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Abstract

In this paper we study the problem of interoperability—combining constructs from two separate
programming languages within one program—in the case where one of the two languages is dependently
typed and the other is simply typed. We present a core calculus called SD, which combines dependently-
and simply-typed sub-languages and supports user-defined (dependent) datatypes, among other standard
features. SD has “boundary terms” that mediate the interaction between the two sub-languages. The
operational semantics of SD demonstrates how the necessary dynamic checks, which must be done when
passing a value from the simply-typed world to the dependently typed world, can be extracted from
the dependent type constructors themselves, modulo user-defined functions for marshaling values across
the boundary. We establish type-safety and other meta-theoretic properties of SD, and contrast this
approach to others in the literature.

1 Introduction

Dependently-typed languages allow programmers to specify a rich set of properties about their programs
that are verifiable during type-checking. This comes at the price of complexity — it is at best extremely
time-consuming and at worse infeasible to use dependently-typed languages in large software developments.
A natural way to mitigate this weakness is to use a dependently-typed language to provide specifications for
critical components while the rest of the system is written in a mainstream programming language. However,
care must be taken to ensure that the specifications of the dependently-typed language are respected by
“weaker” programming language. In this paper, we study the problem of interoperability between a language
with dependent types and a language with simple types, focusing on the key meta-theoretic issues that arise
in this setting.

Prior work on interoperability initially focused on the implementation of such interoperability systems.
Many languages provide an escape hatch into C, such as Java’s JNI [16], or OCaml’s [14] and Haskell’s [18]
FFI. Other work considers how to achieve interoperability by developing a lingua franca for languages to
talk to each other. Proposals include C [3], the Java virtual machine [17], COM [26], or the .NET framework
[30]. More recently, the focus has shifted to understanding the relationship between dynamic and typed
languages with contracts [8], blame [33], and the integration of scripting and typed languages [34].

In these systems, dynamic checks ensure that the static guarantees of the typed language are respected
by the untyped language. The dynamic check amounts to a simple type tag check, e.g., verifying that
typeof (λx :S .s) is indeed a function. However, the same concerns arise if we consider languages with richer
type systems, namely those with dependent types. A simply-typed language will be able to enforce only
some of a dependently-typed language’s static guarantees during type-checking; the difference must again be
made up with dynamic checks. However these dynamic checks must now perform non-trivial computation
rather than simply checking type tags.

For example, suppose that your dependently-typed language provides a certified library that you would
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like to use in your application. For simplicity’s sake, let’s consider a List datatype that contains Ints.

List : Int⇒ ∗
Nil : (y :Unit)→ List y
Cons : (y1 : Int)→ (y2 : Int)→ List y1 → List y1 + 1

List is indexed by an integer than represents its length, and that invariant is maintained by its two constructors
Nil and Cons. Suppose that our library also has a dependently-typed function PrettyPrintList5 : List 5→ Unit
that prints out lists of length five in a special way, but instead of giving it a dependently-typed List, we’d
like to provide it our standard simply-typed List instead. Our interoperability layer must not only marshal
the List value between languages, but also ensure that the simply-typed List has length five.

1.1 Contributions and Outline

How do we craft an interoperability layer that can generate such dynamic checks? How does such an
interoperability layer affect the meta-theoretic properties of the languages involved? In order to answer
these questions, we propose a calculus in the style of Matthews and Findler [20] that combines two languages
together — in our case, a simply-typed and dependently-typed language — via boundary terms.

Our work on dependent interoperability contributes the following:

1. A core calculus called SD that combines a simply-typed and dependently-typed lambda calculus ex-
tended with user-defined datatypes. While we are aware of previous efforts to combine simply-typed
and dependently-typed programming, to our knowledge, this is the first work that looks at the prob-
lem from the perspective of language interoperability with the corresponding aim of modifying the
languages as little as possible when integrating them.

2. Analysis of the meta-theoretic properties of SD, in particular, a proof of type safety for the language.

3. Exploration of the design space of dependent interoperability, including changes to the design to guar-
antee termination in the presence of recursive functions and alternatives to directly translating data.

4. A comparison of our system to real world systems such as Coq and Agda that provide limited forms of
language interoperability. Such comparisons strengthen our claim that our model faithfully captures
dependent interoperability, but also suggests how these real world systems can improve in this area.

We open in Section 2 by expanding on the benefits of dependent interoperability. In Section 3, we describe
the syntax and semantics of SD. We discuss the metatheory of SD in Section 4. Next we describe additional
interesting properties of SD in Section 5. In Section 6 we compare SD to real world dependently-typed
systems that offer interoperability facilities. Finally we discuss related and future work in Section 7 and
close in Section 8. In this technical report, we also give a full account of the language in Appendix A and
complete proofs of SD’s type safety in Appendix B.

2 Motivation

Before we discuss SD proper, we first motivate further why dependent interoperability is a useful idea by
discussing three use cases in more detail. Along the way we will foreshadow the potential difficulties in
creating an interoperability layer that we will solve in Section 3.

1. Using a simply-typed library in a dependently-typed context. While our dependently-typed
language may be safer to use, it will typically not have all the functionality we would like. For
example, we may wish to use a simply-typed library that provides network access, e.g., a function
sendData : Packet→ Unit, from our dependently-typed program. It is a good bet (although not always
true) that our dependent type system is strictly more powerful than the simple type system, so intuition
tells us that we shouldn’t need any dynamic checks here. Therefore, our interop boundary needs only to
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λ→ λ
∼=

Kinds K
Types S T
Terms s t

Variables x y
Datatypes A B

Figure 1: Metavariable Conventions for λ→ and λ
∼=

marshal the data from the dependently-typed language into the Packet that the simply-typed function
expects to use.

2. Using a dependently-typed library in a simply-typed context. The dual of the previous use
case is the desire to use dependently-typed code in a simply-typed context. In the introduction, we
used the toy example of a List n. However, you can imagine wanting to use a verified library for a
particular data structure or protocol from a simply-typed context and be assured that the simply-typed
data you feed it does not break the properties the verified library enforces. Discovering and enforcing
these properties is the primary challenge our interoperability boundary faces.

3. Verifying properties of simply-typed code. Finally, because we are working with a dependently-
typed language, an interesting question arises. In addition to verifying properties of dependently-typed
terms, can we do the same with simply-typed terms? That is, rather than implement a verified library
in the dependently-typed language and translating simply-typed data into that library, we would like
to verify properties of a simply-typed library directly. Ideally the dependently-typed language would
be able to do this all during typechecking, but realistically, complete checking of a term across an
interop boundary is impossible. We expect that the result is similar to a hybrid type system [9] where
some properties are verified during compilation and the rest are “made up” with dynamic checks.

3 Language

Our language SD consists of a simply-typed and a dependently-typed lambda calculus joined together by
boundary terms in the style of Matthews and Findler [20]. Throughout this paper, we use a meta-variable
convention to distinguish terms of the simply-typed fragment (λ→) and the dependently-typed fragment
(λ
∼=) outlined in Figure 1. In addition, there are several judgments that make up SD. In the interest of the

brevity, we only present the salient features of each of these judgments. Appendices A and B contain the
complete definitions of our system along with proofs.

3.1 Syntax

λ→ is a standard lambda calculus with simple types as defined in Figure 3. We augment the calculus
with pairs < s1, s2>, unit, an error term that will be raised if a boundary check fails, and user-defined
data constructors C with corresponding datatypes A. Constructors are modeled as taking only a single
argument but this is not a limitation since multiple arguments can be combined using pairs. For example,
the constructor Cons→ has type

Cons→ : (List ∗ Int)→ List.

In SD we presuppose a signature Ψ0 containing the definitions of these constructors.
The notable addition to λ→ is the addition of the typed boundary term SDS

T t which can be read as an
interoperability boundary that translates the inner λ

∼= term t of type T to a λ→ term of type S . Such
boundaries are responsible for marshaling data from one side of the boundary to the other and checking
that this marshaled data is appropriate for the context it will be used in. Our formulation focuses on
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Judgment Description
Γ ` s : S λ→ Typing
Γ ` K λ

∼= Well-formed Kinds
Γ ` T : K λ

∼= Kinding
Γ ` t : T λ

∼= Typing
` Ψ Well-formed Signature
` Γ Well-formed Context
FO (T ) First-order Type
S ⇔ T Type Translation
Γ ` K ≡ K ′ λ

∼= Kind Equivalence
Γ ` T ≡ T ′ λ

∼= Type Equivalence
Γ ` t ∼= t ′ λ

∼= Term Equivalence
s −→ s ′ λ→ Evaluation
t −→ t ′ λ

∼= Evaluation

Figure 2: SD Judgments

λ→ Types S : : = S1 → S2 | S1 ∗ S2 | Unit | A
λ→ Terms s : : = x | λx:S .s | s1 s2

| <s1, s2> | s.1 | s.2

| C s | case s of Ci xi → si
i

| unit | error | letd y = t in s | SDS
T t

λ
∼= Kinds K : : = ∗ | T ⇒ ∗
λ
∼= Types T : : = (y :T1)→ T2 | T t

| (y :T1) ∗ T2 | Unit | B
λ
∼= Terms t : : = y | λy:T .t | t1 t2

| <t1, t2> | t .1 | t .2

| C t | case t of Ci yi → ti
i

| unit | error

| DST
S s | t1 ∼= t2 B t3

Figure 3: SD Syntax

understanding the latter responsibility: what checks are necessary to ensure type-safety when moving across
boundaries?

λ
∼= is a standard dependently-typed lambda calculus inspired Jia et al’s system “Lambda-eek” [13]. The

syntax of λ
∼= as given in Figure 3 mirrors the syntactic forms found in λ→: it has dependent functions and

pairs along with unit and error. The types of dependent functions and pairs are written (y : T1) → T2 and
(y :T1) ∗T2 reflecting the fact that T2 in both cases may contain the bound term variable y . A datatype B
is now a type-level function that, given a term t , produces a type B t . Consequently, we introduce kinds to
classify such type-level functions T ⇒ ∗, versus proper kinds ∗.

Constructors in λ
∼= also take single arguments. Combining multiple arguments using pairs is trickier

because of dependent types, but still manageable. For example, the type of dependent Cons
∼= is

Cons
∼= : (y1 : (y2 : Int) ∗ (List y2 ∗ Int))→ List (y .1) + 1

In effect, we use dependent pairs to introduce additional arguments and then project out the arguments
when needed to compute the index of the datatype.

In the interest of simplifying the syntax, the introduction forms for the different constructs are shared
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between λ→ and λ
∼=. This is not problematic as we can look at a term’s sub-terms to determine which

syntactic category it belongs to. In particular, the names of constructors C are shared between the two
calculi, with the implicit assumption that each constructor has λ→ and λ

∼= counterparts. This simplifies
our reasoning when dealing with translating constructors, as we only need to worry about translating the
arguments of the constructor.

We introduce a guard term t1 ∼= t2B t3 that is the result of reducing a boundary term DST
S s. This guard

term makes explicit the equivalence check that must occur before we create the marshaled term t from s.
In our presentation of SD, the only check we need is an equivalence check t1 ∼= t2 that determines whether
two λ

∼= terms are indeed equivalent at runtime.
The attentive reader may notice that guards appear only on the λ

∼= side of the boundary. Intuitively
this is because the types of λ

∼= make strictly stronger guarantees than λ→. When going from λ
∼= to λ→, no

checks are necessary because the λ
∼= type system can verify all the properties that the λ→ type system tries

to enforce. Conversely, λ→ cannot make such guarantees, so we make up the difference on the λ
∼= side with

dynamic checks in the form of our guards.
In both λ→ and λ

∼= we introduce let forms as the standard syntactic sugar over abstraction binding.

let x = s1 in s2 , (λx:S1.s2) s1

let y = t1 in t2 , (λy:T1.t2) t1

However, in λ→ we also add the special let binding letd y = t in s that crosses from λ→ to λ
∼= to bind a λ

∼=

term and then returns to evaluate s. This form is used in order to avoid duplication of side-effects during
evaluation. We discuss letd in more detail when we talk about the evaluation rules of SD.

3.2 Typing and well-formedness

The typing rules for the λ→ fragment are entirely standard, so we do not reproduce them in their entirety
here. The only interesting addition is wf stm sd, which gives a type to our boundaries SDS

T t . A boundary
is well-typed if the contained λ

∼= term meets the type annotation on the boundary, and if the types on the
boundary are compatible, written S ⇔ T . Figure 4 gives these rules.

Our type compatibility relation ensures that we can translate between data of the given types. For
compound types such as arrows and pairs, we can translate between them if we can translate between their
component types. Translating between Unit types is trivial. And since datatypes A and B are user-defined,
we appeal to user-defined translations between them represented by the meta-function corr (A,B). As a
concrete example, it is reasonable to expect that the List datatypes between the λ→ and λ

∼= fragments are
convertible so that we have corr (List→, List

∼=). Note that S ⇔ T strips away the term-components of a
dependent type—it compares types only up to the simply-typed “skeleton”. However, compatibility does
require that the types of the indices of dependent data are first order, written FO (T ). Intuitively, FO (T )
means that the type T does not contain any arrows. If we did allow arrows here, then when translating
such datatypes we would be forced to compare equality of function values, which is a hard problem. This
will become clear in Section 3.3 where we discuss the evaluation rules of SD. Note that the data that we are
translating is allowed to contain functions, but the index of that datatype is not.

For λ
∼= we present several of the kinding and typing rules in Figures 5 and 6 to remind the reader of the

intricacies of dependent type systems and foreshadow the technical challenges of translating terms into these
types during evaluation.

All programs are typed with respect to some fixed signature Ψ0, which assigns types to constructors C
and kinds to datatypes A and B . We assume that all the types and kinds in Ψ0 are well-formed in the empty
context. Because datatypes are type-level functions, we assign them kinds of the form T1 ⇒ ∗, as shown in
wf dty data, while the remaining types have kind ∗, e.g., wf dty arr.

Rules wf dtm app and wf dtm pair illustrate the dependent nature of abstraction and pairs in λ
∼=.

The second component T2 of the types may contain free occurrences of y of type T1, so we must close T2

by substituting for y . wf dtm conv is the standard conversion rule that allows us to take advantage of
indexed types by establishing equivalences between them (via the type-equivalence judgment Γ ` T ≡ T ′
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Γ ` s : S

Γ ` t : T
S ⇔ T

Γ ` SDS
T t : S

wf stm sd

S ⇔ T

S1 ⇔ T1

S2 ⇔ T2

S1 → S2 ⇔ (y :T1)→ T2
compat arr

S1 ⇔ T1

S2 ⇔ T2

S1 ∗ S2 ⇔ (y :T1) ∗ T2
compat pair

Unit⇔ Unit
compat unit

B:T0 ⇒ ∗ ∈ Ψ0

FO (T0)
corr (A,B)

A⇔ B t
compat data

FO (T )

FO (T )

FO (T t)
fo app

FO (Unit)
fo unit

FO (T1)
FO (T2)

FO ((y :T1) ∗ T2)
fo pair

constrs B = Ci
i

Ci:(yi :Ti)→ B t ′i ∈ Ψ0
i

FO (Ti)
i

FO (B t)
fo data

Figure 4: Abridged λ→ Typing Rules, Type Compatibility, and First-order Types
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Γ ` K

Γ ` ∗
wf dkn proper

Γ ` T : ∗
Γ ` T ⇒ ∗

wf dkn arr

Γ ` T : K

Γ ` T1 : ∗
Γ, y:T1 ` T2 : ∗

Γ ` (y :T1)→ T2 : ∗
wf dty arr

B:T ⇒ ∗ ∈ Ψ0

Γ ` B : T ⇒ ∗
wf dty data

Γ ` t : T

Γ ` t1 : (y :T1)→ T2

Γ ` t2 : T1

Γ ` [t2/y ]T2 : ∗
Γ ` t1 t2 : [t2/y ]T2

wf dtm app

Γ ` t1 : T1

Γ ` t2 : [t1/y ]T2

Γ ` (y :T1) ∗ T2 : ∗
Γ `<t1, t2>: (y :T1) ∗ T2

wf dtm pair

Figure 5: Abridged λ
∼= Typing Rules

as discussed in the next section). With wf dtm ctor, we type a constructor C at some datatype B [t/y ]t ′

where we substitute into the term the argument given to C . Note that the type of the argument to C does
not need to coincide with the type of the index of B . Finally when we type cases with wf dtm case in
each branch we remember the refined type B t ′i of the branch’s associated constructor.

Checking DS via wf dtm ds is analogous to SD boundaries: the inner term must typecheck and the
type annotations must coincide. wf dtm guard typechecks guards by checking to see if the types involved
in the equivalence check are well-typed. In addition, t must be well-typed under the assumption that the
check holds. Finally, we require that the types of the guard are first-order with the judgment FO (T ). The
first-order judgment ensures that the types of guards are never arrows so that we do not have to determine
the equivalence of functions.

The judgment FO (T ) ensures that the inhabitants of T do not contain function values. In the case of
fo data we check that all constructors of B take first-order arguments. We do not need to check that the
type of B ’s index term ti is first-order, since the index is not part of the values inhabiting B .

3.3 Evaluation

The evaluation rules of SD are of most interest to us because this is where we do the actual work of checking
values and marshaling them across boundaries. Figures 7 and 8 give the syntax of our one-step evaluation
contexts which define the standard call-by-value order for our language. In addition, Figures 7 and 8 give
also lists the interesting evaluation rules for both languages.

The evaluation of the usual syntactic forms — abstractions, pairs, and constructors — are standard. The
interesting rules arise from evaluation of boundary terms. In both languages, the evaluation of boundaries is
directed by their type annotations, so there is one rule for each value that might be sent across a boundary.

When we translate lambdas, e.g., a λ→ lambda to a λ
∼= lambda as in eval stm ds abs, the output must

be a λ
∼= lambda. Our translation is similar to Matthews’ and Findler’s. This new λ

∼= lambda translates its
argument y to λ→, supplies that translated argument to the λ→ lambda, and translates the λ→ result of the
application back to λ

∼=.
In the DS case this is straightforward. However, if we look at the SD case as presented in eval dtm sd abs,

we note that T2 may contain free occurrences of y in the boundary. To fix this problem, we close T2 with the
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Γ ` t : T

Γ ` t : (y :T1) ∗ T2

Γ ` t .1 : T1
wf dtm proj1

Γ ` t : (y :T1) ∗ T2

Γ ` [t .1/y ]T2 : ∗
Γ ` t .2 : [t .1/y ]T2

wf dtm proj2

C :(y :T1)→ B t ′ ∈ Ψ0

B:T2 ⇒ ∗ ∈ Ψ0

Γ ` t : T1

Γ ` B [t/y ]t ′ : ∗
Γ ` C t : B [t/y ]t ′

wf dtm ctor

Γ ` t : T
Γ ` T ≡ T ′

Γ ` T ′ : ∗
Γ ` t : T ′

wf dtm conv

Γ ` s : S
Γ ` T : ∗
S ⇔ T

Γ ` DST
S s : T

wf dtm ds

Γ ` t0 : T0

Γ ` t1 : T0

FO (T0)
Γ, t1 ∼= t0 ` t : T

Γ ` t1 ∼= t0 B t : T
wf dtm guard

Γ ` t : B t ′

Γ ` T : ∗
constrs B = Ci

i

Ci:(yi :Ti)→ B t ′i ∈ Ψ0
i

Γ, yi:Ti , t ′ ∼= t ′i , t
∼= Ci yi ` ti : T

i

Γ ` case t of Ci yi → ti
i

: T
wf dtm case

Figure 6: Abridged λ
∼= Typing Rules (cont.)

λ→ Values u : : = x | λx:S .x | <u1, u2> | C u
λ→ Contexts Es : : = � | � s | u � | < � , s > | < u, � >

| � .1 | � .2 | C � | letd y = � in s

| case� of Ci xi → si
i | SDS

T�
λ
∼= Values v : : = y | λy:T .t | <v1, v2> | C v
λ
∼= Contexts Et : : = � | � t | v � | < � , t > | < v , � >

| � .1 | � .2
| C � | case� of Ci yi → ti

i

| DST
S � | � ∼= t2 B t | v ∼= � B t

Figure 7: SD Evaluation: Contexts and Rules
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s −→ s ′

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

argToSC v = u

SDA
(B t)C v −→ C u

eval stm sd constr

SD
(S1→S2)
((y:T1)→T2)

λy:T ′1.t −→ λx:S1.letd y ′ = DST1

S1
x in SDS2

([y′/y]T2)
((λy:T ′1.t) y ′)

eval stm sd abs

SD
(S1∗S2)
((y:T1)∗T2)

<v1, v2>−→<SDS1

T1
v1,SDS2

([v1/y]T2)
v2>

eval stm sd pair

t −→ t ′

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

argToDCu = v

DS
(B t)
A (C u) −→ t ∼= [v/y ]t1 B (C v)

eval dtm ds constr

DS
((y:T1)→T2)
(S1→S2)

λx:S ′1.s −→ λy:T1.DST2

S2
((λx:S ′1.s) (SDS1

T1
y))

eval dtm ds abs

DS
((y:T1)∗T2)
(S1∗S2)

<u1, u2>−→ let y ′ = DST1

S1
u1 in <y ′,DS

[y′/y]T2

S2
u2>

eval dtm ds pair

v ∼= v B t −→ t
eval dtm guard refl

v 6= v ′

v ∼= v ′ B t −→ error
eval dtm guard error

Figure 8: SD Evaluation: Contexts and Rules (cont.)
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λ→ lambda’s translated argument. Thus, boundary type annotations are not simple annotations that can be
erased at compile time. They are entities that affect evaluation, so they must have a concrete representation
at runtime. Note that the DS case does not need a substitution due to our choice of creating a λ

∼= lambda
that implicitly captures the free variable found in T2.

This observation that the second type component T2 needs to be closed via a substitution is also applicable
when translating pairs. In the eval stm sd pair case the sub-components are already λ

∼= terms, so we
simply close T2 with v1. In the eval dtm ds pair case, u1 is a λ→ term, so we need to translate it before

substituting into T2. So as a first attempt, we might make the term step to <DST1

S1
u1,DS

[DS
T1
S1

u1/y]T2

S2
u2>.

However, that proposal has a different problem: DST1

S1
u1 is not a value! In particular, while u1 itself is a

value, T1 may contain non-value terms. By duplicating this expression, we potentially duplicate any of its
side-effects.

To avoid this, in eval dtm ds pair we let-bind the first component of the translated pair. This sequences
the evaluation at runtime and avoids duplicating side-effects. Similarly, in eval stm sd abs we let-bind the
translated argument x . However, an interesting technicality arises. The point at which we need to let-bind
the argument — which is a λ

∼= term — lies in λ→! To fix this issue, we use the letd construct that allows us
to bind a value in λ

∼= and then evaluate a λ→ term. In this context, letd has a natural interpretation: letd
goes into λ

∼= to bind a term in the environment, returns back to λ→, and evaluates as normal.
The translation of datatypes is more involved because, in addition to variable capture, we must also check

that the translation “respects” the property represented by the datatype’s index. For example, in the case
of List, a reasonable translation from a List→ to λ

∼= should produce a List
∼= t where t is the length of the list.

In general, what the translation should do is dependent on the datatypes we are translating.
Thus, in addition to presupposing user-defined constructors C of datatypes A and B t , we also presuppose

user-defined conversions between arguments of constructors, with the intent that these conversions preserve
the dependent datatype’s properties. These conversions come as a pair of functions

argToSC v = u
argToDCu = v

responsible for converting constructor arguments from one language to the other. At type-checking time, the
arguments v and u could contain free variables making it unclear how to translate them, so we allow argToS
and argToD to be partial functions. When they are undefined the corresponding boundary term is stuck. To
ensure Progress, we require that they are always defined for closed well-typed values. We also require some
additional conditions expressing that they are defined “naturally” in the argument that we discuss further
in Section 4.3.

argToS and argToD can be viewed constructor-indexed user-level functions which, if C :S → A ∈ Ψ0,
C :(y :T1)→ B t ∈ Ψ0, and B:T2 ⇒ ∗ ∈ Ψ0, have the types

argToS : T1 → S
argToD : S → T1.

We distinguish them from user-level functions because as we have defined the calculus there is no way to
form such mixed types. Also, in addition to their types, we intend that the functions are inverses. That is,
the following equations should hold

1. (argToS ◦ argToD)(u) = u with u : S
2. (argToD ◦ argToS)(v) = v with v : T1.

This makes argToS and argToD an isomorphism over the constructor C .
In eval stm sd constr, we use argToS to convert the λ

∼= argument v . Intuitively, since we are going
from λ

∼= to λ→, no checks are necessary because the type system of λ
∼= enforces all the properties that λ→

does and more.
Conversely, in eval dtm ds constr, we must verify that the argument converted from λ→ meets the

specification demanded by the λ
∼= datatype. To generate this check, we note that the type of the new
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Γ ` t ∼= t ′

t ∼= t ′ ∈ Γ

Γ ` t ∼= t ′
eq dtm assumption

t −→ t ′

Γ ` t ∼= t ′
eq dtm step

Γ ` t ∼= t
eq dtm refl

Γ ` t ′ ∼= t

Γ ` t ∼= t ′
eq dtm sym

Γ ` t ∼= t ′

Γ ` t ′ ∼= t ′′

Γ ` t ∼= t ′′
eq dtm trans

Γ ` t1 ∼= t ′1
y 6∈ dom (Γ)

Γ ` [t1/y ]t ∼= [t ′1/y ]t
eq dtm subst

Γ ` t ∼= t ′

y 6∈ dom (Γ)

Γ ` [v/y ]t ∼= [v/y ]t ′
eq dtm subst val

Γ ` t ∼= t ′

x 6∈ dom (Γ)

Γ ` [u/x ]t ∼= [u/x ]t ′
eq dtm ssubst val

Figure 9: λ
∼= Term Equivalence

constructor C v by wf dtm ctor is B [v/y ]t1 where B:T1 ⇒ ∗ ∈ Ψ0. The type demanded by the boundary
is B t and so we must check t ∼= [v/y ]t1. Note that because of our restriction that FO (T1), the equality
check will never need to compare lambdas, only data of first-order type.

3.4 Equivalence

Equivalence checks are the core of a dependently-typed system. Figure 9 outlines the most important of
these, equivalence over λ

∼= terms. We elide λ
∼= kind equivalence (Γ ` K ≡ K ′) and λ

∼= type equivalence
(Γ ` T ≡ T ′) as they are standard.

Our term-level equivalence is reflexive, transitive, and symmetric by the eq dtm refl, eq dtm sym,
and eq dtm trans rules. The most interesting of these rules is eq dtm step which allows us to use
reduction of t in our equivalence relation. This rule is good because we do not need an explicit notion of λ→

equivalence, which would be unnatural. That is, in a real system, the λ
∼= will only have available to it the

ability to evaluate λ→ terms rather than have access to the internals of the entire λ→ program.
One subtlety that sets us apart from dependent languages like Coq and Agda is that our eq stm step

rule is restricted to call-by-value reduction. Pure, strongly normalizing languages have the luxury of allowing
arbitrary β-reductions when comparing types because any order of evaluation gives the same answer. In our
language that is not the case because of run-time errors, e.g. (λy : Unit.unit) error evaluates to error under
CBV but to unit under CBN. This problem would get even worse if the language included more interesting
side-effects.

For this reason, the type equivalence judgment is defined in terms of the evaluation relation −→ which
is explicitly CBV. Even so, we do want to allow reduction of open terms. For example to typecheck the
usual append function we want List (0 + y) ≡ List y . Therefore, our definition of values includes variables.
To make that choice work, we are careful to only substitute values for variables. In particular, we need an
extra premise in wf dtm app to check that the type [t2/y ]T2 is well-kinded. It might not be, since the
well-kindedness of (y :T1)→ T2 may depend on y being a value.
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3.5 Examples

To get a better understanding of how our system works, let’s expand on the List example we’ve used so far.
The complete set of definitions for our List datatype are

List : Int⇒ ∗
Nil : Unit→ List
Nil : (y :Unit)→ List 0
Cons : (List ∗ Int)→ List
Cons : (y1 : (y2 : Int) ∗ (List y2 ∗ Int))→ List (y1.1) + 1.

So the types of our argument conversion functions are

argToSNil : Unit→ Unit
argToDNil : Unit→ Unit
argToSCons : (y1 : (y2 : Int) ∗ (List y2 ∗ Int))→ (List ∗ Int)
argToDCons : (List ∗ Int)→ (y1 : (y2 : Int) ∗ (List y2 ∗ Int)).

Note that the type of the arguments to Cons→ is a pair whereas Cons
∼= is a triple. This is because the extra

Int carried by Cons
∼= is required to represent the size of the argument List.

Morally, a List y has length y so our conversions needs to respect that property. The conversions of the
arguments to Nil are trivial.

argToSNilunit = unit
argToDNilunit = unit

To convert from a Cons
∼= to a Cons→, we can simply drop the index argument. To convert in the other

direction, we must regenerate it by requesting the List’s length.

argToSCons(k, l, v) = (l, v)
argToDCons(l, v) = (length(l), (l, v))

This is reminiscent of McBride’s work on ornamental types [21] where he also makes the observation that
the difference between a simply-typed list and a standard dependently-typed list is the “ornamental” length
data.

Matthews and Amhed demonstrate how nested boundaries can enforce specifications over the behavior
of the weakly-typed language while being written in a strongly-typed language [19]. In their system, they
are only able to express simple type specifications, e.g., that a Scheme function performs at type Int→ Int.
As expected with our dependently-typed language, we are able to express more powerful constraints via this
method. For example consider a function pop over simply-typed Lists.

pop : List→ List

Given this function, we can write a safe variant of pop in λ
∼= that simply calls pop to do the heavy lifting:

safePop : (n : Int)→ List n → List (n− 1)

safePop = λn : Int.λy : List n.DSList n−1
List pop(SDList

List ny))

Now, this function will verify via dynamic checks that — provided the length of the subject list n — pop
does the right thing for that list.

Providing this length argument explicitly is annoying, so we can write one more wrapper around this
method that is callable directly from λ→ and has the signature we want. The difference between this and
the original pop is that now the function will check to see if pop produces the correct value:

verifiedPop : List→ List
verifiedPop = λy : List.

let l = length y in

SDList
List DSInt

Intl−1
(

safePop (DSInt
Intl) (DS

DSInt
IntList l

List y))
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Property 1 (Types of argToD/argToS). Suppose C :S → A ∈ Ψ0 and C :(y :T1)→ B t1 ∈ Ψ0.

If Γ ` u : S, then Γ ` argToDCu : T1 (if it is defined).

If Γ ` v : T1, then Γ ` argToSC v : S (if it is defined).

Property 2 (Correctness of corr (A,B)). If corr (A,B), then A and B have the same constructors Ci .

Property 3 (argToD/argToS respect substitution). If argToDCu and argToSC v are defined, then

argToDC ([u1/x1]u) = [u1/x1](argToDCu)

argToDC ([v1/y1]u) = [v1/y1](argToDCu)

argToSC ([u1/x1]v) = [u1/x1](argToSC v)

argToSC ([v1/y1]v) = [v1/y1](argToSC v)

Property 4 (argToD/argToS respect −→p).

If u −→p u ′, then argToDCu −→p argToDCu ′.

If v −→p v ′, then argToSC v −→p argToSC v ′.

Property 5. argToD and argToS are defined for closed values.

Figure 10: Requirements on the conversion functions

verifiedPop is a good example of the power of dependent interoperability. We are able to take a simply-
typed piece of code and then inject dynamic checks to verify its behavior against a dependently-typed
specification.

4 Metatheory

Our technical contribution is a proof of type safety for SD: every well-typed term either goes to a value,
diverges, or goes to error. We state this result in the usual way, via Preservation and Progress theorems.

The type-safety proof puts some requirements on the user-defined translation-functions argToD, argToS,
and corr (A,B). These are stated in figure 10, and we will point out where they are needed. Note that the
round-tripping law is not one of the properties needed for type-safety. The term equivalence judgment does
not axiomatize this property, so violating it does not lead to type errors. However, we still feel that requiring
it rules out bad behavior.

4.1 Structural Lemmas

We begin by showing basic structural properties of the type system: Weakening, Substitution, and ignoring
redundant assumptions.

Since the different syntactic categories of our language (simple and dependent terms, types and kinds)
form a mutually recursive system, the proofs of these lemmas also need to be by mutual induction. The
typing judgments call out to the type equivalence judgments, but the equivalence is defined without any
reference to types, so the proofs about the equivalence judgments can be done first. For example, Weakening
can be proved in two lemmas, each of which is proved using mutual induction.

Lemma 1 (Weakening for Equivalence).

1. If Γ1,Γ3 ` t ∼= t ′, then Γ1,Γ2,Γ3 ` t ∼= t ′.

2. If Γ1,Γ3 ` T ≡ T ′, then Γ1,Γ2,Γ3 ` T ≡ T ′.

3. If Γ1,Γ3 ` K ≡ K ′, then Γ1,Γ2,Γ3 ` K ≡ K ′
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Lemma 2 (Weakening).

1. If Γ1,Γ3 ` t : T then Γ1,Γ2,Γ3 ` t : T .

2. If Γ1,Γ3 ` s : S then Γ1,Γ2,Γ3 ` s : S.

3. If Γ1,Γ3 ` T : ∗ then Γ1,Γ3,Γ3 ` T : ∗.

4. If ` Γ1,Γ2 then ` Γ1

The other lemmas are proved by similar mutual inductions. To save space we abbreviate sets of statements
like this to Γ ` J , where the J stands for all the judgment forms in the type system (equivalence, typing,
and kinding).

For the Preservation proof we need a substitution lemma. Somewhat unusually, it is restricted to sub-
stituting values into the judgments, not arbitrary terms. This is because our term equivalence is CBV, so
substituting a non-value could block reductions and cause types to no longer be equivalent.

Lemma 3 (Substitution).

1. If Γ, x:S2,Γ
′ ` J and Γ ` u2 : S2 then Γ, [u2/x ]Γ′ ` [u2/x ]J .

2. If Γ, y:T2,Γ
′ ` J and Γ ` v2 : T2 then Γ, [v2/y ]Γ′ ` [v2/y ]J .

Because we present dependent pattern matching using explicit equality assumptions in the context, we
also need a set of structural lemmas stating that we can omit redundant equations and swap equivalent ones.
These lemmas are used when proving type preservation of case-expressions and guard expressions: when the
scrutinee steps, the corresponding equation changes to a syntactically different but β-equivalent one.

Lemma 4 (Cut). If Γ ` t1 ∼= t2 and Γ, t1 ∼= t2,Γ
′ ` J , then Γ,Γ′ ` J .

Lemma 5 (Context Equivalence). If Γ ` t1 ∼= t ′1 and Γ ` t2 ∼= t ′2 and Γ, t1 ∼= t2,Γ
′ ` J , then Γ, t ′1

∼= t ′2,Γ
′ `

J .

Cut is proved like a substitution lemma: each use of the equality assumption is replaced by the explicit
derivation of the equation. The Context Equivalence lemma follows as a corollary of Weakening and Cut.

4.2 Preservation

We prove preservation by mutual recursion on the simple typing, dependent typing, and kinding judgment.

Theorem 1 (Preservation).

1. If Γ ` s : S and s −→ s ′ then Γ ` s ′ : S.

2. If Γ ` [t/y ]t0 : T and t −→ t ′ then Γ ` [t ′/y ]t0 : T .

3. If Γ ` [t/y ]T0 : K and t −→ t ′ then Γ ` [t ′/y ]T0 : K .

The statement for simple typing is standard but we have generalized the ones for dependent typing and
kinding. The reason for this twist is again the CBV-style dependent typesystem: we need to know that the
premise Γ ` [t2/y ]T2 : ∗ to the wf dtm app rule is preserved when t2 steps. The generalization creates
some extra congruence-like cases to deal with, but essentially this is still a standard Preservation proof.

The proof of this theorem informs the typing rules for the interoperability features. We highlight a few
interesting cases.

First, the case when a SD-boundary for pairs steps is interesting because we substitute into the type on
the SD boundary:

SDS1∗S2

(y:T1)∗T2
<v1, v2>−→<SDS1

T1
v1,SDS2

[v1/y]T2
v2>

This is different from prior work on non-dependent interoperability. We might worry that this would interfere
with the compatibility check of the type. However, that is not the case, as we have the following lemma,
which states that compatibility never looks at the terms embedded inside a type.
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Lemma 6. S ⇔ T iff S ⇔ [t/y ]T .

Now, from the derivation of SDS1∗S2

(y:T1)∗T2
<v1, v2> we get S1 ∗ S2 ⇔ (y :T1) ∗ T2, so by inversion S2 ⇔ T2

and hence S2 ⇔ [v1/y ]T2, which is the compatibility condition that we need for the term SDS2

[v1/y]T2
v2 to be

well-typed.
Next, consider the case when a DS-boundary for a data constructor steps. This is the case that motivates

our handling of dynamic checks:

DS
(B t)
A (C u) −→ t ∼= [v/y ]t1 B (C v) where argToDCu = v

when the signature contains declarations C : S → A and C : (y : T1) → B t1. By our requirements
on argToD we know that Γ ` v : T1, so Γ ` C v : B [v/y ]t1. By the type conversion rules, that means
Γ, t ∼= [v/y ]t1 ` C v : B t . So we wrap the expression in a guard that enforces that equality assumption.

A final interesting case is when a guarded term steps. This motivates the structural lemmas Cut and
Context Equivalence. The typing rule looks like

Γ ` t0 : T0

Γ ` t1 : T0

FO (T0)
Γ, t1 ∼= t0 ` t : T

Γ ` t1 ∼= t0 B t : T
wf dtm guard

Consider how the term can step. If t1 −→ t ′1, then it suffices to show Γ, t ′1
∼= t0 ` t : T . But by the rule

eq dtm step, Γ, t ′1
∼= t0 and Γ, t ′1

∼= t0 are equivalent contexts. Otherwise, if it steps by v ∼= v B t −→ t ,
then by eq dtm refl the equation v ∼= v was redundant, so by Cut we can show Γ ` t : T as required.
Finally, it may step by v ∼= v ′ B error. Since error is always well-typed, preservation holds. Although the
proof doesn’t illustrate it, the FO (T0) restriction means that we will never go to error unless it is absolutely
necessary, when v and v ′ are unequal first-order values.

4.3 Progress

As it turns out, the interoperability features do not add much complication to the Progress part of the proof.
However, as is common in languages with dependent pattern matching, we need to do a bit of work to rule
out contradictory equalities.

To prove progress we first need to prove a canonical forms lemma.

Lemma 7 (Canonical Forms).

1. If · ` v : (y :T1)→ T2 then v is λy:T .t.

2. If · ` v : (y :T1) ∗ T2 then v is <v1, v2>.

3. If · ` v : Unit then v is unit.

4. If · ` v : B t then v is C v ′ and C :(y :T )→ B t ′ ∈ Ψ0.

This does not follow immediately from inspecting the typing judgment, because of the rule eq dty incon:
if we could somehow in the empty context prove · ` C1 v1 ∼= C2 v2 where C1 6= C2, then we could assign
any term any type. So we need to rule out such an inconsistent equation. However, the way we define the
term equivalence judgment Γ ` t ∼= t ′ makes that difficult. The definition is succinct, but because it has an
explicit transitivity rule it doesn’t give any leverage for doing induction on it.

Our solution is to define an auxiliary notion of parallel reduction, denoted −→p, in the style of Taka-
hashi [31]. This relation contains the evaluation relation −→, but it also allows reducing more than one
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redex, and reducing inside the body of a lambda expression or other binder. For example, the two parallel
reduction rules for applications are:

t1 −→p t ′1
t2 −→p t ′2

t1 t2 −→p t ′1 t ′2

t1 −→p t ′1
v2 −→p v ′2

(λy:T .t1) v2 −→p [v ′2/y ]t ′1

As a result, unlike evaluation, parallel reduction is closed under substitution: if v1 −→p v2 and t1 −→p t2
then [v1/y ]t1 −→p [v2/y ]t2 and [t1/y ]t −→p [t2/y ]t . We also show that it is confluent. Together, these
properties lets us prove a useful characterization of term equivalence.

Lemma 8 (Parallel reduction contains term equivalence). If · ` t1 ∼= t2, then there exists some t ′ such that
t1 −→p∗ t ′ and t2 −→p∗ t ′.

This lemma rules out the inconsistent equation we were worried about, since reducing a term can never
change its constructor. We can then straightforwardly show Canonical Forms and Progress.

Theorem 2 (Progress).

1. If · ` t : T then either t −→ t ′, t is a value, or t is error.

2. If · ` s : S then either s −→ s ′, s is a value, or s is error.

However, there is a difficulty. In order to prove substitution and confluence of parallel reduction, we need
to assume these properties for the argToD and argToS functions, because the reduction relation is defined in
terms of them. This yields properties 3 and 4 in figure 10.

We expect these requirements to be satisfied by any “natural” definition of argToD and argToS. For
example, one definition that would not respect parallel reduction would be to define

argToSC (λy:Unit.1 + 1) = true
argToSC (λy:Unit.2) = false

But such a function, which examines the body of a λ-abstraction, could never be written by user code. In
practice, we expect the translation functions to do pattern matching and to construct constructor applications
and function calls, e.g. argToDCons in section 3.5. Such translation functions automatically satisfy these
requirements, because they are just built up from λ→ and λ

∼= terms.

5 Additional Properties

Two important properties of SD that deserve special mention are the soundness of the dependently-typed
fragment of the language and decidable typechecking.

5.1 Soundness

Soundness of a dependently-typed language is important because a sound language can function as a proof
system. Unfortunately, by introducing boundaries that produce errors and defer complete typechecking until
runtime, we’ve removed soundness from λ

∼=.
In the case of error we can simply consider the empty datatype false that should have no inhabitants.

But due to sd wf dtm error we can ascribe error that type.
With respect to complete typechecking, consider the term

case DS
(Foo 1)
Foo mkFoo unit of mkFoo y → t

Where Foo : Int ⇒ ∗ and mkFoo : (y : Unit) → Foo 0. The boundary typechecks giving DS
(Foo 1)
Foo s the type

Foo 1, an uninhabited type. By sd wf dtm case, in the only case for Foo we arrive at the inequality
0 ∼= 1 ∈ Γ and can thus typecheck the case to false.
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s −→ s ′ t −→ t ′

SDS
L(DSL

Su) −→ u
eval stm sd lump

DST
L (SDL

T v) −→ v
eval dtm ds lump

Figure 11: Evaluation Rules for Lumps

Note that this is an unavoidable consequence of boundaries. We need to signal errors at runtime and
our boundaries necessarily make claims (e.g., above that the boundary expects a Foo 1 even though it is
impossible) that can only be verified at runtime.

However, like Lambda-eek [13], we believe that while an interoperating calculus such as SD is not
necessarily suitable as a proof system, it is interesting as a programming language in its own right.

5.2 Decidable Typechecking

A related question to the soundness of λ
∼= is whether the typechecking of SD is decidable in the presence of

term evaluation in types. With our current formulation of λ→ and λ
∼=, we believe (but do not prove) that

SD is strongly normalizing and thus typechecking of SD is decidable. We believe that this is reasonable
given that both λ→ and λ

∼= appear to be strongly normalizing and the type-directed boundaries that we
consider in SD themselves do not contribute any additional computational power to the language.

Irrespective of this, it is clear that we can make SD typechecking undecidable by giving λ→ recursive
functions. This is because we determine the equivalence of t1 ∼= t2 by β-reduction as per the eq dtm step
rule (Figure 9). With recursive functions in λ→, evaluation of a DS boundary could end up in an infinite
loop.

Because our actual λ→ language will likely be a general-purpose functional language with recursion, how
might we recover decidable typechecking in this scenario? One such approach is to introduce a purity check
in λ

∼= that restricts boundaries from being embedded in types. This is a clean way to regain decidable
typechecking but at the cost of losing the ability to embed terminating boundary terms in types.

Finally, we may give up the ambition that the typechecker automatically decides term equivalence by
evaluating terms, and instead require the programmer to add explicit annotations stating what should be
evaluated for how many steps. An example of a language taking this approach is Guru [29].

5.3 Lumping and Non-termination

One tempting suggestion to alleviate the problem of decidable typechecking is to limit how we can compute
with values across the boundary. Rather than marshaling values, perhaps we can treat data on the other
side of the boundary as a opaque lump that we can carry around and give back, but otherwise not inspect
its contents. We give the evaluation rules in Figure 11. While appealing at first glance, it turns out that
this system admits non-termination.

In the lump variant of our rules, we introduce a type L that represents an opaque lump value contained in
a boundary. With lumps, boundaries no longer marshal values between languages or otherwise look at their
structure. Instead, boundaries are “canceled out” when they meet each other as per eval stm sd lump
and eval dtm ds lump. The problem is that it turns out that you can write an infinite loop with these
boundaries in a similar manner to type dynamic [1] where you use a pair of functions of type L→ (L→ L)
and (L→ L)→ L to encode a term Ω that loops. The actual terms for these functions and Ω are the same
as Matthews’ and Findler’s versions for their ML-in-ML calculus [20] but adapted to our boundaries.
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Because of this, any interoperability boundary between simply- and dependently-typed languages using
a lump style induces undecidable typechecking if boundaries can appear in dependent types and reduce.

6 Comparisons

Many real-world dependently-typed languages provide some facilities for interoperability with simply-typed
languages. However we know of no language that provides the flexibility suggested by SD. Now that we’ve
established SD and its properties, it is instructive to compare the techniques used by these dependently-
typed languages with how SD establishes its interoperability boundaries for two reasons. First, if SD can
accurately describe the interoperability features of these languages, then it builds confidence that SD is a
good model for dependent interoperability in general. And second, the differences between the two suggests
ways that the dependently-typed language can improve its interoperability support, or conversely, why it
may be hard to do so.

6.1 ATS Data Translation

ATS [6] is built with interoperability with C in mind. Since the two languages share the same data repre-
sentation, marshaling is relatively trivial. ATS values are typically exposed to C as wrapped structs, e.g.,
a C int has type ats int type in ATS. ATS functions can be exposed to C via extern declarations and C
code can either be inlined into ATS files or referenced as external values or types. In this sense, ATS closely
mimics the two-way interoperability boundary of SD.

However, beyond basic type-checking, ATS interoperability makes no attempt at checking to see if de-
pendent type properties are preserved when traveling in and out of C. This is because with arbitrary casts,
C code can arbitrarily munge ATS values or otherwise break the type guarantees made by ATS.

6.2 Extraction in Coq

The theorem prover Coq [32] provides a mechanism, Extraction, that extracts functional programs written
in OCaml (or other functional languages such as Haskell) from proofs of specifications [15]. Coq distinguishes
between computationally relevant types (Sets) and computationally irrelevant types (Props) and uses that
information to guide Extraction. Datatypes extracted from Coq are translated into comparable datatypes
in ML. Alternatively, Coq provides a mechanism for the user to map a Coq datatype and its associated
constructors into a ML datatype and its constructors.

For our purposes, Extraction is a form of one-way interoperability where ML code can use verified Coq
code . If we imagine the extracted program as living in λ

∼= and the ML code living in λ→, then this amounts
to only allowing the user to call λ

∼= code via a SD boundary.
However, there are several limitations to the one-way interoperability model offered by Extraction:

1. Extracted code does not enforce the properties of datatypes. By design the extracted code
is correct up to the verification done in Coq. However, because of erasure, the extracted code cannot
verify that ML data passed to it meets the pre-conditions (if any) to use that code. For example,
our List y example datatype would be erased to a simple List in ML. If the extracted code depends on
receiving a non-empty List then it must trust the user to give it a non-empty List rather than enforcing
that pre-condition itself.

2. User-defined translation of datatypes is simple macro replacement. In SD, the user-defined
translation function argToS is any function from the arguments of the λ

∼= constructor to the λ→

constructor that respects the properties we outlined in the previous sections. In Coq, the analogous
Extract Inductive command performs a macro-replacement of the occurrences of the datatype and
its constructors with the strings specified with the commands. The resulting ML code is not even
checked for well-formedness.
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6.3 Agda Data Translation

Agda [23] provides a foreign-function interface that allows Agda to call into Haskell code. As part of the FFI,
the user specifies Haskell functions to call from Agda with the {-# COMPILED #-} pragma. The user can
also specify translations from Agda datatypes to Haskell datatypes via the {-# COMPILED DATA ... #-}
pragma.

Like Coq Extraction, the Agda FFI is a one-way interoperability layer. The difference is that the
FFI allows Agda, the dependently-typed language, to invoke Haskell code, the simply-typed language .
Translation occurs when Agda invokes a Haskell function. The arguments are converted to Haskell and the
return value converted back to Agda according to the FFI’s built in rules to translate Agda types coupled
with the declared COMPILED DATA pragmas.

Agda’s FFI suffers from problems similar to Coq Extraction due to the restrictive nature of Agda’s
translation function. Agda erases terms in types down to unit so the translation has no way of preserving
or even checking to see if the properties of dependent types are preserved. Unlike Coq Extraction’s macro-
based datatype compatibility declarations, Agda’s compatibility declarations are type-directed. However,
they are still less flexible than SD as you can only map constructors of the same number of arguments and
types.

6.4 Coq’s Program Tactic

Coq’s Program tactic [28] offers a different flavor of interoperability than Extraction. Program allows the
user to write dependently-typed code in the form of predicate subtyping [27] over terms, but using a simply-
typed language instead. This simply-typed language is a relaxed version of Coq’s term language, but could
very well be OCaml or Haskell instead.

The work flow of Program occurs in two steps:

1. The user writes a program in the simply-typed fragment. This includes predicates over types written
in the refinement style {x | P}. The user does not need to write any proofs during this step.

2. Coq elaborates the program into Coq terms and then generates a series of proof obligations that the user
must discharge. The result is a complete Coq term that is the program that meets the specifications
outlined via the predicates of the program.

Program is an example of a dependently-typed system utilizing the power of a simply typed system to do
interesting work. We can view the elaboration step from the simply-typed fragment to Coq as a translation
from λ→ to λ

∼= where we are interested in using λ
∼= to prove properties of the λ→ program.

7 Prior Work

We believe our work is the first to directly address the technical challenges involved with interoperating be-
tween a dependently-typed and simply-typed programming language. However, there has been considerable
effort in related areas that we highlight here.

Interoperability Implementation Since different programming languages typically operate under differ-
ent runtime environments, much of the early work in interoperability research focuses how to reconcile those
environments. Frequently the analysis takes specific pairs of languages, usually C, with other languages such
as Java [7], ML [4], and Haskell [5], but sometimes also with other language pairs such as Python to Scheme
[25] or SML to Java [22]. Other approaches attempt to develop a lingua franca by which two languages can
communicate such as C [3], the Java virtual machine, COM [26], or the .NET framework [30].
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Interoperability Semantics There has been comparatively less work in understanding the semantics of
interoperating languages. We extend Matthews’s and Findler’s original work [20] that showed that even
with simple language pairs — untyped and simply-typed lambda calculi — interoperability leads to some
surprising results. Their latest work in this area focuses on adding polymorphism to a interoperability setting
while preserving parametricity [19].

Mixing Dependency with Dynamic A different thread of related research comes from analyses of
dependently-typed languages intermixed with type dynamic [1]. Ou et al [24] introduce simple and dependent

constructs in which dynamically-typed and dependently-typed, respectively, exists. They allow for nesting of
such constructs (e.g., simple{dynamic{...}}) and provide rules for how simple blocks dynamically enforce
constraints imposed by dependent blocks. Gronski et al [12] extend this approach to a pure-type system
without explicit, separate constructs for dynamic and dependent types. Instead, they include dynamic as a
base type and assume the rest of the world is dependent.

Refinement Types and Contracts The underlying framework for many of these systems is the theory
of refinement types [10] and higher-order contracts [8]. Recently, the study of contracts has gone in many
directions, for example assigning blame [33]. Directly relevant to our work is the study of dependent contracts,
e.g., the systems studied by Greenberg et al [11].

8 Future Work and Conclusion

We tackle the problem of making dependently-typed programming more accessible from the viewpoint of
interoperability. Can we author an interoperability boundary between a dependently-typed language and
a simply-typed language that preserves the properties enforced by the dependently-typed language? Our
solution, the language SD, is able to meet design goals we set forth for such an interoperability layer: using
code from one language from within the other language and verifying properties of simply-typed code with
the dependently-typed language.

In the future, we would like to apply the ideas in this paper to improve the interop support of real-world
languages like Coq and Agda, e.g., adding true “two-way” interoperability. Theoretically, there is also room
for more careful analysis: proofs of strong normalization and a theorem characterizing when boundaries can
be inserted without changing program behavior in harmful ways.

There are also more design variations for SD worth exploring. In particular, we restrict datatype indices
at boundaries to be first-order. While this is not a serious limitation, it would be interesting to adapt ideas
from the contracts literature and decompose equality checks of functions into checks at their use sites during
type conversion. Finally, we can move beyond the pairing of dependent and simple types are explore other
combinations such as dependent and dynamic types and pairings involving linear types.
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A The Full Language

Figures 12 through 28 gives the full syntax and semantics of SD.
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λ→ Types S : : = S1 → S2 | S1 ∗ S2 | Unit | A
λ→ Terms s : : = x | λx:S .s | s1 s2

| <s1, s2> | s.1 | s.2

| C s | case s of Ci xi → si
i

| unit | error | letd y = t in s | SDS
T t

λ
∼= Kinds K : : = ∗ | T ⇒ ∗
λ
∼= Types T : : = (y :T1)→ T2 | T t

| (y :T1) ∗ T2 | Unit | B
λ
∼= Terms t : : = y | λy:T .t | t1 t2

| <t1, t2> | t .1 | t .2

| C t | case t of Ci yi → ti
i

| unit | error

| DST
S s | t1 ∼= t2 B t3

Figure 12: SD Syntax
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Γ ` s : S

` Γ
x:S ∈ Γ

Γ ` x : S
wf stm var

Γ, x:S1 ` s : S2

Γ ` λx:S1.s : S1 → S2
wf stm abs

Γ ` s1 : S1 → S2

Γ ` s2 : S1

Γ ` s1 s2 : S2
wf stm app

Γ ` s1 : S1

Γ ` s2 : S2

Γ `<s1, s2>: S1 ∗ S2
wf stm pair

Γ ` s : S1 ∗ S2

Γ ` s.1 : S1
wf stm proj1

Γ ` s : S1 ∗ S2

Γ ` s.2 : S2
wf stm proj2

C :S → A ∈ Ψ0

Γ ` s : S

Γ ` C s : A
wf stm ctor

Γ ` s : A

constrs A = Ci
i

Ci:S ′i → A ∈ Ψ0
i

Γ, xi:S ′i ` si : S
i

Γ ` case s of Ci xi → si
i

: S
wf stm case

` Γ

Γ ` unit : Unit
wf stm unit

Γ ` t : T
Γ, y:T ` s : S

Γ ` letd y = t in s : S
wf stm letd

Γ ` t : T
S ⇔ T

Γ ` SDS
T t : S

wf stm sd
` Γ

Γ ` error : S
wf stm error

Figure 13: λ→ Typing
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Γ ` K

Γ ` ∗
wf dkn proper

Γ ` T : ∗
Γ ` T ⇒ ∗

wf dkn arr

Γ ` T : K

Γ ` T1 : ∗
Γ, y:T1 ` T2 : ∗

Γ ` (y :T1)→ T2 : ∗
wf dty arr

Γ ` T : T1 ⇒ ∗
Γ ` t : T1

Γ ` T t : ∗
wf dty app

Γ ` T1 : ∗
Γ, y:T1 ` T2 : ∗

Γ ` (y :T1) ∗ T2 : ∗
wf dty pair

Γ ` Unit : ∗
wf dty unit

B:T ⇒ ∗ ∈ Ψ0

Γ ` B : T ⇒ ∗
wf dty data

Figure 14: λ
∼= Kinding
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Γ ` t : T

` Γ
y:T ∈ Γ

Γ ` y : T
wf dtm var

Γ, y:T1 ` t : T2

Γ ` λy:T1.t : (y :T1)→ T2
wf dtm abs

Γ ` t1 : (y :T1)→ T2

Γ ` t2 : T1

Γ ` [t2/y ]T2 : ∗
Γ ` t1 t2 : [t2/y ]T2

wf dtm app

Γ ` t1 : T1

Γ ` t2 : [t1/y ]T2

Γ ` (y :T1) ∗ T2 : ∗
Γ `<t1, t2>: (y :T1) ∗ T2

wf dtm pair

Γ ` t : (y :T1) ∗ T2

Γ ` t .1 : T1
wf dtm proj1

Γ ` t : (y :T1) ∗ T2

Γ ` [t .1/y ]T2 : ∗
Γ ` t .2 : [t .1/y ]T2

wf dtm proj2

C :(y :T1)→ B t ′ ∈ Ψ0

B:T2 ⇒ ∗ ∈ Ψ0

Γ ` t : T1

Γ ` B [t/y ]t ′ : ∗
Γ ` C t : B [t/y ]t ′

wf dtm ctor

Γ ` t : B t ′

Γ ` T : ∗
constrs B = Ci

i

Ci:(yi :Ti)→ B t ′i ∈ Ψ0
i

Γ, yi:Ti , t ′ ∼= t ′i , t
∼= Ci yi ` ti : T

i

Γ ` case t of Ci yi → ti
i

: T
wf dtm case

Γ ` s : S
Γ ` T : ∗
S ⇔ T

Γ ` DST
S s : T

wf dtm ds

Γ ` t0 : T0

Γ ` t1 : T0

FO (T0)
Γ, t1 ∼= t0 ` t : T

Γ ` t1 ∼= t0 B t : T
wf dtm guard

Γ ` unit : Unit
wf dtm unit

Γ ` T : ∗
Γ ` error : T

wf dtm error

Γ ` t : T
Γ ` T ≡ T ′

Γ ` T ′ : ∗
Γ ` t : T ′

wf dtm conv

Figure 15: λ
∼= Typing
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` Ψ

` ·
wf sig empty

` Ψ
A ∈ Ψ

` Ψ,C : S → A
wf sig sctor

` Ψ
A 6∈ Ψ

` Ψ,A
wf sig styctor

` Ψ
· ` (y :T2)→ B t : ∗
` Ψ,C : (y : T2)→ B t

wf sig dctor

` Ψ
· ` T : ∗
B 6∈ Ψ

` Ψ,B : T ⇒ ∗
wf sig dtyctor

` Γ

` ·
wf ctx empty

` Γ

` Γ, x:S
wf ctx scons

` Γ
Γ ` T : ∗
` Γ, y:T

wf ctx dcons

` Γ
Γ ` t : T
Γ ` t ′ : T ′

` Γ, t ∼= t ′
wf ctx equiv

Figure 16: Auxiliary definitions
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FO (T )

FO (T )

FO (T t)
fo app

FO (T1)
FO (T2)

FO ((y :T1) ∗ T2)
fo pair

FO (Unit)
fo unit

constrs B = Ci
i

Ci:(yi :Ti)→ B t ′i ∈ Ψ0
i

FO (Ti)
i

FO (B t)
fo data

S ⇔ T

S1 ⇔ T1

S2 ⇔ T2

S1 → S2 ⇔ (y :T1)→ T2
compat arr

S1 ⇔ T1

S2 ⇔ T2

S1 ∗ S2 ⇔ (y :T1) ∗ T2
compat pair

Unit⇔ Unit
compat unit

B:T0 ⇒ ∗ ∈ Ψ0

FO (T0)
corr (A,B)

A⇔ B t
compat data

Figure 17: Auxiliary definitions (cont.)
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Γ ` K ≡ K ′

Γ ` ∗ ≡ ∗
eq dkn refl

Γ ` T ≡ T ′

Γ ` T ⇒ ∗ ≡ T ′ ⇒ ∗
eq dkn pi

Figure 18: λ
∼= Kind Equivalence

Γ ` T ≡ T ′

B:K ∈ Ψ0

Γ ` B ≡ B
eq dty trefl

Γ ` T1 ≡ T ′1
Γ ` T2 ≡ T ′2

Γ ` (y :T1)→ T2 ≡ (y :T ′1)→ T ′2
eq dty pi

Γ ` C v ∼= C ′ v ′

C 6= C ′

Γ ` T ≡ T ′
eq dty incon

Γ ` T1 ≡ T ′1
Γ ` T2 ≡ T ′2

Γ ` (y :T1) ∗ T2 ≡ (y :T ′1) ∗ T ′2
eq dty sigma

Γ ` Unit ≡ Unit
eq dty urefl

Γ ` T ≡ T ′

Γ ` t ∼= t ′

Γ ` T t ≡ T ′ t ′
eq dty app

Figure 19: λ
∼= Type Equivalence
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Γ ` t ∼= t ′

t ∼= t ′ ∈ Γ

Γ ` t ∼= t ′
eq dtm assumption

t −→ t ′

Γ ` t ∼= t ′
eq dtm step

Γ ` t ∼= t
eq dtm refl

Γ ` t ′ ∼= t

Γ ` t ∼= t ′
eq dtm sym

Γ ` t ∼= t ′

Γ ` t ′ ∼= t ′′

Γ ` t ∼= t ′′
eq dtm trans

Γ ` t1 ∼= t ′1
y 6∈ dom (Γ)

Γ ` [t1/y ]t ∼= [t ′1/y ]t
eq dtm subst

Γ ` t ∼= t ′

y 6∈ dom (Γ)

Γ ` [v/y ]t ∼= [v/y ]t ′
eq dtm subst val

Γ ` t ∼= t ′

x 6∈ dom (Γ)

Γ ` [u/x ]t ∼= [u/x ]t ′
eq dtm ssubst val

Figure 20: λ
∼= Term Equivalence

λ→ Contexts Es : : = � | � s | u � | < � , s > | < u, � >
| � .1 | � .2 | C �

| case� of Ci xi → si
i | letd y = � in s | SDS

T�
λ
∼= Contexts Et : : = � | � t | v � | < � , t > | < v , � >

| � .1 | � .2 | C �

| case� of Ci yi → ti
i | DST

S � | � ∼= t1 B t | v0 ∼= � B t

Figure 21: Evaluation contexts
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s −→ s ′

(λx:S .s1) u2 −→ [u2/x ]s1
eval stm beta

s −→ s ′

Es.s −→ Es.s ′
eval stm ctx

<u1, u2> .1 −→ u1
eval stm proj1

<u1, u2> .2 −→ u2
eval stm proj2

letd y = v in s −→ [v/y ]s
eval stm letd

case Ci u of Ci xi → si
i −→ [u/xi ]si

eval stm case

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

argToSC v = u

SDA
(B t)C v −→ C u

eval stm sd constr

SD
(S1→S2)
((y:T1)→T2)

λy:T ′1.t −→ λx:S1.letd y ′ = DST1

S1
x in SDS2

([y′/y]T2)
((λy:T ′1.t) y ′)

eval stm sd abs

SD
(S1∗S2)
((y:T1)∗T2)

<v1, v2>−→<SDS1

T1
v1,SDS2

([v1/y]T2)
v2>

eval stm sd pair

Figure 22: λ→ Evaluation
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t −→ t ′

(λy:T .t1) v2 −→ [v2/y ]t1
eval dtm beta

t −→ t ′

Et.t −→ Et.t ′
eval dtm ctx

<v1, v2> .1 −→ v1
eval dtm proj1

<v1, v2> .2 −→ v2
eval dtm proj2

case Ci v of Ci yi → ti
i −→ [v/yi ]ti

eval dtm case

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

argToDCu = v

DS
(B t)
A (C u) −→ t ∼= [v/y ]t1 B (C v)

eval dtm ds constr

DS
((y:T1)∗T2)
(S1∗S2)

<u1, u2>−→ let y ′ = DST1

S1
u1 in <y ′,DS

[y′/y]T2

S2
u2>

eval dtm ds pair

v ∼= v B t −→ t
eval dtm guard refl

v 6= v ′

v ∼= v ′ B t −→ error
eval dtm guard error

Figure 23: λ
∼= Evaluation

32



s −→p s ′

s −→p s
par eval stm refl

Es.error −→p error
par eval stm error

s1 −→p s ′1
u2 −→p u ′2

(λx:S .s1) u2 −→p [u ′2/x ]s ′1
par eval stm beta

s1 −→p s ′1
s2 −→p s ′2

s1 s2 −→p s ′1 s ′2
par eval stm app

S −→p S ′

s1 −→p s ′1
λx:S .s −→p λx:S ′.s ′

par eval stm abs

s1 −→p s ′1
s2 −→p s ′2

<s1, s2>−→p<s ′1, s
′
2>

par eval stm pair

s −→p s ′

s.1 −→p s ′.1
par eval stm proj1

u1 −→p u ′1
u2 −→p u ′2

<u11, u2> .1 −→p u ′1
par eval stm proj1Beta

s −→p s ′

s.2 −→p s ′.2
par eval stm proj2

u1 −→p u ′1
u2 −→p u ′2

<u1, u2> .2 −→p u ′2
par eval stm proj2Beta

Figure 24: Parallel reduction (simple terms)
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s −→p s ′

C s −→p C s ′
par eval stm ctor

s −→p s ′

si −→p s ′i
i

case s of Ci xi → si
i −→p case s ′ of Ci xi → s ′i

i par eval stm case

u −→p u ′

si −→p s ′i
i

case Ci u of Ci xi → si
i −→p [u ′/xi ]s ′i

par eval stm caseBeta

S −→p S ′

T −→p T ′

t −→p t ′

SDS
T t −→p SDS ′

T ′ t
′
par eval stm sd

S1 −→p S ′1 S2 −→p S ′2
T1 −→p T ′1 T2 −→p T ′2
T3 −→p T ′3 t −→p t ′

SD
(S1→S2)
((y:T1)→T2)

λy:T3.t −→p λx:S ′1.letd y ′ = DS
T ′1
S ′1

x in SD
S ′2
([y′/y]T ′2)

((λy:T3.t ′) y ′)
par eval stm sd abs

S1 −→p S ′1 S2 −→p S ′2
T1 −→p T ′1 T2 −→p T ′2
v1 −→p v ′1 v2 −→p v ′2

SD
(S1∗S2)
((y:T1)∗T2)

<v1, v2>−→p<SD
S ′1
T ′1

v ′1,SD
S ′2
([v ′1/y]T

′
2)

v ′2>
par eval stm sd pair

constrs A = Ci
i

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

B:T2 ⇒ ∗ ∈ Ψ0

argToSC v ′ = u
v −→p v ′

SDA
(B t)C v −→p C u

par eval stm sd constr
SDUnit

Unitunit −→p unit
par eval stm sd unit

Figure 25: Parallel reduction (simple terms, cont.)
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t −→p t ′

t −→p t
par eval dtm refl

Et.error −→p error
par eval dtm error

t1 −→p t ′1
t2 −→p t ′2

t1 t2 −→p t ′1 t ′2
par eval dtm app

t1 −→p t ′1
v2 −→p v ′2

(λy:T .t1) v2 −→p [v ′2/y ]t ′1
par eval dtm appBeta

T −→p T ′ t −→p t ′

λy:T .t −→p λy:T ′.t ′
par eval dtm abs

t1 −→p t ′1
t2 −→p t ′2

<t1, t2>−→p<t ′1, t
′
2>

par eval dtm pair
t −→p t ′

t .1 −→p t ′.1
par eval dtm proj1

v1 −→p v ′1
v2 −→p v ′2

<v1, v2> .1 −→p v ′1
par eval dtm proj1Beta

t −→p t ′

t .2 −→p t ′.2
par eval dtm proj2

v1 −→p v ′1
v2 −→p v ′2

<v1, v2> .2 −→p v ′2
par eval dtm proj2Beta

t −→p t ′

C t −→p C t ′
par eval dtm ctor

v1 6= v2

v1 ∼= v2 B t −→p error
par eval dtm guard error

Figure 26: Parallel reduction (dependent terms)
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t −→p t ′

ti −→p t ′i
i

case t of Ci yi → ti
i −→p case t of Ci yi → ti

i par eval dtm case

v −→p v ′

ti −→p t ′i
i

case Ci v of Ci yi → ti
i −→p [v ′/yi ]t ′i

par eval dtm caseBeta

T −→p T ′ S −→p S ′

s −→p s ′

DST
S s −→p DST ′

S ′ s
′

par eval dtm ds

T1 −→p T ′1 T2 −→p T ′2
S1 −→p S ′1 S2 −→p S ′2
S3 −→p S ′3 s −→p s ′

DS
((y:T1)→T2)
(S1→S2)

λx:S3.s −→p λy:T ′1.DS
T ′2
S ′2

((λx:S ′3.s
′) (SD

S ′1
T ′1

y))
par eval dtm ds abs

T1 −→p T ′1 T2 −→p T ′2
S1 −→p S ′1 S2 −→p S ′2
u1 −→p u ′1 u2 −→p u ′2

DS
((y:T1)∗T2)
(S1∗S2)

<u1, u2>−→p let y ′ = DS
T ′1
S ′1

u ′1 in <y ′,DS
[y′/y]T ′2
S ′2

u ′2>
par eval dtm ds pair

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

B:T2 ⇒ ∗ ∈ Ψ0

argToDCu ′ = v
u −→p u ′

t −→p t ′

DS
(B t)
A (C u) −→p t ′ ∼= [v/y ]t1 B (C v)

par eval dtm ds constr

t1 −→p t ′1
t2 −→p t ′2
t −→p t ′

t1 ∼= t2 B t −→p t ′1
∼= t ′2 B t ′

par eval dtm guard

t1 −→p v
t2 −→p v
t −→p t ′

v ∼= v B t −→p t
par eval dtm guard refl

DSUnit
Unitunit −→p unit

par eval dtm ds unit

Figure 27: Parallel reduction (dependent terms, cont.)
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S −→p S ′

S −→p S
par eval sty refl

S1 −→p S ′1
S2 −→p S ′2

S1 → S2 −→p S ′1 → S ′2
par eval sty arr

S1 −→p S ′1
S2 −→p S ′2

S1 ∗ S2 −→p S ′1 ∗ S ′2
par eval sty pair

T −→p T ′

T −→p T
par eval dty refl

T1 −→p T ′1
T2 −→p T ′2

(y :T1)→ T2 −→p (y :T ′1)→ T ′2
par eval dty arr

T −→p T ′

t −→p t ′

T t −→p T ′ t ′
par eval dty app

T1 −→p T ′1
T2 −→p T ′2

(y :T1) ∗ T2 −→p (y :T ′1) ∗ T ′2
par eval dty pair

Figure 28: Parallel reduction (simple and dependent types)
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B Proofs

B.1 Structural Properties

Lemma 9. Free variables in typing judgments

1. If Γ ` t : T then fv (t) ⊆ dom (Γ) and fv (T ) ⊆ dom (Γ).

2. If Γ ` T : K then fv (T ) ⊆ dom (Γ) and fv (K ) ⊆ dom (Γ).

3. If Γ ` K then fv (K ) ⊆ dom (Γ).

4. If Γ ` s : S then fv (s) ⊆ dom (Γ) and fv (S ) ⊆ dom (Γ).

Lemma 10. Weakening for Equivalence

1. If Γ1,Γ3 ` t ∼= t ′, then Γ1,Γ2,Γ3 ` t ∼= t ′.

2. If Γ1,Γ3 ` T ≡ T ′, then Γ1,Γ2,Γ3 ` T ≡ T ′.

3. If Γ1,Γ3 ` K ≡ K ′, then Γ1,Γ2,Γ3 ` K ≡ K ′

Proof. Proof by mutual induction on the typing derivations.

Lemma 11. Weakening

1. If Γ1,Γ3 ` t : T and ` Γ1,Γ2,Γ3 then Γ1,Γ2,Γ3 ` t : T .

2. If Γ1,Γ3 ` s : S and ` Γ1,Γ2,Γ3 then Γ1,Γ2,Γ3 ` s : S.

3. If Γ1,Γ3 ` T : K and ` Γ1,Γ2,Γ3 then Γ1,Γ3,Γ3 ` T : K .

4. If Γ1,Γ3 ` K and ` Γ1,Γ2,Γ3 then Γ1,Γ3,Γ3 ` K .

5. If ` Γ1,Γ2 then ` Γ1

Proof. Proof by mutual induction on the typing derivations.

Lemma 12 (Values are closed under substitution). For any values v1, v2, u1, u2, the substituted terms
[v1/y ]v2, [u1/x ]v2, [v1/y ]u2, and [u1/x ]u2 are also values.

Proof. Simple induction on the structure of values.

Lemma 13 (Substitution of us for Equivalence).

1. Γ1, x2:S2,Γ2 ` T ≡ T ′ and Γ1 ` u2 : S2 then Γ1, [u2/x2]Γ2 ` [u2/x2]T ≡ [u2/x2]T ′.

2. Γ1, x2:S2,Γ2 ` K ≡ K ′ and Γ1 ` u2 : S2 then Γ1, [u2/x2]Γ2 ` [u2/x2]K ≡ [u2/x2]K ′.

3. Γ1, x2:S2,Γ2 ` t ∼= t ′ and Γ1 ` u2 : S2 then Γ1, [u2/x2]Γ2 ` [u2/x2]t ∼= [u2/x2]t ′.

Proof. By mutual induction on the three derivations. The cases for Γ, x2:S2,Γ2 ` T ≡ T ′ are:

Case eq dty incon: The rule looks like

Γ ` C v ∼= C ′ v ′

C 6= C ′

Γ ` T ≡ T ′
eq dty incon

By the mutual IH we get Γ2, [u2/x ]Γ2 ` [u2/x ](C v) ∼= [u2/x ](C ′ v ′). Since [u2/x ](C v) = C [u2/x ]v
this is still a contradiction and we can re-apply eq dty incon.
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Case eq dty urefl: The rule looks like

Γ ` Unit ≡ Unit
eq dty urefl

We must show Γ1, [u2/x2]Γ2 ` [u2/x ]Unit ≡ [u2/x ]Unit. But [u2/x ]Unit = Unit, so we can just apply
eq dty urefl again.

Case eq dty trefl: Similar to the case for eq dty urefl.

Case eq dty pi: The rule looks like

Γ ` T1 ≡ T ′1
Γ ` T2 ≡ T ′2

Γ ` (y :T1)→ T2 ≡ (y :T ′1)→ T ′2
eq dty pi

We must show Γ1, [u2/x2]Γ2 ` [u2/x2](y :T1)→ T2 ≡ [u2/x2](y :T ′1)→ T2. Since y is a bound variable
we can pick it fresh, so this is the same as showing Γ1, [u2/x2]Γ2 ` (y : [u2/x2]T1) → [u2/x2]T2 ≡ (y :
[u2/x2]T ′1) → [u2/x2]T ′2. By the IH we get Γ1, [u2/x2]Γ2 ` [u2/x2]T1 ≡ [u2/x2]T ′1 and Γ1, [u2/x2]Γ2 `
[u2/x2]T2 ≡ [u2/x2]T ′2, then re-apply eq dty pi.

Case eq dty sigma: Similar to eq dty pi.

Case eq dty app: The rule looks like

Γ ` T ≡ T ′

Γ ` t ∼= t ′

Γ ` T t ≡ T ′ t ′
eq dty app.

We get Γ1, [u2/x ]Γ2 ` [u2/x ]T ≡ [u2/x ]T ′ by IH, and Γ1, [u2/x2]Γ2 ` [u2/x2]t ∼= [u2/x2]t ′ by the
mutual IH. Then we can re-apply eq dty app.

The cases for Γ1, x2:S2,Γ2 ` K ≡ K ′ are:

Case eq dkn refl: Similar to eq dty urefl.

Case eq dkn pi: Similar to eq dty pi.

The cases for Γ1, x2:S2,Γ2 ` t ∼= t ′ are:

Case eq dtm assumption: We have t ∼= t ′ ∈ Γ1, x2:S2,Γ2 as a premise to the rule. There are two cases:
either t ∼= t ′ ∈ Γ1 or t ∼= t ′ ∈ Γ2. If t ∼= t ′ ∈ Γ1, then we also have t ∼= t ′ ∈ Γ1, [u2/x2]Γ2. So
the conclusion follows by eq dtm assumption followed by eq dtm ssubst. If t ∼= t ′ ∈ Γ2 then
[u2/x2]t ∼= [u2/x2]t ′ ∈ Γ1, [u2/x2]Γ2, so the conclusion follows by just eq dtm assumption.

Case eq dtm step: By eq dtm step followed by eq dtm ssubst.

Case eq dtm refl, eq dtm sym, eq dtm trans: These all go directly by IH.

Case eq dtm subst: The rule looks like

Γ ` t1 ∼= t ′1
y 6∈ dom (Γ)

Γ ` [t1/y ]t ∼= [t ′1/y ]t
eq dtm subst

By the IH (instantiated with u2) we get Γ1, [u2/x2]Γ2 ` [u2/x2]t1 ∼= [u2/x2]t ′1.

So by eq dtm subst, taking [u2/x ]t as the template, we get

Γ1, [u2/x ]Γ2 ` [[u2/x2]t1/y ][u2/x2]t ∼= [[u2/x2]t ′1/y ][u2/x2]t .
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Now by the assumption Γ ` u2 : S2, lemma 9 and the premise y 6∈ dom (Γ1, x2:S2,Γ2) we know that
y is not free in u2. So we can commute the substitution to get

Γ1, [u2/x ]Γ2 ` [u2/x2][t1/y ]t ∼= [u2/x2][t ′1/y ]t ,

which is what we needed to show.

Case eq dtm subst val: The typing rule looks like

Γ ` t ∼= t ′

y 6∈ dom (Γ)

Γ ` [v/y ]t ∼= [v/y ]t ′
eq dtm subst val

By the IH we have Γ, [u2/x ]Γ2 ` [u2/x ]t ∼= [u2/x ]t . Values are closed under substitution of values
(lemma 12), so [u2/x ]v is a value. Applying eq dtm subst val we get

Γ, [u2/x ]Γ2 ` [[u2/x2]v/y ][u2/x2]t ∼= [[u2/x2]v/y ][u2/x2]t ′

By the assumption Γ ` u2 : S2, lemma 9, and the premise y 6∈ dom (Γ1, x2:S2,Γ2) we know that y is
not free in u2, so we can commute the substitutions and get

Γ1, [u2/x ]Γ2 ` [u2/x2][v/y ]t ∼= [u2/x2][v/y ]t ′

which is what we needed to show.

Case eq dtm ssubst val: Similar to the previous case.

Lemma 14 (Substitution of vs for Equivalence).

1. If Γ1, y2:T2,Γ2 ` T ≡ T ′ and Γ1 ` v2 : T2 then Γ1, [v2/y2]Γ2 ` [v2/y2]T ≡ [v2/y2]T ′.

2. If Γ1, y2:T2,Γ2 ` K ≡ K ′ and Γ1 ` v2 : T2 then Γ1, [v2/y2]Γ2 ` [v2/y2]K ≡ [v2/y2]K ′.

3. If Γ1, y2:T2,Γ2 ` t ∼= t ′ and Γ1 ` v2 : T2 then Γ1, [v2/y2]Γ2 ` [v2/y2]t ∼= [v2/y2]t ′.

Proof. Similar to the previous lemma.

Lemma 15 (Substitution of us).

1. If Γ1, x2:S2,Γ2 ` t1 : T1 and Γ1 ` u2 : S2 then Γ1, [u2/x2]Γ2 ` [u2/x2]t1 : [u2/x2]T1.

2. If Γ1, x2:S2,Γ2 ` s1 : S1 and Γ1 ` u2 : S2 then Γ1, [u2/x2]Γ2 ` [u2/x2]s1 : [u2/x2]S1.

3. If Γ1, x2:S2,Γ2 ` T : K and Γ1 ` u2 : S2 then Γ1, [u2/x2]Γ2 ` [u2/x2]T : [u2/x2]K .

4. If Γ1, x2:S2,Γ2 ` K and Γ1 ` u2 : S2 then Γ1, [u2/x2]Γ2 ` [u2/x2]K .

5. If ` Γ1, x2:S2,Γ2 and Γ1 ` u2 : S2 then ` Γ1, [u2/x2]Γ2.

Proof. Mutual induction on all the judgments. In the var cases we splice in the provided typing derivation.
In the wd dtm conv case we appeal to lemma 13.

Lemma 16 (Substitution of vs).

1. If Γ1, y2:T2,Γ2 ` t1 : T1 and Γ1 ` v2 : T2 then Γ1, [v2/y2]Γ2 ` [v2/y2]t1 : [v2/y2]T1.

2. If Γ1, y2:T2,Γ2 ` s1 : S1 and Γ1 ` v2 : T2 then Γ1, [v2/y2]Γ2 ` [v2/y2]s1 : [v2/y2]S1.
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3. If Γ1, y2:T2,Γ2 ` T : K and Γ1 ` v2 : T2 then Γ1, [v2/y2]Γ2 ` [v2/y2]T : [v2/y2]K .

4. If Γ1, y2:T2,Γ2 ` K and Γ1 ` v2 : T2 then Γ1, [v2/y2]Γ2 ` [v2/y2]K .

5. If ` Γ1, y2:T2,Γ2 and Γ1 ` v2 : T2 then ` Γ1, [v2/y2]Γ2.

Proof. Similar to the previous lemma.

Lemma 17 (Equivalence Cut). Suppose Γ ` t1 ∼= t2. Then:

1. If Γ, t1 ∼= t2,Γ
′ ` t ∼= t ′, then Γ,Γ′ ` t ∼= t ′.

2. If Γ, t1 ∼= t2,Γ
′ ` T ≡ T ′, then Γ,Γ′ ` T ≡ T ′.

3. If Γ, t1 ∼= t2,Γ
′ ` K ≡ K ′, then Γ,Γ′ ` K ≡ K ′.

Proof. Mutual induction on the derivations. The only case that doesn’t go directly by the IH is eq dtm-
assumption, where we splice in the provided derivation.

Lemma 18 (Typing Cut). Suppose Γ ` t1 ∼= t2. Then:

1. If Γ, t1 ∼= t2,Γ
′ ` t : T , then Γ,Γ′ ` t : T .

2. If Γ, t1 ∼= t2,Γ
′ ` s : S, then Γ,Γ′ ` s : S.

3. If Γ, t1 ∼= t2,Γ
′ ` T : K , then Γ,Γ′ ` T : K .

4. If Γ, t1 ∼= t2,Γ
′ ` K , then Γ,Γ′ ` K .

5. If ` Γ, t1 ∼= t2,Γ
′, then ` Γ,Γ′.

Proof. Mutual induction on the derivations. The only case that doesn’t go directly by IH is wf sig conv,
where we appeal to lemmma 17.

Lemma 19 (Substitution through types). If Γ ` T1 : K and Γ ` t2 ∼= t ′2 and y2 6∈ dom (Γ), then
Γ ` [t2/y2]T1 ≡ [t ′2/y2]T1.

Proof. Induction on the derivation of Γ, y:T2 ` T1 : K . The cases are

Case wf dty arr: The rule looks like

Γ ` T1 : ∗
Γ, y:T1 ` T2 : ∗

Γ ` (y :T1)→ T2 : ∗
wf dty arr

Since y is a bound variable we can pick it to be different from y2 and push the substitution in, so we
must show Γ ` (y : [t2/y2]T1) → [t2/y2]T2 ≡ (y : [t ′2/y2]T1) → [t ′2/y ]T2. By eq dty pi it suffices to
show Γ1, y :T2 ` [t2/y2]T1 ≡ [t ′2/y2]T1 and Γ1 ` [t2/y2]T2 ≡ [t ′2/y2]T2, both of which follow by IH
(noting again that y2 6= y).

Case wf dty pair: Similar to the previous case.

Case wf dty data: We must show Γ ` [t2/y2]B ≡ [t ′2/y2]B , that is to say, Γ ` B ≡ B . This follows by
eq dty trefl.

Case wf dty unit: Similar to the previous case.
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Case wf dty app: The rule looks like

Γ ` T : T1 ⇒ ∗
Γ ` t : T1

Γ ` T t : ∗
wf dty app

By distributing the substitution and using eq dty app, it suffices to show Γ ` [t2/y2]T ≡ [t ′2/y2]T
(which is direct by IH) and Γ ` [t2/y2]t ∼= [t ′2/y2]t (which is by eq dtm subst).

Lemma 20 (Context conversion (types)). Suppose Γ ` T1 ≡ T2 and Γ ` T2 : ∗. Then:

1. If Γ, y1:T1,Γ
′ ` t : T , then Γ, y1:T2,Γ

′ ` t : T .

2. If Γ, y1:T1,Γ
′ ` s : S, then Γ, y1:T2,Γ

′ ` s : S.

3. If Γ, y1:T1,Γ
′ ` T : K , then Γ, y1:T2,Γ

′ ` T : K .

4. If Γ, y1:T1,Γ
′ ` K , then Γ, y1:T2,Γ

′ ` K .

5. If ` Γ, y1:T1,Γ
′, then ` Γ, y1:T2,Γ

′.

Proof. Mutual induction on all the judgments. The only case that doesn’t go immediately by IH is wf dtm var,
where we splice in a use of wf dtm conv.

Lemma 21 (Context conversion (equations)). If Γ, t1 ∼= t2,Γ
′ ` J and Γ ` t1 ∼= t ′1 and Γ ` t2 ∼= t ′2, then

Γ, t ′1
∼= t ′2,Γ

′ ` J .

Proof. The proof can be carried out completely generically for all the judgment forms, using the Weakening
and Cut properties.

By weakening (lemmas 10 and 11) on the second two assumptions we have Γ, t ′1
∼= t ′2 ` t1 ∼= t ′1 and

Γ, t ′1
∼= t ′2 ` t2 ∼= t ′2. So by eq dtm sym and eq dtm trans we know Γ, t ′1

∼= t ′2 ` t1 ∼= t2.
By weakening on the first assumption, we have Γ, t ′1

∼= t ′2, t1
∼= t2,Γ

′ ` J . But then by Cut (lemmas 17
and 18) we have Γ, t ′1

∼= t ′2,Γ
′ ` J as we claimed.

B.2 Preservation

Lemma 22 (Regularity).

1. If ` Γ and y:T ∈ Γ then Γ ` T : ∗.

2. If Γ ` s : S then ` Γ.

3. If Γ ` t : T then Γ ` T : ∗ and ` Γ.

Proof. Claim (1) is by induction on ` Γ, using weakening (lemma 11). Claim (2) is an easy induction on
Γ ` s : S (using inversion on ` Γ in the cases that extend the context.) Claim (3) is by induction on
Γ ` t : T . In the wf dtm app, wf dtm proj2 and wf dtm ctor we have the needed well-formedness
directly as a premise to the rule.

Lemma 23 (Type equivalence inversion).

1. If Γ ` (y :T1)→ T2 ≡ (y :T ′1)→ T ′2, then Γ ` T1 ≡ T ′1 and Γ ` T2 ≡ T ′2.

2. If Γ ` (y :T1) ∗ T2 ≡ (y :T ′1) ∗ T ′2, then Γ ` T1 ≡ T ′1 and Γ ` T2 ≡ T ′2.

3. If Γ ` T t ≡ T ′ t ′, then Γ ` T ≡ T ′ and Γ ` t ∼= t ′.
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Proof. By inversion on the judgment. The three claims are similar, so we only show (1).
For the claim (1), two rules can match the conclusion, namely eq dty pi and eq dty incon. If the

derivation ended with eq dty pi we have Γ ` T1 ≡ T ′1 and Γ ` T2 ≡ T ′2 as premises to the rule. If it ended
with eq dty incon we have an inconsistent premise Γ ` C v ∼= C ′ v ′, so we can derive Γ ` T1 ≡ T ′1 and
Γ ` T2 ≡ T ′2 by applying eq dty incon.

Lemma 24 (Type equivalence is an equivalence relation).

1. For any T , we have Γ ` T ≡ T .

2. If Γ ` T ≡ T ′ then Γ ` T ′ ≡ T .

3. If Γ ` T ≡ T ′ and Γ ` T ′ ≡ T ′′, then Γ ` T ≡ T ′′.

Proof. Claim (1) is by induction on the structure of T . For each syntactic form (arrow, type application,
pair, Unit, and B) there is a corresponding equivalence rule (eq dty pi, eq dty app, eq dty sigma,
eq dty urefl, eq dty trefl). In the type application case we use eq dtm refl.

Claim (2) is an easy induction on Γ ` T ≡ T ′.
Claim (3) is by a double induction on Γ ` T ≡ T ′ and Γ ` T ′ ≡ T ′′. The cases for Γ ` T ≡ T ′ and

Γ ` T ′ ≡ T ′′ are:

eq dty incon and anything, anything and eq dty incon: Here we can directly show Γ ` T ≡ T ′′

using the inconsistent equality premise.

Both derivations are eq dty urefl : Then T = T ′ = T ′′ = Unit.

Both derivations are eq dty trefl : Similar.

Both derivations are eq dty pi: We apply the IH to the sub-derivations.

Both derivations are eq dty sigma: Similar.

Both derivations are eq dty app: As premises to the two rules we have

1. Γ ` T ≡ T ′

2. Γ ` t ∼= t ′

3. Γ ` T ′ ≡ T ′′

4. Γ ` t ′ ∼= t ′′.

From the IH applied to (1) and (3) we get Γ ` T ≡ T ′′. From eq dtm trans applied to (2) and (4)
we get Γ ` t ∼= t ′. Then apply eq dty app again.

Other combinations: Cannot happen, since the top-level structure of the “middle” term would not match
up.

Lemma 25 (Kinding inversion).

1. If Γ ` B t : ∗ and B:T0 ⇒ ∗ ∈ Ψ0, then Γ ` t : T0.

Proof. Directly by inversion on the judgment we see that the derivation must have been by wf dty app
and wf dty data. So we must have B:T ⇒ ∗ ∈ Ψ0 and Γ ` t : T . Since there are no duplicate declarations
in Ψ0, T must be T0.

Lemma 26 (Typing inversion).

1. If Γ ` (λy:T1.t) : T ′, then Γ, y:T1 ` t : T2, and Γ ` (y :T1)→ T2 ≡ T ′.
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2. If Γ `<t1, t2>: T ′, then Γ ` t1 : T1 and Γ ` t2 : [t1/y ]T ′2 and Γ ` (y :T1) ∗ T2 ≡ T ′.

3. If Γ ` C t : T ′, then C :(y :T1)→ B t1 ∈ Ψ0 and and Γ ` t : T1 and Γ ` B [t/y ]t1 ≡ T ′.

Proof. Induction on the typing Γ ` t : T ′. The cases are:

Cases wf dtm var, app, proj1, proj2, case, ds, guard, error: In these rules the shape of the term
does not match the ones mentioned in the lemma.

Case wf dtm abs: The typing rule looks like

Γ, y:T1 ` t : T2

Γ ` λy:T1.t : (y :T1)→ T2
wf dtm abs

So we get Γ, y :T1 ` t : T2 as an assumption to the rule. By reflexivity (lemma 24) we have Γ ` (y :
T1)→ T2 ≡ (y :T1)→ T2 as required.

Case wf dtm pair, wf dtm unit: Similar to the abs case.

Case wf dtm ctor: The typing rule looks like

C :(y :T1)→ B t ′ ∈ Ψ0

B:T2 ⇒ ∗ ∈ Ψ0

Γ ` t : T1

Γ ` B [t/y ]t ′ : ∗
Γ ` C t : B [t/y ]t ′

wf dtm ctor

We have C :(y :T1)→ B ∈ Ψ0 as a premise, and Γ ` [t/y ]t ′ ∼= [t/y ]t by eq dtm refl.

Case wf dtm conv: The typing rule looks like

Γ ` t : T
Γ ` T ≡ T ′

Γ ` T ′ : ∗
Γ ` t : T ′

wf dtm conv

For (1) we get Γ, y:T1 ` t : T2 and Γ ` (y :T1)→ T2 ≡ T by the IH, so by transitivity (lemma 24) we
have Γ ` (y :T1)→ T2 ≡ T ′ as required. (2) and (3) are similar.

Lemma 27 (⇔ ignores terms in types). S ⇔ T iff S ⇔ [t/y ]T .

Proof. We show the left-to-right direction only, as the reverse direction is similar. We proceed by induction
on S ⇔ T . The cases are:

Case compat arr: The case looks like

S1 ⇔ T1

S1 ⇔ T1

S1 → S2 ⇔ (y ′ :T1)→ T2
compat arr

Since y ′ is a bound variable we can pick it fresh, so that [t/y ]((y ′ :T1)→ T2) = (y : [t/y ]T1)→ [t/y ]T2.
Then we get S1 ⇔ [t/y ]T1 and S2 ⇔ [t/y ]T2 by IH. So re-applying the rule we get S1 → S2 ⇔ (y ′ :
[t/y ]T1)→ [t/y ]T2 as required.

Case compat pair, compat unit: Similar to compat arr.
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Case compat data: The case looks like

B:T0 ⇒ ∗ ∈ Ψ0

FO (T0)
corr (A,B)

A⇔ B t
compat data

The substitution doesn’t affect the premises of the rule.

Lemma 28 (Convenient derivable typing rules). The following rules are derivable:

Γ ` t1 : (y :T1)→ T2

Γ ` v2 : T1

Γ ` t1 v1 : [v1/y ]T2
wf dtm appval

Γ, y:T1 ` t2 : T2

Γ ` t1 : T1

Γ ` T2 : ∗
Γ ` let y = t1 in t2 : T2

wf dtm let

Proof. wf dtm appval: By regularity (lemma 22) we have Γ ` (y : T1) → T2 : ∗. By inversion on the
kinding relation, that means that Γ, y:T1 ` T2 : ∗. So by substitution (lemma 16) we get Γ ` [v2/y ]T2 : ∗.
Then we conclude by wf dtm app.

wf dtm let: Expanding the syntactic sugar, what we need to show is

Γ ` (λy:T1.t2) t1 : T2

By wd dtm abs we know Γ ` (λy : T1.t2) : (y : T1) → T2. From the premise Γ ` T2 : ∗ and lemma 9 we
know that y 6∈ fv (T2), so [t2/y ]T2 = T2. So the same kinding premise also tells us Γ ` [t2/y ]T2 : ∗. Then
the application is well-formed, so Γ ` (λy : T1.t2) t1 : [t1/y ]T2, which is syntactically equal to the type we
want.

Lemma 29. If B:T0 ⇒ ∗ ∈ Ψ0 and constrs B = Ci
i

and Cj :(yj :Tj )→ B tj ∈ Ψ0, then ·, yj :Tj ` tj : T0.

Proof. By inversion on the judgment ` Ψ0 we get · ` (yj :Tj )→ B tj : ∗. Then use inversion on the kinding
judgment.

Property 6. If C :S → A ∈ Ψ0 and C :(y :T1)→ B t1 ∈ Ψ0 and Γ ` u : S, then Γ ` argToDCu : T1 (if it is
defined).

Property 7. If C :S → A ∈ Ψ0 and C :(y :T1)→ B t1 ∈ Ψ0 and Γ ` v : T1, then Γ ` argToSC v : S (if it is
defined).

Theorem 3 (Generalized Preservation). Let y0 be fresh for Γ, T , S , K . Then

1. If Γ ` s : S and s −→ s ′ then Γ ` s : S.

2. If Γ ` [t0/y0]t : T and t0 −→ t ′0 then Γ ` [t ′0/y0]t : T .

3. If Γ ` [t0/y0]s : S and t0 −→ t ′0 then Γ ` [t ′0/y0]s : S.

4. If Γ ` [t0/y0]T : K and t0 −→ t ′0 , then Γ ` [t ′0/y0]T : K .

Proof. We proceed by mutual induction on the judgments Γ ` s : S , Γ ` [t0/y0]s : S , Γ ` [t0/y0]t : T , and
Γ ` [t0/y0]T : K

The cases for Γ ` s : S are mostly routine, but we show the two cases which involve novel language
features, namely SD-boundaries and letd-expressions.
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Case sd stm sd: The rule looks like
Γ ` t : T
S ⇔ T

Γ ` SDS
T t : S

wf stm sd

The expression reduces either by the context SDS
T� or by one of the DS stepping rules.

• Suppose it was by congruence so t −→ t ′. Then by IH Γ ` t ′ : T and thus Γ ` SDS
T t ′ : S .

• Suppose it was by eval stm sd abs. So the step looks like

SD
(S1→S2)
((y:T1)→T2)

λy:T ′1.t −→ λx:S1.letd y ′ = DST1

S1
x in SDS2

([y′/y]T2)
((λy:T ′1.t) y ′)

eval stm sd abs

The variable y ′ is bound, so we rename it to y to reduce clutter. We must show Γ ` λx:S1.letd y =
DST1

S1
x in SDS2

T2
((λy : T ′1.t) y) : S1 → S2, while we have the fact Γ ` (λy : T ′1.t) : (y : T1) → T2

available as a premise to the typing rule. By inversion on the judgment S1 → S2 ⇔ (y :T1)→ T2

we get S1 ⇔ T1 and S2 ⇔ T2.

By Weakening (lemma 11) and wf dtm appval (lemma 28) we get Γ, x :S1, y:T1 ` (λy:T ′1.t) y :
T2. So by wf stm sd we have

Γ, x:S1, y:T1 ` SDS2

T2
((λy:T ′1.t) y) : S2.

Also, by wf dtm ds we immediately get immediately get Γ, x : S1 ` DST1

S1
x : T1. So by

wf stm letd (lemma 28) we have

Γ, x:S1 ` letd y = DST1

S1
x in SDS2

T2
((λy:T ′1.t) y) : S2.

We conclude by applying wf stm abs.

• Suppose it was by eval stm sd pair. So the step looks like

SD
(S1∗S2)
((y:T1)∗T2)

<v1, v2>−→<SDS1

T1
v1,SDS2

([v1/y]T2)
v2>

eval stm sd pair

We must show Γ `<SDS1

T1
v1,SDS2

([v1/y]T2)
v2>: S1 ∗ S2, while we have the fact Γ `<v1, v2>: (y :

T1) ∗ T2 available as a premise to the rule. By inversion on the judgment S1 ∗ S2 ⇔ (y :T1) ∗ T2

we get S1 ⇔ T1 and S2 ⇔ T2. By inversion (lemma 26) on Γ `<v1, v2>: (y : T1) ∗ T2 we find
Γ ` v1 : T1 and Γ ` v2 : [v1/y ]T2.

We wish to apply wft stm pair. We directly get the first premise, namely Γ ` SDS1

T1
v1 : S1, by

wft stm sd. For the second premise we must show Γ ` SDS2

([v1/y]T2)
v2 : S2. By lemma 27 we

have S2 ⇔ [v1/y ]T2, so this also follows from wft stm sd.

• Suppose it was by eval stm sd constr. So the step looks like

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

argToSC v = u

SDA
(B t)C v −→ C u

eval stm sd constr

We must show Γ ` C u : A, while we have the fact Γ ` C v : B t available as a premise to the
rule. By inversion (lemma 26) we get Γ ` v : T1. So by property 7 we get that Γ ` u : S , and
hence Γ ` C u : A as required.
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• Suppose it was by eval stm sd unit. So the step looks like

SDUnit
Unitunit −→ unit

eval stm sd unit

We must show Γ ` unit : Unit, which is straightforwardly true.

Case wf stm letd: The rule looks like

Γ ` t : T
Γ, y:T ` s : S

Γ ` letd y = t in s : S
wf stm letd

We consider the ways the expression letd y = t in s may step.

• By eval stm ctx. So Es is letd y = � in s, we have t −→ t ′, and the transition looks like
letd y = t in s −→ letd y = t ′ in s. By mutual IH we know Γ ` t ′ : T , so we conclude by re-
applying wf stm letd.

• By eval stm letd. So the transition is letd y = v in s −→ [v/y ]s. By substitution (part (2) of
lemma 16) we get Γ ` [v/y ]s : S as required.

The cases for Γ ` [t0/y0]s : S are all immediate by IH except two, namely

Case wf stm sd. The situation looks like this:

Γ ` [t0/y0]t : [t0/y0]T
S ⇔ [t0/y0]T

Γ ` SDS
[t0/y0]T [t0/y0]t : S

wf stm sd

(Notice that simple types never contain any term variables, so applying a substitution to S does not
do anything). By the mutual IH we get Γ ` [t ′0/y0]t : [t0/y0]T . By applying lemma 27 twice we get
S ⇔ [t ′0/y0]T . So we can re-apply the rule to get Γ ` SDS

[t′0/y0]T [t ′0/y0]t : S as required.

Case wf stm letd. We can pick the variable bound by the letd-expression to be different from y0. Then
after pushing the substitution in the situation looks like this:

Γ ` [t0/y0]t : T
Γ, y:T ` [t0/y0]s : S

Γ ` letd y = [t0/y0]t in [t0/y0]s : S
wf stm letd

Now by the mutual IH we get Γ ` [t ′0/y0]t : T , while by IH we get Γ, y:T ` [t ′0/y ]s : S . So we re-apply
the rule to get Γ ` letd y = [t ′0/y0]t in [t ′0/y0]s : S as required.

The cases for Γ ` [t0/y0]t : T are:

Case wf dtm var. Since variables do not step we must have [t0/y0]t = [t ′0/y0]t and the result is trivial.

Case wf dtm abs. So [t0/y0]t is a λ-abstraction. Considering the possibilities for t , this means that either
t is y0 or t is a λ-abstraction. However, the former is impossible because abstractions don’t step. We
can pick the bound variable in t to be distinct from y0 and push the substitution in. Then the situation
looks like this:

Γ, y:[t0/y0]T1 ` [t0/y0]t : T2

Γ ` λy: [t0/y0]T1.[t0/y0]t : (y : [t0/y0]T1)→ T2
wf dtm abs

So we need to prove Γ ` λy: [t ′0/y0]T1.[t
′
0/y0]t : (y : [t0/y0]T1)→ T2.

By eq dtm step we know Γ ` t0 ∼= t ′0, so by lemma 19 we have Γ ` [t0/y0]T1 ≡ [t ′0/y0]T1. By the IH
we know Γ, y :[t0/y0]T1 ` [t ′0/y0]t : T2, so by context conversion (lemma 20) we have Γ, y :[t ′0/y0]T1 `
[t ′0/y0]t : T2. Now we re-apply wf dtm abs to get Γ ` λy : [t ′0/y0]T1.[t

′
0/y0]t : (y : [t ′0/y0]T1) → T2.

Finally by wf dtm conv this gives Γ ` λy: [t ′0/y0]T1.[t
′
0/y0]t : (y : [t0/y0]T1)→ T2 as required.
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Case wf dtm app . So [t0/y0]t is an application, and T is an arrow type. This can happen in two ways:
either t is y0, or t is an application.

If t is an application, we can choose the bound variable in the arrow type to be different from y0 and
push the substitution in. Then the situation looks like this:

Γ ` [t0/y0]t1 : (y :T1)→ T2

Γ ` [t0/y0]t2 : T1

Γ ` [[t0/y0]t2/y ]T2 : ∗
Γ ` [t0/y0]t1 [t0/y0]t2 : [[t0/y0]t2/y ]T2

wf dtm app

By the IH we get Γ ` [t ′0/y0]t1 : (y : T1) → T2 and Γ ` [t ′0/y0]t2 : T1. Since y0 6∈ fv (T2), we have
that [[t0/y0]t2/y ]T2 = [t0/y0][t2/y ]T2 and [[t ′0/y0]t2/y ]T2 = [t ′0/y0][t2/y ]T2. So by the mutual IH we
get Γ ` [[t ′0/y0]t2/y ]T2 : ∗. So re-applying wd dtm app we get

Γ ` [t ′0/y0]t1 [t ′0/y0]t2 : [[t ′0/y0]t2/y ]T2.

Now by eq dtm step we have Γ ` t0 ∼= t ′0, so (again noting that [[t0/y0]t2/y ]T2 = [t0/y0][t2/y ]T2) by
lemma 19 we have Γ ` [[t ′0/y0]t2/y ]T2 ≡ [[t0/y0]t2/y ]T2. So by wf dtm conv we get

Γ ` [t ′0/y0]t1 [t ′0/y0]t2 : [[t0/y0]t2/y ]T2

as required.

On the other hand, suppose that the t is y0, that is t0 is an application which steps and we need to
show that its type is preserved. The situation looks like

Γ ` t1 : (y :T1)→ T2

Γ ` t2 : T1

Γ ` [t2/y ]T2 : ∗
Γ ` t1 t2 : [t2/y ]T2

wf dtm app

We consider the ways t1 t2 can step.

• By eval dtm ctx when Et is � t2. So t1 −→ t ′1. By the IH, Γ ` t ′1 : (y :T1)→ T2 so Γ ` t ′1 t2 : T2.

• By eval dtm ctx when Et is v �. So t2 −→ t ′2. By the IH Γ ` t ′2 : T1, so by wf dtm app
we have that Γ ` v t ′2 : [t ′2/y ]T2. So by lemma 19 and one use of wf dtm conv we have that
Γ ` v t ′2 : [t2/y ]T2 (taking advantage of the fact that Γ ` t2 ∼= t ′2 by eq dtm step).

• By eval dtm beta. So t1 is λy:T ′1.t and t2 is some value v , and the step is (λy:T ′1.t) v −→ [v/y ]t .
By inversion (lemma 26) we know Γ, y:T ′1 ` t : T ′2 for some T ′2 such that Γ ` (y :T ′1)→ T ′2 ≡ (y :
T1)→ T2.

By inversion on the type equality (lemma 23) we know Γ ` T ′1 ≡ T1 and Γ ` T ′2 ≡ T2. So by one
application of wf dtm conv we have Γ ` v : T ′1; by substitution (lemma 16) Γ ` [v/y ]t : T ′2;
and by a second application of wf dtm conv we get Γ ` [v/y ]t : T2.

Case wf dtm pair So [t0/y0]t is a pair. Considering the possibilities for t this means that either t is y0 or
t is a pair. However, the former is impossible because pairs don’t step. So pushing in the substitution,
the situation looks like this:

Γ ` [t0/y0]t1 : T1

Γ ` [t0/y0]t2 : [[t0/y0]t1/y ]T2

Γ ` (y :T1) ∗ T2 : ∗
Γ `<[t0/y0]t1, [t0/y0]t2>: (y :T1) ∗ T2

wf dtm pair

Now by IH we have Γ ` [t ′0/y0]t1 : T1 and Γ ` [t ′0/y0]t2 : [[t0/y0]t1/y ]T2. Since y0 6∈ fv (T2) we know
[[t0/y0]t1/y ]T2 = [t0/y0][t1/y ]T2, so by eq dtm step and lemma 19 we have Γ ` [[t ′0/y0]t1/y ]T2 ≡
[[t0/y0]t1/y ]T2. So by wf dtm conv (and regularity, lemma 22, to satisfy the kinding premise to
conv) we get Γ ` [t ′0/y0]t2 : [[t ′0/y0]t1/y ]T2. Then we can re-apply wd dtm pair.

48



Case wf dtm proj1 So [t0/y0]t is a projection. This means that either t is a projection, or t is y0.

In the first case, the situation looks like

Γ ` [t0/y0]t : (y :T1) ∗ T2

Γ ` [t0/y0]t .1 : T1
wf dtm proj1

By the IH we get that Γ ` [t ′0/y0]t : (y :T1) ∗ T2, and we can just re-apply wf dtm proj1.

In the other case, t0 itself is a projection that steps and we need to show preservation for it. We
consider the ways it may step:

• By the evaluation context � .1. This is immediate by IH, like the previous case.

• By eval dtm proj1. So the step is <v1, v2>−→ v1. By inversion (lemma 26) and inversion on
the equivalence judgment (lemma 23) we have Γ ` v1 : T ′1 and Γ ` T ′1 ≡ T1. So by regularity and
wf dtm conv we get Γ ` v1 : T1.

Case wf dtm proj2 Similar to the previous case.

Case wf dtm ctor The typing rule looks like

C :(y :T1)→ B t ′ ∈ Ψ0

B:T2 ⇒ ∗ ∈ Ψ0

Γ ` t : T1

Γ ` B [t/y ]t ′ : ∗
Γ ` C t : B [t/y ]t ′

wf dtm ctor

The reasoning is similar to the wf dtm app case, but there are fewer cases to consider since there is
no β-rule for constructor applications.

Case wf dtm case So [t0/y0]t is a case-expression, which means that either t is a case-expression or t is
y0.

In the former case, we pick yi to be different from y0 and push the substitution in, so the situation
looks like

Γ ` [t0/y0]t : B t ′

Γ ` T : ∗
constrs B = Ci

i

Ci:(yi :Ti)→ B t ′i ∈ Ψ0
i

Γ, yi:Ti , t ′ ∼= t ′i , [t0/y0]t ∼= Ci yi ` [t0/y0]ti : T
i

Γ ` case [t0/y0]t of Ci yi → [t0/y0]ti
i

: T
wf dtm case

By the IH we get Γ ` [t ′0/y0]t : B t ′ and Γ, yi : Ti , t
′ ∼= t ′i , [t0/y0]t ∼= Ci yi ` [t ′0/y0]ti : T . By

eq dtm step and eq dtm subst we get Γ, yi:Ti , t
′ ∼= t ′i ` [t0/y0]t ∼= [t ′0/y0]t . So by context conversion

(lemma 21) we get Γ, yi : Ti , t
′ ∼= t ′i , [t

′
0/y0]t ∼= Ci yi ` [t ′0/y0]ti : T . We conclude by re-applying

wf dtm case.

In the other case, t0 itself is a case-expression which steps, and we must show that its type is preserved.
The typing rule looks like

Γ ` t : B t ′

Γ ` T : ∗
constrs B = Ci

i

Ci:(yi :Ti)→ B t ′i ∈ Ψ0
i

Γ, yi:Ti , t ′ ∼= t ′i , t
∼= Ci yi ` ti : T

i

Γ ` case t of Ci yi → ti
i

: T
wf dtm case
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We consider how the expression case t of Ci yi → ti
i

may step:

• By eval dtm ctx and the evaluation context case� of Ci yi → ti
i
.

Then t −→ t ′′ so IH gives us Γ ` t ′′ : T1. Additionally, by eq dtm step we have Γ, yi:Ti ` t ∼= t ′′,
so by context conversion (lemma 21) applied to the premise Γ, yi :Ti , t

′ ∼= t ′i , t
′′ ∼= Ci yi ` ti : T

we get Γ, yi:Ti , t
′ ∼= t ′i , t

′′ ∼= Ci yi ` ti : T . So by wf dtm case the final result is well-typed.

• By eval dtm case.

Then t = Ci v for some branch Ci of the case expression, and the expression steps to [v/yi ]ti . By
inversion (lemma 26) we know Γ ` v : Ti with Ci:(yi :Ti)→ B ′ t ′i ∈ Ψ0 and Γ ` B ′ [v/yi ]t

′
i ≡ B t ′.

Since the signature cannot contain duplicate declarations, we know that B ′ = B and that this
Ti is the same that was used to typecheck the ith branch of the case expression. Then we have
(remember that t is Ci v)

Γ, yi:Ti , t
′ ∼= t ′i ,Ci v ∼= Ci yi ` ti : T

so by substitution we get

Γ, [v/yi ]t
′ ∼= [v/yi ]t

′
i ,Ci [v/yi ]v ∼= Ci v ` [v/yi ]ti : [v/yi ]T

Since yi is a bound variable in the case branch and in the constructor declaration, we can pick it
suitably fresh. Then yi can not occur in t′ or in v or in T , so we can simplify this to

Γ, t ′ ∼= [v/yi ]t
′
i ,Ci v ∼= Ci v ` [v/yi ]ti : T .

Now the two equalities in the context are provable: we get Γ ` t ′ ∼= [v/yi ]t
′
i by inversion

(lemma 23) on the derivation Γ ` B ′ [v/yi ]t
′
i ≡ B t ′, while Γ ` Ci v ∼= Ci v follows by eq dtm refl.

So by Cut (lemma 18) we have
Γ ` [v/yi ]ti : T

as required.

Case wf dtm ds So [t0/y0]t is a DS-boundary. Either t is a DS-boundary, or t is y0. In the former case,
the situation looks like this:

Γ ` [t0/y0]s : S
Γ ` [t0/y0]T : ∗
S ⇔ [t0/y0]T

Γ ` DS
[t0/y0]T
[t0/y0]S

[t0/y0]s : [t0/y0]T
wf dtm ds

By the IH we get Γ ` [t ′0/y0]s : [t ′0/y0]S , by the mutual IH we get Γ ` [t ′0/y0]T : ∗, and by applying

lemma 27 twice we get S ⇔ [t ′0/y0]T . So re-applying wf dtm ds we have Γ ` DS
[t′0/y0]T

[t′0/y0]S
[t ′0/y0]s :

[t ′0/y0]T . Then by lemma 19 and wf dtm conv we get Γ ` DS
[t′0/y0]T

[t′0/y0]S
[t ′0/y0]s : [t0/y0]T as required.

In the other case, t0 itself is a DS-boundary which steps, and we must show that its type is preserved.
We consider the ways the expression DST

S s can step:

• By congruence, so s −→ s ′. Then by IH Γ ` s ′ : S and thus Γ ` DST
S s ′ : T .

• By eval dtm ds abs. So the step looks like

DS
((y:T1)→T2)
(S1→S2)

λx:S ′1.s −→ λy:T1.DST2

S2
((λx:S ′1.s) (SDS1

T1
y))

eval dtm ds abs

Then we must show that Γ ` λy : T1.DST2

S2
(λx : S ′1.s) (SDS1

T1
y) : (y : T1) → T2, while we have the

fact Γ ` (λx:S ′1.s) : S1 → S2 available as a premise to the typing rule.

Constructing such a typing derivation is straightforward utilizing the fact that since S1 → S2 ⇔
(y :T1)→ T2 then S1 ⇔ T1 and S2 ⇔ T2 (under a context Γ, y:T1) by inversion of compat arr.
Eventually we must show that Γ, y:T1 ` λx:S1.s : S1 → S2. We are given that Γ ` λx:S1.s : S1 →
S2 so by weakening (lemma 11) we arrive at the desired result.
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• Suppose it was by eval dtm ds pair. So the step looks like

DS
((y:T1)∗T2)
(S1∗S2)

<u1, u2>−→ let y ′ = DST1

S1
u1 in <y ′,DS

[y′/y]T2

S2
u2>

eval dtm ds pair

We have Γ `<u1, u2>: S1 ∗S2 as a premise to the typing rule, directly by inversion on that typing
we get Γ ` u1 : S1 and Γ ` u2 : S2. By inversion on trans pair we get that S1 ⇔ T1 and
S2 ⇔ T2.

We must construct a typing derivation Γ ` let y = DST1

S1
u1 in <y ,DST2

S2
u2>: (y : T1) ∗ T2. (Here

we rename the y ′ to y in order to simplify the expression). We will do this by applying the
derived rule wf dtm let (lemma 28), which requires showing the two premises Γ ` DST1

S1
u1 : T1

and Γ, y :T1 `<y ,DST2

S2
u2>: (y : T1) ∗ T2. The third (kinding) premise follows immediately by

regularity (lemma 22).

From Γ ` u1 : S1 and S1 ⇔ T1 we directly get Γ ` DST1

S1
u1 : T1.

For the second premise, we want to apply wf dtm pair. So we must show the three premises of
that rule.

1. Γ, y:T1 ` y : T1. Immediate by wf dtm var.

2. Γ, y:T1 ` DST2

S2
u2 : T2. Also immediate, using the fact that S2 ⇔ T2 as we noted before.

3. Γ, y:T1 ` (y :T1) ∗ T2 : ∗. By regularity (lemma 22).

• Suppose it was by eval dtm ds constr. So the step looks like

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

argToDCu = v

DS
(B t)
A (C u) −→ t ∼= [v/y ]t1 B (C v)

eval dtm ds constr

and we must show Γ ` t ∼= [v/y ]t1 B C v : B t .

By property 6 we have Γ ` v : T1. So Γ ` C v : B [v/y ]t1. By eq dtm assumption and
eq dty app we have Γ, t ∼= [v/y ]t1 ` B [v/y ]t1 ≡ B t , so by wf dtm conv we have Γ, t ∼=
[v/y ]t1 ` C v : B t .

By inversion on the premise A ⇔ B t we get B :T0 ⇒ ∗ ∈ Ψ0 and FO (T0), so by lemma 29
and substitution and weakening, we get Γ ` [v/y ]t1 : T0. Also, from inversion (lemma 25) on the
premise Γ ` B t : ∗, we get Γ ` t : T0. Hence by wf dtm guard we get Γ ` t ∼= [v/y ]t1BC v : B t
as required.

• Suppose it was by eval dtm ds unit. So the step looks like

DSUnit
Unitunit −→ unit

eval dtm ds unit

We must show Γ ` unit : Unit, which is straightforwardly true.

Case wf dtm guard . So [t0/y0]t is a guard-expression, which means that either t is a guard-expression
or t is y0.

In the former case, we can push the substitution in and the situation looks like this:

Γ ` [t0/y0]t1 : T0

Γ ` [t0/y0]t2 : T0

FO (T0)
Γ, [t0/y0]t1 ∼= [t0/y0]t2 ` [t0/y0]t : T

Γ ` [t0/y0]t1 ∼= [t0/y0]t2 B [t0/y0]t : T
wf dtm guard
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Directly by the IH we get Γ ` [t ′0/y0]t1 : T0 and Γ ` [t ′0/y0]t2 : T0. The IH also gives us Γ, [t0/y0]t1 ∼=
[t0/y0]t2 ` [t ′0/y0]t : T . Now by eq dtm step we have Γ ` t0 ∼= t ′0, so by eq dtm subst we
know Γ ` [t0/y0]t1 ∼= [t ′0/y0]t1. Similarly for t2. So by Context Conversion (lemma 21) we get
Γ, [t ′0/y0]t1 ∼= [t ′0/y0]t2 ` [t ′0/y0]t : T . We conclude by re-applying wf dtm guard.

The other possibility is that the entire expression is a guard-expression which steps, and we must prove
that its type is preserved. So the typing rule looks like

Γ ` t0 : T0

Γ ` t1 : T0

FO (T0)
Γ, t1 ∼= t0 ` t : T

Γ ` t1 ∼= t0 B t : T
wf dtm guard

We consider the ways the expression t1 ∼= t0 B t can step:

• By eval dtm ctx when the context is � ∼= t0Bt and t1 −→ t ′1. We must show Γ ` t ′1
∼= t0Bt : T .

By the IH we have Γ ` t ′1 : T0, so it suffices to show Γ, t ′1
∼= t0 ` t : T , and then we can re-apply

wf dtm guard. By eq dtm step we know that Γ ` t1 ∼= t ′1 and by eq dtm refl we know
Γ ` t0 ∼= t0. So this follows by context conversion (lemma 21) on the assumption Γ, t1 ∼= t0 ` t : T .

• By eval dtm ctx when the context is v ∼= � B t . This is similar to the previous case.

• By eval dtm guard refl. In this case the expression steps to t .

The premise to the rule says Γ, v ∼= v ` t : T , but by eq dtm refl we have Γ ` v ∼= v , so by
Cut (lemma 18) we get Γ ` t : T as required.

• By eval dtm guard error. In this case the entire expression steps to error, and we can indeed
type Γ ` error : T as required (using regularity, lemma 22, for the required kinding premise).

Case wf dtm unit Since unit doesn’t step we must have [t0/y0]t = [t ′0/y0]t and the result is trivial.

Case wf dtm error Similar to the previous case.

The cases for Γ ` [t0/y0]T : K are:

Case wf dty arr. The type [t0/y0]T must be some arrow type. Since the variable is bound by the arrow
we can pick it to not clash with y0, so the type is in fact of the form (y : [t0/y0]T1) → [t0/y0]T2, and
the situation looks like

Γ ` [t0/y0]T1 : ∗
Γ, y:[t0/y0]T1 ` [t0/y ]T2 : ∗

Γ ` (y : [t0/y0]T1)→ [t0/y0]T2 : ∗
wf dty arr

Directly by the IH we get Γ ` [t ′0/y0]T1 : ∗. By the IH we get Γ ` [t ′0/y0]T1 : ∗ and Γ, y :[t0/y0]T1 `
[t ′0/y0]T2 : ∗. By eq dtm step we know Γ ` t0 ∼= t ′0, so by lemma 19 Γ ` [t0/y0]T1 ≡ [t ′0/y0]T1. So
by context conversion (lemma 20) we have Γ, y:[t ′0/y0]T1 ` [t ′0/y ]T2 : ∗. Re-apply wf dty arr to get
Γ ` (y : [t ′0/y ]T1)→ [t ′0/y ]T2 : ∗ as required.

Case wf dty pair. Similar to the previous case.

Case wf dty app. The situation looks like:

Γ ` [t0/y0]T : T1 ⇒ ∗
Γ ` [t0/y0]t1 : T1

Γ ` ([t0/y0]T ) ([t0/y0]t1) : ∗
wf dty app

By the IH we get Γ ` [t ′0/y0]T : T1 ⇒ ∗, and by the mutual IH we get Γ ` [t ′0/y0]t1 : T1. Then we can
re-apply wf dty app.
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Case wf dty data. Since data constructors B do not step we must have [t0/y0]T = [t ′0/y0]T and the result
is trivial.

Case wf dtm conv: The situation looks like:

Γ ` [t0/y0]t : T
Γ ` T ≡ T ′

Γ ` T ′ : ∗
Γ ` [t0/y ]t : T ′

wf dtm conv

By the IH we get Γ ` [t ′0/y0]t : T . Conclude by re-applying wf dtm conv.

B.3 Progress

Lemma 30 (Parallel reduction contains evaluation).

1. If t −→ t ′ then t −→p t ′.

2. If s −→ s ′ then s −→p s ′.

Proof. Easy from inspecting the definition of −→p.

Property 8. If argToDCu is defined, then argToDC [u1/x1]u = [u1/x1](argToDCu) and argToDC [v1/y1]u =
[v1/y1](argToDCu).

Property 9. If argToSC v is defined, then argToSC [u1/x1]v = [u1/x1](argToSC v) and argToSC [v1/y1]v =
[v1/y1](argToSC v).

Property 10. If u −→p u ′, then argToDCu −→p argToDCu ′.

Property 11. If v −→p v ′, then argToSC v −→p argToSC v ′.

Lemma 31 (Substitution for parallel reduction). Suppose u −→p u ′, s −→p s ′, v −→p v ′, t −→p t ′,
S −→p S ′, and T −→p T ′. Then

1. [u/x ]s2 −→p [u ′/x ]s ′2

2. [u/x ]t2 −→p [u ′/x ]t ′2

3. [u/x ]S −→p [u ′/x ]S ′

4. [u/x ]T −→p [u ′/x ]T ′

5. [v/y ]s2 −→p [v ′/y ]s ′2

6. [v/y ]t2 −→p [v ′/y ]t ′2

7. [v/y ]S −→p [v ′/y ]S ′

8. [v/y ]T −→p [v ′/y ]T ′

Proof. By mutual induction on s −→p s ′, t −→p t ′, S −→p S ′ and T −→p T ′. Most of the cases
are very similar, we show two representative ones (for substitution of dependent terms v into dependent
applications t1 t2). We also show the cases involving DS/SD-boundaries on constructors, since those motivate
the substitution properties for argToD and argToS.
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Case par eval dtm app: The rule looks like

t1 −→p t ′1
t2 −→p t ′2

t1 t2 −→p t ′1 t ′2
par eval dtm app

By the IH we get [v/y ]t1 −→p [v ′/y ]t ′1 and [v/y ]t2 −→p [v ′/y ]t ′2. So re-applying par eval dtm appBeta
we get [v/y ](t1 t2) −→p [v ′/y ](t1 t ′2) as required.

Case par eval dtm appBeta: The rule looks like

t1 −→p t ′1v2 −→p v ′2
(λy1:T .t1) v2 −→p [v ′2/y1]t ′1

par eval dtm appBeta

Since y1 is a bound variable we can pick so that y1 6∈ fv (v2). The IH gives us [v/y ]t1 −→p [v ′/y ]t ′1
and [v/y ]v2 −→p [v ′/y ]v ′2. By lemma 12 [v/y ]v2 is still a value, so pushing down the substitution
and re-applying par eval dtm appBeta we get [v/y ]((λy1:T .t1) v2) −→p [[v ′/y ]v ′2/y1][v ′/y ]t ′1. Not-
ing that y1 6∈ fv (v ′2) we have [[v ′/y ]v ′2/y1][v ′/y ]t ′1 = [v ′/y ][v ′2/y1]t ′1, so we have showed [v/y ]((λy1 :
T .t1) v2) −→p [v ′/y ][v ′2/y1]t ′1 as required.

Case par eval dtm ds constr: The rule looks like

C :S → A ∈ Ψ0

C :(y1 :T1)→ B t1 ∈ Ψ0

B:T2 ⇒ ∗ ∈ Ψ0

argToDCu ′ = v1
u −→p u ′

t −→p t ′

DS
(B t)
A (C u) −→p t ′ ∼= [v1/y1]t1 B (C v1)

par eval dtm ds constr

By mutual IH we get [v/y ]u −→p [v/y ]u ′. So by property 10, argToDC [v/y ]u −→p argToDC [v ′/y ]u ′.
Also by IH, we have [v/y ]t −→p [v ′/y ]t . So re-applying par eval dtm ds constr, we have that

DS
(B [v/y]t)
A (C [v/y ]u) −→p [v ′/y ]t ′ ∼= [argToDC [v ′/y ]u/y1]t1 B (C (argToDC [v ′/y ]u)).

By property 8 we know that argToDC [v ′/y ]u = [v ′/y ](argToDCu), so

[argToDC [v ′/y ]u/y1]t1 = [[v ′/y ](argToDCu)/y1]t1.

From the assumption that the signature is well-formed (` Ψ) we in particular get that · ` (y : T1) →
B t1 : ∗, so y 6∈ fv (t1), and [[v ′/y ](argToDCu)/y1]t1 = [v ′/y ][argToDCu/y1]t1. So pulling the substi-
tutions out, we have in fact shown

[v/y ]DS
(B t)
A (C u) −→p [v ′/y ]t ′ ∼= [v ′/y ][argToDCu/y1]t1 B (C [v ′/y ](argToDCu)),

as required.

Case par eval stm sd constr: The rule looks like

constrs A = Ci
i

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

B:T2 ⇒ ∗ ∈ Ψ0

argToSC v ′1 = u1

v1 −→p v ′1

SDA
(B t)C v1 −→p C u1

par eval stm sd constr
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By mutual IH we get [v/y ]v1 −→p [v ′/y ]v ′1. So by re-applying par eval stm sd constr we get

[v/y ](SDA
(B 1)(C v1)) −→p C (argToSC ([v ′/y ]v ′1)).

By property 9 we can commute the substitution past argToS, so we have in fact shown

[v/y ](SDA
(B 1)(C v1)) −→p [v ′/y ](C (argToSC v ′1)),

as required.

Lemma 32 (One-step diamond property for parallel reduction).

1. If s −→p s1 and s −→p s2, then there exists some s ′ such that s1 −→p s ′ and s2 −→p s ′.

2. If S −→p S1 and S −→p S2, then there exists some S ′ such that S1 −→p S ′ and S2 −→p S ′

3. If t −→p t1 and t −→p t2, then there exists some t ′ such that t1 −→p t ′ and t2 −→p t ′.

4. If T −→p T1 and T −→p T2, then there exists some T ′ such that T1 −→p T ′ and T2 −→p T ′.

Proof. By induction on the structure of s, S , t and T . In each case we consider the (non-refl) ways the
term/type can step. (If one of the steps is by refl the result is trivial).

Cases for s:

Case x . Trivial since x doesn’t step.

Case unit, error. Similar.

Case λx:S .s. The only way this expression can step is by S and s stepping; apply IH.

Case s1 s2. Consider the pairs of ways that the expression may step:

• Both are par eval stm app. In other words, we have s1 s2 −→p s11 s21 and s1 s2 −→p s12 s22.
By the IH for s1 we get s11 −→p s ′1 and s12 −→p s ′1 for some s ′1, and similarly for s2. So then by
par eval stm app, we get s11 s12 −→p s ′1 s ′2 and s12 s22 −→p s ′1 s ′2 as required.

• One of them is par eval stm app and one is par eval stm beta. In other words, we have

(λx:S .s0) u2 −→p [u21/x ]s01 where s0 −→p s01 and u2 −→p u21

(λx:S .s0) u2 −→p (λx:S .s02) u22 where s0 −→p s02 and u2 −→p u22

By the IH we have s01 −→p s ′1 and s02 −→p s ′0 for some s ′0, and also u21 −→p u ′2 and u22 −→p u ′2
for some u ′2. By lemma 31 we have [u21/x ]s01 −→p [u ′2/x ]s ′0, and by par eval stm beta we have
(λx:S .s02) u ′2 −→p [u ′2/x ]s ′0, as required.

• Both of them are par eval stm beta. In other words we have

(λx:S .s0) u2 −→p [u21/x ]s01 where s0 −→p s01 and u2 −→p u21

(λx:S .s0) u2 −→p [u22/x ]s02 where s0 −→p s02 and u2 −→p u22

By the IH we have s01 −→p s ′1 and s02 −→p s ′0 for some s ′0, and also u21 −→p u ′2 and u22 −→p u ′2
for some u ′2. Now by lemma 31, [u21/x ]s01 −→p [u ′/x ]s ′0 and [u22/x ]s02 −→p [u ′/x ]s ′0 as required.

• One of them is par eval stm error. By considering the cases for the context Es, we see that
the error transition is either error s2 −→p error or u1 error −→p error. Since error is not a value,
the other transition can not be par eval stm beta, so it must be either error or app. If it
is error, then both terms step to error and we are done; if it is app then the term stepped to
error s ′2 or u ′1 error, which can again step to error.
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Case <s1, s2>. Consider the pairs of ways the expression may step:

• By two par eval stm pair transitions. We reason similarly to the case for two par eval stm app
transitions above.

• By one par eval stm pair and one par eval stm error transition. Stepping by pair will
still leave the term in a form where error applies.

• By two par eval stm error transitions. Then both terms step to error, so we are done.

Case s.1, s.2, C s. Similar to the previous case.

Case case s of Ci xi → si
i
. We consider the ways the expression may step.

• Both transitions are by par eval stm case. We reason as in the above cases.

• One transition was by par eval stm case, and one by par eval stm caseBeta. In other
words we have

case Ci u of Ci xi → si
i −→p [u1/xi ]s1 i where u −→p u1 and si −→p s1 i

case Ci u of Ci xi → si
i −→p case Ci u2 of Ci xi → s2 i

i
where u −→p u2 and si −→p s2 i

Now by IH we have u1 −→p u ′ and u2 −→p u ′ for some u ′, and also s1 i −→p s ′i and s2 i −→p s ′i
for each i . By lemma 31 we get [u1/xi ]s1 i −→p [u ′/xi ]s

′
i , and by par eval caseBeta we get

case Ci u2 of Ci xi → s2 i
i −→p [u ′/xi ]s

′
i , as required.

• Both transitions are by par eval stm caseBeta. As in the case of two par eval stm beta
transitions, this follows by IH and lemma 31.

• One transition was by par eval stm error. So the term must be case error of Ci xi → si
i
. We

see that the other transition must be either case or error, and in both cases the resulting terms
are joinable at error.

Case letd y = t in s Consider the pairs of ways the expressions may step:

• Both are par eval stm letd. This follows directly by IH, similar to previous congruence cases.

• One transition is par eval stm error. Considering the possibilities for Es, we see that the
transition must be letd y = error in s. Then, since error is not a value, the only possibilities for
the other transition is par eval stm error (in which case the terms already are joined at error)
and par eval stm letd (which reduces to a term where par eval stm error can still fire).

• One transition is par eval stm letdBeta, the other is par eval stm letd. In other words
we have

letd y = v in s −→p [v1/y ]s1 where v −→p v1 and s −→p s1

letd y = v in s −→p letd y = v2 in s2 where v −→p v2 and s −→p s2

Now by the mutual IH we know v1 −→p v ′ and v2 −→p v ′ for some v ′, and by the IH similar
for s. So by lemma 31 we get [v1/y ]s1 −→p [v ′/y ]s ′, while by par eval letdBeta we get
letd y = v2 in s2 −→p [v ′/y ]s ′, as required.

• Both are par eval stm letdBeta. In other words we have

letd y = v in s −→p [v1/y ]s1 where v −→p v1 and s −→p s1

letd y = v in s −→p [v2/y ]s1 where v −→p v2 and s −→p s2

By mutual IH and IH we get that vi −→p v ′ and si −→p s ′, and conclude by lemma 31.
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Case SDS
T t. Consider the pairs of ways the expression may step:

• Both are par eval stm sd. We reason as in previous cases above.

• One transition is by par eval stm error. Then considering the possible evaluation contexts
the term must be SDS

T error, and there is only one possible transition, so the other transition must
be par eval stm error also.

• One transition is by par eval stm abs and one is by par eval stm sd. In other words we have

SD
(S1→S2)
((y:T1)→T2)

λy:T3.t −→p λx:S12.letd y ′ = DST11

S11
x in SDS21

[y′/y]T21
((λy:T31.t1) y ′)

where T1 −→p T11, T2 −→p T21, S1 −→p S11, S2 −→p S21, T3 −→p T31, t −→p t1.

SD
(S1→S2)
((y:T1)→T2)

λy:T3.t −→p SD
(S12→S22)
((y:T12)→T22)

λy:T32.t2
where T1 −→p T12, T2 −→p T22, S1 −→p S12, S2 −→p S22, T3 −→p T32, t −→p t2.

Now, by the (mutual) IH we get that T11 −→p T ′1 and T12 −→p T ′1 for some T ′, and simi-
larly for the other subterms. Since y ′ is a value, we know by lemma 31 that [y ′/y ]T21 −→p

[y ′/y ]T ′2. So by a combination of par eval stm abs, par eval stm letd, par eval dtm abs,
par eval stm sd and par eval dtm ds, we have

λx:S12.letd y ′ = (DST11

S11
x ) in SDS21

[y′/y]T21
((λy:T31.t) y ′) −→p

λx:S ′1.letd y ′ = DS
T ′1
S ′1

x in SD
S ′2
[y′/y]T ′2

((λy:T ′3.t
′) y ′)

while by par eval stm ds abs we have

SD
(S12→S22)
((y:T12)→T22)

λy:T32.t2 −→p λx:S ′1.letd y ′ = DS
T ′1
S ′1

x in SD
S ′2
[y′/y]T ′2

((λy:T ′3.t
′) y ′)

as required.

• Both transitions are by par eval stm sd abs. In other words we have

SD
(S1→S2)
((y:T1)→T2)

λy:T3.t −→p λx:S12.letd y ′ = DST11

S11
x in SDS21

[y′/y]T21
((λy:T31.t1) y ′)

where T1 −→p T11, T2 −→p T21, S1 −→p S11, S2 −→p S21, T3 −→p T31, t −→p t1.

SD
(S1→S2)
((y:T1)→T2)

λy:T3.t −→p λx:S12.letd y ′ = DST12

S12
x in SDS22

[y′/y]T22
((λy:T32.t2) y ′)

where T1 −→p T11, T2 −→p T21, S1 −→p S11, S2 −→p S21, T3 −→p T31, t −→p t1.

By the (mutual) IH we get that T11 −→p T ′1 and T12 −→p T ′1 for some T ′, and similarly for
the other subterms. By reasoning similarly to the previous case we see that both terms step to

λx:S ′1.letd y ′ = DS
T ′1
S ′1

x in SD
S ′2
[y′/y]T ′2

((λy:T ′3.t
′) y ′).

• One transition is by par eval stm sd pair and the other one is by par eval stm sd. In other
words we have (by considering case for how e.g. the expression S1 ∗ S2 may step)

SDS1∗S2

(y:T1)∗T2
<v1, v2>−→p<SDS11

T11
v11,SDS21

[v11/y]T21
v21> where S1 −→p S11 etc

SDS1∗S2

(y:T1)∗T2
<v1, v2>−→p SDS12∗S22

(y:T12)∗T22
<v12, v22> where S1 −→p S12 etc

By the IH we get S11 −→p S ′1 and S12 −→p S ′1 for some S ′1, and similarly for the other
subterms. By lemma 31 we know [v11/y ]T21 −→p [v ′1/y ]T ′2, so by various congruence rules

<SDS11

T11
v11,SDS21

[v11/y]T21
v21>−→p<SD

S ′1
T ′1

v ′,SD
S ′2
[v ′1/y]T

′
2
v ′2>. Meanwhile by par eval sd pair we

have SDS12∗S22

(y:T12)∗T22
<v12, v22>−→p<SD

S ′1
T ′1

v ′,SD
S ′2
[v ′1/y]T

′
2
v ′2> as required.

• Both transitions are by par eval stm sd pair. Using lemma 31 and congruence rules, we get

that the terms are joinable at <SD
S ′1
T ′1

v ′,SD
S ′2
[v ′1/y]T

′
2
v ′2>.
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• One transition is by par eval stm sd constr and one is by par eval stm sd. In other words
we have

SDA
(B t)(C v) −→p C (argToSC v1) where v −→p v1

SDA
(B t)(C v) −→p SDA2

(B t2)
(C v2) where A −→p A2, t −→p t2 and v −→p v2

By the IH, we get that v1 −→p v ′ and v2 −→p v ′ for some v ′. By property 11, we have
argToSC v1 −→p argToSC v ′, so C (argToSC v1) −→p C (argToSC v ′). And by par eval stm constr

we have SDA2

(B t2)
(C v2) −→p C (argToSC v ′), as required.

• Both transitions are by par eval stm constr. In other words, we have

SDA
(B t)(C v) −→p C (argToSC v1) where v −→p v1

SDA
(B t)(C v) −→p C (argToSC v2) where v −→p v2

By the mutual IH we know v1 −→p v ′ and v2 −→p v ′ for some v ′. By property 11 we
know argToSC v1 −→p argToSC v ′ and argToSC v2 −→p argToSC v ′. So by congruence we have
C (argToSC v1) −→p C (argToSC v ′) and C (argToSC v2) −→p C (argToSC v ′) as required.

• One transition is by par eval stm unit. So the term is SDUnit
Unitunit, and there is only one possible

transition, so the other transition must be par eval stm unit also.

Cases for S : These are all trivial, since there are only congruence rules.
Cases for t :

Case y, unit, error. These terms do not step.

Case λy:T .t, <t1, t2>, t .1, t .1, and C t . These expressions can only step by congruence rules, the proof
is similar to some previous cases.

Case t1 t2 and case t of Ci yi → ti
i

. These are similar to the corresponding cases for simply-typed terms.

Case DST
S s We consider the pairs of ways the expression may step.

• Both transitions are by par eval ds. This follows by the IH and reasoning similar to the previous
congruence cases.

• One transition is by par eval error. By considering the possible evaluation contexts Et we see
that the transition must be DST

S error −→p error. The only possibilities for the other transition is

that it also steps to error or that it is DST
S error −→p DST ′

S ′ error; in both cases the resulting terms
are joinable at error.

• One transition is by par eval ds abs, and the other one is by par eval ds. So the term must

have the form DS
((y:T1)→T2)
(S1→S2)

λx : S3.s. By inversion on the rules, we know that the only way the

subterm (y :T1)→ T2 can step is by congruence if T1 and T2 steps. In other words we have

DS
(y:T1)→T2

S1→S2
λx:S3.s −→p λy:T11.DST21

S21
((λx:S31.s1) (SDS11

T11
y))

DS
(y:T1)→T2

S1→S2
λx:S3.s −→p DS

(y:T12)→T22

S12→S22
λx:S32.s2

where T1 −→p T11 and T1 −→p T12, and similar for the other subterms. By the IH we get
T11 −→p T ′1 and T12 −→p T ′1 for some T ′, and similarly for the other subterms. So by a

combination of congruence rules, λy : T11.DST21

S21
((λx : S31.s1) (SDS11

T11
y)) −→p λy : T ′1.DS

T ′2
S ′2

((λx :

S ′3.s
′) (SD

S ′1
T ′1

y)), while by par eval ds abs DS
(y:T12)→T22

S12→S22
λx : S32.s2 −→p λy : T ′1.DS

T ′2
S ′2

((λx :

S ′3.s
′) (SD

S ′1
T ′1

y)) as required.
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• Both transitions are by par eval ds abs. So the transition are

DS
(y:T1)→T2

S1→S2
λx:S3.s −→p λy:T11.DST21

S21
((λx:S31.s1) (SDS11

T11
y))

DS
(y:T1)→T2

S1→S2
λx:S3.s −→p λy:T11.DST22

S22
((λx:S32.s2) (SDS12

T12
y))

which join at λy:T ′1.DS
T ′2
S ′2

((λx:S ′3.s
′) (SD

S ′1
T ′1

y)) by congruence rules.

• One transition is by par eval ds pair, one is by par eval ds. In other words (and considering
the possible transitions (y :T1) ∗ T2 can make), we have

DS
(y:T1)∗T2

S1∗S2
<u1, u2>−→p let y ′ = DST11

S11
u11 in <y ′,DS

[y′/y]T21

S21
u21>

DS
(y:T1)∗T2

S1∗S2
<u1, u2>−→p DS

(y:T12)∗T22

S21∗S22
<u12, u22>

where T1 −→p T11 and T1 −→p T12, etc. By the IH we get get T11 −→p T ′1 and T12 −→p T ′,
etc. By lemma 31 we know [y ′/y ]T21 −→p [y ′/y ]T ′2. So by various congruence rules we get

let y ′ = DST11

S11
u11 in <y ′,DS

[y′/y]T21

S21
u21>−→p let y ′ = DS

T ′1
S ′1

u ′1 in <y ′,DS
[y′/y]T ′2
S ′2

u ′2>, while by

par eval ds pair we have DS
(y:T12)∗T22

S21∗S22
<u12, u22>−→p let y ′ = DS

T ′1
S ′1

u ′1 in <y ′,DS
[y′/y]T ′2
S ′2

u ′2>,

as required.

• Both transitions are by par eval ds pair. So the transitions are

DS
(y:T1)∗T2

S1∗S2
<u1, u2>−→p let y ′ = DST11

S11
u11 in <y ′,DS

[y′/y]T21

S21
u21>

DS
(y:T1)∗T2

S1∗S2
<u1, u2>−→p let y ′ = DST12

S12
u12 in <y ′,DS

[y′/y]T22

S22
u22>

which join at let y ′ = DS
T ′1
S ′1

u ′1 in <y ′,DS
[y′/y]T ′2
S ′2

u ′2> by various congruence rules.

• One transition is by par eval ds constr and the other one is by par eval ds. In other words
we have

DS
(B t)
A C u −→p t1 ∼= [argToDCu1/y ]t B C (argToDCu1) where t −→p t1 and u −→p u1

DS
(B t)
A C u −→p DS

(B t2)
A C u2 where t −→p t2 and u −→p u2

By the IH we have t1 −→p t ′ and t2 −→p t ′ for some t ′, and u1 −→p u ′ and u2 −→p u ′ for some
u ′. By property 10, we know argToDCu1 −→p argToDCu ′ and argToDCu2 −→p argToDCu ′. So
by lemma 31 and congruence rules we have

t1 ∼= [argToDCu1/y ]t B C (argToDCu1) −→p t ′ ∼= [argToDCu ′/y ]t B C (argToDCu ′)

while by par eval ds constr (note that the term t comes out of the signature Ψ0 and is therefore
always the same) we get

DS
(B t2)
A C u2 −→p t ′ ∼= [argToDCu ′/y ]t B C (argToDCu ′)

as required.

• Both transitions are by par eval ds constr. In other words we have

DS
(B t)
A C u −→p t1 ∼= [argToDCu1/y ]t B C (argToDCu1) where t −→p t1 and u −→p u1

DS
(B t)
A C u −→p t2 ∼= [argToDCu2/y ]t B C (argToDCu2) where t −→p t2 and u −→p u2

Similarly to the previous case, by IH, property 10, lemma 31, and congruence rules, there terms
are joinable at

t ′ ∼= [argToDCu ′/y ]t B C (argToDCu ′).
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• One transition is by par eval ds unit. That is, the transition looks like DSUnit
Unitunit −→p unit.

The only possibility is that the other transition is par eval ds unit also.

Case t1 ∼= t2 B t We consider the pairs of ways the expression may step.

• Both transitions are par eval dtm guard.

• One transition is par eval dtm error. By considering cases for the context Et, we see that the
transition must be one of error ∼= t2 B t −→p error or v1 ∼= error B t −→p error. Since error is not
a value, neither of par eval dtm guard refl or par eval dtm guard error applies, so we
know the other transition must be by either par eval dtm guard, in which case the reduct can
step to error also, or par eval dtm error, in which case we are immediately done.

• One transition is par eval dtm guard refl. So the term must be of the form v ∼= v B t . The
only other transitions that can match is congruence or refl. If the other transition is also refl
we can conclude directly by IH. If the other transition is par eval dtm guard, then we have

v ∼= v B t −→p t1 where t −→p t1

v ∼= v B t −→p v21 ∼= v22 B t2 where v −→p v12, v −→p v22 and t −→p t2.

By the IH we have that t1 −→p t ′ and t2 −→p t ′ for some t ′, and by par eval dtm guard refl,
we have v21 ∼= v22 B t2 −→p t ′ as required.

• One transition is par eval dtm guard error. The reasoning is similar to the previous case.

Cases for T : These are all trivial, since there are only congruence rules.

Lemma 33 (Confluence of parallel reduction). If t −→p∗ t1 and t −→p∗ t2, then there exists some t ′ such
that t1 −→p∗ t ′ and t2 −→p∗ t ′.

Proof. This is a simple corollary of the 1-step version (lemma 32), by “diagram chasing to fill in the rectangle”
(see e.g. [2], lemma 3.2.2).

Lemma 34 (Compatibility of parallel reduction). Suppose t −→p t ′ and s −→p s ′. Then

• [t/y ]t1 −→p [t ′/y ]t1

• [t/y ]s1 −→p [t ′/y ]s1

• [t/y ]T1 −→p [t ′/y ]T1

• [t/y ]S1 −→p [t ′/y ]S1

• [s/x ]t1 −→p [s ′/x ]t1

• [s/x ]s1 −→p [s ′/x ]s1

• [s/x ]T1 −→p [s ′/x ]T1

• [s/x ]S1 −→p [s ′/x ]S1

Proof. Mutual induction on the structure of t1, s1, T1 and S1. These are all similar, so we show only cases
for t1.

Case y1 There are two cases depending on whether y1 = y or not. If it is, we must show t −→p t ′, which
we have by assumption. If not we must show y1 −→p y1, which is true by par eval dtm refl.

Case t1 t2 . We note that [t/y ](t1 t2) = [t/y ]t1 [t/y ]t2, so we can then apply the IH.

Case <t1, t2> , t1.1 , t1.2, C t1, DST1

S1
s1, and t11 ∼= t12 B t1. Similar to the previous case, except we also

appeal to the mutual IH for T1 and S1.
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Case λy1:T1.t1 . Since y1 is a bound variable we can pick it so that y1 6= y . Then [t/y ](λy1:T1.t1) = λy1:
[t/y ]T1.[t/y ]t1, and we conclude by (direct and mutual) IH.

Case case t1 of Ci yi → ti
i

. Similar to the previous case.

Case unit. Trivial since [t/y ]unit = [t ′/y ]unit = unit.

Case error. Similar to the previous case.

Lemma 35 (Parallel reduction contains term equivalence). If · ` t1 ∼= t2, then there exists some t ′ such
that t1 −→p∗ t ′ and t2 −→p∗ t ′.

Proof. We proceed by induction on · ` t1 ∼= t2. The cases are

Case eq dtm assumption: This cannot happen because the context is empty.

Case eq dtm step: We are given t1 −→ t2 as a premise to the rule. By lemma 30 we have t1 −→p t2, so
take t ′ = t2.

Case eq dtm refl: Take t ′ = t .

Case eq dtm sym: Immediate from the IH.

Case eq dtm trans: The IH gives us that there exists t1 and t2 such that t −→p∗ t1, t ′ −→p∗ t1, t ′ −→p∗ t2
and t ′′ −→p∗ t2. So by confluence (lemma 33) applied to t ′ we know there exists t3 such that t1 −→p∗ t3
and t1 −→p∗ t3, which is what we needed.

Case eq dtm subst: The rule looks like

Γ ` t1 ∼= t ′1
y 6∈ dom (Γ)

Γ ` [t1/y ]t ∼= [t ′1/y ]t
eq dtm subst

The IH gives us two chains of reductions:

t1 −→p t12 −→p t13 . . . −→p tn
t ′1 −→p t ′12 −→p t ′13 . . . −→p tn .

By lemma 34 we can lift these to chains

[t1/y ]t −→p [t12/y ]t −→p [t13/y ]t . . . −→p [tn/y ]t
[t ′1/y ]t −→p [t ′12/y ]t −→p [t ′13/y ]t . . . −→p [tn/y ]t .

which is what we need.

Case eq dtm subst val: The rule looks like

Γ ` t ∼= t ′

y 6∈ dom (Γ)

Γ ` [v/y ]t ∼= [v/y ]t ′
eq dtm subst val

The IH gives us two chains of reductions

t1 −→p t12 −→p t13 . . . −→p tn
t ′1 −→p t ′12 −→p t ′13 . . . −→p tn .

Use part (6) of lemma 31 to get

[v/y ]t1 −→p [v/y ]t12 −→p [v/y ]t13 . . . −→p [v/y ]tn
[v/y ]t ′1 −→p [v/y ]t ′12 −→p [v/y ]t ′13 . . . −→p [v/y ]tn ,

which is what we need.
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Case eq dtm ssubst val: Similar to the previous case.

Lemma 36. If C1 6= C2, then we never have · ` C1 v1 ∼= C2 v2.

Proof. By the previous lemma there must be some term t ′ such that C1 v1 −→p∗ t ′ and C2 v2 −→p∗ t ′.
But that is impossible: by looking at the rules for −→p we see that they can never change the outermost
constructor of a term.

Lemma 37 (Canonical forms for ss).

1. If · ` u : S1 → S2 then u is λx:S .s.

2. If · ` u : S1 ∗ S2 then u is <u1, u2>.

3. If · ` u : Unit then u is unit.

4. If · ` u : A then u is C u ′ and C :S → A ∈ Ψ0.

Proof. By induction on the typing judgment · ` s : S . The cases are:

Case wf stm var: This is impossible since the context is empty.

Case wf stm abs: The type is an arrow type, so only the first case applies. s is indeed a λ-expression.

Case wf stm pair,wf stm ctor, wf stm unit: Similar to the previous case, s does indeed have the right
form.

Case wf stm app, proj1, proj2, case, letd, sd, error: In these rules, the subject of the typing is not
a value.

Lemma 38 (Canonical forms for ts).

1. If · ` v : (y :T1)→ T2 then v is λy:T .t.

2. If · ` v : (y :T1) ∗ T2 then v is <v1, v2>.

3. If · ` v : Unit then v is unit.

4. If · ` v : B t then v is C v ′ and C :(y :T )→ B t ′ ∈ Ψ0.

Proof. By induction on the typing judgment · ` t : T . The cases are:

Case wf dtm var: This is impossible since the context is empty.

Case wf dtm abs: The type is an arrow type, so only the first item applies. t is indeed a λ-expression.

Case wf dtm pair, wf dtm unit, wf dtm ctor: Similar to the abs case.

Case wf dtm app, proj1, proj2, case, ds, guard, error: In these rules the subject of the typing is not
a value.
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Case wf dtm conv: The typing rule looks like

Γ ` t : T
Γ ` T ≡ T ′

Γ ` T ′ : ∗
Γ ` t : T ′

wf dtm conv

We have as an assumption that the top-level shape of T ′ is →, ∗, Unit or B t , and we want to invoke
the IH on the premise · ` t : T . So we need to establish that T has the same top-level shape as T ′.
This follows by a case analysis on the judgment · ` T ≡ T ′. We see that all the type-equivalence
rules preserve the top-level shape of the type except eq dty incon and inconsistency is ruled out by
lemma 36.

Property 12.

1. If C :S → A ∈ Ψ0 and corr (A,B), then C :(y :T1)→ B t1 ∈ Ψ0 for some T1 and t1.

2. If C :(y :T )→ B t ′ ∈ Ψ0 and corr (A,B), then C :S → A ∈ Ψ0 for some S.

Lemma 39 (Case coverage). If Γ ` case C v of Ci yi → ti
i

: T and ` Ψ0, then C is one of the constructors
Ci .

Property 13.

1. If C :S → A ∈ Ψ0 and C :(y :T1)→ B t1 ∈ Ψ0 and · ` u : S, then argToDCu is defined.

2. If C :S → A ∈ Ψ0 and C :(y :T1)→ B t1 ∈ Ψ0 and · ` v : T1, then argToSC v is defined.

Theorem 4 (Progress).

1. If · ` t : T then either t −→ t ′, t is a value, or t is error.

2. If · ` s : S then either s −→ s ′, s is a value, or s is error.

Proof. Proof by mutual induction on the judgments · ` s : S and · ` t : T .
The cases for · ` t : T are:

Case wf dtm var: Impossible since the context is empty.

Case wf dtm abs: t is already a value.

Case wf dtm app: The case looks like

Γ ` t1 : (y :T1)→ T2

Γ ` t2 : T1

Γ ` [t2/y ]T2 : ∗
Γ ` t1 t2 : [t2/y ]T2

wf dtm app

By the IH we get that t1 and t2 either step, are values, or are error.

If either of them are error, then the term steps by eval dtm error. Otherwise, if t1 steps, then the
entire term steps by eval dtm app. Similarly if t1 is a value and t2 steps.

Finally, suppose both t1 and t2 are values. Then, by lemma 38 t1 must be a λ-abstraction, so the
application steps by eval dtm beta.

Case wf dtm proj1,wf dtm proj2: similar to app.
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Case wf dtm pair: By the IH the components of the pair are error, one steps (in which case the entire
expression steps), or they are values (in which case the entire expression is a value).

Case wf dtm ctor: Similar to pair.

Case wf dtm case: The case looks like

Γ ` t : B t ′

Γ ` T : ∗
constrs B = Ci

i

Ci:(yi :Ti)→ B t ′i ∈ Ψ0
i

Γ, yi:Ti , t ′ ∼= t ′i , t
∼= Ci yi ` ti : T

i

Γ ` case t of Ci yi → ti
i

: T
wf dtm case

By the IH, t either steps, is error, or is a value. In the first two cases the entire expression steps. If t is
a value, then by canonical forms (lemma 38), we know that t is C v and C :(y :T )→ B t ′ ∈ Ψ0. Then
by lemma 39 we know C is one of the branches of the case expression, so it can step by wf dtm case.

Case wf dtm ds: The case looks like
Γ ` s : S
Γ ` T : ∗
S ⇔ T

Γ ` DST
S s : T

wf dtm ds

By the mutual IH for s, s steps, is a value, or is error. If it steps or is an error, the entire expression
steps. So suppose s is a value.

By inversion on the judgment S ⇔ T there are four possibilities:

• S is S1 → S2 and T is (y :T1)→ T2. By canonical forms (lemma 37), s must be a λ-abstraction,
so the entire expression steps by eval dtm ds abs.

• S is S1 ∗ S2 and T is (y :T1) ∗T2. By canonical forms (lemma 37), s must be a pair, so the entire
expression steps by eval dtm ds pair.

• S and T are unit. By canonical forms (lemma 37) s must be unit, so the entire expression steps
by eval dtm ds abs.

• S is A, T is B t , and corr (A,B). By canonical forms (lemma 37, s is C u ′ and C :S → A ∈
Ψ0. So by property 12, C : (y : T1) → B t1 ∈ Ψ0 for some T1 and t1. We have · ` u : S
by assumption, so argToDCu is defined by property 13. Then the entire expression steps to
t ∼= [v/y ]t1 B (C (argToDCu)) by eval dtm sd constr.

Case wf dtm guard: The case looks like

Γ ` t0 : T0

Γ ` t1 : T0

FO (T0)
Γ, t1 ∼= t0 ` t : T

Γ ` t1 ∼= t0 B t : T
wf dtm guard

By the IH, t1 and t0 and each is a value, error, or steps. If they step or are error the entire expression
steps by eval dtm ctx or eval dtm error. Finally, if t1 and t2 are both values, then the expression
steps by eval dtm guard refl or eval dtm guard error.

Case wf dtm error: Here t is error as required.
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Case wf dtm conv: The case looks like

Γ ` t : T
Γ ` T ≡ T ′

Γ ` T ′ : ∗
Γ ` t : T ′

wf dtm conv

so the conclusion follows directly by the IH for t .

The cases for · ` s : S are mostly routine, but we show the one involving an SD-boundary:

Case wf stm sd: The case looks like
Γ ` t : T
S ⇔ T

Γ ` SDS
T t : S

wf stm sd

By the mutual IH, t either, steps, is error, or is a value. If it steps or is error the entire expression
steps, so assume it is a value.

By inversion on the judgment S ⇔ T there are four possibilities:

• S is S1 → S2 and T is (y :T1)→ T2. By canonical forms (lemma 38) we know t is a lambda. So
the expression steps by eval stm sd abs.

• S is S1 ∗ S2 and T is (y :T1) ∗ T2. By canonical forms (lemma 38) we know t is a pair of values.
So the expression steps by eval stm sd pair.

• S is Unit and T is Unit. By canonical forms (lemma 38) we know t is unit. So the expression
steps by eval stm sd unit.

• S is A and T is B t and corr (A,B). By canonical forms (lemma 38) we know t is C v ′ and
C :(y :T )→ B t ′ ∈ Ψ0. So by property 12 we have C :S → S ∈ Ψ0 for some S . By property 13 we
know argToSC v is defined. Then the expression steps by eval stm sd constr to C (argToSC v).
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