
Interoperability lssuesin L.arge-Scale Distributed Object Systems

FRANK MANOLA

GTE Laboratories Incorporatecl, Waltham, Massachusetts, (fmo2@’gte.tom)

Issues of interoperability are receiving
increasing attention as organizations
move from mainframe-based “islands of
automation” toward open, distributed
computing environments, and as na-
tional efforts toward an “information su-
perhighway” receive increasing atten-
tion. The demand for interoperability is
driven by the accelerated construction of
large-scale distributed systems for opera-
tional use. The Internet (particularly its
commercial and research applications) is
one such system, and much has been and
is being written about it. However, in
this paper we focus on enterprise-wide
client/server systems being developed to
support operational computing within
large organizations to illustrate interop-
erability issues (Figure 1). Requirements
for these systems are not speculative; nu-
merous large businesses are building
systems of this type today.

The architecture is distributed, and di-
vided into three logical layers: applica-
tions, shared services, and data. The lay-
ers are only logical groupings; all compo-
nents communicate via a common
object-oriented messaging backplane.
This reflects the increasing agreement
that modeling a system as a distributed
collection of objects provides the appro-
priate framework for integrating re-
sources in these environments, and is
illustrated by the number of standards
activities that are moving toward adopt-
ing, or have already adopted, an object-
oriented approach. System operations are
based on explicit business rules repre-

senting business process definitions. The
architecture supports integrated man-
agement of objects representing both
business abstractions (customers, prod-
ucts), and elements of the enterprise and
computing infrastructure (network ele-
ments, software, plant facilities). Appli-
cations are constructed from reusable
components and users interact with the
system via compound document and
graphical interfaces (in many implemen-
tations, the “applications” layer is really
just the graphical interface to the appli-
cations, with the application logic itself
in the middle layer, integrated with or
controlled by the business rules).

Such architectures require interoper-
ability at many different levels, including
the physical level (e.g., agreed-on data
representations), and the object-model
level (e.g., agreements on object interface
characteristics), Much discussion of in-
teroperability involves these levels. How-
ever, there are also requirements for
interoperability at higher levels of ab-
straction. For example, there is a need
for more complex agreements among ob-
ject classes, such as those defining coop-
eration among the sets of object classes
found in object frameworks [Gamma et
al. 1995]. Interoperability requirements
ultimately reach the level of semantic
interoperability (agreements on mean-
ing). For example, design of large-scale
business systems are increasingly based
on definitions of business objects, which
attempt to reflect organization-wide
agreements on the meanings of key busi-

Permlsslon to make d@al/hard copy of part or all of thus work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specifk permission and/or a fee
@ 1995 ACM 0360-0300/95/0600-0268 $0350

ACM Computmg Surveys, Vol 27, No 2. June 1995

http://crossmark.crossref.org/dialog/?doi=10.1145%2F210376.210391&domain=pdf&date_stamp=1995-06-01

Interoperability Issues in Large-Scale Distributed Object Systems w 269

applications (=””” a

shared
services

messaging

integrated subject-area databases

data
servers customers

Umm
network “”” payroll

legacy mappings

legacy
databases C3f=j=j C3@ef==J

& files E3E3E3153 e m:

Figure 1. Enterprise information system architecture.

ness concepts and rules. Without agree-
ments at this level, interoperability at
lower levels is practically useless.

Providing increased interoperability in
such architectures involves not only the
increased use of standards, but also mak-
ing more aspects of the architecture ex-
plicit, so that standards can be applied
to them, for example, by documenting ex-
isting information (data and proced-
ures), explicitly representing mappings
between heterogeneous components,
representing more aspects of the imple-
mentation explicitly as objects or object
interfaces, and using explicit enterprise
model and business process definitions.
These approaches apply (in different
ways) to all levels (from physical to se-
mantic). The specifications being devel-
oped by the Object Management Group
[1991; 1992; 1994], and such subgroups
as its Business Object Management SIG,
illustrate these approaches.

For example, a wide range of object
models exists in different programming
languages and application domains. The
X3H7 standards committee has docu-
mented a number of these object models
and ways in which they can differ

[Manola 19951. In order to achieve the
required interoperability at the object-
model level, these architectures usually

adopt a common object model and define
standard mappings between program-
ming language models and that common
model. The OMG IDL illustrates this ap-
proach [Object Management Group 1991].
At the implementation level, interoper-
ability requires that the architecture
support object adaptor components to
provide interfaces to heterogeneous ob-
ject implementations (including legacy
systems), together with standards that
assist in the interchange of object refer-
ences, objects, and values. Agreements
are also required on how services, such
as transaction and query facilities, are
provided for objects [Object Management
Group 1994].

In order to deal with changes over its
Iifecycle, the architecture should also be
extensible. This requires that key inter-
nal interfaces of the architecture, in ad-
dition to client-visible ones, must be made
explicit. Ideally, the object model must
also be extensible. This allows the addi-
tion of new object services, and new ob-
ject model features supporting them, with
minimum impact on existing compo-
nents. One approach to providing this
extensibility currently being explored is
the use of reflection [Kiczales et al. 1991;
Manola and Heiler 1994]. This involves
making aspects of the architecture or

ACM Computmg Surveys, Vol. 27, No, 2, June 1995

270 - Frank Manola

model (or its implementation) explicit as
objects, so they can be altered easily or
extended, rather than being implicit in
the implementation. Reflection can also
provide the basis for defining object model
mappings, and provide hooks for exten-
sions and interfaces to implementation
components. The use of reflection is an
extension of facilities found in a number
of object models and implementations to-
day. Manola [1993] surveys a number of
reflective object models and describes the
use of reflection in supporting various
services in distributed object systems.

Reaching the numerous agreements
that must be reached in providing inter-
operability in large-scale business sys-
tems can be a long process, as illustrated
by the work of the OMG. Ideally, work
must progress in parallel at multiple lev-
els, from implementation to semantic, in
order to reach the necessary agreements
in a timely manner.

REFERENCES

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES,

J. 1995. Design Patterns. Elements of

Reusable Object-Orzented Software, Addison-
Wesley, Reading, MA

KICZALES, G., DES RIVIERES, J., AND BOBROW, D. G.
1991 The Art of the MetaobJect Protocol, MIT
Press, Cambridge, MA

MANOLA, F. 1993. Metaobject protocol concepts
for a ‘RISC’ object model, TR-0244-12-93-165,

GTE Laboratories Incorporated, December
(available from ftp.gte.tom, directory pub/
dam).

MANOLA, F., ED. 1995. X3H7 Object model fea-

tures matrix. Dec. No. X3 H7-93-OO7V1O, Febru-
ary 14 (avadable from ftp.gte.tom, directory
pub/dom/x3h7; hypertext version at URL http:
// info. gte.com / ftp/ dot\ activities/
x3h7.html/).

MANOLA, F., AND HEILER, S 1994. An approach

to interoperable object models. In Dtstrzbuted

Object Management, M. T Ozsu, U. Dayal, and
P Valduriez, Eds., Morgan Kaufmann, San
Mateo, CA.

OBJECT MANAGEMENT GROUP. 1994. Common ob-
ject services specification, Volume I, Rewslon
1.0, 1st Ed., OMG Dec. 94-1-1, March 1.

OBJECT MANAGEMENT GROUP. 1992. Object man-
agement architecture gaide, Revision 2.0, 2nd
Ed., OMG Dec. 92.11,1, Sept. 1.

OBJECT MANAGEMENT GROUP. 1991. The common
object request broker: architecture and specifi-
cation, OMG Dec. 91.121, Rev. 1.1.

ACM Computing Surveys, Vol 27, No 2, June 1995

