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ABSTRACT

In Product Line Engineering, as in any other modeling do-
main, designers and end users are prone to making inconsis-
tent assumptions (errors) because of complexity and lack of
system knowledge. We previously envisioned a way of allow-
ing inconsistencies during product configuration and in this
paper we present a solution on how to realize this vision.
We introduce HUMUS (High-level Union of Minimal Un-
satisfiable Sets), which enables correct reasoning in product
line engineering (encoded in SAT) despite the presence of
errors. We focus mainly on tolerating inconsistencies during
product configuration, to make it possible to resolve incon-
sistencies later without misguiding the human user along the
way. We also provide a discussion of other applications in
product line engineering and beyond. The main advantage
of using HUMUS is, that it is possible to isolate erroneous
parts of a product line model such that existing automations
continue to be useful. The applications of HUMUS are thus
likely beyond product line engineering.

Categories and Subject Descriptors: 1.6.4 Simulation
and Modeling: Model Validation and Analysis

General Terms: Algorithms, Human Factors, Verification.

Keywords: Product Line Engineering, Formal Reasoning,
User Guidance

1. INTRODUCTION

Inconsistencies in models imply the presence of errors. For
the software engineer, the main benefit of tolerating incon-
sistencies is the ability to continue working despite this pres-
ence of errors. This is useful when it is neither obvious how
to fix the inconsistency nor important to do so right away.
Indeed, many inconsistencies can be tolerated. Almost 20
years ago, Balzer wrote that “software systems, especially
large ones, are rarely consistent (...) yet no principled ba-
sis exists for managing the development during the periods
of inconsistency”. He argued that inconsistencies should be
detected and communicated to the developers; however, de-
velopers should not be hindered in continuing their work
despite the presence of inconsistencies.

In model-driven software engineering, it is state-of-the-
practice to allow inconsistencies [1, 21]. Modeling tools tend
to indicate inconsistencies but do not force developers to fix
them right away [10]. However, in the product line commu-
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nity and many other software engineering domains, tolerat-
ing inconsistencies is usually infeasible (e.g., by preventing
decisions that cause inconsistencies). And there are good
reasons for preventing inconsistencies. First and foremost,
many reasoning engines are rendered partially or fully use-
less in the presence of inconsistencies. Even if the reasoning
engines were able to function (instead of failing outright),
the implications on the quality of the results are typically
not understood (clearly, we cannot expect a reasoning engine
to compute correct results in the presence of inconsistent,
aka erroneous input). This is a severe problem because as
Balzer said, inconsistencies are a fact of (software engineer-
ing) life and to date reasoning engines support many vital
automations such as analyzing properties of systems, un-
derstanding the effects of design decisions, helping configure
products, etc.

The goal of this work is to investigate the cause of incon-
sistencies with the help of SAT-based reasoning [6], more
specifically HUMUS (High-level Union of Minimal Unsatis-
fiable Sets, which will be explained in detail in the following
section). We will highlight advantages and disadvantages of
conservatively identifying the cause of inconsistencies and
propose several usage scenarios in which doing so benefits
product line engineering. This paper thus continues on the
vision in [22], where we discussed different inconsistency res-
olution strategies: from undoing, forced repairs, to the toler-
ance of inconsistencies by ignoring all facts that contribute
directly or indirectly to the inconsistency. This enables the
designer to better understand inconsistencies and resolve
them at a time of their choosing. We will demonstrate that
1) correct reasoning in the presence of inconsistencies is pos-
sible and 4i) automations (SAT-based) remain useful even
while tolerating inconsistencies. We thus counter the asser-
tion above: a user can expect a reasoning engine to compute
correct results for as long as the incorrect input is detected
and isolated during the reasoning (albeit not resolved).

The focus on SAT-based reasoning reflects the wide-spread
use of this technology in product line engineering. SAT-
based reasoning is used to determine the correctness of prod-
uct line models and to help guide decision makers — for exam-
ple, revealing which decisions / features are no longer avail-
able due to conflicts with decisions / features made / selected
earlier. One goal is to investigate how such and other useful
automations, that are relying on SAT-based reasoning, can
continue to be useful even if the SAT model itself contains
errors. Particularly for SAT-based reasoning, this is a se-
vere problem because a SAT solver renders any model with
an inconsistency as “not satisfiable” regardless of how mi-
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Figure 1: Illustrative Excerpt of a Product Line De-
cision Model.

nuscule or irrelevant the inconsistency may be. Tolerating
inconsistencies thus strips the engineer of vital automations
because the SAT solver ceases to compute useful results.

This paper thus contributes a SAT-based strategy to con-
servatively identifying the cause of inconsistencies and de-
monstrates interesting usage scenarios. While the evalua-
tion in this paper mainly focuses on guidance during product
derivation, HUMUS can be applied to all kinds of SAT-based
reasoning.

Next, we present an illustration used throughout the pa-
per. We discuss the goals of this work and the challenges.
A detailed discussion of the usage scenarios follows. The
preliminary evaluation then examines four case studies, fol-
lowed by a discussion of the results. Related work, future
work and conclusions round out the paper.

2. SCENARIO AND PROBLEM

Since this paper investigates the HUMUS (High-level
Union of Minimal Unsatisfiable Sets) strategy to identify
the cause of inconsistencies, which is specific to SAT solvers,
a short introduction to the terminology based on [5] is given:
SAT problems are defined in conjunctive normal form (CNF)
which is a conjunction of clauses. One clause is a disjunc-
tion of literals which are Boolean variables. Assumptions
are assignments for literals that constrain the assignment
possibility of a literal to either true or false. SAT solvers
produce one of two results, either a CNF is satisfiable (SAT)
or unsatisfiable (UNSAT) — SAT meaning that there exists
an assignment for all literals such that the CNF evaluates
to true, UNSAT meaning that such an assignment does not
exist. If a problem is UNSAT it can be because of either
an inconsistency in the clauses which would be low-level,
or an inconsistency because of assumptions which would be
high-level.

2.1 lllustrative Configuration Example

As an illustrative configuration example we will be using
an excerpt from a real e-commerce decision-oriented product
line. This decision model was reverse engineered from the
DELL homepage (during February 2009), a complete version
of the model was also used in the evaluation and it can
be downloaded from the C20-Website!. The illustration’s
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relevant questions (e.g. Screen Size) with their respective
choices (e.g. 12.1”,13.3”, and 15.4”) are shown in Figure 1,
the indicated constraint relations are listed next:

(Screen Size = Laptop Type)Constra,intRelation = {
(12.1” = {Inspirion, Latitude}),
(13.3"” = {Latitude, Vostro}),
(15.4"” = {Inspirion, Latitude, Vostro})}

(Memory = Operating SyStem)Const'r‘aintRelation = {
(2GB = {32bit, 64bit}),
(8GB = {64bit})}

(Screen Resolution = Laptop Type)ConstraintRelation = {
(XGA = {Latitude, Vostro}),
(WXGA = {Inspirion, Latitude, Vostro}),
(WUXGA = {Latitude, Vostro})}

(Webcam = Laptop Type)ConstraintRelation = {
(yes = {Inspirion, Vostro}),
(no = {Latitude, Vostro})}

These relations impose constraints onto a configuration,
such as selecting 2GB of Memory, both 32bit and 64bit
Operating Systems are viable, but if 8GB is selected only
a 64bit Operating System is allowed.

Encoding this example in CNF is straight-forward, by as-
signing a literal to each choice (e.g. Memory(2GB) — a,
Memory(8GB) — b, Operating System(32bit) — c), pre-
serving the question concepts through clauses that only al-
low one choice per question (e.g. for the Memory question:
(ma Vv =b) A (a Vb)), and adding clauses for the constraint
relations (e. g. the relation between Memory and Operating
System: (—bV —c)).

2.2 SAT-based Reasoning in Product Lines

In the domain of product configuration and decision mod-
eling, SAT-based reasoning is state-of-the-practice [19, 26].
It has several primary uses: SAT reasoning is used 7) to val-
idate products [3], ii) to find viable alternative solutions if
a product is not valid [28] or auto complete partial prod-
ucts [19], and %) to provide guidance during the configu-
ration process [24, 23]. To validate a product one call to
the SAT solver is sufficient. For the other uses several SAT
solver calls are necessary with different assumptions to find
out if combinations of assumptions are valid. So basically
in these cases the SAT solver is used as an oracle and the
reasoning process is based on querying this oracle.

But what happens if we are confronted with inconsisten-
cies in the product line model or during the product con-
figuration? As long as a CNF with assumptions evaluates
to SAT, no inconsistency is detected. Adding additional
clauses and /or assumptions may change SAT to UNSAT,
but once the SAT solver is in an UNSAT (inconsistent) state
adding additional clauses and / or assumptions will have no
effect at all because the SAT solver will continue to evalu-
ate to UNSAT. As explained before, since the SAT solver is
used for more then just detecting inconsistencies, automa-
tions are lost too. For example, the ability to automatically
derive assumptions i) to (partially) auto-complete the con-
figuration process or i) show decision effects, is lost. On the
other hand if we are dealing with an inconsistent product
line model the ability to identify for example dead features
or to do a partial configuration is also lost.

If the tolerance to inconsistencies is a necessity, there
are two possibilities for maintaining automations: either 4)



change the SAT-based automations to live with inconsis-
tencies (this is difficult in part because there are many dif-
ferent kinds of automations), or iz) change the SAT input
(clauses and assumptions) so that the problem is no longer
unsatisfiable which implies that existing automations con-
tinue working without modifications. For changing the SAT
input our preferred way is isolation. It is important to dis-
tinguish between isolating and fixing an inconsistency at this
point: Isolating means sandboxing clauses and / or assump-
tions that cause an inconsistency, in other words identify
contributors and ignore them for reasoning purposes. Fix-
ing would go one step further and in addition change those
clauses and / or assumptions in such a way the inconsistency
would be resolved. So the isolation can be seen as a first step
of an actual fix without committing on how to fix.

In the domain of product lines, isolating clauses and as-
sumptions account for different parts. Assumptions are used
to express user decisions and derived decisions (high-level),
whereas clauses are used to define the decision model (low-
level). Hence our focus on high level clauses.

3. APPROACH

In this section we will discuss the HUMUS strategy (High-
level Union of Minimal Unsatisfiable Sets) to identify the
cause of inconsistencies in detail. To provide a better insight
into this SAT technique we need to introduce a few more
SAT concepts [5, 17]. The most important being a mini-
mal unsatisfiable set (MUS) which is defined by the proper-
ties of being minimal and that removing any single assump-
tion / clause results in the remaining set being satisfiable.
In our example configuration illustrated in Table 1 only one
MUS of user assumptions is present {Screen Size(12.1"),
Screen Resolution(X GA), Webcam(yes)}. However gener-
ally speaking inconsistencies consist of many possibly over-
lapping MUSes, as a consequence isolating one assumption /
clause of one MUS does not necessarily result in a satisfi-
able SAT model. Another concept is the minimal correct-
ing set (MCS) which is defined by the properties of be-
ing minimal and that removing it from reasoning, results
in a satisfiable SAT model. In our illustration the high-
level (assumption based) MCSes are {Screen Size(12.1”)},
{Webcam(yes)}, and {Screen Resolution(XGA)}. Gener-
ally speaking MUSes and MCSes are connected via hitting
sets, meaning that every MCS is composed of a single ele-
ment from every MUS. In addition to this relation MCSes
are the complement of a maximum satisfiable set (MSS). As
the name already states a MSS is a set of assumptions that
is satisfiable and of the maximum size it can be. An example
for one possible MCS and its complementary MSS given our
illustration, is the MCS {Screen Size(12.1”)} and the MSS

{Memory(8GB), Screen Resolution(XGA), Webcam(yes)}.

As stated before HUMUS stands for High-level Union of
Minimal Unsatisfiable Sets, it is a concept based on the cal-
culation of all Minimal Unsatisfiable Sets (MUSes) [17]. The
basic concept behind it is to identify all contributors (di-
rectly and indirectly) of the inconsistency. When we speak
of HUMUS we are always talking about identifying high-
level assumptions, UMUS (Union of Minimal Unsatisfiable
Sets) on the other hand identifies low-level clauses that are
contributing to an inconsistency that cannot be resolved
with the removal of assumptions, only with the removal of
clauses. Note that the HUMUS / UMUS calculation only re-
turns a single result, because an assumption / clause either

Table 1: Configuration Progression of the Example
given in Figure 1 at the Literal Level.
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contributes to the inconsistency (in which case it is in the
HUMUS / UMUS) or it does not.

The implementation of the HUMUS strategy takes a short-
cut in comparison to the approach of Liffiton to compute all
MUSes [17], since we only care about the union of the MUSes
and not the individual MUSes themselves. Our implemen-
tation uses a variant of Liffiton’s [17] approach to calcu-
late MSSes using assumptions over clause selector variables
(since clauses in CNF are disjunctions adding a variable to
be used as a selector is easy, if the clause should be ignored
true is assumed for the variable which results in the clause
being true). If a satisfiable subset of clauses has been found,
which cannot be increased in size without making the result-
ing formula unsatisfiable, the complement of this set is an
MCS. This particular satisfiable subset is then blocked with
a blocking clause (the negation of the set as added to the
SAT model as a clause, eliminating the particular set as a
satisfiable assignment). We do not use at-most constraints,
this avoids having to reset the SAT solver as soon as an MCS
of a different size is found. After having calculated all the
MCSes we simply calculate the union of the MCSes, since
the resulting set is the same as the union of all MUSes due
to the relation via hitting sets.

4. USAGE SCENARIOS

HUMUS or its low-level counterpart UMUS can be useful
in many application scenarios, of which we will explain a few
we could think of in more detail in this section.

4.1 Product Configuration

SAT-based reasoning can be used to provide basic guid-
ance, by calculating the effect of a decision and show its
effects to the user when subsequent questions are answered.
This is illustrated in Table 1, for the first question the user
decided the Screen Size to be 12.1” which is indicated in
the column 1°%¢q, u, the effect and resulting state of this de-
cision is shown in the column 1%%q, s. This is repeated for
the other questions, where user assumptions are bold and



choices belonging to questions that already have been an-
swered are grayed out. The effect of each user assumption
is calculated the following way: For every remaining literal
a SAT call with a positive as well as a negative assumption
is made, to see if there are any solutions left with those as-
sumptions. If both assumptions are still possible the answer
had no effect on this literal at that time, but if only one as-
sumption is possible this assumption can be kept as a derived
assumption (e.g. the assumptions Screen Size(12.1"") and
Screen Size(13.3") are UNSAT, therefore —Screen
Size(13.3") is derived, the same is true for —Laptop
Type(Vostro)). This process is repeated after each decision
during the whole process.

In the illustration in Table 1 technically after the third de-
cision the configuration process could be stopped, since an
assumption was provided or derived for all literals. However
what if the user is not satisfied with some of the derived deci-
sions as illustrated and wants to select Webcam(yes)? There
are three possibilities how to handle such a situation: i) not
allowing such a decision and thereby forcing the user to back-
track and explore different decisions so that Webcam(yes)
becomes available, ii) fixing the problem right away by de-
ciding differently for an earlier question that Webcam(yes)
is in conflict with, and #44) tolerate the inconsistency for the
time being until the user made up his / her mind on how to
fix it.

Our vision was to allow users to continue the configuration
process while tolerating the inconsistency [22]. Calculating
the HUMUS and isolating the identified decisions for the
time being allows us to do exactly that, however it is also
able to support the other two possibilities in such a situation
which is explained in the following subsections.

4.1.1 Inconsistency Explanation

In case one wants to disallow conflicts, one may still want
to support users by providing an explanation to them, why
a certain decision is not allowed. If the intend is to pro-
vide a full explanation including all transitive effects calcu-
lating the HUMUS is the answer. In the example given in
our illustration the HUMUS consists of { Screen Size(12.1"),
Screen Resolution(X GA), Webcam(yes)}, so if the system
is asked why Webcam(yes) is not allowed, the answer would
be because of the conflicting decisions Screen Size(12.1")
and Screen Resolution(XGA).

4.1.2 Fixing Inconsistencies Right Away

In case one prefers to fix inconsistencies right away, HU-
MUS provides the basis for all possible fixes. Since all con-
tributing decisions are included in the HUMUS, every pos-
sible fix has to involve changing one or more of those de-
cisions. So if the intend is not only to suggest randomly
selected fixes but a complete list of fixes to the users, it can
be done by starting to calculate the HUMUS to identify the
contributing decisions and finding alternative ones like for
example Screen Resolution(W XGA) , Screen Size(13.3")
or Webcam(no) for our illustration.

4.1.3 Tolerating Inconsistencies

If an explanation or selecting a possible fix is not suffi-
cient enough for the user to decide on a certain fix, tol-
erating can be a useful alternative. As mentioned before
once an inconsistent state is reached and the SAT-Solver
returns UNSAT, automations stop working. As a result tol-

erating inconsistencies with SAT-Solvers requires to isolate
clauses and / or assumptions from reasoning that led to the
UNSAT result. Of course isolating any number of contrib-
utors of an inconsistency could be sufficient, to get mean-
ingful results out of the SAT-Solver again, like for instance
Webcam(yes). However it is our belief that isolating con-
servatively all contributors, as calculated by the HUMUS,
has one big advantage. Isolating all contributors ensures
that the decision that is changed later on by the user to
fix the inconsistency is not used for reasoning, and there-
fore not used in any automations. Not doing so could lead
for instance to valid decisions (based on the later known
fix) being communicated to the user as invalid during the
configuration process, based on reasoning with the defec-
tive decision. For example if the user would decide later
on that the decision Screen Size(12.1”) should be replaced
with Screen Size(13.3"), but we just isolated Webcam (yes)
from reasoning, Screen Size(12.1”) would have been part
of the reasoning and led to incorrect reasoning results like
for instance = Laptop T'ype(V ostro). So isolating all contrib-
utors eliminates the possibility of incorrect reasoning and
ensures correct automations.

4.1.4 Fixing through Tolerating Inconsistencies

Tolerating can even be beneficial for fixing an inconsis-
tency if new decisions can be trusted, after the inconsis-
tency was detected. If new decisions have dependencies
with decisions contained in the HUMUS they can be used
to reduce the number of possible fixes for the inconsistency.
Sometimes the number of possible fixes can even be reduced
to one, in which case the inconsistency can be fixed au-
tomatically. For instance given our example if the user
makes a decision for the Laptop Type there are three possible
choices {Vostro, Inspirion, Latitude}, where each choice
resolves the inconsistency in a different way. If Vostro is
chosen, and can be trusted to be correct, there exists an
additional conflict with Screen Size(12.1”), which means
that this decision needs to be changed and the decisions
Screen Resolution(XGA) and Webcam(yes) can be kept.
On the other hand if Inspirion is chosen there is an addi-
tional conflict with Screen Resolution(XGA) and as a re-
sult Webcam(yes) and Screen Size(12.1"”) can be kept. The
same is true for Latitude which is in conflict with the deci-
sion Webcam(yes).

The fixing possibilities could be further reduced, if the
trusted decisions also included the decision that caused the
inconsistency. As we already argued in [22] we assume that
if a user consciously decides to introduce an inconsistency
(because the configurator tool already indicated that the de-
cision Webcam(yes) is not allowed anymore), this last deci-
sion is important and should be kept.

But what if follow-on decisions also cannot be trusted to
be correct? For instance because they are made at differ-
ent times during the configuration process or by different
stakeholders. For the tolerating part, HUMUS still allows
automations to function correctly, even if new inconsisten-
cies are detected a new HUMUS will be calculated without
any incorrect reasoning happening. For the fixing part, if we
cannot trust decisions made after the detection of an incon-
sistency (in our experience rarely the case) or if continuing
the configuration does not reveal a single fix (more likely
the case) then the user will have to fix the inconsistency by
traditional means — for example, by generating fixes based



on the HUMUS for the entire set of decisions and not just
the decisions made prior to the inconsistency detection; or
by calculating a more or less random fix. A straightfor-
ward way (we currently use) for generating fixes based on
the HUMUS for decision models is to identify the questions
the contributing decisions belong to. The next step is to
test still viable alternative choices for those questions and
combinations thereof for satisfiability; and collecting those
that are valid as possible fixing sets. As mentioned before,
new decisions made while tolerating inconsistencies, can be
used to reduce those fixing sets if they conflict with those
new decisions. As such this approach of reducing the num-
ber of possible fixing sets only works if new decisions can
be trusted. By visually communicating the impact of new
decisions onto fixing possibilities to the user and making
those new decisions informed ones, one could argue that the
assumption that one can trust those decisions is not to far
fetched.

4.2 Product Line Verification

SAT solvers are also useful in performing product line ver-
ification. For example detecting anomalies [3] like for in-
stance dead features and false optional features. However
detecting such anomalies in an inconsistent SAT model is
impossible because the SAT solver will return UNSAT for
every query. In such cases the UMUS could be calculated
and the identified clauses excluded from the analysis. Dead
features and false optional features are then detected in the
remaining partial product line model, which is more useful
then failure to evaluate anything. And faulty features iden-
tified this way will remain faulty when the inconsistencies in
the model are fixed. This statement is true because if certain
constraints cause a feature to always or never be selected
adding additional constraints (clauses) to the model will not
change these effects. Additionally because the UMUS iden-
tified all contributors no potentially incorrect constraints are
used to identify those dead and false optional features, as a
result the used constraints to identify them will still be in
the consistent final product line model. The applicability of
HUMUS for these kinds of reasoning is only then useful if
reasoning over a partial model provides correct results. In
other cases, reasoning with HUMUS may be an approxima-
tion and the usefulness depends on other factors not explored
here.

4.3 Other Domains

While we only investigated the benefits of HUMUS in the
product line configuration scenario (see the next section), we
strongly believe that the basic premise also applies to other
domains. For instance SAT solvers are commonly used for
debugging purposes [25], by identifying MUSes. But we be-
lieve that also in the domain of debugging it is far more
beneficial to provide engineers with a complete list of con-
tributors, rather than random ones derived by other tech-
niques which are commonly used in state of the art. In order
to understand a bug completely and allow engineers to make
informed decisions on how to fix a bug all contributing parts
have to be identified, in addition as mentioned in Section 3
identifying one single MUS and changing one element of it
is not always enough to resolve an inconsistency.

Generally speaking in situations where engineers have to
resolve or to live with any kind of inconsistency, it is our
believe that identifying the complete set of contributors is

Table 2: Models used for the preliminary evaluation.

| Model || #q | #c | #r || #literals | #clauses |
Dell 28 147 | 111 137 2127
Vi 59 | 137 | 20 135 257
WebPortal 42 113 31 113 253
Graph 29 70 24 70 163

the preferable way of dealing with inconsistencies and allows
automations to function in a correct way without misleading
engineers.

5. PRELIMINARY EVALUATION

HUMUS is useful if an inconsistency only partially af-
fects the SAT-based reasoning (automation). In this case,
HUMUS isolates the problematic part conservatively and
enables existing SAT-based automations to function again
and provide useful results based on reasoning with the re-
maining consistent parts. However, one question remains,
namely are the automations with the remaining parts still
useful? This section demonstrates that in context of product
line configuration, conflicts typically only require a partial
model to be isolated and hence there is a benefit in cor-
rectly and completely identifying this problematic part with
HUMUS. While this evaluation does not cover all described
usage scenarios (see Section 4), it can be seen as a proof of
concept. Future work will expand this evaluation onto other
areas.

In this preliminary evaluation we investigated several as-
pects of HUMUS utilized during product configuration spe-
cific to user guidance, where guidance is about disabling
choices for future questions based on decisions made. We
investigated several product line and decision models from
various domains (e-commerce, decision models, feature mod-
els). The models were different in size and complexity. For
example, the DELL e-commerce model (only a very simpli-
fied version thereof was used as illustration in this paper)
had 28 questions, with roughly 5 choices per question, and
111 relations. Due to the number of relations per question,
this model was also the most complex decision model, as
is reflected by the number of clauses. Additionally, we in-
vestigated a decision-oriented product line for a steel plant
configuration (V1) [7] and two feature models (WebPor-
tal by M. Mendoca, Graph by Hong Mei) available on the
S.P.L.O.T. website (Software Product Lines Online Tools
website ?). Key characteristics of those models are stated
in Table 2 like the number of questions (#q), the number
of choices (#c¢) in the model, and the number of relations
(#7r) between questions in the model. In addition the num-
ber of literals and clauses needed after the transformation
into CNF is stated. Note that the feature models were auto-
matically converted into our own decision model (basically
features are represented by questions with up to three an-
swers: yes, no, irrelevant) to be used with our tool, hence
the characteristics differ from those given on the S.P.L.O.T.
website.

In order to be able to evaluate the HUMUS approach,
we need to know how an inconsistency is going to be fixed.
For that purpose we generated one thousand valid config-
urations for each model (without any inconsistencies), to

http://www.splot-research.org/
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Figure 2: Effectiveness of guidance despite conser-
vative isolation.

have a statistically significant sample size. In each con-
figuration we seeded a defect by randomly changing a de-
cision of each configuration to cause an inconsistency and
treating the original decision as the fix. We then simulated
the decision-making involved. Since each configuration con-
tained a defect, the decision-making eventually encountered
an inconsistency. Starting at this point reasoning data was
collected and later analyzed.

5.1 Tolerating Inconsistencies during Product
Configuration

Our approach is conservative in always isolating the de-
fect, however, at the expense of also potentially isolating
correct decisions. This reduces the effectiveness of auto-
mated guidance. Recall that the aim of guidance is to dis-
able choices of questions that are no longer allowed. The
conservative nature of our approach does so less effectively.
Figure 2 measures this disadvantage. The data was nor-
malized such that 100% on the y-axis represents optimal
guidance where only the defect is isolated from reasoning
(ideal); and 0% represents the worst case guidance where all
decisions are isolated and the reasoning process starts over.
We see that guidance remains 90-100% optimal despite the
conservative nature of HUMUS due to two factors we iden-
tified. One being that, if the constraints in the model have
a lot of overlaps and the number of decisions identified by
HUMUS is large, lost information can be replaced with new
decisions due to other constraints. The other being that, if
the constraints in the model have little overlaps, then the
number of decisions identified by HUMUS is small.

5.2 Fixing through Tolerating Inconsistencies
during Product Configuration

To evaluate the fixing aspect of tolerating inconsistencies,
we investigated how many inconsistencies can be fixed au-
tomatically. And in cases where this is not possible, how
many fixing possibilities can be excluded over time.

5.2.1 Automatically Fixing

At the time of the failure, three situations are possible:

1. A single fix is already computable when the inconsis-
tency is detected and the decision that caused the in-
consistency is trusted to be correct (fizable at failure).

2. A single fix is not computable when the inconsistency
is detected but becomes computable at some point if
follow-on decisions can be trusted (fizable later).
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Figure 3: Distribution of fixable situations without
additional user interaction.
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Figure 4: Overview over the number of possible
fixes.

3. A single fix is not computable even at the end, with
follow-on decisions trusted, however, the number of
choices are reduced making it easier to fix the defect
(fizable with user input).

We can see in Figure 3, that 29-71% of defects were fixable
at the time the inconsistency was detected (i.e., there is
only one option available and fixing it is trivial). The re-
maining defects required more user input. However, 0-25%
of the remaining defects were fixable simply by letting the
decision-making continue (while the inconsistency was tol-
erated) without requiring additional information. Tolerat-
ing inconsistencies thus fixes defects automatically in many
situations. Even in the cases where defects were not fixed
automatically, the choices for fixing them got reduced con-
siderably during tolerating. This benefit is discussed next.
This demonstrates that the fixing of defect is not trivial in
many cases.

5.2.2 Automatically Reducing Choices for Fixing

For the 29-71% of defects in Figure 3 that were not fix-
able at the time the inconsistency was detected, Figure 4
presents the actual number of possible fixes at the time of
the detection and at the end (with their respective confi-
dence intervals of 95%). Three situations are distinguished
here:

1. The number of possible fixes if the HUMUS is com-
puted at the end after all decisions have been answered
(worst case).

2. The number of possible fixes if the HUMUS is com-
puted when the inconsistency is detected (failure).
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Figure 5: Normalized progression of fix reduction.

3. The number of possible fixes if the HUMUS is com-
puted when the inconsistency is detected, but further
reduced by using follow-on decisions with the assump-
tion that they can be trusted (with tolerating con-

flicts).

The first situation does not distinguish between decisions
made prior to and after the detection of the inconsistency.
Follow-on decisions are not trusted to be correct and thus
there are many choices for fixing the inconsistency. The sec-
ond situation recognizes that the defect must be embedded
among the decisions made prior to the detection. This sim-
ple knowledge vastly reduces the number of possible fixes.
Tolerating the inconsistency then further improves on this
by considering the effect of decisions made after the detec-
tion (i. e., while tolerating inconsistencies) onto the decisions
made prior (the optimal is ’1’). Tolerating inconsistencies
thus makes it easier to fix defects. The improvements ob-
served in Figure 4 are more substantial in decision models
where there are the more relations (e. g., DELL model). This
is easily explained. The more relations (constraints) there
are in a model, the more knowledge can be inferred and thus
the more restricted are the number of possible fixes.

In Figure 5 the progression of this improvement is shown
relative to the percentage of decisions remaining until the
end. We see that it is not always necessary to continue
decision-making until the end to get the most out of toler-
ating inconsistencies. On the decision model with the most
relations (DELL), we observe that 50% of the remaining
questions answered after the detection (while tolerating in-
consistencies) are enough to achieve near optimal reasoning.
If the decision model is less constrained, the effect appears
more linear. However, we observe that every decision made
after the detection simplifies the fixing of the defect. Note
that the 0% marker on the x-axis corresponds to the point of
the detection and the 100% marker to the end of decision-
making. The y-axis denotes the percentage of choices re-
duced for fixing defects compared to the optimum which is
equal the number of choices reduced at the end (once all
user input is known). Note that we excluded all those cases
where no more reduction was possible after the detection
(this data would be always at 100% and therefore distort
the other results).

5.3 Scalability

We also conducted performance tests on an Intel® Core™
2 Quad Q9550 @2.83 GHz with 4GB RAM, although only
one core was used for the time being. The computation time

M

Table 3: Scalability test results on artificial SAT

problems.
#Contributors 10 100 1000 10000 100000
HUMUS lms | 3ms | 241ms | 27s 608ms | 1h 897ms

needed for all models was between Oms and 1ms per compu-
tation. The evaluated models are not the largest SAT mod-
els around, however in context of this domain they are quite
large and we have shown that the approach scales for our
case studies. However further evaluations on artificial SAT
models (Table 3) show an exponential growth but accept-
able performance for inconsistencies involving up to 10000
assumptions. While those artificial SAT models may not
represent the structure of typical decision models well, they
represent the worst case structure for our implementation.
Those artificial SAT models consist of a single clause con-
taining n literals (I1 VI2 V...V l,) and then all literals are
assumed to be set to false resulting in an inconsistency be-
cause at least one literal has to be set to true. While this
kind of SAT model may seem trivial, our HUMUS imple-
mentation determines all MCSes by searching for all MSSes
and taking the complementary set of each one. As a result
the number of MSSes grows linearly (n — 1, where n is the
cardinality of the elements in the clause), but so does the
number of elements in each MSS. Our current implementa-
tion builds a single MSS bottom-up which means there are
n! SAT calls necessary, to determine one MSS.

5.4 Discussion

This preliminary evaluation, although only configurations
with a single defect were analyzed, already provides promis-
ing result to use HUMUS in user guidance during product
configuration. It clearly shows that the effects on the rea-
soning are marginal and tolerating an inconsistency is not
only possible with an SAT solver, but can even be beneficial
for fixing it later. It also shows that calculating the HUMUS
scales quite well for reasonable HUMUS sizes.

Of course there are several threads to validity and open
issues, since it is only a preliminary evaluation. First of all,
not all described usage scenarios have been tested, since our
research interests are mostly focused on guidance and free-
dom during the configuration process itself. On the other
hand we wanted to show in this paper, that the usage of
HUMUS seems feasible in other areas too, even though we
cannot substantiate that with more than arguments at this
point. The preliminary evaluation on tolerating inconsis-
tencies although not thorough yet, hints at the feasibility of
our approach. We also realize that for fixing inconsistencies
through tolerating, our assumption that new decisions can
be trusted is not always realistic , especially considering the
fact that an inconsistency may be the result of multiple de-
fects. However, it provides us with results under optimal
conditions and just by remembering the point of failure in
combination with HUMUS, the number of possible fixes can
be significantly reduced compared to searching for a fix at
the end of the configuration as shown in Figure 4. This al-
ways works even if new decisions cannot be trusted and need
additional fixing. And last but not least, it is still unknown
how users would use this approach to manage inconsisten-
cies. It is our believe that tolerating inconsistencies is helpful
but user studies are needed to confirm this.



6. RELATED WORK

In this section we give a brief overview of work that al-
ready has been done in related research areas. The idea of
tolerating inconsistencies is not new, 20 years ago, Balzer
argued that inconsistencies should be detected and commu-
nicated to the developers; however, developers should not be
hindered in continuing their work despite the presence of in-
consistencies [1]. This basic but essential principle has been
applied not only in the modeling world but for example also
in any code editor that allows you to continue programming
even if there is a syntax error [15].

In software engineering, typical applications for decision-
making are software installation wizards that guide the users
through a set of predefined choices on how to setup a soft-
ware system; product configuration and product line engi-
neering makes use of models to restrict how products may
be instantiated [8]; feature location and other forms of trace-
ability [9]. Guided decision-making is quite common when-
ever software engineers desire to restrict the space of possi-
ble answers (e. g., installation wizards, e-commerce, product
lines or process configurations).

SAT solvers and theorem provers [6, 5] are commonly used
today. Concepts such as MUSes are well known in the SAT
community [27], as are MaxSAT [16], MSSes, MCSes [18]
and the CAMUS [17], but the application of these concepts
in other software engineering domains, particularly for tol-
erating inconsistencies, has not been exploited as of yet.

As stated earlier in Section 2.2 SAT-based reasoning is
state-of-the-art [19, 26, 20] in the domain of product line
configuration. The translation of configuration problems /
feature models / decision to CSPs is solved and described
for example in [2]. It has several primary uses: i) SAT
reasoning is used to validate products [3], 4) find viable
alternative solutions if a product is not valid [28], or auto
complete partial products [19], and iiz) to provide guidance
during the configuration process [24, 23].

Other domains applying SAT-based reasoning like for in-
stance hardware verification [13], debugging [25] and model
checking [4, 14] already make use of the concept of MUSes
to identify problems in the models. Even in non SAT-based
reasoning environments like for example in UML modeling
tools similar concepts are realized as a basis for fix genera-
tions [11, 12].

To the best of our knowledge no one has used the union of
MUSes for the purpose of better understanding inconsisten-
cies and dealing with them before, as we have done in this
paper.

7. CONCLUSIONS AND FUTURE WORK

This paper investigated the HUMUS SAT approach for
conservatively identifying the cause of inconsistencies. While
using the union of MUSes is not complicated and based on
well-known SAT concepts, it has never been used in appli-
cations we propose and is not very well-known outside the
SAT community. So our intention is to raise the awareness
for this technology and its benefits for dealing with inconsis-
tencies. We also provided several usage examples and evalu-
ated the application of HUMUS in the product configuration
scenario.

Open issues that also need to be investigated are how
HUMUS performs dealing with several independent incon-
sistencies during the configuration process and how it could

be applied to a multi-user configurator. In addition to that,
it will also be interesting to investigate if HUMUS is as use-
ful as we think in the other proposed usage scenarios, or
may even have a wider applicability and be beneficial to
other areas in software engineering that rely on SAT-based
reasoning, e.g. SAT-based hardware verification [13] or de-
bugging [25].
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