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Utility Optimal Scheduling in Energy Harvesting
Networks

Longbo Huang, Michael J. Neely

Abstract—In this paper, we show how to achieve close-to-
optimal utility performance in energy harvesting networks with
only finite capacity energy storage devices. In these networks,
nodes are capable of harvesting energy from the environment.
The amount of energy that can be harvested is time varying
and evolves according to some probability law. We develop an
online algorithm, called the Energy-limited Scheduling Algorithm
(ESA), which jointly manages the energy and makes power
allocation decisions for packet transmissions. ESA only has to
keep track of the amount of energy left at the network nodes
and does not require any knowledge of the harvestable energy
process. We show that ESA achieves a utility that is within
O(ǫ) of the optimal, for any ǫ > 0, while ensuring that the
network congestion and the required capacity of the energy
storage devices aredeterministically upper bounded by bounds of
sizeO(1/ǫ). We then also develop the Modified-ESA algorithm
(MESA) to achieve the sameO(ǫ) close-to-utility performance,
with the average network congestion and the required capacity
of the energy storage devices being onlyO([log(1/ǫ)]2).

Index Terms—Energy Harvesting, Lyapunov Analysis, Stochas-
tic Network, Queueing

I. I NTRODUCTION

Recent developments in hardware design have enabled many
general wireless networks to support themselves by harvesting
energy from the environment. For instance, by converting me-
chanical vibration into energy [1], by using solar panels [2], by
utilizing thermoeletric generators [3], or by converting ambient
radio power into energy [4]. Such harvesting methods are also
referred to as “recycling” energy [5]. This energy harvesting
ability is crucial for many network design problems. It frees
the network devices from having an “always on” energy source
and provides a way of operating the network with a potentially
infinite lifetime. These two advantages are particularly useful
for networks that work autonomously, e.g., wireless sensor
networks that perform monitoring tasks in dangerous fields
[6], tactical networks [7], or wireless handheld devices that
operate over a longer period [8], etc.

However, to take full advantage of the energy harvesting
technology, efficient scheduling algorithms must considerthe
finite capacity for energy storage at each network node. In
this paper, we consider the problem of constructing utility
optimal scheduling algorithms in a discrete stochastic network,
where the communication links have time-varying qualities,
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and the nodes are powered by finite capacity energy storage
devices but are capable of harvesting energy. Every time slot,
the network decides how much new data to admit and how
much power to allocate over each communication link for data
transmission. The objective of the network is to maximize
the aggregate traffic utility subject to the constraint thatthe
average network backlog is finite, and the “energy-availability”
constraint is met, i.e., at all time, the energy consumed is
no more than the energy stored. We see that the “energy-
availability” constraint greatly complicates the design of an
efficient scheduling algorithm, due to the fact that the current
energy expenditure decision may cause energy outage in the
future and thus affect the future decisions. Such problems
can in principle be formulated as dynamic programs (DP)
and be solved optimally. However, the DP approach typically
requires substantial statistical knowledge of the harvestable
energy process and the channel state process, and often runs
into the “curse-of-dimensionality” problem when the network
size is large.

There has been many previous works developing algorithms
for such energy harvesting networks. [9] develops algorithms
for a single sensor node for achieving maximum capacity
and minimizing delay when the rate-power curve is linear.
[10] considers the problem of optimal power management
for sensor nodes, under the assumption that the harvested
energy satisfies a leaky-bucket type property. [11] looks atthe
problem of designing energy-efficient schemes for maximizing
the decay exponent of the queue length. [12] develops schedul-
ing algorithms to achieve close-to-optimal utility for energy
harvesting networks with time varying channels. [13] develops
an energy-aware routing scheme that approaches optimal as the
network size increases. Outside the energy harvesting context,
[14] considers the problem of maximizing the lifetime of a
network with finite energy capacity and constructs a scheme
that achieves a close-to-maximum lifetime. [15] and [16]
develop algorithms for minimizing the time average network
energy consumption for stochastic networks with “always on”
energy source. However, most of the existing results focus
on single-hop networks and often require sufficient statistical
knowledge of the harvestable energy, and results for multihop
networks often do not give explicit queueing bounds and do
not provide explicitly characterizations of the needed energy
storage capacities.

We tackle this problem using the Lyapunov optimization
technique developed in [15] and [17], combined with the
idea of weight perturbation, e.g., [18] and [19]. The idea
of this approach is to construct the algorithm based on a
quadratic Lyapunov function, but carefully perturb the weights
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used for decision making, so as to “push” the target queue
levels towards certain nonzero values to avoid underflow (in
our case, the target queue levels are the energy levels at the
nodes). Based on this idea, we construct our Energy-limited
Scheduling Algorithm (ESA) for achieving optimal utility in
general multihop energy harvesting networks powered by finite
capacity energy storage devices. ESA is anonline algorithm
which makes greedy decisions every time slotwithout re-
quiring any knowledge of the harvestable energyandwithout
requiring any statistical knowledge of the channel qualities.
We show that the ESA algorithm is able to achieve an average
utility that is within O(ǫ) of the optimal for anyǫ > 0,
and only requires energy storage devices that are ofO(1/ǫ)
sizes. We also explicitly compute the required storage capacity
and show that ESA also guarantees that the network backlog
is deterministically bounded byO(1/ǫ). Furthermore, we
develop the Modified-ESA algorithm (MESA) to achieve the
sameO(ǫ) close-to-optimal utility performance with energy
storage devices that are only ofO([log(1/ǫ)]2) sizes. We
note that the approach of using perturbation in Lyapunov
algorithms is novel. It not only allows us to resolve the energy
outage problem easily, but also enables an easy analysis of the
algorithm performance.

Our paper is mostly related to the recent work [12], which
considers a similar problem. [12] uses a similar Lyapunov
optimization approach (without perturbation) for algorithm
design, and achieves a similar[O(ǫ), O(1/ǫ)] utility-backlog
performance using energy storage sizes ofO(1/ǫ) for single-
hop networks. Multihop networks are also considered in [12].
However, the performance bounds for multihop networks are
given in terms of unknown parameters. In our paper, we
compute the explicitO(1/ǫ) capacity requirements for the
data buffers and energy storage devices for general multihop
networks for achieving theO(ǫ) close-to-optimal utility per-
formance. We then also develop a scheme to achieve the same
utility performance with onlyO([log(1/ǫ)]2) energy storage
capacities.

Our paper is organized as follows: In Section II we state our
network model and the objective. In Section III we first derive
an upper bound on the maximum utility. Section IV presents
the ESA algorithm. The[O(ǫ), O(1/ǫ)] performance results of
the ESA algorithm are presented in Section V, for both the
cases when the network randomness is i.i.d. and Markovian.
We then construct the Modified-ESA algorithm (MESA) to
achieve the sameO(ǫ) close-to-optimal utility performance
with only O([log(1/ǫ)]2) energy storage sizes in Section VI.
Simulation results are presented in Section VII. We conclude
our paper in Section VIII.

II. T HE NETWORK MODEL

We consider a general interconnected network that operates
in slotted time. The network is modeled by a directed graph
G = (N ,L), whereN = {1, 2, ..., N} is the set of theN
nodes in the network, andL = {[n,m], n,m ∈ N} is the set
of communication links in the network. For each noden, we
useN (o)

n to denote the set of nodesb with [n, b] ∈ L, and use
N

(in)
n to denote the set of nodesa with [a, n] ∈ L. We then

definedmax , maxn |N
(in)
n |to be the maximum in-degree that

any noden ∈ N can have.

A. The Traffic and Utility Model

At every time slot, the network decides how many packets
destined for nodec to admit at noden. We call these
traffic the commodityc data and useR(c)

n (t) to denote the
amount of new commodityc data admitted. We assume that
0 ≤ R

(c)
n (t) ≤ Rmax for all n, c with some finiteRmax

at all time. 1 We assume that each commodity is associated
with a utility function U

(c)
n (rnc), where rnc is the time

average rate of the commodityc traffic admitted into node
n, defined asrnc = lim inft→∞

1
t

∑t−1
τ=0 E

{

R
(c)
n (τ)

}

. Each

U
(c)
n (r) function is assumed to be increasing, continuously

differentiable, and strictly concave inr with a bounded first
derivative andU (c)

n (0) = 0. We use βnc to denote the
maximum first derivative ofU (c)

n (r), i.e., βnc = (U
(c)
n )′(0)

and denoteβ = maxn,c β
nc.

B. The Transmission Model

In order to deliver the data to their destinations, each node
needs to allocate power to each link for data transmission
at every time slot. To model the effect that the transmission
rates typically also depend on the link conditions and that
the link conditions may be time varying, we letS(t) be
the networkchannel state, i.e., theN -by-N matrix where
the (n,m) component ofS(t) denotes the channel condition
between nodesn andm. We assume thatS(t) takes values
in some finite setS = (s1, ..., sM ). In the following, we first
assume thatS(t) is i.i.d. every time slot and useπsi to denote
Pr(S(t) = si). We will later extend our results to the case
whenS(t) is Markovian. At every time slot, ifS(t) = si, then
the power allocation vectorP (t) = (P[n,m](t), [n,m] ∈ L),
whereP[n,m](t) is the power allocated to link[n,m] at timet,
must be chosen from some feasible power allocation setP(si).
We assume thatP(si) is compact for allsi, and that every
power vector inP(si) satisfies the constraint that for each
noden, 0 ≤

∑

b∈N
(o)
n

P[n,b](t) ≤ Pmax for somePmax < ∞.

Also, we assume that setting anyP[n,m] in a vectorP ∈ P(si)

to zero yields another power vector that is still inP(si).
Given the channel stateS(t) and the power allocation vector
P (t), the transmission rate over the link[n,m] is given by
the rate-power functionµ[n,m](t) = µ[n,m](S(t),P (t)). For
eachsi, we assume that the functionµ[n,m](si,P ) satisfies
the following properties:

Property 1: For any vectorsP ,P ′ ∈ P(si), whereP ′ is
obtained by changing any single componentP[n,m] in P to
zero, we have:

µ[n,m](si,P ) ≤ µ[n,m](si,P
′) + δP[n,m], (1)

for some finite constantδ > 0.

1Note that this setting implicitly assumes that nodes alwayshave packets
to admit. The case when the number of packets available is random can also
be incorporated into our model and solved by introducing auxiliary variables,
as in [20].



Property 2: If P ′ is obtained by setting the entryP[n,b] in
P to zero, then:

µ[a,m](si,P ) ≤ µ[a,m](si,P
′), ∀ [a,m] 6= [n, b]. (2)

Property 1 states that the rate obtained over a link[n,m] is
upper bounded by some linear function of the power allocated
to it, whereas Property 2 states that reducing the power over
any link does not reduce the rate over any other links. We see
that Property 1 and 2 can usually be satisfied by most rate-
power functions, e.g., when the rate function is differentiable
and has finite directional derivatives with respect to power
[15], and the links do not interfere with each other.

We also assume that there exists some finite constant
µmax such thatµ[n,m](t) ≤ µmax for all time under any
power allocation vector and any channel stateS(t). 2 In the
following, we also useµ(c)

[n,b](t) to denote the rate allocated to
the commodityc data over link[n, b] at time t. It is easy to
see that at any timet, we have:

∑

c

µ
(c)
[n,b](t) ≤ µ[n,b](t), ∀ [n, b]. (3)

C. The Energy Queue Model

We now specify the energy model. Every node in the
network is assumed to be powered by afinite capacity energy
storage device, e.g., a battery or ultra-capacitor [9]. We model
such a device using anenergy queue. We use the energy queue
size at noden at time t, denoted byEn(t), to measure the
amount of the energy left in the storage device at noden at
time t. We assume that at every time, the nodes are capable
of tracking its current energy levelEn(t). In any time slott,
the power allocation vectorP (t) must satisfy the following
“energy-availability” constraint:

∑

b∈N
(o)
n

P[n,b](t) ≤ En(t), ∀ n. (4)

That is, the consumed power must be no more than what is
available. Each node in the network is assumed to be capable
of harvesting energy from the environment, using, for instance,
solar panels [9]. However, the amount of harvestable energyin
a time slot is typically not fixed and varies over time. We use
hn(t) to denote the amount of harvestable energy by noden
at timet, and denoteh(t) = (h1(t), ..., hN (t)) the harvestable
energy vector at timet, called theenergy state. We assume
that h(t) takes values in some finite setH = {h1, ...,hK},
and thath(t) is i.i.d. over each slot. However, components in
eachhi vector may be correlated. We will later consider the
case whenh(t) is Markovian. In both cases, we assume that
h(t) is independent ofS(t). 3

We let πhi
= Pr(h(t) = hi). We assume that there exists

hmax < ∞ such thathn(t) ≤ hmax for all n, t, and the energy
harvested at timet is assumed to be available for use in time

2Note that in our transmission model, we did not explicitly take into account
the reception power. However, this can easily be incorporated into our model
at the expense of more complicated notations. All the results in this paper
will still hold in this case.

3This is for the ease of presentation. The results in this paper still hold if
they are correlated.

t+ 1. In the following, it is convenient for us to assume that
each energy queue has infinite capacity, and that each node
can decide whether or not to harvest energy on each slot. We
model this harvesting decision by usingen(t) ∈ [0, hn(t)]
to denote the amount of energy that is actually harvested at
time t. We will show later that our algorithm always harvests
energy when the energy queue is below a finite threshold of
sizeO(1/ǫ) and drops it otherwise, thus can be implemented
with finite capacity storage devices.

D. Queueing Dynamics

Let Q(t) = (Q
(c)
n (t), n, c ∈ N ), t = 0, 1, 2, ... be the data

queue backlog vector in the network, whereQ(c)
n (t) is the

amount of commodityc data queued at noden. We assume
the following queueing dynamics:

Q(c)
n (t+ 1) ≤

[

Q(c)
n (t)−

∑

b∈N
(o)
n

µ
(c)
[n,b](t)

]+
(5)

+
∑

a∈N
(in)
n

µ
(c)
[a,n](t) +R(c)

n (t),

with Q
(c)
n (0) = 0 for all n, c ∈ N , Q

(c)
c (t) = 0 ∀ t, and

[x]+ = max[x, 0]. The inequality in (5) is due to the fact that
some nodes may not have enough commodityc packets to fill
the allocated rates. In this paper, we say that the network is
stableif the following condition is met:

Q , lim sup
t→∞

1

t

t−1
∑

τ=0

∑

n,c

E
{

Q(c)
n (τ)

}

< ∞. (6)

Similarly, let E(t) = (En(t), n ∈ N ) be the vector of the
energy queue sizes. Due to the energy availability constraint
(4), we see that for each noden, the energy queueEn(t)
evolves according to the following:4

En(t+ 1) = En(t)−
∑

b∈N
(o)
n

P[n,b](t) + en(t), (7)

with En(0) = 0 for all n. 5 Note again that by using
the queueing dynamic (7), we start by assuming that each
energy queue has infinite capacity. Later we will show that
under our algorithms, all theEn(t) values aredeterminstically
upper bounded, thus we only need a finite energy capacity in
algorithm implementation.

E. Utility Maximization with Energy Management

The goal of the network is thus to design a joint flow control,
routing and scheduling, and energy management algorithm that
at every time slot, admits the right amount of dataR

(c)
n (t),

chooses power allocation vectorP (t) subject to (4), and

4Note that we do not explicitly consider energy leakage due tothe
imperfectness of the energy storage devices. This is a validassumption if
the rate of energy leakage is very small compared to the amount spent in
each time slot.

5We can also pre-store energy in the energy queue and initialize En(0) to
any finite positive value up to its capacity. The results in the paper will not
be affected.



transmits packets accordingly, so as to maximize the utility
function:

Utot(r) =
∑

n,c

U (c)
n (rnc), (8)

subject to the network stability constraint (6). Herer =
(rnc, ∀n, c ∈ N ) is the vector of the average expected admit-
ted rates. Below, we will refer to this problem as theUtility
Maximization with Energy Management problem(UMEM).

F. Discussion of the Model

Our model is quite general and can be used to model many
networks where nodes are powered by finite capacity batteries.
For instance, a field monitoring sensor network [6], or many
mobile ad hoc networks [21]. Also, our model allows the
harvestable energy to be correlated among network nodes. This
is particularly useful, as in practice, nodes that are collocated
may have similar harvestable energy conditions.

The main difficulty in designing an optimal scheduling
policy here is imposed by the constraint (4). Indeed, (4)
couples the current power allocation action and the future
actions, in that a current action may cause the energy queue
to be empty and hence block some power allocation actions in
the future. Problems of this kind usually have to be modeled
as dynamic programs [22]. However, this approach typically
requires significant statistical knowledge of the network ran-
domness, including the channel state and the energy state.
Another way to utilize the harvested energy efficiently is by
developing efficient sleep-wake policies, e.g., [23]. Although
our model does not consider this aspect, our algorithm can
also be used together with given sleep-wake policies to achieve
good utility performance in that context.

III. U PPER BOUNDING THE OPTIMAL NETWORK UTILITY

In this section, we first obtain an upper bound on the optimal
utility. This upper bound will be useful for our later analysis.
The result is presented in the following theorem, in which we
user∗ to denote the optimal solution of the UMEM problem,
subject to the constraint that the network nodes are powered
by finite capacity energy storage devices. TheV parameter
in the theorem can be any positive constant that is greater or
equal to1, and is included for our later analysis.

Theorem 1: The optimal network utilityUtot(r
∗) satisfies

the following:

V Utot(r
∗) ≤ φ∗, (9)

whereφ∗ is the optimal value of the following optimization
problem:

max : φ = V
∑

n,c

K
∑

k=1

ϑkU
(c)
n (rnck ) (10)

s.t.

K
∑

k=1

ϑkr
nc
k +

∑

si

πsi

K
∑

k=1

̺
(si)
k

∑

a∈N
(in)
n

µ
(c)
[a,n](si,P

(si)
k )

≤
∑

si

πsi

K
∑

k=1

̺
(si)
k

∑

b∈N
(o)
n

µ
(c)
[n,b](si,P

(si)
k ), ∀ (n, c), (11)

∑

si

πsi

K
∑

k=1

̺
(si)
k

∑

b∈N
(o)
n

P
(si)
k,[n,b] (12)

=
∑

hi

πhi

K
∑

k=1

ϕ
(hi)
k e

(hi)
n,k , ∀n,

P
(si)
k ∈ P(si), 0 ≤ ϑ

(si)
k , ̺

(si)
k , ϕ

(hi)
k ≤ 1, ∀si, k,hi,

K
∑

k=1

ϑk = 1,

K
∑

k=1

̺
(si)
k = 1,

K
∑

k=1

ϕ
(hi)
k = 1, ∀si,hi,

0 ≤ rnck ≤ Rmax, ∀ (n, c),

0 ≤ e
(hi)
n,k ≤ h(hi)

n , ∀ n, k,hi.

HereK = N2+N+2. 6 {rnck }Kk=1 denotes the set of admission
decisions used for each commodity flow.{P

(si)
k }Kk=1 denotes

the set of power allocation vectors that are used whenS(t) =

si. µ
(c)
[b,n](si,P

(si)
k ) is the rate allocated to commodityc over

link [b, n] undersi andP (si)
k . P (si)

k,[n,m] is the power allocated

to link [n,m] underP (si)
k . {e

(hi)
n,k }Kk=1 is the set of energy

harvesting decisions of noden when the energy state ishi,
andh(hi)

n is the amount of harvestable energy for noden when
h(t) = hi.

Proof: The proof argument is similar to the one used in
[19], hence is omitted for brevity.

Note that Theorem 1 indeed holds under more general
ergodicS(t) and h(t) processes, e.g., whenS(t) and h(t)
evolve according to some finite state irreducible and aperi-
odic Markov chains. Also note that the objective function
is not of the same form asUtot(·). However, it can be
shown, using Jensen’s inequality, that the optimal value of
the above optimization problem remains the same if we push
∑

k ϑk inside the functionU (c)
n , i.e., change the objective to

V
∑

n,c U
(c)
n (

∑K
k=1 ϑkr

nc
k ). Below, we first have the following

lemma regarding the dual problem of (10):
Lemma 1: The dual problem of (10) is given by:

min : g(υ,ν), s.t. υ � 0,ν ∈ R
N , (13)

whereυ = (υ
(c)
n , ∀ (n, c)), ν = (νn, ∀n) and g(υ,ν) is the

dual function defined:

g(υ,ν) = sup
rnc,P (si),e

(hj)
n

∑

si

πsi

∑

hj

πhj

{

V
∑

n,c

U (c)
n (rnc)

−
∑

n

υ(c)
n

[

rnc +
∑

a∈N
(in)
n

µ
(c)
[a,n](si,P

(si)) (14)

−
∑

b∈N
(o)
n

µ
(c)
[n,b](si,P

(si))
]

−
∑

n

νn
[

∑

b∈N
(o)
n

P
(si)
[n,b] − e(hj)

n

]

}

.

Moreover, let(υ∗,ν∗) be an optimal solution of (13), then
φ∗ ≤ g(υ∗,ν∗).

Proof: The proof uses a similar argument as the one used
in [19]. Hence is omitted for brevity.

6The numberK is due to the use of Caratheodory’s Theorem in the proof
argument used in [19].



Note that the dual functiong(υ,ν) does not contain the terms
ϑk, ̺

(si)
k , ϕhi

k . This not only simplifies the evaluation of the
dual function, but also enables us to analyze the performance
of our algorithm using Theorem 1. In the following, it is also
useful to define the functiongsi,hj

(υ,ν) for each(si,hj) pair:

gsi,hj
(υ,ν) = sup

rnc,P (si),e
(hj)
n

{

V
∑

n,c

U (c)
n (rnc) (15)

−
∑

n

υ(c)
n

[

rnc +
∑

a∈N
(in)
n

µ
(c)
[a,n](si,P

(si))

−
∑

b∈N
(o)
n

µ
(c)
[n,b](si,P

(si))
]

−
∑

n

νn
[

∑

b∈N
(o)
n

P
(si)
[n,b] − e(hj)

n

]

}

.

That is, gsi,hj
(υ,ν) is the dual function of (10) when there

is a single channel statesi and a single energy statehj. It is
easy to see from (14) and (15) that:

g(υ,ν) =
∑

si

πsi

∑

hj

πhj
gsi,hj

(υ,ν). (16)

IV. ENGINEERING THE QUEUES

In this section, we present our Energy-limited Scheduling
Algorithm (ESA) for the UMEM problem. ESA is designed
based on the Lyapunov optimization technique developed in
[19] and [17]. The idea of ESA is to construct a Lyapunov
scheduling algorithm withperturbedweights for determining
the energy harvesting, power allocation, routing and schedul-
ing decisions. We will show that, by carefully perturbing the
weights, one can ensure that whenever we allocate power to
the links, there is always enough energy in the energy queues.

To start, we first choose aperturbationvectorθ = (θn, n ∈
N ) (to be specified later). We then define aperturbedLya-
punov function as follows:

L(t) ,
1

2

∑

n,c∈N

[

Q(c)
n (t)

]2
+

1

2

∑

n∈N

[

En(t)− θn
]2
. (17)

Now denoteZ(t) = (Q(t),E(t)), and define a one-slot
conditional Lyapunov drift as follows:

∆(t) = E
{

L(t+ 1)− L(t) | Z(t)
}

. (18)

Here the expectation is taken over the randomness of the
channel state and the energy state, as well as the randomness
in choosing the data admission action, the power allocation
action, the routing and scheduling action, and the energy
harvesting action. We have the following lemma regarding the
drift:

Lemma 2: Under any feasible data admission action, power
allocation action, routing and scheduling action, and energy

harvesting action that can be implemented at timet, we have:

∆(t)− V E
{

∑

n,c

U (c)
n (R(c)

n (t)) | Z(t)
}

(19)

≤ B − V E
{

∑

n,c

U (c)
n (R(c)

n (t)) | Z(t)
}

−
∑

n

∑

c

Q(c)
n (t)E

{

∑

b∈N
(o)
n

µ
(c)
[n,b](t)

−
∑

a∈N
(in)
n

µ
(c)
[a,n](t)−R(c)

n (t) | Z(t)
}

−
∑

n∈N

(En(t)− θn)E
{

∑

b∈N
(o)
n

P[n,b](t)− en(t) | Z(t)
}

.

HereB = N2(µ2
max + 1

2R
2
max) +

N
2 [P

2
max + h2

max].
Proof: See Appendix A.

Now denote the left-hand side (LHS) of (19) as∆V (t), we
can rearrange the terms in (19) to get:

∆V (t) ≤ B +
∑

n∈N

(En(t)− θn)E
{

en(t) | Z(t)
}

(20)

−E
{

∑

n,c

[

V U (c)
n (R(c)

n (t))−Q(c)
n (t)R(c)

n (t)
]

| Z(t)
}

−E
{

∑

n

[

∑

c

∑

b∈N
(o)
n

µ
(c)
[n,b](t)

[

Q(c)
n (t)−Q

(c)
b (t)

]

+(En(t)− θn)
∑

b∈N
(o)
n

P[n,b](t)

]

| Z(t)
}

.

We now present the ESA algorithm. The idea of the algo-
rithm is to approximately minimize the right-hand side (RHS)
of (20) subject to the energy-availability constraint (4).In the
algorithm, we use a parameterγ , Rmax+dmaxµmax, which
is used in the link weight definition to allow deterministic
upper bounds on queue sizes.

Energy-limited Scheduling Algorithm (ESA):Initialize θ.
At every slot, observeQ(t), E(t), andS(t), do:

• Energy Harvesting:At time t, if En(t)−θn < 0, perform
energy harvesting and store the harvested energy, i.e.,
en(t) = hn(t). Else seten(t) = 0.

• Data Admission:At every timet, chooseR(c)
n (t) to be the

optimal solution of the following optimization problem:

max : V U (c)
n (r) −Q(c)

n (t)r, s.t. 0 ≤ r ≤ Rmax. (21)

• Power Allocation:At every timet, define the weight of
the commodityc data over link[n, b] as:

W
(c)
[n,b](t) ,

[

Q(c)
n (t)−Q

(c)
b (t)− γ

]+
. (22)

Then define the link weightW[n,b](t) = maxc W
(c)
[n,b](t),

and chooseP (t) ∈ P(si) to maximize:

G(P (t)) ,
∑

n

[

∑

b∈N
(o)
n

µ[n,b](t)W[n,b](t) (23)

+(En(t)− θn)
∑

b∈N
(o)
n

P[n,b](t)

]

,

subject to the energy availability constraint (4).



• Routing and Scheduling:For every noden, find anyc∗ ∈

argmaxcW
(c)
[n,b](t). If W

(c∗)
[n,b](t) > 0, set:

µ
(c∗)
[n,b](t) = µ[n,b](t), (24)

that is, allocate the full rate over the link[n, b] to any
commodity that achieves the maximum positive weight
over the link. Use idle-fill if needed.

• Queue Update:UpdateQ(c)
n (t) and En(t) according to

the dynamics (5) and (7), respectively.

Note that ESA only requires the knowledge of theinstant
channel stateS(t) and the queue sizesQ(t) andE(t). It does
not even require any knowledge of the energy state process
h(t). This is very useful in practice when the knowledge
of the energy source is difficult to obtained. ESA is also
very different from previous algorithms for energy harvesting
network, e.g., [9] [10], where statistical knowledge of the
energy source is often required. Also note that if all the links
do not interfere with each other, then ESA can easily be
implemented in a distributed manner, where each node only
has to know about the queue sizes at its neighbor nodes and
can decide on the power allocation locally.

V. PERFORMANCEANALYSIS

We now present the performance results of the ESA algo-
rithm. In the following, we first present the results under i.i.d.
network randomness and give its proof in the appendix. We
later extend the performance results of ESA to the case when
the network randomness is Markovian.

A. ESA under I.I.D. randomness

Here we state the performance of ESA under the case when
the channel state and the energy state, i.e.,S(t) andh(t), are
both i.i.d.

Theorem 2: Under the ESA algorithm withθn , δβV +
Pmax for all n, we have the following:

(a) The data queues and the energy queues satisfy the
following for all time:

0 ≤ Q(c)
n (t) ≤ βV +Rmax, ∀ (n, c), (25)

0 ≤ En(t) ≤ θn + hmax, ∀ n. (26)

Moreover, when a noden allocates nonzero power to
any of its outgoing links,En(t) ≥ Pmax.

(b) Let r = (rnc, ∀ (n, c)) be the time average admitted rate
vector achieved by ESA, then:

Utot(r) =
∑

n,c

U (c)
n (rnc) ≥ Utot(r

∗)−
B̃

V
, (27)

wherer∗ is an optimal solution of the UMEM problem,
and B̃ = B +Nγdmaxµmax = Θ(1), i.e., independent
of V .

Proof: See Appendix B.
We note the following of Theorem 2: First, we will see

that Part (a) is indeed asample pathresult. Hence it holds
underarbitrary S(t) andh(t) processes. Thus they also hold
when S(t) and h(t) evolve according to some finite state

irreducible and aperiodic Markov chain. Second, by taking
ǫ = 1/V , we see from Part (a) that the average data queue
size isO(1/ǫ). Combining this with Part (b), we see that that
ESA achieves an[O(ǫ), O(1/ǫ)] utility-backlog tradeoff for
the UMEM problem. Third, we see from Part (a) that the
energy queue size is deterministically upper bounded by some
O(1/ǫ) constant. This provides an explicit characterization
of the size of the energy storage device that is needed for
achieving the desired utility performance. Such explicit bounds
are particularly useful for system deployments.

B. ESA under Markovian randomness

We now extend our results to the more general setting where
the channel stateS(t) and the energy stateh(t) both evolve
according to some finite state irreducible and aperiodic Markov
chains. Note that in this caseπsi andπhi

represent the steady
state probability of the events{S(t) = si} and{h(t) = hi},
respectively. In this case, the performance results of ESA are
summarized in the following theorem:

Theorem 3: Suppose thatS(t) andh(t) evolve according
to some finite state irreducible and aperiodic Markov chains.
Then under ESA, we have: (a) the bounds (25) and (26) still
hold. (b) the average utility is withinO(1/V ) of Utot(r

∗),
i.e., Utot(r) =

∑

n,c U
(c)
n (rnc) ≥ Utot(r

∗)−O(1/V ).
Proof: Part (a) follows from Theorem 2, since it is indeed

a sample-path result. The proof of the utility performance is
similar to that in [24], and hence is omitted for brevity.

VI. REDUCING THE BUFFER SIZE

In this section, we show that it is possible to achieve
the sameO(ǫ) close-to-optimal utility performance guarantee
using energy storage devices with onlyO([log(1/ǫ)]2) sizes,
while guaranteeing a much smaller average data queue size,
i.e., O([log(1/ǫ)]2). Our algorithm is motivated by the fol-
lowing theorem, which is a modified version of Theorem2 in
[25]. In the theorem, we denotey = (υ,ν).

Theorem 4: Suppose thath(t) and S(t) both evolve ac-
cording some finite state irreducible and aperiodic Markov
chain, thaty∗ = (υ∗,ν∗) is finite and unique, thatθ is chosen
such thatθn + ν∗n > 0, ∀ n, and that for ally = (υ,ν) with
υ � 0,ν ∈ R

N , the dual functiong(y) satisfies:

g(y∗) ≥ g(y) + L||y∗ − y||, (28)

for some constantL > 0 independent ofV . Theny∗ = Θ(V ),
and that under ESA, there exists constantsD,K, c∗ = Θ(1),
i.e., all independent ofV , such that for anym ∈ R+,

P(r)(D,Km) ≤ c∗e−m, (29)

whereP(r)(D,Km) is defined:

P(r)(D,Km) , lim sup
t→∞

1

t

t−1
∑

τ=0

Pr{E (τ,m)}, (30)

with E (t,m) being the following deviation event:

E (t,m) = {∃ (n, c), |Q(c)
n (t)− υ(c)∗

n | > D +Km} (31)

∪{∃ n, |(En(t)− θn)− ν∗n| > D +Km}.



Proof: The proof is similar in spirit to [25] and is omitted
for brevity.
Note that the finiteness and uniqueness ofy∗ can usually be
satisfied in practice, particularly when a certain “slackness”
condition is met. Also note that the condition (28) can typically
be satisfied in practice when the action space is finite (See
[25] for further discussions of these conditions). In this case,
Theorem 4 states that the queue backlog vector pair is “expo-
nentially attracted” to the fixed point(υ∗,ν∗+θ) = Θ(V ), in
that the probability of deviating decreases exponentiallywith
the deviation distance. Therefore, the probability of deviating
by someΘ(log(V )) distance will be1/V , which will be very
small whenV is large. This suggests that most of the queue
backlogs are kept in the queues to maintain a “proper” queue
vector value to base the decisions on. If we can somehow learn
the value of this vector, then we can “subtract out” a large
amount of backlog from the network and reduce the required
buffer sizes. Below, we present the Modified-ESA (MESA)
algorithm.

To start, for a givenǫ, we let V = 1/ǫ, and define
M = 4[log(V )]2. We then associate with each noden a virtual
energy queue procesŝEn(t) and a set ofvirtual data queues
Q̂

(c)
n (t) ∀ c. We also associate with each noden an actual

energy queue with sizeM . We assume thatV is chosen to be
such thatM2 > αmax , max[Pmax, hmax]. MESA consists of
two phases: Phase I runs the system using the virtual queue
processes, to discover the “attraction point” values of the
queues (as explained below). Phase II then uses these values
to carefully perform the energy harvesting, power allocation,
and routing and scheduling actions so as to ensure energy
availability and reduce network delay.

Modified-ESA (MESA):Initialize θ. Perform the following:

• Phase I:Choose a sufficiently largeT . From time t =
0, ..., T , run ESA usingQ̂(t) and Ê(t) as the data and
energy queue processes. Obtain the two vectorsQ =

(Q
(c)
n , ∀ (n, c)) andE = (En, ∀n) by having:

Q(c)
n = [Q̂(c)

n (T )−
M

2
]+, E = [Ên(T )−

M

2
]+. (32)

• Phase II: Reset t = 0. Initialize Ê(0) = E and
Q̂(0) = Q. Also set Q(0) = 0 and E(0) = 0. In
every time slot, first run the ESA algorithm based on
Q̂(t), Ê(t), andS(t), to obtain the action variables, i.e.,
the correspondingen(t), R

(c)
n (t), and µ

(c)
[n,b](t) values.

Perform Data Admisson, Power Allocation, and Routing
and Scheduling exactly as ESA, plus the following:

– Energy harvesting:If Ên(t) < En, let ẽn(t) =

[en(t) − (En − Ên(t))]
+ and harvest̃e(t) amount

of energy, i.e., updateEn(t) as follows:

En(t+ 1) =
(

[En(t)−
∑

b∈N
(o)
n

P[n,b](t)]
+ + ẽn(t)

)

∧M.

Herea∧ b = min[a, b]. Else if Ên(t) > En +M , do
not spend any power and updateEn(t) according to:

En(t+ 1) = min
[

En(t) + en(t),M
]

.

Else updateEn(t) according to:

En(t+ 1) =
(

[En(t)−
∑

b∈N
(o)
n

P[n,b](t)]
+ + en(t)

)

∧M.

– Packet Dropping:For any noden with Ên(t) < En+

Pmax or Ên(t) > En +M , drop all the packets that
should have been transmitted, i.e., change the input
into anyQ(c)

n (t) to:

A(c)
n (t) = R(c)

n (t) +
∑

a∈N
(in)
n

µ
(c)
[a,n](t)1[Fa(t)].

Here 1[·] is the indicator function andFa(t) is the
event thatÊa(t) ∈ [En+Pmax, E+M ]. Then further
modify the routing and scheduling action under ESA
as follows:
∗ If Q̂(c)

n (t) < Q
(c)
n , let Ã(c)

n (t) =
[

A
(c)
n (t)−[Q

(c)
n −

Q̂
(c)
n (t)]

]+
, updateQ(c)

n (t) according to:

Q(c)
n (t+ 1) ≤

[

Q(c)
n (t)−

∑

b∈N
(o)
n

µ
(c)
[n,b](t)

]+
+ Ã(c)

n (t).

∗ If Q̂
(c)
n (t) ≥ Q

(c)
n , updateQ(c)

n (t) according to:

Q(c)
n (t+ 1) ≤

[

Q(c)
n (t)−

∑

b∈N
(o)
n

µ
(c)
[n,b](t)

]+
+A(c)

n (t).

– UpdateÊ(t) andQ̂(t) using (7) and (5).

Note here we have used the[·]+ operator for updatingEn(t)
in the energy harvesting part. This is due to the fact that the
power allocation decisions are now made based onÊ(t) but
not E(t). Note that if Ên(t) never gets belowEn or above
En+M , then we always haveEn(t) = Ên(t)−En. Similarly,
if Q̂

(c)
n (t) is always aboveQ(c)

n andÊn(t) is always in[En +

Pmax, En+M ], then we always haveQ(c)
n (t) = Q̂

(c)
n (t)−Q

(c)
n .

Our algorithm is designed to ensure thatQ̂
(c)
n (t) and Ên(t)

mostly stay in the “right” arrange, as shown in the following
lemma.

Lemma 3: For all time t, we have the following:

0 ≤ Q(c)
n (t) ≤ [Q̂(c)

n (t)−Q(c)
n ]+ + γ, ∀ (n, c), (33)

min
[

[Ên(t)− En]
+,M

]

≤ En(t). (34)

Proof: See Appendix C.
We now summarize the performance result of MESA in the

following theorem:
Theorem 5: Suppose that the conditions in Theorem 4

hold, that the system is in steady state at timeT , and that
a steady state distribution for the queues exists under ESA.
Then under MESA with a sufficiently largeV , with probability
1−O( 1

V 4 ), we have:

Q ≤ O([log(V )]2), (35)

Utot(r) ≥ Utot(r
∗)−O(1/V ). (36)

Proof: See Appendix D.
Note that the conditions in Theorem 4 are indeed the con-
ditions needed for proving the exponential attraction result in
[25]. Thus Theorem 5 implies that if the exponential attraction
result holds, which is mostly the case in practice (See [25]



for more discussions), then one can significantly reduce the
energy capacity needed to achieve theO(ǫ) close-to-optimal
utility performance and greatly reduce the network congestion.

VII. S IMULATION

In this section we provide simulation results of the ESA
algorithm. We consider a data collection network shown in
Fig. 1. Such networks typically appear in the sensor network
scenario where sensors are used to sense data and forward
them to the sink. In this network, there are6 nodes. The nodes
1, 2, 3 sense data and deliver them to nodeSink via the relay
of nodes4, 5.
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Fig. 1. A data collection network, whereLi denotes linki.

The channel state of each communication linkLi, rep-
resented by a directed edge, can be either “G=Good” or
“B=Bad”, and evolves according to the two-state Markov chain
shown in Fig. 2 withρG = ρB = 0.3. At any time, we can
allocate either zero or one unit of power. One unit of power
can serve two packets over a link when the channel state is
good, but can only serve one when the channel is bad. We
assumeRmax = 3 and the utility functions are given by:
U1(r) = U2(r) = U3(r) = log(1+r) andU4(r) = U5(r) = 0.
For simplicity, we also assume that all the links do not interfere
with each other.

G B

!G

!B

1-!G 1-!B

Fig. 2. A two-state Markov chain.

We also assume that for each node, the available energy
hn(t) evolves according to the same two-state Markov chain in
Fig. 2. When the state is good,hn(t) = 2, otherwisehn(t) =
0. It is easy to see that in this case,β = 1, δ = 2, µmax = 2,
dmax = 2 andPmax = 2. Using the results in Theorem 2, we
set θn = δβV + Pmax = 2V + 2. We also see that in this
case, we can useγ = dmaxµmax+Rmax = 7. The simulation
results are plotted in Fig. 3. We see in Fig. 3 that the total
network utility converges quickly to very close to the optimal
value, which can be shown to be roughly2.03. We also see
that the average data queue size and the average energy queue
size both grow linearly inV .

Fig. 4 also shows two sample-path data queue processes
and two energy queue processes underV = 100. It can be
verified that all the queue sizes satisfy the queueing bounds
in Theorem 2. Interestingly, we see that all the queue sizes
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Fig. 3. Simulation results of ESA.

are “attracted” to certain fixed points. However, differentfrom
previous work, e.g., [25], we see that the queue size ofQ1(t)
does not approach this fixed point from below. It instead first
has a “burst” in the early time slots. This is due to the fact
that the systems “waits” forE1(t) to come close enough to
its fixed point. Such an effect can be mitigated by storing an
initial energy of sizeθ in the energy queue.
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Fig. 4. Sample path queue processes.

We also simulate the MESA algorithm for the same network
with the sameθ value. We useT = 50V in Phase I for
obtaining the vectorsE andQ. Fig. 5 plots the performance
results. We observe that extremely few packets were dropped
in the simulations (at most5 out of more than105 packets
were dropped under anyV values). The utility again quickly
converges to the optimal asV increases. We also see from
the second and third plots that the actual queues only grow
poly-logarithmically inV , i.e.,O([log(V )]2), while the virtual
queues, which are the same as the actual queues under ESA,
grows linearly inV . This shows a good match between the
simulation results and Theorem 5.

VIII. C ONCLUSION

In this paper, we develop the Energy-limited Scheduling Al-
gorithm (ESA) for achieving optimal utility in general energy
harvesting networks equipped with only finite capacity energy
storage device. We show that ESA is able to achieve an average
utility that is within O(ǫ) of the optimal for anyǫ > 0 using
energy storage devices ofO(1/ǫ) sizes, while guaranteeing
that the time average network congestion isO(1/ǫ). We then
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Fig. 5. Simulation results of MESA.

also develop the Modified-ESA algorithm (MESA), and show
that MESA can achieve the sameO(ǫ) utility performance
using energy storage devices of onlyO([log(1/ǫ)]2) sizes.

APPENDIX A – PROOF OFLEMMA 2

Here we prove Lemma 2
Proof: First by squaring both sides of (5), and using the

fact that for anyx ∈ R, ([x]+)2 ≤ x2, we have:

[Q(c)
n (t+ 1)]2 − [Q(c)

n (t)]2 (37)

≤ [
∑

b∈N
(o)
n

µ
(c)
[n,b](t)]

2 + [
∑

a∈N
(in)
n

µ
(c)
[a,n](t) +R(c)

n (t)]2

−2Q(c)
n (t)

[

∑

b∈N
(o)
n

µ
(c)
[n,b](t)−

∑

a∈N
(in)
n

µ
(c)
[a,n](t)− R(c)

n (t)
]

.

By definingB̂ = 3
2d

2
maxµ

2
max +R2

max, we see that:

1

2

(

[Q(c)
n (t+ 1)]2 − [Q(c)

n (t)]2
)

≤ B̂ (38)

−Q(c)
n (t)

[

∑

b∈N
(o)
n

µ
(c)
[n,b](t)−

∑

a∈N
(in)
n

µ
(c)
[a,n](t)−R(c)

n (t)
]

.

Using a similar approach, we get that:

1

2

(

[En(t+ 1)− θn]
2 − [En(t)− θn]

2
)

(39)

≤ B̂′ − [En(t)− θn]
[

∑

b∈N
(o)
n

P[n,b](t)− en(t)
]

,

whereB̂′ = 1
2 (Pmax+hmax)

2. Now by summing (38) over all
(n, c) and (39) over alln, and by definingB = N2B̂+NB̂′ =
N2(32d

2
maxµ

2
max +R2

max) +
1
2N(Pmax + hmax)

2, we have:

L(t+ 1)− L(t) ≤ B −
∑

n,c

Q(c)
n (t)

[

∑

b∈N
(o)
n

µ
(c)
[n,b](t)

−
∑

a∈N
(in)
n

µ
(c)
[a,n](t)−R(c)

n (t)
]

−
∑

n

[En(t)− θn]
[

∑

b∈N
(o)
n

P[n,b](t)− en(t)
]

.

Taking expectations on both sides over the random channel
and energy states and the randomness over actions con-
ditioning on Z(t), subtracting from both sides the term
V E

{
∑

n,c U
(c)
n (R

(c)
n (t)) | Z(t)

}

, and rearranging the terms,
we see that the lemma follows.

APPENDIX B – PROOF OFTHEOREM 2

Here we prove Theorem 2. The proof idea is as follows: We
first show that by our choice ofθ, the ESA algorithm ensures
the energy-availability constraint (4) even if we remove itfrom
the algorithm. This enables us to show that ESA approximately
minimizes the value of the RHS of (20) over all possible
policies. We then analyze the utility performance of ESA by
relating the value of the RHS of (20) under ESA to the dual
function gsi,hj

(υ,ν).
Proof: (Part (a)) We first prove (25) using a similar

argument as in [15]. It is easy to see that it holds for
t = 0, sinceQ

(c)
n (0) = 0 for all (n, c). Now assume that

Q
(c)
n (t) ≤ βV + Rmax for all (n, c) at time t, we want

to show that it holds for timet + 1. First, if noden does
not receive any commodityc data from other nodes, then
Q

(c)
n (t) ≤ Q

(c)
n (t + 1) ≤ βV + Rmax. Second, if noden

receives endogenous commodityc data from any other node
b. Then according to the ESA algorithm, we must have:

Q(c)
n (t) ≤ Q

(c)
b (t)− γ ≤ βV +Rmax − γ.

However, since any node can receive at mostγ commodity
c packets, we haveQ(c)

n (t + 1) ≤ βV + Rmax. Finally, if
noden receives exogenous packets from outside the network,
then according to (21), we must haveQ(c)

n (t) ≤ βV . Hence
Q

(c)
n (t+ 1) ≤ βV +Rmax.
Now it is also easy to see from the energy storage part of

ESA thatEn(t) ≤ θn + hmax, which proves (26).
We now show that ifEn(t) ≤ Pmax, thenG(P (t)) will

be maximized by choosingP[n,b](t) = 0 for all b ∈ N
(o)
n at

noden. To see this, first note that since all the actual queues
are upper bounded byβV + Rmax, we have:W[n,b](t) ≤
βV − dmaxµmax for all [n, b] and for all time.

Now let the power allocation vector that maximizes
G(P (t)) at time t be P ∗ and assume that there exists some
P ∗
[n,m] that is positive. We now create a new power allocation

vectorP by setting onlyP ∗
[n,m] = 0 in P ∗. We see thatP

is also feasible. Then we have the following, in which we
have writtenµ[n,m](S(t),P (t)) only as a function ofP (t) to
simplify notation:

G(P ∗)−G(P )

=
∑

n

∑

b∈N
(o)
n

[

µ[n,b](P
∗)− µ[n,b](P )

]

W[n,b](t)

+(En(t)− θn)P
∗
[n,m]

≤
(

µ[n,m](P
∗)− µ[n,m](P )

)

W[n,m](t) + (En(t)− θn)P
∗
[n,m].

Here in the last step we have used (2) in Property 2 of
µ[n,m](·,P ), which implies thatµ[n,b](P

∗) − µ[n,b](P ) ≤ 0
for all b 6= m. Now supposeEn(t) < Pmax. We see then
En(t) − θn < −δβV . Using Property 1 and the fact that
W[n,b](t) ≤ βV − dmaxµmax, the above implies:

G(P ∗)−G(P ) ≤ (βV − dmaxµmax)δP
∗
[n,m] − δβV P ∗

[n,m]

< 0.

This shows thatP ∗ cannot have been the power vector that
maximizesG(P (t)) if En(t) < Pmax. ThereforeEn(t) ≥



Pmax whenever noden allocates any nonzero power over
any of its outgoing links. Hence all the power allocation
decisions are feasible. This shows that the constraint (4) is
indeed redundant in ESA and completes the proof of Part (a).

(Part (b)) We now prove Part (b). We first show that
ESA approximately minimizes the RHS of (20). To see this,
note from Part (A) that ESA indeed minimizes the following
function at timet:

D(t) =
∑

n∈N

(En(t)− θn)en(t) (40)

−
∑

n,c∈N

[

V U (c)
n (R(c)

n (t))−Q(c)
n (t)R(c)

n (t)
]

−
∑

n∈N

[

∑

c

∑

b∈N
(o)
n

µ
(c)
[n,b](t)

[

Q(c)
n (t)−Q

(c)
b (t)− γ

]

+(En(t)− θn)
∑

b∈N
(o)
n

P[n,b](t)

]

,

subject to only the constraints:en(t) ∈ [0, hn(t)], R
(c)
n (t) ∈

[0, Rmax], P (t) ∈ P(si) and (3), i.e., without the energy-
availability constraint (4). Now definẽD(t) as follows:

D̃(t) =
∑

n∈N

(En(t)− θn)en(t) (41)

−
∑

n,c∈N

[

V U (c)
n (R(c)

n (t))−Q(c)
n (t)R(c)

n (t)
]

−
∑

n∈N

[

∑

c

∑

b∈N
(o)
n

µ
(c)
[n,b](t)

[

Q(c)
n (t)−Q

(c)
b (t)

]

+(En(t)− θn)
∑

b∈N
(o)
n

P[n,b](t)

]

.

Note thatD̃(t) is indeed the function inside the expectation
on the RHS of the drift bound (19). It is easy to see from the
above that:

D(t) = D̃(t) +
∑

n

∑

c

∑

[n,b]∈N
(o)
n

µ
(c)
[n,b](t)γ.

Since ESA minimizesD(t), we see that:

D̃E(t) +
∑

n

∑

c

∑

b∈N
(o)
n

µ
(c)E
[n,b] (t)γ

≤ D̃ALT (t) +
∑

n

∑

c

∑

b∈N
(o)
n

µ
(c)ALT
[n,b] (t)γ,

where the superscriptE represents the ESA algorithm, and
ALT represents any other alternate policy. Since

0 ≤
∑

n

∑

c

∑

b∈N
(o)
n

µ
(c)
[n,b](t)γ ≤ N2γdmaxµmax,

we have:

D̃E(t) ≤ D̃ALT (t) +N2γdmaxµmax. (42)

That is, the value ofD̃(t) under ESA is no greater than its
value under any other alternative policy plus a constant. Now

using the definition ofD̃(t), (19) can be rewritten as:

∆(t)− V E
{

∑

n,c

U (c)
n (R(c)

n (t)) | Z(t)
}

≤ B + E
{

D̃E(t) | Z(t)
}

.

Using (42), we get:

∆(t)− V E
{

∑

n,c

U (c)
n (R(c)

n (t)) | Z(t)
}

(43)

≤ B̃ + E
{

D̃ALT (t) | Z(t)
}

,

where B̃ = B + N2γdmaxµmax. Now consider the policy
that minimizesD̃(t) subject to onlyen(t) ∈ [0, hn(t)], 0 ≤

R
(c)
n (t) ≤ Rmax, P ∈ P(S(t)) and (3), and denote the value

of D̃(t) under this policy byD̃∗(t). It is easy to see then
D̃∗(t) is obtained by minimizing each term in (41) over the
constraints. Hence by comparing̃D∗(t) with (15), we see that
indeed, whenS(t) = si andh(t) = hj ,

D̃∗(t) = −gsi,hj
(Q(t), θ −E(t)).

Using this fact in (43), we have under ESA that:

∆(t)− V E
{

∑

n,c

U (c)
n (R(c)

n (t)) | Z(t)
}

(44)

≤ B̃ − E
{

gsi,hj
(Q(t), θ −E(t)) | Z(t)

}

.

Now using (16), i.e.,g(υ,ν) =
∑

si
πsi

∑

hj
πhj

gsi,hj
(υ,ν),

the above becomes:

∆(t)− V E
{

∑

n,c

U (c)
n (R(c)

n (t)) | Z(t)
}

(45)

≤ B̃ − g(Q(t), θ −E(t)).

By Theorem 1 and Lemma 1, we see that:

V Utot(r
∗) ≤ φ∗ ≤ g(υ∗,ν∗) ≤ g(Q(t), θ −E(t)).

Plug this into (45), we get:

∆(t)− V E
{

∑

n,c

U (c)
n (R(c)

n (t)) | Z(t)
}

≤ B̃ − V Utot(r
∗).

Taking expectations overZ(t) and summing the above over
t = 0, ..., T − 1, we have:

E
{

L(T )− L(0)
}

− V
T−1
∑

t=0

E
{

∑

n,c

U (c)
n (R(c)

n (t))
}

≤ T B̃ − TV Utot(r
∗).

Rearranging the terms, using the facts thatL(t) ≥ 0 and
L(0) = 0, dividing both sides byV T , and taking the liminf
asT → ∞, we get:

lim inf
T→∞

1

T

T−1
∑

t=0

E
{

∑

n,c

U (c)
n (R(c)

n (t))
}

≥ Utot(r
∗)− B̃/V.

Using Jensen’s inequality, we see that:

∑

n,c

U (c)
n (lim inf

T→∞

1

T

T−1
∑

t=0

E
{

R(c)
n (t)

}

) ≥ Utot(r
∗)− B̃/V.

This completes the proof of Part (b).
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Here we prove Lemma 3.
Proof: We first prove (33). We first define an intermediate

processQ̃(c)
n (t) that evolves exactly asQ(c)

n (t) except that it
does not discard packets whenÊn(t) < En+Pmax or Ên(t) >

En +M . We see thenQ(c)
n (t) ≤ Q̃

(c)
n (t). Using Lemma 3 in

[25], we see that:Q̃(c)
n (t) ≤ [Q̂

(c)
n (t) − Q

(c)
n ]+ + γ. Hence

Q
(c)
n (t) ≤ [Q̂

(c)
n (t)−Q

(c)
n ]+ + γ and (33) follows.

We now look at (34). We see that it holds at time0 since
0 = Ên(0) − En = En(0). Now suppose that it holds for
t = 0, 1, ..., k. We will show that it holds fort = k+1. Since
if Ên(k + 1) ≤ En, then (34) always holds. Below, we only
consider the case when̂En(k + 1) > En, i.e.,

[Ên(k + 1)− En]
+ = Ên(k + 1)− En. (46)

Also note that since all the actions are made based on
Q̂(t) and Ê(t), by Theorem 2, we always havêEn(t) ≥
∑

b∈N
(o)
n

P[n,b](t), thus:

Ên(t+ 1) = Ên(t)−
∑

b∈N
(o)
n

P[n,b](t) + en(t). (47)

We consider the following three cases:
(I) Ên(k) < En. Since Ên(k + 1) > En, we must have

En − Ên(k) ≤ en(k). Then according to the harvesting rule,

En(k + 1)

= min
[

[En(k)−
∑

b∈N
(o)
n

P[n,b](k)]
+

+en(k)− En + Ên(k),M
]

≥ min
[

[Ên(k) + En(k)−
∑

b∈N
(o)
n

P[n,b](k)]
+

+en(k)− En,M
]

≥ min
[

Ên(k)−
∑

[n,b]

P[n,b](k) + en(k)− En,M
]

= min
[

Ên(k + 1)− En,M
]

= min
[

[Ên(k + 1)− En]
+,M

]

.

Here the first inequality uses the property of[·]+, and
the second inequality usesEn(k) ≥ 0 and Ên(k) ≥
∑

b∈N
(o)
n

P[n,b](k).

(II) Ên(k) > En+M . In this case, we see by the induction
assumption thatEn(k) = M . Now by the update rule, we see
that:

En(k + 1) = min
[

En(k) + en(k),M
]

= M. (48)

Thus (34) still holds.
(III) En ≤ Ên(k) ≤ En +M . We have two cases:
(III-A) If Ên(k + 1)− En ≤ M , then using (46) and (47),

we have:

min
[

[Ên(k + 1)− En]
+,M

]

= Ên(k)−
∑

b∈N
(o)
n

P[n,b](k) + en(k)− En

≤ min
[

[[Ên(k)− En]
+ −

∑

b∈N
(o)
n

P[n,b](k)]
+ + en(k),M

]

≤ min
[

[En(k)−
∑

b∈N
(o)
n

P[n,b](k)]
+ + en(k),M

]

= En(k + 1).

Here the first inequality uses the property of the operator[·]+,
and the second inequality uses the induction thatEn(k) ≥
min

[

[Ên(k)− En]
+,M

]

= [Ên(k)− En]
+.

(III-B) If Ên(k+1)−En > M , then we must havêEn(k) ≥
En+M −αmax, and thatEn(k) ≥ Ên(k)−En ≥ M −αmax.
Using the fact thatM2 ≥ αmax, we have:

En(k + 1)

= min
[

En(k)−
∑

b∈N
(o)
n

P[n,b](k) + en(k),M
]

≥ min
[

Ên(k)−
∑

b∈N
(o)
n

P[n,b](k) + en(k)− En,M
]

= min[Ên(k + 1)− En,M ],

which implies En(k + 1) = M . Thus (34) holds. This
completes the proof of (34) and proves the lemma.
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Here we prove Theorem 5.
Proof: Since a steady state distribution for the queues

exists under the ESA algorithm, we see thatP(r)(D,Km) is
the steady state probability that eventE (t,m) happens. Now
consider a largeV value that satisfiesM8 = 1

2 [log(V )]2 ≥ 2D
and log(V ) ≥ 16K. We have:

1
2 [log(V )]2 −D

K
≥

1
4 [log(V )]2

K
≥ 4 log(V ).

By using (29) and the above, we see that

Pr(E (T,
1
2 [log(V )]2 −D

K
)) ≤ c∗e−4 log(V ) = O(1/V 4).

Using the definition ofE (t,m), we see that whenV is large
enough, with probability1−O(1/V 4), the vectorsÊ(T ) and
Q̂(T ) satisfy the following for alln, c:

|Q̂(c)
n (T )− υ(c)∗

n | ≤
M

8
, |Ên(T )− (θn + ν∗n)| ≤

M

8
. (49)

Using the fact thatQ(c)
n = [Q̂

(c)
n (T ) − M

2 ]+ and En =

[Ên(T ) −
M
2 ]+, (49) and the facts thatM = 4[log(V )]2 and

y∗ = (υ∗,ν∗) = Θ(V ) imply that, whenV is large enough,
with probability 1−O(1/V 4), we have:

−
3M

8
≥ Q(c)

n − υ(c)∗
n ≥ −

5M

8
, ∀ (n, c) s.t.υ(c)∗

n 6= 0, (50)

Q(c)
n = υ(c)∗

n , ∀ (n, c) s.t. υ(c)∗
n = 0, (51)

−
3M

8
≥ En − (θn + ν∗n) ≥ −

5M

8
, ∀n. (52)



Having established (50)-(52), (35) can now be proven using
(33) in Lemma 3 and a same argument as in the proof of
Theorem4 in [25].

Now we consider (36). By Lemma 3, when̂En(t) ∈
[En+Pmax, En+M ], we haveEn(t) ≥ [Ên(t)−En]+ ≥ Pmax.
Thus all the power allocations are valid under MESA. Now
since at every timet, MESA performs ESA’s data admis-
sion, and routing and scheduling actions, if there was no
packet dropping, then MESA will achieve the same utility
performance as ESA. However, since all the utility functions
have bounded derivatives, to prove the utility performanceof
MESA, it suffices to show that the average rate of the packets
dropped isO(ǫ) = O(1/V ).

To prove this, we first see that packet dropping happens at
time t only when the following event̂E (t) happens, i.e.,

Ê (t) = {∃ n, Ên(t) < En + Pmax} (53)

∪{∃ n, Ên(t) > En +M}

∪{∃ (n, c), Q̂(c)
n (t) < Q(c)

n }.

However, assuming (50)-(52) hold, the following event must
happen forÊ (t) to happen:

Ẽ (t) = {∃n, Ên(t) < (θn + ν∗n)−
3M

8
+ Pmax}

∪{∃n, Ên(t) > (θn + ν∗n) +
3M

8
}

∪{∃ (n, c), Q̂(c)
n (t) < υ(c)∗

n −
3M

8
}.

ThereforeÊ (t) ⊂ Ẽ (t). However, it is easy to see from (31)
that Ẽ (t) ⊂ E (t, m̃) with m̃ = (3M8 − Pmax − D)/K =

(32 [log(V )]2 − Pmax − D)/K. ThereforeÊ (t) ⊂ E (t, m̃).
Using (29) again, we see that:

lim sup
t→∞

1

t

t−1
∑

τ=0

Pr(Ê (τ)) ≤ lim sup
t→∞

1

t

t−1
∑

τ=0

Pr(E (τ, m̃))

≤ c∗e−( 3[log(V )]2

2 −Pmax−D)/K .

Using the facts that12 [log(V )]2 ≥ 2D andlog(V ) ≥ 16K, we
see that:

3[log(V )]2

2 −D

K
≥

5[log(V )]2

4

K
≥ 20 log(V ).

Thus we conclude that:

lim sup
t→∞

t−1
∑

τ=0

Pr(Ê (τ)) ≤
c∗ePmax/K

V 20
= O(1/V 20).

Since at every time slot, the total amount of packets dropped
is no more thanN(µmax + Rmax), we see that the average
rate of packets dropped isO(1/V ). This completes the proof
of Theorem 5.
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