
HAL Id: hal-00653044
https://inria.hal.science/hal-00653044

Submitted on 16 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Domain Features to Handle Feature Interactions
Sébastien Mosser, Laurence Duchien, Carlos Andrés Parra, Mireille

Blay-Fornarino

To cite this version:
Sébastien Mosser, Laurence Duchien, Carlos Andrés Parra, Mireille Blay-Fornarino. Using Domain
Features to Handle Feature Interactions. Variability Modelling Software-Intensive Systems (VAMOS),
Ulrich Eisenecker, University of Leipzig, DE, Jan 2012, Leipzig, Germany. pp.101-110. �hal-00653044�

https://inria.hal.science/hal-00653044
https://hal.archives-ouvertes.fr

Using Domain Features to Handle Feature Interactions

Sébastien Mosser
SINTEF IKT

INRIA Lille–Nord Europe
Oslo, Norway

first.last@sintef.no

Carlos Parra
INRIA Lille–Nord Europe
LIFL (UMR CNRS 8022)

Univ. Lille 1, France
first.last@inria.fr

Laurence Duchien
INRIA Lille–Nord Europe
LIFL (UMR CNRS 8022)

Univ. Lille 1, France
first.last@inria.fr

Mireille Blay–Fornarino
I3S (UMR CNRS 6070)

University of Nice
Sophia Antipolis, France

blay@polytech.unice.fr

ABSTRACT
Software Product Lines in general and feature diagrams in
particular support the modeling of software variability. Un-
fortunately, features may interact with each other, leading
to feature interaction issues. Even if detected at the im-
plementation level, interaction resolution choices are part of
the business variability. In this paper, we propose to use
a stepwise process to deal with feature interactions at the
domain level: the way an interaction is resolved is consid-
ered as a variation point in the configuration process. This
method and the associated implementation are applied onto
a concrete case study (the jSeduite information system).

Categories and Subject Descriptors
D 2.2 [Software]: Software Engineering—Design Tools and
Techniques; D 3.3 [Software]: Programming Languages—
Language Constructs and Features

1. INTRODUCTION
One of the most important challenges of Software Product

Line (Spl) engineering concerns variability management,
i.e., how to describe, manage and implement the common-
alities and variabilities existing among the members of the
same family of software products. In front of humongous Spl
(containing hundreds of features, and describing thousands
of products), all the possible interactions between domain
features cannot be identified and accurately tackled a–priori.
This issue is identified as the optional feature problem: two
features identified as independent at the domain level are
actually dependent at the implementation level [16]. In this
paper, we focus on feature interaction as the identification
of a mismatch between the intention of the user and the ob-
tained product. When several alternative strategies can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VaMoS’12 January 25–27, 2012 Leipzig, Germany
Copyright 2012 ACM 978-1-4503-1058-1 ...$10.00.

used to accurately resolve a given interaction (to fulfill de-
signers’ intentions), these strategies are intrinsically part of
the Spl: they reify a business know–how. Based on recent
approaches that start to introduce extra–knowledge in the
Feature Diagrams (Fds), e.g., multi–view configuration [13],
we propose in this contribution to model these strategies as
part of the Fd to address the optional feature problem.

Consequently, we aim at defining an incremental process
(which complements other approaches for product genera-
tion) that supports the stepwise identification of interac-
tions. More specifically, we introduce in this paper an al-
gorithm to support the endogenous capitalization of the re-
solving intentions. It enables developers to identify conflicts
between features and to create resolving strategies based on
their own intentions. Such strategies can then be capitalized
in the Fd as new features. Consequently the Fd becomes
more and more accurate with every new product deriva-
tion, as it is enriched with the intentions defined by previ-
ous designers for resolving the same interactions (based on
their own experience). We apply this method on a service–
oriented product family that uses behavioral assets, i.e., or-
chestrations of Web Services. The way an interaction is
resolved directly interacts with the behavior of the derived
product. Nonetheless, the approach proposed here is not
specific to Service–Oriented Architectures1 and can cover
different kinds of products.

2. RUNNING EXAMPLE: JSEDUITE
jSeduite is an information system designed to fit aca-

demic institution needs [20]. It supports information broad-
casting from academic partners (e.g., transport network,
school restaurant) to several devices (e.g., user’s smartpho-
ne, PDA, desktop, public screen). This system is used as
a validation platform by the Faros project2. The current
stable version was released in February 2010 (development
started in 2004), and represents ∼ 70, 000 lines of code.
jSeduite is now deployed inside three institutions: Poly-

tech’Sophia engineering school & two institutions dedi-
cated to visually impaired people (Clément Ader institute
dedicated to childhood and the Irsam association for adult

1We do not rely on any property specific to SOA, such as
stateless systems or business orientation.
2http://www.lifl.fr/faros (French only)

people). Additional information can be found on the project
website3.
For end–users, the entry point of the system is an infor-

mation provider, implemented as a business process. In the
Service–oriented Architecture (Soa) domain, a business pro-
cess describes how existing services (e.g., components, web
services) are orchestrated to perform a mission–critical and
value–added task. In the context of jSeduite, each aca-
demic institution defines one or more providers, according
to their specific needs. At a coarse–grained level, the goal of
a provider business process is (i) to retrieve the data avail-
able on several sources of information and then (ii) to deliver
their concatenation to the user. In addition, several broad-
casting policies can be used to customize the way a source
is handled, e.g., adding a cache, truncating the information
set or using profile–specific value to filter the information
set.
We formalize these variations through the definition of

a Fd and present in Fig. 1 a subset of the jSeduite Fd.
We differentiate (i) abstract features used to structure the
Fd [23] and (ii) normal features that are bound to imple-
mentation artifacts. This subset contains only two sources
(i.e., News and Timetable, the actual system implements 19
sources) and six policies (e.g., Cache, Profile, 9 in the com-
plete system). Even if restricted, this feature diagram can
derive up to 500 different providers. We used the Familiar

language [2] to model the Fd and compute the number of
available configurations.

Source

News Timetable

Cache

Profile Shuffle Cache ProfileTruncate

UserGiven

SystemGiven

Provider

AuthenticationLog

Abstract feature (no assets)

System feature

optional

mandatory xor

or

Legend

Figure 1: JSEDUITE product line (subset)

A jSeduite asset corresponds to existing artifacts that
model the legacy system, including both structure (i.e., us-
ing class diagrams) and behavior (i.e., using business process
formalism). We describe in Fig. 2 the assets associated to
the feature Provider. Its structural part (Fig. 2(a)) defines
the data types used in the system (i.e.,Information and In-

formationSet), and describes a Provider service that defines
two operations. The empty operation is internal, and is used
to initialize an empty information set. The getInformation

operation is publicly exposed, and implements the informa-
tion retrieval process previously described. From a behav-
ioral point of view, this process is described in Fig. 2(b). It
is composed by three activities (pg1, pg2, pg3), sequentially
scheduled. In its initial version, this process simply com-
putes an empty set of information. It starts with the re-

3http://www.jseduite.org

ception of a given username (pg1), and initializes info with
an empty set (pg2). This set is then replied to the caller
(pg3). Using a product–driven approach, it is possible to

+getInformation(String): InformationSet
-empty(): InformationSet

Provider
Service

Information InformationSet*
element

(a) Structural asset

username := receive()pg1

info := empty()pg2

reply(info)pg3

Provider::getInformation

(b) Behavioral asset

Figure 2: Assets associated to the Provider feature

automatically derive a Provider according to user needs [8].
The designer selects the features he/she expects in the sys-
tem (i.e., define a configuration), and automated generative
techniques are used to generate a structurally correct sys-
tem [8].

Challenge. However, semantic interactions can still be en-
countered at the behavioral level (see Sec 3.2). Considering
that multiple strategies can be used to fix these interactions,
it is up to the designer to select the right one, according to
his/her intention. Thus, the way a designer resolves such an
interaction is part of the domain variability: it represents a
variation point at the domain level. Consequently, the Fd

is not expressive enough and must be enriched to take into
account this new feature.

3. BUSINESS INCONSISTENCIES
In this section, we describe the product derivation process

used to derive jSeduite products (Soa structure and behav-
iors of business processes). As the intrinsic design of jSe-

duite relies on orthogonal artifact from the class–diagram
point of view, we only describe here inconsistencies that can
be detected in the generated business processes.

3.1 Product Derivation Principles
At the structural level, all the assets are orthogonal, and

the generation of a complete class model for a given product
can be automatically obtained using classical model com-
position mechanisms (e.g., Kompose, [10]). At the behav-
ioral level, we use the composition framework Adore [19]
to support the generation of concrete providers from this
Fd. Anyhow, the proposed approach is not specific to this
framework, as explained in section 4. Adore is dedicated to
the generation of complex business processes through a com-
positional approach. It supports the definition of business
process fragments, which aim to be integrated into others.
It accurately compose both sources and policies, generat-
ing providers behavioral implementation. We represent in

Fig. 3 two fragments used to support this generation. The
fragment depicted in Fig. 3(a) models how information re-
trieved from the source News should be composed with the
legacy provider (represented with dashed entities). The sec-
ond fragment (doFilter, Fig. 3(b)) models how an infor-
mation set can be filtered according to a given user profile.

news := News::getContents()n2

legacy := union(legacy,news)n3

legacy := hook()h

P

S

Fragment: AddNews

(a) Handling News

all := hook()hP

S

criteria := profile::getSet(user,key)p2

all := Filter::run(all*,criteria)p3

Fragment: doFilter<user,key>

(b) Filtering information (doFilter)

Figure 3: Process fragments defined in jSeduite

We consider here (Fig. 4) a product called Pvalid, which
reifies a configuration of jSeduite that broadcasts profiled
news. In this product, the designer asks the system to gen-
erate a Provider that holds the News source, associated to a
Profile policy (used to filter out the available news accord-
ing to the profile of the user).

Pvalid = {Provider,News, doF ilter}

We represent in Fig. 4(c) the result of the derivation pro-
cess. From the structural point of view, we generate the
architecture of the Soa, using models merging. It includes
the required services and the associated data types. From
the behavioral point of view, we generate a business process
that includes the two previously described fragments, based
on a weawing algorithm.

3.2 Inconsistency Detection
We consider now the two following products, derived ac-

cording to the principles previously described:

• Pconcurrent = {News,Provider,T imetable}. In this prod-
uct (depicted in Fig. 5(a)), one wants to combine two
sources of information in the same Provider: News and
Timetable. The latter introduces two activities {t2, t3}
which retrieve the set of current lectures in the school
(tt) and append it with the legacy information set.
This product leads to the derivation of a non–determ-
inistic process, since the activities {n3, t3} define a con-
current access to the variable info. At the domain

level, prioritizing the information retrieval tackles the
issue.

• Pterm = {Authentication,Log,Provider}. In this product
(depicted in Fig. 5(b)), the features Log and Authenti-

cation are selected to enhance the initial Provider. On
the one hand, the feature Log brings activities {l1, l2},
logging the user access and throwing an error if there
is no available logger. On the other hand, the feature
Authentication adds activities {a1, a2}, which respec-
tively check user authentication token and throw an
error when the token is rejected by the security ser-
vice. It is then not possible to predict its behavior
when both error conditions are triggered (i.e., there
is no available logger and the token is rejected). As
multiple business choices can be used to tackle this
issue [6], it is also part of the domain variability.

username := receivepg1

info := empty()pg2

reply(info)pg3Provider::getInformation

info := union(legacy,news)n3

news := News::getContents()n2

info:= union(legacy,tt)t3

tt:=Timetable::getSchoolSchedule()t2

Pconcurrent

Behavior
generation

Concurrent

access

(a) Concurrent access to info variable

Pterm

Behavior
generation

(username,token) := receive()pg1

info := empty()pg2

reply(info)pg3

Provider::getInformation

Log::storeAccess(username)l1

throw(LOG_ERROR)l2
c := Security::check
(token,username)

a1

throw(AUTH_ERROR)a2

c !c

no logger

Concurrent

termination

(b) Concurrent termination {a2, l2}

Figure 5: Business Interactions

In front of such situations, given two interacting features

+getInformation(String): InformationSet
-empty(): InformationSet

Provider
Service

Information

InformationSet

*element

Information

InformationSet

*

+author: String
+content: String

News

-union(InformationSet, InformationSet): InformationSet
Provider

Service

+getContents(): InformationSet
News

Service

element

+run(InformationSet, CriterionSet): InformationSet
Filter

Service

InformationSet

CriterionSet

+value: String
Criterion

*

+getSet(String,String): CriterionSet
Profile

Service

match detected

Legend

(a) Structural composition

news := News::getContents()n2

legacy := union(legacy,news)n3

legacy := hook()h

P

S

Fragment: AddNews

all := hook()hP

S

criteria := profile::getSet(user,key)p2

all := Filter::run(all*,criteria)p3

Fragment: doFilter<user,key>

username := receive()pg1

info := empty()pg2

reply(info)pg3

Provider::getInformation

composition

directive

(b) Behavioral composition

username := receivepg1

info := empty()pg2

reply(info)pg3Provider::getInformation

info:= union(info,news)n3

news := News::getContents()n2

criteria := profile::getSet
(username,"news")

p2

news:= Filter::run(news,criteria)p3

+getInformation(String): InformationSet
-empty(): InformationSet
-union(InformationSet, InformationSet): InformationSet

Provider
Service

Information

InformationSet

*

+author: String
+content: String

News

+getContents(): InformationSet
News

Service

element

+run(InformationSet, CriterionSet): InformationSet
Filter

Service

CriterionSet

+value: String
Criterion

*

+getSet(String,String): CriterionSet
Profile

Service

Merged Concept

Behavior
generation

Pvalid

Architecture
generation

(c) Artifacts generated by the derivation process

Figure 4: Generation of Pvalid = {Provider,News, doF ilter} artifacts

{f1, f2}, one can choose in this context up to four4 different
interaction resolution rules to fix the issue: (i) ignore the
interaction, (ii) keep only one of the two features, (iii) order
the composition or finally, (iv) manually tailor a composed
feature. Even if the solution is actually implemented at the
code level, the underlying business intention is part of the
domain variability. We summarize in Tab. 1 how all these
choices can be applied to Pconcurrent.

Pi Choice Business Intention
P0 Ignore the in-

teraction
The built provider will be explic-
itly non–deterministic

P1 Exclude News The News feature is finally irrel-
evant in this specific product

P2 Exclude
Timetable

The Timetable feature is finally
irrelevant in this specific product

P3 Give priority
to News

News information must be re-
trieved as a priority

P4 Give priority
to Timetable

Timetable information must be
retrieved as a priority

P5 Tailored solu-
tion

e.g., News and Timetable infor-
mation must be interlaced

Table 1: Resolving “variations” for Pconcurrent

These choices intrinsically implement variations of the
same product. This fact leads to the following conclusion:
the jSeduite Fd depicted in Fig. 1 is not expressive enough
to accurately model the real domain variability. A naive
solution is to systematically model all these variations as
part of the Fd, introducing “resolving rules” as features.
In this Fd, features associated to the Provider contain the
composition directives used to derive the final product, and
“resolving rules” contain additional information intended to
the weaver (to resolve the interaction, e.g., ordering). As
the number of feature interactions in the product line is un-
known a–priori, we cannot restrict the cardinality of the
interaction space. In the worst case, each configuration of a
given Fd (F) will trigger a different interaction. Considering
that one can use up to four alternative choices to automat-
ically resolve these conflicts (automatic resolution intrinsi-
cally excludes tailored solutions, which must be manually
written), the number of associated features that should be
automatically added in the Fd reaches the cardinality of F
powerset, i.e., 4 × (2|config(F)| − 1). Considering the jSe-

duite restriction previously described (containing only 13
features but up to 500 available configurations), it will in-
troduce 4× (2500 − 1) features, which is not reasonable.

4. FD STEPWISE ENRICHMENT
Considering that user intentions when resolving interac-

tions are part of the intrinsic variability of an Fd, we pro-
pose to store in the associated Fd this knowledge, reified as
features. Unfortunately, this approach does not scale as is.
It is not possible to automatically fill the Fd with all the
potential rules, as (i) it will overwhelm the Fd (combina-
torial explosion), (ii) not all the possible resolution choice

4The resolution rules presented here can be complemented
by others. The key idea is that variations exists in the way a
given interaction can be resolved, according to the intention
of the user.

makes sense at the business level and (iii) it is not possi-
ble to foresee all the potential tailored rules. We propose
a stepwise approach to support interactions resolving in an
incremental way. The key idea is to rely on an interaction
detection engine to start a dialog with the designers, lead-
ing to the enrichment of the Fd at the domain level. Using
the algorithm described to support the approach, the Fd is
only enriched with relevant knowledge, and becomes more
and more accurate (in terms of interaction resolving) at each
step.

Let fd be a feature diagram, and cfg be a configuration.
If the analysis of cfg identifies interactions [11], an infer-
ence engine will explore fd, mining in the existing resolv-
ing features potential candidates (if any). The user is then
asked to (i) pick one or more existing resolving rules in the
candidates set, or (ii) to enrich fd, adding a new resolving
rule according to his/her intention. The enriched Spl is now
called f ′d, and will be used as a reference for the upcoming
configurations. We propose the use of features to model re-
solving strategies. The asset associated to a strategy is a
set of resolving rules5. Resolving strategy features are dis-
criminated against “usual” features according to a boolean
predicate (isStrategy?). One can use a fixes function to re-
trieve the set of interacting features fixed by a given resolv-
ing strategy. Based on this definition of interaction resolving
strategies, it is possible to formally define how an automatic
engine can propose strategies to fix a given set of interac-
tions. Let c be a given configuration of a Fd (fd), and Ic a
set of interacting features in c. A resolving strategy s may
interest the user since it fixes several interactions identified
in Ic (i.e., the intersection of Ic and fixes(s) is not empty).
We define a findCandidates function to automate this task,
described as follows:

findCandidates : Feature⋆ × Fd→ Feature⋆

(Ic, fd) 7→ C

C = {s|∃s ∈ fd, isStrategy?(s),fixes(s) ∩ Ic 6= ∅}

4.1 Illustrating Scenario in jSeduite

We depict in Fig. 6 how this approach can be efficiently
used to resolve interactions in the jSeduite context. We
restrict the initial Fd to only two relevant features (i.e.,
News and Timetable) for concision reasons. At the beginning
(step S0, Fig. 6(a)), the left part of the Fd contains only
“system–driven” features.

Using this Fd, one expresses a configuration c which in-
volves both News and Timetable features. The derived prod-
uct holds a concurrent access interaction (see Fig. 5(a)).
As there is no available strategies in the Fd, the user is
asked to model his/her intention as a new resolving strat-
egy. In this case, a new feature is added (External), where
the user states that external information must be priori-
tized6 (see P3 in Tab. 1). At the implementation level, the
associated resolving rule indicates to the composition engine
how the composition directives must be executed to prop-
erly implement this choice (using ordering directives). At
the end of this step (S1), the user retrieves an interaction–

5a resolving rule as an atomic information intended to the
weaver. Such information is used to resolve a conflict at the
composition engine level.
6The News source is an external entity (typically a syndica-
tion feed retrieved from a national channel). On the con-
trary, the Timetable source is an internal entity, using a
specific system deployed only on the school network.

Strategy

System

Source

News Timetable

Provider

Resolv. Strategy

(a) S0: Initial Spl

Editorial
Policy

External

Strategy

System

Source

News Timetable

Provider

(b) S1: Adding External

Strategy

System

Source

News Timetable

Provider

Editorial

Policy

InternalExternal

(c) S2: Adding Internal (alt. strategy)

Figure 6: Stepwise definition of the jSeduite Spl

free product p, and the Fd is enhanced with the new strategy
(Fig. 6(b)), which crystallizes the user resolving intention at
the Fd level.
Now, if another user expresses a configuration involving

News and Timetable. The same interaction is detected, and
the system identifies7 that the External strategy can be used
to resolve it. Unfortunately, this strategy does not match
user’s intention (which is antagonist, i.e., prioritize internal
information, see P4 in Tab. 1). A new alternative strategy
is then added to reify this decision (Internal). At the end
of this step (S2), the user retrieves another interaction–free
product p′ 6= p, and the Fd now contains two alternative
strategies to handle News and Timetable interactions.

4.2 Algorithm Description: derive

We describe in this section how the approach can be fully–
supported through the implementation of an automated al-
gorithm. We define this derive algorithm (Fig. 7) as inde-
pendent of the underlying composition engine. It only rely
on the two following assumptions on the underlying com-
position engine: (i) a compose function used to generate
the concrete system implementation associated to a given
configuration and (ii) a check function able to detect inter-
actions between features involved in a configuration8.
The derive algorithm receives as input a configuration

7Let Ic = {News, Timetable}, and f1 the feature diagram de-
picted in Fig. 6(b). findCandidates(Ic, f1) = {External}.
8In Adore, the compose function is the call to the weaver,
and the check function is the execution of logical interaction
detection rules on the composed business process.

Inputs: cfg ∈ Config, fd ∈ Fd

Outputs: s ∈ System, fd ′ ∈ Fd

l1. Ω← {ω | ∃f ∈ cfg , isBoundTo(f, ω)}
l2. I ← check(Ω)
if I = ∅ then

l4. s← compose(Ω)
l5. return (s, fd) {interaction–free product}

end if

l7. propositions← findCandidates(I, fd)
l8. choices← choose(I, propositions)
if choices 6= ∅ then

l10. cfg
′ ← cfg ∪ choices, fd ′ ← fd

else
l12. (cfg

′, fd ′)← enrich(cfg , fd)
end if

l14. Ω
′ ← {ω′ | ∃f ′ ∈ cfg ′, isBoundTo(f ′, ω′)}

l15. I
′ ← check(Ω′)

if |I ′| ≥ |I| then
l17. return error {divergent decision}

end if
l19. return derive(cfg ′, fd ′) {continuation}

Figure 7: derive : (cfg , fd) 7→ (s, fd ′)

cfg , and the associated feature diagram fd. It starts by re-
trieving the composition directives associated to the features
(l1), and then runs the check function to identify interac-
tions (l2). If no interaction is detected, the valid product
associated to the execution of the compose function (l4) is
returned to the user (l5).

If the engine identifies interactions associated to cfg , the
findCandidates function is executed on fd to identify relevant
strategies able to resolve this interaction (l7). Then, the user
is asked to choose in the candidates set which strategies
he/she wants to use in the product (l8, l10). If no existing
strategy fits his/her intentions, the system asks the user to
enrich the existing Fd with a new strategy (l9).

Then, the engine retrieves the composition directives asso-
ciated to the enhanced configuration, including the chosen
or written strategy (l14). The check function is now re-
played (l15), and if a choice which leads to the identification
of more interactions than initially is detected, this decision
will be rejected by the engine (divergent decision, l17). The
algorithm is then recursively called to continue the synthesis
process. It produces as output the expected product p, and
an enriched feature diagram f ′d.

Based on the divergence test performed on line l16, we
ensure the termination of the algorithm (the interaction set
cardinality decreases at each call, and the empty set detec-
tion triggers the synthesis of the product implementation).
We plan to extend this restriction in future work to support
an historic–based approach. That is, choosing a feature that
actually increases the interaction set cardinality will be ac-
cepted by the system. But a choice that generates previously
encountered interactions will be rejected, ensuring termina-
tion.

Thus, the derive algorithm automatically supports the
enhancement of the Fd with accurate resolving strategies.
Qualitatively, the associated knowledge is capitalized in the

Fd and becomes available for next configurations. The fol-
lowing section illustrates quantitative benefits of our ap-
proach.

5. VALIDATION ON JSEDUITE
The complete Fd associated to jSeduite follows the same

principles that the ones described in this paper. It con-
tains 19 sources, and up to 9 policies can be applied on each
source. This Fd is intrinsically optional, and according to
the Familiar counting algorithm, the number of available
configurations is consequent.

|jseduite| = 1.4088458395990877× 1061

This gigantic set of potential configurations takes its root
in the intrinsic goal of jSeduite: the definition of infor-
mation providers according to users needs, which are highly
variable. It is obvious that the 4 × 2|jseduite| − 1 potential
resolution rules cannot be modeled in the Fd. In this sec-
tion, we illustrate how the previously described algorithm
tackles such a complexity, using real providers deployed in
existing academic institutions.
As a first example, we consider a product Phall used to

generate a public provider, broadcasting information in the
main entrance of the Polytech’Nice School of Engineering.
This product selects 7 sources of information, and applies
up to three policies on the same source (20 features were
selected in the Fd). Considering Phall as the first product
selected in the jSeduite Fd, there are no available reso-
lution strategies, and the designer is asked to provide such
strategies to resolve the automatically detected interactions.
We summarize in the following list the different interactions
automatically detected by the composition framework9:

I1: {Cache, Diet}: The Diet policy reduces the weight of
an information, deleting several parts of the content
to only keep essential data. It interacts with the Cache

mechanisms, as we need to know which data (initial
or after deletion) should be cached. For instance, the
main entrance screen broadcasts a lot of different in-
formation, potentially overwhelming the cache server
with irrelevant information. In this situation, our busi-
ness intention is to minimize the size of the cache.

I2: {Cache, Profile}: The Profile policy changes the con-
tent of the retrieved set of information, according to
a user–specific profile. Such profiled information set
should not be stored in the cache. In this situation, our
business intention is to avoid user–specic data caching.

I3: {Profile, Truncate}: The Truncate policy restricts the
cardinality of an information set up to a given thresh-
old. The Profile also deletes information from the in-
formation set. Thus, these two filtering policies must
be ordered. In this situation, our business intention is
to emphasize user experience (information accuracy),
even if it degrades the response time (matching a large
set of information with a profile is more time consum-
ing than a truncated one).

9For simplification purposes, we consider that two interact-
ing sources of information can be arbitrarily ordered (auto-
matically), reducing the interaction space. This heuristic is
used in the jSeduite running system.

I4: {Cache, Profile, Truncate}: A Cache–Profile interac-
tion was handled in I2, and a Profile–Truncate inter-
action was handled in I3. When these three features
interact together, the selection of the two previously
described strategies resolves the conflict.

To resolve the interactions identified in Phall, we intro-
duced three new features (to resolve I1, I2 & I3), and reused
two of them to resolve I4. The I2 interaction was also de-
tected twice and resolved with a single feature. Using the
enriched Fd obtained as output of the previous step, one
can now select a new product, and restart the process.

As a second example, consider now the product Pstaff ,
dedicated to a broadcasting screen located in the staff cafe-
teria of the same school of engineering. This product tar-
gets 8 sources, and the final selection contains 22 features.
The interaction detection steps identify the following inter-
actions: Cache–Diet (×2), Profile–Truncate (×2) and Cache–
Shuffle. The latter is resolved through the incrementation
of the asset associated to the GlobalTruth feature (it does
not make sense to shuffle the content of the information set
before storing it in the cache), and the others through the
selection of available strategies. That is, the conflicts are
handled through the reuse of 2 existing strategies, and the
introduction of a new one.

We continue this process to derive concrete products, that
are deployed and used daily in academic institutions. For 5
different product configurations, we have identified 18 inter-
actions (Tab. 2). However, we have only added 6 resolving
strategies in the jSeduite Fd, as we were able to reuse 10
times the resolving strategies that had been previously capi-
talized as features. This point emphasizes the benefits of the
approach: modeling resolving decision as features supports
designers during the generation process, allowing immediate
reuse of previously defined intentions. We are developing a
software factory environment intended to end–users. The
idea is to let the school headmasters configure, generate,
and finally deploy their school–specific providers in an au-
tomated way.

Product Resolving strategies
P |Features| |Interactions| |Added| |Reused|

Phall 20 5 3 2
Pstaff 22 5 1 4
Pstud 20 3 0 3
Pcader 25 3 1 2
Pirsam 14 2 1 1

Total: 18 6 12

Table 2: Incremental derivation of providers

6. RELATED WORK
Several approaches deal with the conflicts among features

and ways to solve those conflicts at the level of assets. For
example, in [9] the authors present an automated procedure
for verifying that a given feature configuration will lead to
a correct product model. The notion of correctness they
consider verifies that the resulting product model conforms
to the meta-model of the target modeling language. Our
proposal is complementary to these approaches: we start
from the assumption that interaction detection already ex-
ists, and we rely on such detection. In our case, we focus

on the capitalization of reusable resolution strategies, incre-
mentally enriching the initial Fd. We propose an iterative
algorithm that allows the identification of resolving strate-
gies based on users intentions, and the reification of such
strategies as new features to be used by subsequent users.
In the Aspect–oriented paradigm, the Mata approach [25]

supports the composition of models aspects using a graph–
based approach. This approach supports powerful conflict
detection mechanisms, used to support the “safe” composi-
tion of models [21]. The underlying formal model associated
to this detection is based on critical pair analysis [12]. Ini-
tially defined for term rewriting system and then general-
ized to graph rewriting systems, critical pairs formalize the
idea of a minimal example of a potentially conflicting situ-
ation. This notion supports the development of rule–based
system, identifying conflicting situations such as “the rule r

will delete an element matched by the rule r′” or “the rule r

generates a structure which is prohibited according to the ex-
isting preconditions”. These mechanisms were demonstrated
as relevant to identify composition conflicts in the software
product line domain [15]. Our proposition is complementary
to this one, as we define the algorithm as independent of the
underlying conflict detection mechanisms. Thus, powerful
approaches such as the previously described can be easily
reused in our approach.
Algebraic models can be used to model features. This

method is used by state–of–the–art approaches, such as the
Ahead method [5] that support step–wise refinement of
products. Clark et al. follow this path and propose an al-
gebraic model used to model features delta [7]. According
to their approach, a feature asset is implemented as a delta
(i.e., an increment) to be added to the system core to derive
the expected product. When two conflicting delta δ1, δ2 are
added, a resolution delta is inserted after the conflicting ones
to fix this interaction. This approach assumes that a con-
flict resolution delta already exists for all conflicting pairs.
Thus, all the conflicting pairs have to be identified a–priori.
Our approach is complementary, as we propose to identify
the unforeseen conflicting pairs during derivation. It is then
possible to introduce this new knowledge in their reasoning
capabilities, and validate the enhanced product line.
Feature–aware verification [4] advocates the detection of

feature interactions at the product line level. Based on
model–checking techniques, it is possible to automatically
check a given product line to identify interactions a–priori.
This approach relies on the existence of a semantic spec-
ification (e.g., using the Alloy modelling language [14]) of
each feature, used as input by the reasoning engine [3].
Our approach is complementary, as we tackle the interac-
tion resolution without requiring the existence of a seman-
tic specification. Thus, the proposed algorithm strengthen
feature–aware verification mechanisms, providing an auto-
mated method to handle under–specified interactions.
White et al. propose a strategy to derive a product con-

figuration that meets a set of requirements over a span of
configuration steps [24]. They argue that, when a product
is modified from one current configuration to a target one,
even if the target configuration is correct, several Fd con-
straints might be violated in the intermediate steps of the
modification. To face this problem they transform the Fd

into a constraint satisfaction problem and propose an asso-
ciated solver. The multi–step constraint is then tackled as a
set of transformations. In our case, we do not face directly

the problem of deriving a product in multiple stages. We
assume a single-staged derivation process. However, since
each product generation might arise interactions among the
set of selected features, we propose to incrementally learn
from the choices made at each generation, and reify such
knowledge as new features in the Fd. Abbas et al. pro-
pose the notion of autonomic software product lines [1].
The main idea is to dynamically change the configuration
of a given product using as input the context information
(i.e., information about the application and its environment
available only at runtime). They propose a learning pro-
cess in which, based on the history of changes, a solver can
decide which configuration is more appropriate for the cur-
rent context situation. Our approach differs in two ways.
First of all, we allow the definition of new features. In their
approach, the authors do not discover new features, their
solver selects the best configuration from the same set of
features defined before the execution of the product for the
whole SPL. Second, they work at runtime and use context
information, whereas we base our approach on the intentions
of every different user, and the incremental process is per-
formed at design with multiple users and multiple products
being generated.

Finally, in [22] Stoiber et al. propose a tool for feature
unweaving. It consists in identifying the variability of an
application from a graphical software requirements model.
They infer a semantically equivalent model that groups the
elements belonging to the same feature into aspects. Con-
trary to their approach, to discover new features we follow
an incremental process where the initial FD is enriched with
resolving strategies for interactions between features. The
features are reified from previously chosen strategies and not
from assets of an application already developed.

Liu et al propose to use derivative features to tackle the
feature optionality problem [17]. This approoach relies on an
algebraic representation of the features (based on AHEAD [5]).
Our approach is complementary to this one, as instead of
writing a resolution strategy, one can implement a derivative
feature to resolve the interaction. However, the originiality
of our approach is to consider that multiple resolution rules
(in this case, derivatives) can simultaneously exist, with re-
gard to the intention of the user.

Broy proposes a service model to support multifunctional
systems [18]. He uses modes to model service dependency,
as well as feature interactions in this domain. Our work is
also complementary, as we propose a way to enrich a given
model to support multiple resolution rules associated to the
same identified interaction.

7. CONCLUSION & FUTURE WORKS
In this paper, we have presented an approach that tack-

les the incremental handling of feature interactions This ap-
proach supports the enrichment of a SPL through the identi-
fication and reuse of resolving strategies among features. We
start with a product family represented through a Fd. For
every feature in the Fd, we define an associated model defin-
ing a particular business process. We use the Adore frame-
work and in particular, the composition approach based on
aspect weaving for building business processes from a given
product configuration. We focus on the incremental discov-
ery of strategies for interactions among features. Concretely,
we have defined an algorithm that helps developers during
the product configuration process. It is executed every time

a new product is derived and looks for interactions among
the features selected in the configuration. For each interac-
tion found, it asks the developer to decide wether to select
an existing resolving strategy or to create a new one. In the
latter case, the strategies are integrated as new features in
the initial Fd to be reused again for successive products.
We have applied our strategy on the jSeduite product

family. The results show that using our approach increases
the reuse of previously defined resolving strategies, and con-
sequently, helps to deal with the combinatorial explosion of
configurations in the product family. For 5 different prod-
ucts we have found 18 different interactions among the fea-
tures of each configuration. From these interactions, 6 new
resolving strategies were defined and added to the initial Fd.
More interestingly, we were able to reuse such strategies as
part of the configurations of new different products. For in-
stance, as illustrated in the derivation of the product Pstud

including 3 interactions, we were able to reuse, with no extra
cost, the strategies that had been already capitalized during
the derivation of products Phall and Pstaff . These results
show that our approach incrementally improves the accu-
racy of the Fd over time, and highlights the importance of
evolving the Fd with the knowledge and intentions of pre-
vious users of the SPL. Using incremental code–generation
techniques to enhance the generation process is an upcoming
perspective.
An immediate perspective of this work is to assess it on a

larger case study. We are now focusing efforts on the Sen-
sApp platform10, a highly configurable platform that deals
with sensor network. The platform can handle a large vari-
ety of sensors description standards and protocols, generat-
ing a humongous numbers of potential products.
For future work, we would like to explore two main fields.

First of all, our approach can be extended to face the chal-
lenges of Spl refactoring. The refinement proposed here can
be considered as an alternative to Spl evolution. Thus, it
can be further improved to use information that comes not
only from previously chosen strategies but from already built
products as well. Second, our approach could be extended to
support also architectural constraints. Up until now, since
we are based on the Adore weaving for the services, we do
not tackle directly the possible interactions that may exist
in the structure of the products.

Acknowledgments. This work is partially funded by the
French Ministry of Higher Education and Research, Nord–
Pas de Calais Regional Council and FEDER through the
Contrat de Projets Etat Region Campus Intelligence Am-
biante (CPER–CIA) 2007-2013. This work is also supported
by the SINTEF strategic projects SiSaS and MODERATES.

8. REFERENCES
[1] N. Abbas, J. Andersson, and W. Löwe. Autonomic

Software Product Lines (ASPL). In Proceedings of the
Fourth European Conference on Software Architecture:
Companion Volume, ECSA ’10, pages 324–331, New
York, NY, USA, 2010. ACM.

[2] M. Acher, P. Collet, P. Lahire, and R. France. A
Domain-Specific Language for Managing Feature
Models. In Symposium on Applied Computing (SAC),
Taiwan, Mar. 2011. Prog. Lang. Track, ACM.

10http://sensapp.modelbased.net

[3] S. Apel, W. Scholz, C. Lengauer, and C. Kastner.
Detecting Dependences and Interactions in
Feature-Oriented Design. In Procs of the Int.
Symposium on Soft. Reliability Eng., ISSRE ’10, pages
161–170, Washington, DC, USA, 2010. IEEE
Computer Society.

[4] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and
D. Beyer. Detection of Feature Interactions using
Feature-Aware Verification. In Proceedings of the 26th
International Conference on Automated Software
Engineering (ASE 2011, Lawrence, KS, November
6-10), pages 373–376. IEEE, 2011.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. In Proceedings of the 25th
International Conference on Software Engineering,
ICSE ’03, pages 187–197, Washington, DC, USA,
2003. IEEE Computer Society.

[6] M. Calder, M. Kolberg, E. H. Magill, and
S. Reiff-Marganiec. Feature Interaction: a Critical
Review and Considered Forecast. Comput. Netw.,
41:115–141, January 2003.

[7] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract
Delta Modeling. In E. Visser and J. Järvi, editors,
GPCE, pages 13–22. ACM, 2010.

[8] M. Clavreul, S. Mosser, M. Blay-Fornarino, and
R. France. Service–oriented Architecture Modeling:
Bridging the Gap Between Structure and Behavior. In
MODELS’11, pages 1–16, Wellington, New Zealand,
2011. ACM/IEEE.

[9] K. Czarnecki and K. Pietroszek. Verifying
Feature-based Model Templates Against
Well-formedness OCL Constraints. In Conf. on
Generative Prog. and Component Engineering
(GPCE’06), pages 211–220. ACM, 2006.

[10] F. Fleurey, B. Baudry, R. B. France, and S. Ghosh. A
Generic Approach for Automatic Model Composition.
In H. Giese, editor, MoDELS Workshops, volume 5002
of Lecture Notes in Computer Science, pages 7–15.
Springer, 2007.

[11] N. Gorse, L. Logrippo, and J. Sincennes. Formal
Detection of Feature Interactions with Logic
Programming and LOTOS. Software and System
Modeling, 5(2):121–134, 2006.

[12] R. Heckel, J. M. Küster, and G. Taentzer. Confluence
of Typed Attributed Graph Transformation Systems.
In ICGT ’02: Proceedings of the First International
Conference on Graph Transformation, pages 161–176,
London, UK, 2002. Springer-Verlag.

[13] A. Hubaux, P. Heymans, P.-Y. Schobbens, and
D. Deridder. Towards Multi-view Feature-Based
Configuration. In R. Wieringa and A. Persson, editors,
REFSQ, volume 6182 of Lecture Notes in Computer
Science, pages 106–112. Springer, 2010.

[14] D. Jackson. Alloy: a Lightweight Object Modelling
Notation. ACM Trans. Softw. Eng. Methodol.,
11:256–290, April 2002.

[15] P. K. Jayaraman, J. Whittle, A. M. Elkhodary, and
H. Gomaa. Model Composition in Product Lines and
Feature Interaction Detection Using Critical Pair
Analysis. In G. Engels, B. Opdyke, D. C. Schmidt,
and F. Weil, editors, MoDELS, volume 4735 of Lecture
Notes in Computer Science, pages 151–165. Springer,

2007.

[16] C. Kästner, S. Apel, S. S. ur Rahman,
M. Rosenmüller, D. Batory, and G. Saake. On the
Impact of the Optional Feature Problem: Analysis
and Case Studies. In Proceedings of the 13th
International Software Product Line Conference,
SPLC ’09, pages 181–190, Pittsburgh, PA, USA, 2009.
Carnegie Mellon University.

[17] J. Liu, D. S. Batory, and S. Nedunuri. Modeling
interactions in feature oriented software designs. In
S. Reiff-Marganiec and M. Ryan, editors, FIW, pages
178–197. IOS Press, 2005.

[18] Manfred and Broy. Multifunctional software systems:
Structured modeling and specification of functional
requirements. Science of Computer Programming,
75(12):1193 – 1214, 2010.

[19] S. Mosser. Behavioral Compositions in
Service-Oriented Architecture. PhD thesis, University
of Nice, Sophia–Antipolis, France, Oct. 2010.

[20] S. Mosser, F. Chauvel, M. Blay-Fornarino, and
M. Riveill. Web Services Composition: Mashups
Driven Orchestration Definition. In
M. Mohammadian, editor, Int. Conf. on Intelligent
Agents, Web Technologies and Internet Commerce,
pages 284–289. IEEE Computer Society, 2008.

[21] G. Mussbacher, J. Whittle, and D. Amyot.
Semantic-Based Interaction Detection in
Aspect-Oriented Scenarios. In RE, pages 203–212.
IEEE Computer Society, 2009.

[22] R. Stoiber, S. Fricker, M. Jehle, and M. Glinz. Feature
Unweaving: Refactoring Software Requirements
Specifications into Software Product Lines.
Requirements Engineering, IEEE International
Conference on, 0:403–404, 2010.

[23] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund.
Abstract Features in Feature Modeling. In Proceedings
of the 15th International Software Product Line
Conference (SPLC), pages 191–200, Los Alamitos,
CA, Aug. 2011. IEEE Computer Society.

[24] J. White, B. Dougherty, D. C. Schmidt, and
D. Benavides. Automated Reasoning for Multi-step
Feature Model Configuration Problems. In Proceedings
of the 13th International Software Product Line
Conference, SPLC ’09, pages 11–20, 2009.

[25] J. Whittle, P. K. Jayaraman, A. M. Elkhodary,
A. Moreira, and J. Araújo. MATA: A Unified
Approach for Composing UML Aspect Models Based
on Graph Transformation. T. Aspect-Oriented
Software Development VI, 6:191–237, 2009.

