• ⊲ t ⊳ t � id) and (id � • ⊳ t ⊲ t) math the de�nitionof projetion pair and losure pair respetively.Theorem 15 (A projetion pair). For all expression e and ontrat t, suh that
∃Γ. Γ ⊢ e :: τ and Γ ⊢c t :: τ ,

(e ⊲ t) ⊳ t � eProof. We have the following proof:
(e ⊲ t) ⊳ t

= (By defn of ⊲ and ⊳)

(e
BAD
⊲⊳UNR t) UNR

⊲⊳BAD t
= (By Lemma 13p50)

e
BAD
⊲⊳BAD t

≪{BAD} (By Lemma 19p58)
eBy de�nition of ≪{BAD}, we get the desired result.RR n° 7794

Hybrid Contrat Cheking 56Theorem 16 (A Closure Pair). For all expression e and ontrat t, suh that
∃Γ. Γ ⊢ e :: τ and Γ ⊢c t :: τ ,

e � (e ⊳ t) ⊲ tProof. We have the following proof:
(e ⊳ t) ⊲ t

= (By defn of ⊳ and ⊲)

(e
UNR
⊲⊳BAD t) BAD

⊲⊳UNR t
= (By Lemma 13p50)

e
UNR
⊲⊳UNR t

≪{UNR} (By Lemma 19p58)
eBy de�nition of ≪{UNR}, we get the desired result.A.6 Contrats are ProjetionsReall the de�nition of projetion, a projetion p is a funtion that has twoproperties:1. p = p ◦ p2. p ⊆ 1The �rst one is alled the retrat property and says that projetions are idempo-tent on their range. The seond one says that the result of a projetion ontainsno more information than its input.We would like to show that if e ∈ t, then (• ⊳ t) is an error projetion while

(• ⊲ t) is a safe projetion. By error projetion, we mean e ⊳ t either behavesthe same as e or returns BAD. Similarly, by safe projetion, we mean e ⊲ t eitherbehaves the same as e or returns UNR.Findler and Blume [12℄ are the �rst to disover that ontrats are pairsof projetions. However, they assume that the e is a non-rashing term andthe only error raised are ontrat violations. We assume that a program mayontain errors and may rash. We give error a ontrat Any. Moreover, we provedi�erent theorems from [12℄.Theorem 17 (Error Projetion). For all losed e and losed t, if e ∈ t, (• ⊳ t)is a projetion.Proof. By Lemma 15p56 (a) (Idempoteny) and Lemma 16p57 (a).Theorem 18 (Safe Projetion). For all losed e and losed t, if e ∈ t, (• ⊲ t)is a projetion.Proof. By Lemma 15p56 (b) (Idempoteny) and Lemma 16p57 (b).Lemma 15 (Idempotene). For all losed e, t,
e

r1
⊲⊳
r2

t
r1
⊲⊳
r2

t = e
r1
⊲⊳
r2

tRR n° 7794

Hybrid Contrat Cheking 57Proof. It follows diretly from Lemma 13p50 (telesoping property).Lemma 16 (Conditional projetion). For all losed e, losed and total t, if
e ∈ t, then

(a) e ⊳ t � e (b) e � e ⊲ tProof. We prove eah of them separately.(a) Given e ∈ t, we have:
e ⊳ t

= (By defn of ⊲ in Figure 6)
e

UNR
⊲⊳BAD t

≡s (By Lemma 18p57 (Exeption III))
e

BAD
⊲⊳BAD t

� (By Lemma 19p58 (Behaviour of projetion) and De�nition 6p14 (≪))
e(b) Given e ∈ t, we have:
e ⊲ t

= (By defn of ⊲ in Figure 6)
e

BAD
⊲⊳UNR t

≡s (By Lemma 18p57 (Exeption III))
e

UNR
⊲⊳UNR t

� (By Lemma 19p58 (Behaviour of projetion) and De�nition 6p14 (≪))
eLemma 17 (Exeption I). ∀C. (C[[UNR, BAD]] is f⇒ ∀r1, r2 ∈ {BAD, UNR}. C[[UNR, r1]] ≡s

C[[UNR, r2]])Proof. The intuition is that the BAD in the hole annot be reahed, so we anreplae it by any exeptional value. This reasoning in turn relies on the abseneof a "ath" primitive that an transform BAD into something non-BAD.Formally, we an prove the lemma by ase splitting on whether C[[UNR, BAD]]terminates, and if it does, by indution on the number of steps of redution.Lemma 18 (Exeption III). ∀e, t. e ∈ t ⇒ ∀r. e
BAD
⊲⊳
r
t ≡s e

UNR
⊲⊳
r
t

RR n° 7794

Hybrid Contrat Cheking 58Proof. For all expression e, ontrat t, we have:
e ∈ t

⇐⇒ (By Theorem 2p18 (Grand Theorem))
e ⊲ t is f

⇐⇒ (By defn of ⊲ and f)
∀C, BAD 6∈ C. C[[e

BAD
⊲⊳
r
t]] 6→∗ BAD

⇐⇒ (By Lemma 17p57 (Exeption I))
∀C, BAD 6∈ C. C[[e

BAD
⊲⊳
r
t]] ≡s C[[e

UNR
⊲⊳
r
t]]

⇒ (Let C = •)

e
BAD
⊲⊳
r
t ≡s e

UNR
⊲⊳
r
tWe are done.A.7 Behaviour of ProjetionsWe have seen that in Setion A.5, we make use of the property of behaves-the-same (≪) (Lemma 19p58). In this setion, we give its detailed proof. Lemma 19p58says that an expression wrapped with a ontrat behaves either the same as theoriginal expression or returns one of the exeptions whih an be either BAD orUNR.Lemma 19 (Behaviour of projetion). For all r1, r2, e, total t, suh that ⊢ e :: τand ⊢c t :: τ , and r1, r2 ∈ {BAD, UNR},

e
r1
⊲⊳
r2

t ≪{r1,r2} eProof. The proof begins by dealing with two speial ases: e ↑, e →∗ BAD. Inboth ases, by De�nition of ⊲⊳, we know e
r1
⊲⊳
r2

t ≡s e and we are done.Hene, for the rest of the proof we assume that e →∗ val 6∈ {BAD, UNR}. Weprove it by indution on the size of t. Let R be {r1, r2}.� t is {x | p}: we have
e

r1
⊲⊳
r2

{x | p} = let x = e in math p[e/x] with
| true → e
| false→ r1Sine t is total, p[e/x] 6→∗ BAD. So there are two ases to onsider:� If p[e/x] →∗ false, then e

r1
⊲⊳
r2

{x | p} →∗ r1 and we are done.� If p[e/x] →∗ true, e r1
⊲⊳
r2

{x | p} →∗ e and we are done.� t is x : t1 → t2: We have
e

r1
⊲⊳
r2

x : t1 → t2 = let y = e in λv. ((y (v
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x])RR n° 7794

Hybrid Contrat Cheking 59Sine e →∗ val 6∈ {BAD, UNR}, e →∗ λx.e′ and (e
r1
⊲⊳
r2

x : t1 → t2) →∗

λv. ((e (v
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x]).We want to show that ∀C. C[[e]] →∗ r ∈ R ⇒ C[[λv. ((e (v
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x]]]) →∗ r. We prove it by indution on ontexts. There are 3 ases toonsider:1. C = [[•]];2. C = D[[math • with alts]];3. C = D[[• e3]].Case 1 and 2 are trivially true by inspeting the operational semantis ofmath. For Case 3, sine we prove it by indution on the size of ontext,we have the following indution hypothesis:
∀D[[e]] →∗ r ⇒ D[[• e3]] →

∗ r [IH℄So all we need to prove is that for all e3,
(λv. ((e (v

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x])) e3 ≪R e e3By β-redution, it means we want to show
(e (e3

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(e3
r2
⊲⊳
r1

t1)/x] ≪R (e e3) (∗)By indution hypotheis where t = t2[(e3
r2
⊲⊳
r1

t1)/x], we have
(e (e3

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(e3
r2
⊲⊳
r1

t1)/x] ≪R (e (e3
r2
⊲⊳
r1

t1)) (1)By indution hypothesis where t = t1, we have
e3

r2
⊲⊳
r1

t1 ≪R e3By Lemma 20p60 (Congruene of ≪R), we have
e (e3

r2
⊲⊳
r1

t1) ≪R e e3 (2)By (1) and (2) and Lemma 21p60 (Transitivity of≪R), we get (*). By [IH℄,we have the desired result ∀C. C[[e]] →∗ r ∈ R ⇒ C[[e
r1
⊲⊳
r2

x : t1 → t2]] →∗ r.� t is (x : t1, t2): We have
e

r1
⊲⊳
r2

(t1, t2) = math e with
(x1, x2) → (x1

r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])If e →∗ val 6∈ {BAD, UNR}, then e →∗ {e1, e2}. By the indution hypotheseswhere t = t1 and t = t2 respetively, we know e1
r1
⊲⊳
r2

t1 ≪R e1 and
e2

r1
⊲⊳
r2

t2 ≪R e2. Therefore, by De�nition 6p14, we have e
r1
⊲⊳
r2

(t1, t2) ≪R e.RR n° 7794

Hybrid Contrat Cheking 60� t is Any: Sine we have e
r1
⊲⊳
r2

Any = r2, we know e
r1
⊲⊳
r2

Any →∗ r2. ByDe�nition 6p14, we are done.Lemma 20 (Congruene of Behaves-the-same). If e1 ≪R e2, then ∀C, C[[e1]] ≪R

C[[e2]].Proof. we have the following proof:
e1 ≪R e2

⇐⇒ (By de�nition 6)
∀C, C[[e2]] →∗ r ∈ R ⇒ C[[e1]] →∗ r

⇒ (Choose C be D[[C[[E]]•]])
∀D, ∀E , D[[E [[e2]]]] →∗ r ∈ R ⇒ D[[E [[e1]]]] →∗ r

⇐⇒ (By de�nition 6)
∀C, C[[e1]] ≪R C[[e2]]Note that we assume for all i = 1, 2:

⊢ C[[ei]] :: (), ⊢ D[[ei]] :: () and ⊢ E [[ei]] :: ()Lemma 21 (Transitivity of ≪R). If e1 ≪R e2 and e2 ≪R e3, then e1 ≪R e3.Proof. By De�nition 6p14, we have
(1) ∀C. C[[e2]] →∗ r ∈ R ⇒ C[[e1]] →∗ r
(2) ∀C. C[[e3]] →

∗ r ∈ R ⇒ C[[e2]] →
∗ rFor all C, assuming C[[e3]] →∗ r ∈ R, we want to show C[[e1]] →∗ r. We have thefollowing proof:

∀C. C[[e3]] →∗ r ∈ R

⇒ (By (2))
C[[e2]] →∗ r ∈ R

⇒ (By (1))
C[[e1]] →

∗ rB Corretness of SL mahineB.1 Corretness of LogiizationTheorem 11 (Logiization for axioms) Given a de�nition f = eτ , the logialformula ∀fv(e), ∃f : τ.[[e]]f is valid.Proof. We prove it by strutural indution on the size of the (possiblly open)expression e. As UNR is for internal usage, we do not have UNR in e.� Case e is BADl. We have [[BADl]]f = true, whih is valid.RR n° 7794

Hybrid Contrat Cheking 61� Case e is x. We have ∃f.f = x. Let f be x, we have x = x, whih is valid.� Case e is n. We have ∃f.f = n. Let f be n, we have n = n, whih is valid.� Case e is eτ1⊕eτ2 . It is semantially equivalent to let x1 = e1 in let x2 =
e2 in x1 ⊕ x2. From x1 = e1, by indution hypothesis, (1) [[e1]]x1

isvalid. From x2 = e1, by indution hypothesis, (2) [[e2]]x2
is valid. Let theexistentially quanti�ed f be x1⊕x2, we have (3) x1⊕x2 = x1 ⊕x2. From(1), (2), (3), we know ∃f : τ.∃x1 : [[τ]], ∃x2 : [[τ]], ([[e1]]x1
∧ [[e2]]x2

∧ f =
x1 ⊕ x2) is valid.� Case e is eτ1⊙eτ2 . It is semantially equivalent to let x1 = e1 in let x2 =
e2 in x1 ⊙ x2. From x1 = e1, by indution hypothesis, (1) [[e1]]x1

isvalid. From x2 = e1, by indution hypothesis, (2) [[e2]]x2
is valid. If

eτ11 ⊙ eτ22 evaluates to true, x1 ⊙ x2 is valid and not(x1 ⊙ x2) is invalid.So ∃f : τ, ∃x1 : [[τ]], [[e1]]x1
∧ ∃x2 : [[τ]], [[e2]]x2

∧ ((x1 ⊙ x2 ∧ f = true) ∨
(not(x1 ⊙ x2) ∧ f = false)) dedues to ∃f : τ, ∃x1 : [[τ1]], [[e1]]x1

∧ ∃x2 :
[[τ2]], [[e2]]x2

∧ (x1 ⊙ x2 ∧ f = true). Let the existentially quanti�ed f betrue. From (1), (2) and true = true, we know [[eτ1 ⊙ eτ2]]f is valid. If
eτ11 ⊙ eτ22 evaluates to false, we apply the similar reasoning as above withthe exitentially quanti�ed f being false.� Case e is λxτ1 .eτ22 . We have ∃f : τ1 → τ2, ∀x : [[τ]], [[e]](apply(f,x)). Letthe existentially quanti�ed f be λx.e2.� Case e is let xτ1 = e1 in eτ22 . It is semantially equivalent to let xτ1 =
e1 in let xτ2

2 = e2 in x2. We have [[let xτ1 = e1 in let xτ2
2 =

e2 in x2]]f = ∃x : [[τ]], [[e1]]x ∧ ∃x2 : [[τ]], [[e2]]x2
∧ f = x2. From de�-nitions xτ = e1 and xτ2

2 = e2, by indution hypothesis, (1) ∃x : τ1, [[e1]]xis valid and (2) ∃x2 : τ2, [[e2]]x2
is valid. Let x2 be f . From (1), (2) and

f = f , we know ∃f : τ2, ∃x : [[τ]], [[e1]]x ∧∃x2 : [[τ]], [[e2]]x2
∧f = x2 is valid.� Case e is (eτ11 eτ22). It is semantially equivalent to let x1 = e1 in let x2 =

e2 in x1 x2. We have [[let x1 = e1 in let x2 = e2 in x1 x2]]f =
∃x1 : τ1, [[e1]]x1

∧ ∃x2 : τ2, [[e2]]x2
∧ f = apply(x1, x2). From de�nitions

x1 = e1 and x2 = e2, by indution hypothesis, (1) ∃x1 : τ1, [[e1]]x1
isvalid and (2) ∃x2 : τ2, [[e2]]x2

is valid. Let the existentially quanti�ed f be
apply(x1, x2). From (1), (2) and apply(x1, x2) = apply(x1, x2), we know
∃x1 : τ1, [[e1]]x1

∧ ∃x2 : τ2, [[e2]]x2
∧ f = apply(x1, x2) is valid.� Case e is Kτ eτ11 . . . eτnn . It is semantially equivalent to let x1 = e1 in . . .let xn = en in K x1 . . . xn. We have [[let x1 = e1 in . . . let xn =

en in K x1 . . . xn]]f = ∃x1 : τ1, [[e1]]x1
∧ · · · ∧ ∃x1 : τ1, [[e1]]x1

∧ f =
K(x1, . . . , xn). From de�nitions xi = ei for 1 ≤ i ≤ n, by indu-tion hypothesis, we know (i) ∃xi.[[ei]]xi

is valid. Let f be K(x1, . . . , xn).From (i) and K(x1, . . . , xn) = K(x1, . . . , xn), we know ∃f : τ, ∃x1 :
τ1, [[e1]]x1

∧ · · · ∧ ∃x1 : τ1, [[e1]]x1
∧ f = K(x1, . . . , xn) is valid.� Case e is math eτ00 with −−−−−−−−→

K
−→
xτx → eτ . It is semantially equivalent tolet xτ0

0 = e0 in math x0 with−−−−−−−−−−−−−−−−−−→K
−→
xτx → let y = e in y. We have [[let xτ0

0 =

e0 in math x0 with −−−−−−−−−−−−−−−−−−→
K

−→
xτx → let y = e in y]]f = ∃x0 : τ0, [[e0]]x0

∧RR n° 7794

Hybrid Contrat Cheking 62
(
∧

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ]], (x0 = K −→x) ⇒ ∃y : τ, [[e]]y ∧ f = y). From de�nitions x0 = e0and y = e, by indution hypothesis, (1) ∃x0 : τ0, [[e0]]x0

is valid and (2)
∃y : τ, [[e]]y is valid. Let y be f . From (2) and f = f , the RHS of
⇒ in the logial formula is valid. Together with (1), we know ∃x0 :

τ0, [[e0]]x0
∧ (

∧

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ]], (x0 = K −→x) ⇒ ∃y : τ, [[e]]y ∧ f = y) is valid.Theorem 12 (Logiization for goals: validity preservation) For all (possiblyopen) expression eτ , if ∃f : τ, [[e]]f is valid and e → e′ for some e′, then [[e′]]f isvalid.Proof. We prove it by strutural indution on the size of e. The lemma holdsvauriously for expressions BAD, UNR, x, n, e1⊕ e2. We fous on two ases wherea redex ours. The rest of the ases an be proved easily by applying indutionhypotheses.� Case e is (λxτ .e1) e2. We have

[[(λxτ .e1)
τ1 eτ22]]f is valid

⇐⇒ (By de�nition of [[.]]f)
∃x1 : [[τ1]], [[(λx

τ .e1)]]x1
∧ ∃x2 : [[τ2]], [[e2]]x2

∧
f = apply(x1, x2) is valid

⇐⇒ (By de�nition of [[.]]x1
)

∃x1 : [[τ1]], ∀xτ , [[e1]](apply(x1,x))
∧ ∃x2 : [[τ2]], [[e2]]x2

∧

f = apply(x1, x2) is valid
⇐⇒ (By Logi: P ∧ ∃x,Q(x) ⇐⇒ ∃x, P ∧Q(x) where x is not in P)

∃x1 : [[τ1]], ∃x2 : [[τ2]], ∀x
τ , [[e1]](apply(x1,x))

∧ [[e2]]x2
∧

f = apply(x1, x2) is valid
⇒ (Let x be x2)

∃x1 : [[τ1]], ∃x2 : [[τ2]], [[e1]](apply(x1,x2))
[x2/x] ∧ [[e2]]x2

∧

f = apply(x1, x2) is valid
⇐⇒ (Sine f = apply(x1, x2), replae apply(x1, x2) by f)

∃x1 : [[τ1]], ∃x2 : [[τ2]], [[e1]]f [x2/x] ∧ [[e2]]x2
is valid

⇐⇒ (Rename x2 to x)
∃x1 : [[τ1]], ∃x : [[τ2]], [[e1]]f ∧ [[e2]]x is valid

⇐⇒ (By Logi: ∃x, P ⇐⇒ P where x is not in P)
∃x : [[τ2]], [[e1]]f ∧ [[e2]]x is valid

⇐⇒ (By de�nition of [[.]]f)
[[let x = e2 in e1]]f is valid

⇐⇒ (let x = e2 in e1 is semantially equivalent to e1[e2/x])
[[e1[e2/x]]]f is valid

RR n° 7794

Hybrid Contrat Cheking 63� Case e is math K −→ai with −−−−−−−→
K

−→
xτ → ei. We have

[[math (K
−→
val)τ0 with −−−−−−−→

K −→x → ei]]f is valid
⇐⇒ (By de�nition of [[.]]f)

∃x0 : [[τ0]], [[K
−→
val]]x0

∧ (
∧

−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−−→
x : [[τ]], (x0 = K −→x) ⇒ [[ei]]f) is valid

⇐⇒ (By de�nition of [[.]]x0
)

∃x0 : [[τ0]],
−−−−−−−−−−→
∃
−−−−→
y : [[τ]], [[val]]y ∧ x0 = K −→y ∧

(
∧

−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−−→
x : [[τ]], (x0 = K −→x) ⇒ [[ei]]f) is valid

⇒ (Let −→x be −→y)

∃x0 : [[τ0]],
−−−−−−−−−−→
∃
−−−−→
y : [[τ]], [[val]]y ∧ x0 = K −→y ∧

(
∧

−−−−−−−−−−−−−−−−−−−→
(x0 = K −→y) ⇒ [[ei]]f [

−−→
y/x]) is valid

⇐⇒ (By Logi: P ∧ (P ⇒ Q) ∧ (¬P ⇒ R) ⇐⇒ P ∧Q)

∃x0 : [[τ0]],
−−−−−−−−−−→
∃
−−−−→
y : [[τ]], [[val]]y ∧ x0 = K −→y ∧ [[ei]]f [

−−→
y/x] is valid

⇒ (By Logi: ∃x, ∃y, P (y) ∧ P (x, y) ⇐⇒ ∃y, P (y) ∧ ∃x, P (x, y))
−−−−−−−−−−→
∃
−−−−→
y : [[τ]], [[val]]y ∧ ∃x0 : [[τ0]], x0 = K −→y ∧ [[ei]]f [

−−→
y/x] is valid

⇐⇒ (Let x0 be K −→y . By Logi: true ∧ P ⇐⇒ P)
−−−−−−−−−−→
∃
−−−−→
y : [[τ]], [[val]]y ∧ [[ei]]f [

−−→
y/x] is valid

⇐⇒ (Rename −→y to −→x)
−−−−−−−−−−→
∃
−−−−→
x : [[τ]], [[val]]x ∧ [[ei]]f is valid

⇐⇒ (By de�nition of [[.]]f)
[[let −−−−−→

x = val in ei]]f

⇐⇒ (let −−−−−→
x = val in ei is semantially equivalent to ei[

−−−→
val/x])

[[ei[
−−−→
val/x]]]f is validB.2 Transition rulesThe SL mahine does not inline top-level funtions. We do not have loallet re in our language and we only inline trivial values. Moreover, we seta stop-bound for the SMT solver Alt-ergo with an option �-stop <n>� (whihrestrit the total amount of time) or �-steps <n>� (whih restrit the totalnumber of steps) so that the SMT solver always terminates. Thus, there is noelement in the SL mahine ausing non-termination.Theorem 8 (SL mahine terminates) For all H, e,S,L, there exists an ex-pression a suh that 〈H || e || S ||

lgc〉 ∗ a.Proof. The rebuilding rules either lead to the end state ([R-done℄) or redue thenumber of stak frames ([R-r℄, [R-lam℄, [R-beta℄, [R-app℄, [R-K℄, [R-K-math℄,[R-s-math℄, [R-s-save℄) or redue the size of the stak frame on top of the stak([R-fun℄. [R-math℄, [R-let-save℄).RR n° 7794

Hybrid Contrat Cheking 64The simpli�ation rules either lead diretly to a rebuild rule ([R-onst℄, [R-exn℄, [R-var1℄, [R-var2℄) or lead to a simpli�ation rule that redues the size ofthe expression under simpli�ation ([S-lam℄, [S-app℄, [S-math℄, [S-K℄) or leadto a simpli�ation rule that redues the size of the stak ([S-letL℄, [S-mathL℄,[S-letR℄, [S-mathR℄, [S-math-math℄, [S-math-let℄).For the ases that orresponding to simpli�ation rules in Figure 11, we usethe fat: [EqFat℄ e1 ≡s e2 if ∃e3, e1 →∗ e3 and e2 →∗ e3. Moreover, if any ofthe subexpression is an exeption r, it is easy to show that both sides evaluateto the same r. So we only onsider the ase that none of the subexpression isan exeption r.Theorem 9 (Corretness of SL mahine) For all losed expression e, if
〈∅ || e || [] || ∅〉 ∗ a, then e ≡s a.Proof. We prove it by indution on the number of transition steps. We have thefollowing indution hypothesis: for allH, e,S,L, there existsH2, e2,S2,L2, suhthat 〈H || e || S || L〉 〈H2 || e2 || S2 || L2〉 or 〈H || e || S || L〉 〈〈H2 || e2 || S2 || L2〉〉,

〈H2 || e2 || S || L2〉 ∗ a ∧ e2 ≡s a [IH℄By Lemma 22p68 (Corretness of rebuilding), we know
〈〈H2 || e2 || S2 || L2〉〉 ∗ a ∧ e2 ≡s a [RB℄For ases [S-onst℄, [S-exn℄, [S-var1℄ [S-var2℄, by indution hybothesis, we getthe desired result. We now fous on slightly non-obvious transitions.� Case [S-lam℄. We �rst have:
〈H || λxτ .e || [] || ∅〉

 (By [S-lam℄)
〈H || e || (λx.•) :: [] || ∀x : τ〉

 ∗ (By [IH℄, 〈H || e || (λx.•) :: S || L, ∀x : τ〉 ∗ a ∧ e ≡s a)
〈〈H || a || (λx.•) :: [] || ∀x : τ〉〉

 (By [R-lam℄)
〈〈H || λx.a || [] || ∀x : τ〉〉

 (By [R-done℄)
λx.aWe now have:

e ≡s a

⇐⇒ (By De�nition 1p11 ≡s)
∀C, r, C[[e]] →∗ r ⇐⇒ C[[a]] →∗ r

⇐⇒ (C = D[[λx.•]])
∀D, r,D[[λx.e]] →∗ r ⇐⇒ D[[λx.a]] →∗ r

⇐⇒ (By De�nition 1p11 ≡s)
λx.e ≡s λx.a

RR n° 7794

Hybrid Contrat Cheking 65� Case [S-app℄. If e1 is r, it is easy. By [S-app℄ and [R-r-fun℄, we get
〈H || r e2 || [] || ∅〉 ∗ r, whih is semantially equivalent to r e2. We nowonsider the ase where e1 is not r. We have:

〈H || e1 e2 || [] || ∅〉
 (By [S-app℄)

〈H || e1 || (• e2) :: [] || ∅〉
 ∗ (By [IH℄, 〈H || e1 || (• e2) :: [] || ∅〉 ∗ a1 ∧ e1 ≡s a1)

〈〈H || a1 || (• e2) :: [] || ∅〉〉
 (By [R-fun℄)

〈H || e2 || (a1 •) :: [] || ∅〉
 ∗ (By [IH℄, 〈H || e2 || (a1 •) :: [] || ∅〉 ∗ a2 ∧ e2 ≡s a2)

〈〈H || a2 || (a1 •) :: [] || ∅〉〉
 (By [R-app℄)

〈〈H || a1 a2 || [] || ∅〉〉
 (By [R-done℄)

a1 a2Given e1 ≡s a1 and e2 ≡s a2, by ongruene of≡s, we know e1 e2 ≡s a1 a2.� Case [S-math℄.
〈H || math e0 with alts || [] || ∅〉

 (By [S-math℄)
〈H || e0 || (math • with alts) :: [] || ∅〉

 ∗ (By [IH℄, 〈H || e0 || (math • with alts) :: [] || ∅〉 ∗ a0 ∧ e0 ≡s a0)
(†) 〈〈H || a0 || (math • with alts) :: [] || ∅〉〉There are two subases: either [R-s-math℄ or [R-s-save℄ is applied. Let
alts be −−−−−−−→

K
−→
xτ → ei.� there exists a branh (K

−→
xτ) suh that L ⇒ (∃

−−−−→
x : [[τ]], [[a0]](K −→x)).We ontinue from (†):

〈〈H || a0 || (math • with −−−−−−−→
K

−→
xτ → ei) :: [] || ∅〉〉

 (By [R-s-math℄)
〈H || ei || [] || ∃

−→
xτ , [[a0]]K −→x 〉

 ∗ (By [IH℄, 〈H || ei || [] || ∃
−→
xτ , [[a0]](K −→x)〉

∗ ai ∧ ei ≡s ai)

〈〈H || ai || [] || ∃
−→
xτ , [[a0]](K −→x)〉〉

 (By [R-done℄)
aiGiven L ⇒ (∃

−−−−→
x : [[τ]], [[a0]](K −→x)), by Theorem 12p36, we know a0 ≡s

K
−→
xτ for some −→

xτ . Together with e0 ≡s a0 and ei ≡s ai, by ongru-ene of ≡s, we have math e0 with −−−−−−−→
K

−→
xτ → ei ≡s ai.� there is no branh (K −→x) suh that L ⇒ [[a0]](K −→x).RR n° 7794

Hybrid Contrat Cheking 66We ontinue from (†):
〈〈H || a0 || (math • with −−−−−−−→

K
−→
xτ → ei) :: [] || ∅〉〉

 (By [R-s-save℄)
−−→

〈H || ei || (math a with K
−→
xτ → (•,S,L)) :: [] || L, ∃

−−−−→
x : [[τ]],

[[a]](K −→x)

〉

 ∗ (By [IH℄, −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→〈H || ei || (math a with K
−→
xτ

→ (•,S,L)) :: []
|| L, ∃

−−−−→
x : [[τ]],

[[a]](K −→x)

〉 ∗ ai

∧ei ≡s ai)
−−−→

〈〈H || ai || (math a with K
−→
xτ → (•,S,L)) :: [] || L, ∃

−−−−→
x : [[τ]],

[[a]](K −→x)

〉〉

 (By [R-math℄)
〈〈H || math a0 with −−−−−−−→

K −→x → ai || [] || L, ∃
−−−−→
x : [[τ]], [[a]](K −→x)〉〉

 (By [R-done℄)math a0 with −−−−−−−→
K −→x → aiFrom e0 ≡s a0 and ei ≡s ai, by ongruene of ≡s, we havemath e0 with −−−−−−−→

K −→x → ei ≡s math a0 with −−−−−−−→
K −→x → ai.� Case [S-K℄. The proof is similar to the ase [S-app℄. Simpli�ation ofeah omponent ei to ai is semantially preserving. After applying indu-tion hypothesis, we apply [R-K℄. Given ei ≡s ai, by ongruene of ≡s,

K e1 . . . en ≡s K a1 . . . an.� Case [S-letL℄. We want to show that (let x = e1 in e2) e ≡s let x =
e1 in e2 e. We have:

(let x = e1 in e2) e
→ (let x = val1 in e2) e
→ e2[val1/x] e
→ (λy.a[val1/x]) e
→ (λy.a[val1/x]) val
→ a[val1/x, val/y]and let x = e1 in e2 e
→∗ let x = val1 in e2 e
→ (e2 e)[val1/x]
→ ((λy.a) e)[val1/x]
→∗ ((λy.a) val)[val1/x]
→∗ a[val/y, val1/x]
= a[val1/x, val/y]By [EqFat℄, we are done.

RR n° 7794

Hybrid Contrat Cheking 67� Case [S-mathL℄. We want to show that if fv(e)∩−→x = ∅, then (math e0 with
−−−−−−−→
K −→x → ei) e ≡s math e0 with −−−−−−−−−−→

K −→x → (ei e). We have:
(math e0 with −−−−−−−→

K −→x → ei) e

→∗ (math K
−−→
valx with −−−−−−−→

K −→x → ei) e

→ ei[
−−−−→
valx/x] e

→∗ (λy.e2[
−−−−→
valx/x]) e

→∗ (λy.e2[
−−−−→
valx/x]) val

→ e2[
−−−−→
valx/x, val/y]and math e0 with −−−−−−−−−−→

K −→x → (ei e)

→∗ math K
−−→
valx with −−−−−−−−−−→

K −→x → (ei e)

→ (ei e)[
−−−−→
valx/x]

→∗ (λy.e2 e)[
−−−−→
valx/x]

→∗ (λy.e2 val)[
−−−−→
valx/x]

→∗ e2[
−−−−→
valx/x, val/y]By [EqFat℄, we are done.� Case [S-letR℄. We want to show that if x 6∈ fv(e), then λy.e (let x =

e1 in e2) ≡s let x = e1 in λy.e e2. We have:
λy.e (let x = e1 in e2)

→∗ λy.e (let x = val1 in e2)
→ λy.e (e2[val1/x])
→∗ λy.e (val2[val1/x])
→ e[val2[val1/x]/y]
= e[val2/y][val1/x]and let x = e1 in (λy.e) e2
→∗ let x = val1 in (λy.e) e2
→ ((λy.e) e2)[val1/x]
→∗ ((λy.e) val2)[val1/x]
→ e[val2/y][val1/x]By [EqFat℄, we are done.� Case [S-math-math℄. We want to show that if fv (alts) ∩ −→x = ∅, thenmath (math e0 with −−−−−−→
K −→x → e) with alts ≡smath eo with −−−−−−−−−−−−−−−−−−−−→

K −→x → math e with alts. We have:math (math e0 with −−−−−−→
K −→x → e) with alts

→∗ math (math K
−−→
val0 with −−−−−−→

K −→x → e) with alts

→ math e[
−−−−→
val0/x] with alts

RR n° 7794

Hybrid Contrat Cheking 68and math eo with −−−−−−−−−−−−−−−−−−−−→
K −→x → math e with alts

→∗ math K
−−→
val0 with −−−−−−−−−−−−−−−−−−−−→

K −→x → math e with alts

→ (math e with alts)[
−−−−→
val0/x]

= (By fv(alts) ∩−→x = ∅)math e[
−−−−→
val0/x] with altsBy [EqFat℄, we are done.� Case [S-math-let℄. We want to show if x /∈ fv (alts), then math (let x =

e1 in e2) with alts ≡s let x = e1 in math e2 with alts. We have:math (let x = e1 in e2) with alts
→∗ math (let x = val1 in e2) with alts
→ math e2[val1/x] with altsand let x = e1 in math e2 with alts
→∗ let x = val1 in math e2 with alts
→ (math e2 with alts)[val1/x]
= (By x /∈ fv (alts))math e2[val1/x] with altsBy [EqFat℄, we are done.Lemma 22 (Corretness of rebuilding). For all H, a1,S,L, if 〈〈H || a1 || s ::

S || L〉〉 ∗ a, then a1 ≡s a.Proof. We prove it by indution on the number of transition steps. We have thefollowing indution hypothesis: for all H, a1,S,L, there exists H2, a2,S2,L2,suh that 〈〈H || a1 || S || L〉〉 〈H2 || a2 || S2 || L2〉 or 〈〈H || a1 || S || L〉〉
〈〈H2 || a2 || S2 || L2〉〉,

〈〈H2 || a2 || S2 || L2〉〉 ∗ a ∧ a2 ≡s a [IH℄The base ase is [R-done℄. As two expressions a at both LHS and RHS of aresyntatially the same, they are semantially equivalent, so we have the desiredresult. By [E-exn℄, [E-tx℄, de�nition of ontexts and indution hypothesis [IH℄,we get the desired result for [R-r-math℄, [R-r-let℄, [R-r-fun℄, [R-r-arg℄, [R-r-K℄.The • in a stak frame indiates the original position of the expression beingsimpli�ed. It is easy to hek that [R-lam℄, [R-fun℄, [R-app℄ and [R-K℄ justput the simplifed expression bak to the • so they are orret. By [E-beta℄and [S-var1℄, [R-beta℄ is orret. We now onsider those slightly non-obvioustransitions.� Case [R-K-math℄. This transition implements the simpli�ation rule [K-math℄ in Figure 11. We want to show that math K a1 . . . an with
{. . . ;K x1 . . . xn → e; . . . } ≡s let x1 = a1 in . . . let xn = an in e.We have: math K a1 . . . an with {. . . ;K x1 . . . xn → e; . . . }

→∗ math K val1 . . . valn with {. . . ;K x1 . . . xn → e; . . . }

→ e[
−−−→
val/x]RR n° 7794

Hybrid Contrat Cheking 69and let x1 = a1 in . . . let xn = an in e
→∗ let x1 = val1 in . . . let xn = valn in e

→ e[
−−−→
val/x]By [EqFat℄, we are done.� Case [R-s-math℄. Given L ⇒ ∃

−−−−→
x : [[τ]], [[a]]K −→x is valid and a →∗ Ki

−→
valfor some −→

val, by Theorem 12p36, L ⇒ ∃−→x , [[Ki

−→
val]]K −→x is valid. FromFigure 15, we know Ki = K. By [E-math℄, we get the body e in thebranh K. Sine L ⇒ ∃−→x , [[a]]K −→x implies L ∧ ∃−→x , [[a]]K −→x , [R-s-math℄is orret.� Case [R-s-save℄. This transition simpli�es eah branhes with the as-sumption that ∃−→x , [[a]](K −→x). Given L ∧ ∃

−−−−→
x : [[τ]], [[a]]K −→x is valid and

a →∗ Ki

−→
val for some −→

val, by Theorem 12p36, L ∧ ∃−→x , [[Ki

−→
val]]K −→x isvalid. From Figure 15, we know Ki = K. By [E-math℄, we get the body

e in the branh K. So [R-s-save℄ is orret.� Case [R-math℄. This rule just put bak eah simpli�ed branh to itsoriginal position indiated by the •. The S and L keep the stak andlogial store before eah branhes are simpli�ed. So [R-math℄ is orret.� Case [R-let-save℄. The loal let de�nes x, by Theorem 11p36, ∃x : [[τ]], [[a]]xis valid. So [R-let-save℄ is orret.

RR n° 7794

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Overview
	The language
	Syntax
	Type checking rules for expression
	Operational semantics
	Crashing
	Behaves-the-same
	Crashes-more-often

	Contracts
	Type checking for contracts
	A semantics for contract satisfaction
	The wrappers
	Open expressions and contracts
	Terminating contracts
	Contract Any
	Contract ordering
	Predicate Contract Ordering
	Dependent Function Contract Ordering
	Dependent tuple contract ordering

	Contract equivalence

	Static contract checking and residualization
	The SL machine
	Logicization
	Discussion and preliminary experiments

	Hybrid contract checking
	Related work
	Conclusion
	Proof for the main theorem
	Telescoping Property
	Key Lemma
	Examination of Cyclic Dependencies
	Congruence of Crashes-More-Often
	Projection Pair and Closure Pair
	Contracts are Projections
	Behaviour of Projections

	Correctness of SL machine
	Correctness of Logicization
	Transition rules

