
Research Directions in Sofiware Architecturef

DAVID GAFL4N

Carnegie Mellon Unlllers~ty, 5000 Forbes Avenue, Pltt~burgh, Pennsylvama 15213, (garlan @ cs.cmu.edu).

What is Software Architecture?

A critical aspect of the design for any
large software system is its high-level
organization of computational elements
and interactions between those elements.
Broadly speaking, this is the software

architectural level of design [Garlan and
Shaw 1993; Perry and Wolf 1992]. The
structure of software has long been rec-
ognized as an important issue (e.g.,
[Dijkstra 1968; Parnas et al. 1985]) and
recently software architecture has begun
to emerge as an explicit field of study for
software engineering practitioners and
researchers. There is a large body of re-
cent work in areas such as module inter-
face languages, domain-specific architec-
tures, architectural description lan-
guages, design patterns and handbooks,
formal underpinnings for architectural
design, and architectural design environ-
ments [Garlan 1995; Garlan and Perry
1995].

Although there is increasing agree-
ment about the issues addressed by ar-
chitectural design, there is currently no
single, widely accepted definition of
“software architecture.” Indeed, the term
is used in quite different ways, including:
(a) the architecture of a particular sys-
tem, as in “the architecture of this sys-
tem consists of the following

components,” (b) an architectural style,
as in “this system adopts a client-server
architecture,” and (c) the general study
of architecture, as in “the papers in this
journal are about architecture.”

Within software engineering, most uses
of the term “software architecture” focus
on the first of these interpretations. The
following definition (developed in a soft-
ware architecture discussion group at the
SEI in 1994) is typical:

The structure of the components
of a program/system, their inter-
relationships, and principles and
guidelines governing their design
and evolution ouer time.

But definitions such as this tell only a
small part of the story. More important is
the current locus of effort in research and
development centered on software archi-
tecture.

This effort has been prompted by two
distinct trends. The first is the recogni-
tion that over the years designers have
begun to develop a shared repertoire of
methods, techniques, patterns, and id-
ioms for structuring complex software
systems. For example, the box and line
diagrams and explanatory prose that
typically accompany a high-level system
description often refer to such organiza-
tions as a “pipeline,” a “blackboard-
oriented design,” or a “client-server sys-
tem.” Although these terms are rarely
assigned precise definitions, they permit
designers to describe complex systems
using abstractions that make the overall
system intelligible.

The second trend is the concern with
exploiting specific domains to provide
reusable frameworks for product fami-

1 This article was adapted from the Editors’ Introduction to the IEEE Transactions on Software Eng7 neer-

mg Special Issue on Software Architecture, 1995, by David Garl an and Dewayne Perry.

Permission to make d@al/hard copy of part or all of this work for personal or classroom use M granted
without fee provided that copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
01995 ACM 0360-0300/95/0600-0257 $03.50

ACM Computmg Surveys, Vol. 27, No. 2, June 1995

http://crossmark.crossref.org/dialog/?doi=10.1145%2F210376.210388&domain=pdf&date_stamp=1995-06-01

258 “ Dauid Garlan

lies. Such exploitation is based on the
idea that common aspects of a collection
of related systems can be extracted so
that each new system can be built at
relatively low cost by “instantiating” the
shared design. Familiar examples in-
clude the standard decomposition of a
compiler (which permits undergraduates
to construct a new compiler in a
semester), standardized communication
protocols (which allow vendors to inter-
operate by providing services at different
layers of abstraction), fourth-generation
languages (which exploit the common
patterns of business information process-
ing), and user interface toolkits and
frameworks (which provide both a
reusable framework for developing inter-
faces and sets of reusable components,
such as menus and dialogue boxes).

Generalizing from these trends, it is
possible to identify three salient distinc-
tions between software architecture and
other areas of computer science.

0

9

Focus of concern: The first is between
traditional concerns about design of al-
gorithms and data structures, on the
one hand, and architectural concerns
about the organization of a large sys-
tem, on the other. In particular, soft-
ware architectural design is concerned
with gross organization and global con-
trol structure; protocols for communi-
cation, synchronization, and data ac-
cess; assignment of functionality to de-
sign elements; physical distribution;
composition of design elements; scaling
and performance; and selection among
design alternatives.

Nature of representation: The second
distinction is between system descrip-
tion based on definition-use structure
and architectural description based on
graphs of interacting components [Al-
len and Garlan 1994]. The former mod-
ularizes a system in terms of source
code, usually making explicit the de-
pendencies between use sites of the
code and corresponding definition sites.
The latter modularizes a system as a
graph, or configuration, of “compo-
nents” and “connectors.” Components

e

define the application-level computa-
tions and data stores of a system. Ex-
amples include clients, servers, filters,
databases, and objects. Connectors de-
fine the interactions between those
components. The interactions can be as
simple as procedure calls, pipes, and
event broadcast, or be much more com-
plex, including client-server protocols,
database accessing protocols, and
so on.

Design methods uersus architectures:
The third distinction is between soft-
ware design methods—such as object-
oriented design and structured analysis
—and software architecture. Although
both design methods and architectures
are concerned with bridging the gap
between requirements and implemen-
tations, there is a significant differ-
ence. Without either software design
methods or a discipline of software ar-
chitecture design, the implementor is
typically left to develop a solution us-
ing whatever ad hoc techniques may
be at hand (Figure la). Design meth-
ods improve the situation by providing
a path between some class of system
requirements and some class of system
implementations (Figure lb). Ideally, a
design method defines the steps that
take a system designer from the re-
quirements to a solution. The extent to
which such methods are successful of-
ten depends on their ability to exploit
constraints on the class of problems
they address and the class of solutions
they provide. One way is to focus on
certain styles of architectural design.
For example, object-oriented methods
usually lead to systems formed out of
objects, while others may lead more
naturally to systems with an emphasis
on dataflow. In contrast, the field of
software architecture is concerned with
the space of architectural designs (Fig-
ure It). Within this space object-
oriented and dataflow structures are
but two of the many possibilities, Ar-
chitecture is concerned with the trade-
offs between the choices in this space
—the properties of different architec-

ACM Computing Survey., Vol 27, No 2, June 19!75

Research Directions in Software Architecture “ 259

1

v
Any way
that works Metlrods

Software Architecture
A

Figure la Figure 1b Figure Ic

Figure 1. Design methods versus software architecture.

tural designs and their ability to solve
certain kinds of problems. Thus design
methods and architectures comple-
ment each other: behind most design
methods are preferred architectural
styles, and different architectural
styles can lead to new design methods
that exploit them.

Why is Sottware Architecture Important?

Principled use of software architecture
can have a positive impact on at least
five aspects of software development.

Understanding. Software architecture
simplifies our ability to comprehend large
systems by presenting them at a level of
abstraction at which high-level design
can be understood [Garlan and Shaw
1993; Perry and Wolf 1992]. Moreover, at
its best, architectural description exposes
the high-level constraints on system de-
sign, as well as the rationale for making
specific architectural choices.

Reuse. Architectural descriptions sup-
port reuse at multiple levels. Current
work on reuse generally focuses on com-
ponent libraries. Architectural design
supports, in addition, both reuse of large
components and also frameworks into
which components can be integrated. Ex-
isting work on domain-specific software
architectures, reference frameworks, and
design patterns provide evidence for this
[Gamma et al. 1994; Mettala and Gra-
ham 1992].

Evolution. Software architecture can
expose the dimensions along which a sys-
tem is expected to evolve. By making
explicit the “load-bearing walls,” system
maintainers can better understand the
ramifications of change, and thereby
more accurately estimate the costs of
modification [Perry and Wolf 1992].
Moreover, architectural descriptions can
separate functionality from the ways in
which a component is connected to (inter-
acts with) other components. This allows
one to change the connection mechanism
to handle evolving concerns about perfor-
mance, interoperability, prototyping, and
reuse.

Analysis. Architectural descriptions
provide new opportunities for analysis,
including high-level forms of system con-
sistency checking [Allen and Garlan
1994], conformance to an architectural
style [Abowd et al. 1993], conformance to
quality attributes [Clements et al. 1995],
and domain-specific analyses for archi-
tectures that conform to specific styles

[Garlan et al. 19941.
Management. There is a strong ratio-
nale for making viable software archi-
tecture a key milestone in industrial
software development. Achieving this in-
volves specifying a software system’s ini-
tial operational capability requirements,
the dimensions of anticipated growth, the
software architecture, and a rationale
that demonstrates that the architecture
will satisfy the system’s initial require-

ACM Computing Surveys, Vol 27, No. 2, June 1995

2bU “ Dawd barlan

ments and anticipated growth. If one pro-
ceeds to develop a software product with-
out satisfying these conditions, there is
significant risk that the system will be
either inadequate or unable to accommo-
date change.

Research Directions

Although application of good architec-
tural design is becoming increasingly im-
portant to software engineering, much
common practice leads to architectural
designs that are informal, ad hoc, unana-
lyzable, unmaintainable, and hand-
crafted. Consequently architectural de-
sign is only vaguely understood by devel-
opers; architectural choices are based
more on default than on solid engineer-
ing principles: architectural designs can-
not be analyzed for consistency or com-
pleteness; architectures are not enforced
as a system evolves; and there are virtu-
ally no tools to help architectural design-
ers.

Current research in software architec-
ture attempts to address all of these is-
sues; among the more active areas are

Architecture description languages ad-
dress the need for expressive notation
in architectural design and architec-
tural styles. In particular, much of this
research is on providing precise de-
scriptions of the “glue” for combining
components into larger systems.

Formal underpin nings of software ar-
chitecture addresses the current impre-
cision of architectural description by
providing formal models of architec-
tures, mathematical foundations for
modularization and system composi-
tion, formal characterizations of
extra-functional properties (such as
performance and maintainability), and
theories of architectural connection.

Architectural analqsis techniques are
being developed for determining and
predicting properties of architectures.
In particular, progress is being made
in understanding the relationships be-
tween architectural constraints and the

m

m

@

m

a

ability to perform specialized analyses,
as well as abstraction techniques that
make analysis practical for large sys-
tems.

Architectural development met?lods be-
come imperative to integrate architec-
tural activities smoothly into the
broader methods and processes of soft-
ware development.

Arch itecture recovery and reengineer-
ing to handle legacy code is critical for
large systems with long lifetimes. Re-
search is beginning to address extrac-
tion of architectural design from exist-
ing systems, unification of related
architectural designs, and abstraction,
generalization, and instantiation of
domain-specific components and frame-
works. There is also increasing re-
search on issues of interoperability:
techniques for detecting component
mismatch and bridging them.

Architectural codification and guid-
ance to codify design expertise so that
nonexperts can use it. This has led to
an interest in rules and techniques for
selecting architectural styles, hand-
books of patterns and elements, and
curricula for educating software archi-
tects.

Tools and environments for arch itec-
tural design to support architectural
design with new tools and environ-
ments. Current work addresses archi-
tectural analysis tools, architectural
design environments, and application
generators.

Case studies of architectural design,
including retrospective analyses of suc-
cessful (and sometimes unsuccessful)
architectural development, to increase
our understanding of architectural de-
sign, as well as to provide model prob-
lems against which other researchers
can gauge their effectiveness.

ACKNOWLEDGMENTS

We thank Barry Boehm, Paul Clements, Robert

Monroe, Mary Shaw, and Jeannette Wmg for them

insightful comments on earher drafts of thm work

ACM Comput]ng Surveys, Vol 27 No 2, June 1995

Research Directions in Software Architecture ●
261

REFERENCES

ABOWI), G., ALLEN, R., AND GARLAN, D. 1993. Us-
ing style to give meaning to software architec-

ture. In proceedings of SIGSOFT’93: Founda-
ttons of Software Engineering, Softw. Eng. Not.
18, 5 (Dec.), 9-20.

ALLEN, R., AND GARLAN, D. 1994. Formalizing ar-

chitectural connection. In Proceedings of

ICSE’16 (May).

ALLEN, R., .AND GARLAN, D. 1994. Beyond defini-

tion/use. Architectural interconnection. In

proceedings of the ACM Interface Defznitzon

Language Workshop. SIGPLAN Not. 29, 8

(Aug.).

CLEMENTS, P., BASS, L., KAZMAN, R.j AND AnowE+ G.
1995. Predicting software quality by architec-
ture-level evaluation. In Proceedings of the
Fifth International Conference on Software
Qual~ty (Austin, Tex., Oct.).

DIJKSTRA, E. W. 1968. The structure of the
“THE’’-multiprogramming system. Commun.

ACM 11, 5, 341-346.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES,

J. 1994. Design Patterns: Elements of
Reusable Object-Oriented Design. Addison-Wes-
ley, Reading, Mass.

GARLAN, D. (ED.). 1995, Proceedings of the Fzrst
International Workshop on Software Architec-

ture (April 1995). CMU Tech. Rep. CMU-CS-95-
151, May.

GARLAN, D., ALLEN, R., AND OCKERBLOOM, J. 1994.
Exploiting style in architectural design envi-
ronments. In proceedings of SIGSOFT’94:

Foundat~ons of Software Engmeermg, ACM
Press (Dec.).

GARLAN, D., AND SHAW, M. 1993. An introduction

to software architecture. In Aduances m Soft-

ware Engineering and Knowledge Engineering,
Vol. I, World Scientific Publishing.

GARLAN, D., PERRY, D. (EDs.) 1995. Special Issue

on Software Architecture. IEEE Trans. Softw.
Eng.

METTALA, E., AND GRAHAM, M. H. 1992. The

domain-specific software architecture program.
Tech. Rep. CMU/SEI-92-SR-9, CMU Software
Engineering Institute, June.

PARNAS, D. L., CLEMENTS, P. C., AND WEISS, D. M.

1985. The modular structure of complex sys-
tems, IEEE Trans. Softw. Eng. SE-11, (March)

259-266.

PERRY, D. E., AND WOLF, A. L. 1992. Foundations
for the study of software architecture. ACM

SIGSOFT Soft. Eng. Notes 17.

ACM Computmg Surveys, Vol. 27, No 2, June 1995

