
Delta Modeling in Practice∗

A Fredhopper Case Study

Michiel Helvensteijn
CWI, Amsterdam, The Netherlands
Leiden University, The Netherlands
michiel.helvensteijn@cwi.nl

Radu Muschevici
Katholieke Universiteit Leuven, Leuven, Belgium

radu.muschevici@cs.kuleuven.be

Peter Y.H. Wong
Fredhopper B.V., Amsterdam, The Netherlands

peter.wong@fredhopper.com

ABSTRACT
Delta modeling is a method for modeling software prod-
uct lines (SPL), which supports the automated derivation
of products. ABS is a recent modeling language and ac-
companying toolset that implements delta modeling as its
core paradigm for developing variable systems. Due to its
novelty, delta modeling has so far seen little practical appli-
cation. However, only practical evaluation can indicate to
what extent the delta modeling methodology is suited for
the efficient and accurate modeling and implementation of
SPLs. This paper reports on the development of an indus-
trial scale product line in ABS following a workflow that
guides the application of delta modeling in practice. By fol-
lowing the delta modeling workflow (DMW), we show how
conflicting feature functionality can be systematically rec-
onciled, and how DMW guides the implementation towards
a globally unambiguous and complete product line. We fur-
ther explain how this experience has been used to refine the
workflow and its support by the ABS language.

1. INTRODUCTION
A software product line (SPL) (also known as a software
family) is a set of software systems, called software prod-
ucts, with well-defined commonality and variability [7, 15].
Variability between these systems is expressed by feature
models [13, 20], which distinguish software products by the
features they provide.

A recently proposed method for organizing a code-base in
a way that supports automated product derivation is delta
modeling [16], wherein the code-base is split up into deltas
that can modify a core product. Deltas are annotated with
an application condition, stating for which sets of features a

∗This research is funded by the EU project FP7-231620
HATS: Highly Adaptable and Trustworthy Software using
Formal Models (http://www.hats-project.eu)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VaMoS ’12 January 25-27, 2012 Leipzig, Germany
Copyright 2012 ACM 978-1-4503-1058-1 ...$10.00.

given delta should be applied.
Clarke et al. [4] put deltas in a partial order in a pa-

per that abstracts away from software and generalizes the
concepts of delta model and product line in an abstract al-
gebraic setting, known as Abstract Delta Modeling (ADM).
The partial order offers more flexibility in how to compose
deltas and how to resolve conflicts between them. Conflict
resolving deltas were introduced, which can be applied af-
ter a conflicting pair of deltas to ‘equalize’ the two possible
orderings between them. That is, it makes them commute
again. The absence of unresolved conflicts leads to a single
unambiguous product for each feature configuration. ADM
also introduced efficient conditions for checking the unam-
biguity of a product line as a whole.

Current work on ADM concentrates on its practical ap-
plicability within SPL engineering. Helvensteijn [11] intro-
duces a development workflow, which we refer to as the Delta
Modeling Workflow (DMW). DMW aims to give step-by-
step instructions on how to systematically design a product
line from scratch using delta modeling, and ensure that it is
globally unambiguous and complete by construction.

DMW is described in the same abstract setting as ADM [4].
We recognize that an abstract formalism does not tell you
how these techniques would play out in practice. So in this
paper we evaluate the DMW by modeling the industrial case
study of the Fredhopper Access Server (FAS) product line.
FAS, developed by Fredhopper B.V. (www.fredhopper.com),
is a distributed service-oriented software system for Internet
search and merchandising. In particular we consider FAS’s
replication system, which ensures data consistency across the
FAS deployment. The FAS product line is modeled using
the Abstract Behavioral Specification (ABS) language [12,
5]. ABS is being developed as part of the HATS project [10].

This paper gives an account of modeling an industrial SPL
using the ABS language by following the Delta Modeling
Workflow. We show how DMW assists in resolving conflicts
that arise when features modify the code base in incompat-
ible ways, and how it guides the implementation towards a
globally unambiguous and complete product line. We fur-
ther explain how this experience has been used to refine the
workflow and the ABS language to better support system-
atic SPL development.

The paper is organized as follows. In Section 2, we intro-
duce the development workflow. Section 3 describes the rel-
evant parts of the ABS language and the changes we made
to it in order to implement the workflow. The FAS case

study is described in Section 4 and its implementation in
Section 5. In Section 6 we list the implications of applying
this workflow in practice. Section 7 discusses related work.
Finally, Section 8 gives a short summary and concludes.

2. DELTA MODELING WORKFLOW
Abstract delta modeling [4] (ADM) describes the possible
ways a product line code base can be structured by delta
modeling so that it supports automated product derivation.
It puts deltas, which can modify (software) products, into
a partial order which restricts their application. If delta
x comes earlier in this order than y, then x has to be ap-
plied before y. If there is no order between x and y, and
their changes are incompatible, a third delta can be used
to mediate and resolve the conflict. The deltas carry appli-
cation conditions which specify for which feature configura-
tions they should be applied.

The Delta Modeling Workflow (DMW) [11] guides devel-
opers through the process of building a software product line
step by step.

We assume that the process starts with a product line
specification (Ψ,�). The structural feature model Ψ is a
5-tuple (B,—•,—◦,⊕,I), where B is a set of mandatory
base-features, —• is the mandatory subfeature relation, —◦
is the optional subfeature relation, ⊕ indicates those fea-
tures that may not appear together in one product and I
indicates which features require which others. These rela-
tions should all be disjoint. Φ is used to refer to the set of
feature configurations that are allowed by the feature model.
Φ can be trivially deduced from Ψ (which contains more in-
formation). The feature satisfaction relation � is a relation
between a product p and a set of features F . p�F indicates
that p satisfies the specifications of the features in F as well
as any desired interaction between the features in F .

Following the workflow should yield a product line imple-
mentation (c,D,≺, γ), where c is the core product that the
deltas will be applied to. It is usually the empty product,
although it is permissable to implement mandatory features
in c. D is the set of deltas, ≺ is the partial order between
these deltas and γ is a function mapping each delta to the set
of feature configurations it is applicable for with γ(x) ∈ Φ
for all x ∈ D. We start with D =≺= γ = ∅. We fill in D,
≺ and γ while following the workflow.

The product line resulting from this workflow is guaran-
teed to be globally unambiguous, meaning that each feature
configuration generates a unique product. If certain local
guarantees are met, it is also guaranteed to be complete,
meaning that each product satisfies the specifications of the
features it is supposed to implement.

Figure 1 shows the workflow as a flow-chart. In each itera-
tion a single feature is implemented, while also implementing
necessary feature interactions and resolving conflicts that
this feature might have introduced. We now explain these
steps in more detail.

Feature left to implement?
In this stage, we choose the next feature to implement. The
choice is made by following the partial order introduced by
the transitive closure of —•∪—◦. Given a feature diagram
(such as the one in Figure 3), we work on it in a topolog-
ical order from top to bottom, implementing first the base
features and then their subfeatures. This is because deltas
implementing subfeatures often need to make assumptions

feature
left to

implement?
X

implement
feature with
new delta

interaction
to imple-

ment?

implement
interaction
with new

delta

conflict to
resolve?

resolve
conflict with

new delta

no

yes

no

no

yes

yes

Figure 1: Overview of the development workflow

about – and changes to – the implementation of the base
features.

This is the main stage where different developers can work
on the product line concurrently and in isolation. Many fea-
tures can be worked on simultaneously, so long as they are
independent. While working on a feature, it is not necessary
to consider possible conflicts, since there will be an oppor-
tunity to resolve them later in the workflow. (It will help,
of course, if code is written in a modular way, which lends
itself better to conflict resolution in the future.)

If there are no more features to implement, and for each
previously implemented feature, the steps were properly fol-
lowed, the product line is now finished.

Implement feature with new delta
Having chosen a feature, we need to develop a new delta
in D to implement it. This delta has to be applied exactly
when its feature is selected, which should be reflected in γ.
Its place in the partial order ≺ should mirror the feature’s
place in the feature diagram. So, it should be greater than
the delta that implements its superfeature and incompara-
ble to all other deltas currently present. In fact, the deltas
that implement features, linked by the transitive reduction
of ≺, will form a graph that is isomorphic with the feature
diagram. D has to be implemented such that it introduces
the new feature, but does not remove the functionality that
was introduced by superfeatures.

Interaction to implement?
At this point, we need to know if, by introducing a new
feature, there are now sets of features that require extra work
to make them interact properly. We will implement any such
desired interaction in the next step. Different interactions
may be implemented concurrently and in isolation.

Implement interaction with new delta
Given a set of features whose interaction we need to imple-
ment, we develop a new delta in D to do it. It has to be
applied exactly when the interacting features are selected,
which should be reflected in γ. It should be greater in the
partial order ≺ than the deltas that implement the interact-
ing features, as well as the deltas that implement interac-
tions of subsets of the interacting features.

Conflict to resolve?
After implementing our feature and any desired interaction
related to it, we now look for any conflicts we might have
introduced in this iteration. We have to consider conflicts
involving the delta that implemented the feature, all deltas
we used for implementing desired interaction and all deltas
we used for resolving earlier conflicts in this iteration. For-
mally, a conflict occurs between two deltas. However, when
a there is a set of deltas with many (related) conflicts, we
will also want to introduce conflict-resolving deltas for larger
sets that can be applied together according to γ, so all com-
binations are covered. Conflict-resolving deltas for different
conflicts may be implemented concurrently and in isolation.

Resolve conflict with new delta
Given a set of deltas whose conflict we need to resolve, we
develop a new delta in D to do it. It has to be applied
exactly when all conflicting deltas are applied, which should
be reflected in γ. It should be greater in the partial order ≺
than all conflicting deltas and it should resolve all conflicts
between them.

3. ABS LANGUAGE
The Abstract Behavioural Specification Language (ABS) [12,
5] is a concurrent, multi-paradigm modeling language. It
combines functional, object-oriented, and concurrent pro-
gramming. ABS is particularly suited for developing sys-
tems with a high degree of variability and supports software
product line development through delta-oriented program-
ming [17]. Syntax-wise, ABS resembles standard program-
ming languages like Java. In this section we give an overview
of ABS and focus on the language constructs needed for
modeling variable systems. For a comprehensive description
we refer to the ABS reference manual [1].

3.1 Functional Programming
ABS supports first-order functional programming with alge-
braic data types. Functional code is guaranteed to be free of
side effects. Having such a functional core makes it possible
to describe large parts of a software system in a side-effect-
free way to simplify reasoning.

3.2 Concurrent Programming
The concurrency model of ABS is based on the concept of
Concurrent Object Groups (COGs), which generalizes the

model of single concurrent objects [19]. COGs are au-
tonomous runtime components that are executed concur-
rently, share no state and communicate via asynchronous
method calls. A typical ABS system consists of multiple,
concurrently running COGs at runtime.

3.3 Sequential Object-Oriented Programming
ABS supports class-based, object-oriented programming with
standard imperative constructs. ABS has a nominal type
system with interface-based subtyping. ABS does not sup-
port class inheritance or overloading.

Interfaces.
Interfaces define types for objects. They are nominal, i.e.,
have a name, and define a set of method signatures, i.e., the
names and types of callable methods. Syntactically, ABS
interfaces look like Java interfaces.

Classes.
Classes define the implementation of objects. Classes do
not define a type, in contrast to many other languages, such
as Java. Classes can implement arbitrarily many interfaces,
which then define the type of a new instance of that class.
A class has to implement all methods of all its interfaces.
In addition, a class can define private methods which do
not appear in any interface. Such methods can then only
be invoked on this. Instead of constructors, classes in ABS
have class parameters and an optional initialization block.

Statements and Expressions.
ABS has standard statements and expressions known from
languages such as Java with identical syntax. Beside
side-effect-free expressions on built-in data types, expres-
sions can be method invocations (x.m(a)), object creation
(new C(a)), and field and variable reads and assignments
(x = this.y). There is also a conditional statement, a while
loop, and a skip statement, which does nothing.

3.4 Delta Modeling
ABS provides language constructs and tools for modeling
variable systems following SPL engineering practices. A fea-
ture model of the SPL is specified using the Micro Textual
Variability Language µTVL [5]. A product selection identi-
fies individual products that are of particular interest to the
project. Deltas define sets of changes to existing ABS code;
they are applied incrementally to an ABS program to adapt
its behaviour to conform to the specification of a particu-
lar product. Finally, the configuration associates features
to deltas, enabling the generation of ABS source code for
individual products simply by naming a product.

3.4.1 Feature Model
Different software products are distinguished from each other
by which features they provide. Which feature combinations
are supported in an SPL is then expressed by feature mod-
els [13]. Valid feature combinations uniquely identify the
products of an SPL. In addition to features, ABS supports
the specification of feature attributes. Whereas a feature
can assume a boolean value (reflecting whether it is selected
or not), attributes can also have integer or string values. By
assigning a value to each feature and feature attribute such
that the feature model is satisfied, one denotes a product.

ABS feature models are encoded in µTVL, a textual fea-

ture modeling language based on TVL [6]. Feature diagrams
can be translated to µTVL in a straightforward manner.
The following example shows a feature model of a system
with features A, B and C, where two of its products are spec-
ified as P1 and P2.

root system {
group [1..*] {

A,
B,
C {Int size in [10..40]}

}
}
product P1 (A, B);
product P2 (A, C{size=32});

The cardinality indicator [1..*] denotes that at least one
feature from the group has to be present in a valid prod-
uct. The feature C has an attribute size, which, when C is
selected, needs to be assigned a value from the given range.

3.4.2 Deltas
ABS feature models describe the variants of a system in
abstract terms using features. The system itself is imple-
mented using delta-oriented programming [17]. Following
this methodology, the code is divided into a core and a set
of deltas. The core usually consists of the classes that are
common to all products. Deltas describe how to change
the core to obtain new products, by adding new classes and
modifying (or removing) existing ones.

ABS deltas can add new methods and fields to classes,
as well as remove existing methods and fields. In addition,
existing methods can be modified, as shown in the following
example.

delta D3 (Int size) {
modifies class Buffer {

modifies String toString() {
String orig = original();
return orig + " of size " + size;

}
}

}

The delta D3 above provides a new implementation for class
Buffer’s toString() method by defining a so-called method
modifier. This is introduced by the modifies keyword and
followed by the method signature and a block of code with
the method’s new implementation.

Original calls.
Notable within the above implementation block is the
original() method call. Calling original() makes is possi-
ble to access a method’s previous behaviour. This is simi-
lar to calling super to access the superclass behaviour of a
method in a language with class inheritance such as Java.
To accommodate the DMW, we enhanced ABS to also sup-
port targeted original() calls, making it possible to invoke
a particular implementation of a method. We require this
to avoid ambiguity, as the order of delta application is not
always total, as well as to invoke multiple previous imple-
mentations in one method. A targeted original call is pre-
fixed with the name of a delta, or with the keyword core.
Omitting the target prefix means that the implementation
from the most recently applied delta will be used.

Delta parameters.
Deltas take an optional list of parameters. These are used
to pass on configuration information defined in the prod-
uct selection to the implementation level. Products assign a
boolean value to each feature (true if selected, false oth-
erwise), and a value to each feature attribute (of features
that are selected). In the above example, delta D3 takes one
parameter Int size. Any occurrence of the integer variable
size inside the delta is replaced with the concrete value
of the feature attribute C.size upon delta application. The
boolean values of features can be accessed in similar fashion,
as shown in the example below. Delta parameters must be
immutable objects, such as booleans, integers, or strings.

delta D4 (Bool a, Bool b, Bool c) {
modifies class C {

adds Bool featureA = a;
adds Bool featureB = b;
adds Bool featureC = c;

}
}

3.4.3 Configuration
A configuration links feature models to deltas and guides the
code generation by ordering the application of the deltas.
Features and deltas are associated through application con-
ditions. If a delta’s application condition is true, then the
delta is applied, i.e. the core is modified according to the
changes described by the delta. Which deltas to apply is de-
termined by feature configuration for the desired product.

A configuration example follows that links the feature
model from Section 3.4.1 with the deltas from Section 3.4.2.

productline Example {
features A, B, C;
delta D1 when A;
delta D2 when B;
delta D3(C.size) when C;
delta D4(A,B,C) when A and B after D1, D2;

}

Each delta line contains the name of the delta to be applied
and a when clause with an application condition. An op-
tional after clause establishes a partial order of application
for the deltas. Ordering the application of deltas is used
to mediate conflicts. Two deltas can be in conflict if their
specified modifications do not commute. This is the case, for
instance, when they both modify the same method or field
in a different way. Delta D4 above may be used to resolve a
conflict between D1 and D2. For this to succeed, it has to be
applied after D1 and D2 have been applied.

4. FREDHOPPER ACCESS SERVER
The Fredhopper Access Server (FAS) is a component-based
and service-oriented distributed software system. It provides
search and merchandising services to e-Commerce compa-
nies such as large catalogue traders and travel agencies.
Each FAS installation is deployed to a customer according
to the FAS deployment architecture. Figure 2 shows an ex-
ample setup. A detailed presentation of FAS’s individual
components and its deployment model can be found in the
HATS project report [8].

A FAS deployment consists of a set of live and staging en-
vironments. A live environment processes queries from client

Live

Environment

Live

Environment

Data and Config

Updates

Configurations

changes

Staging

Environment

Data

Manager

Internet

...

Client-side

Web App

Client-side

Web App

Client-side

Web App

Data updates Live

Environment... Load

balancer

Figure 2: An example of a FAS deployment

web applications via web services. FAS aims at providing
a constant query capacity to client-side web applications.
A staging environment is responsible for receiving data up-
dates in XML format, indexing the XML, and distributing
the resulting indices across all live environments according
to the replication protocol.

Implementations of the replication protocol are provided
by the replication system. A replication system consists of a
set of computation nodes, one of which is the synchroniza-
tion server residing in a staging environment, while all other
nodes are synchronization clients residing in the live environ-
ments. The synchronization server determines the schedule
of replication, as well as the content of each replication item.
The synchronization client is responsible for receiving data
and configuration updates. A replication item is a set of files
representing a single unit of replicable data.

The synchronization server communicates to clients via
connection threads that serve as the interface to the server-
side of the replication protocol. On the other hand, syn-
chronization clients schedule client jobs to handle communi-
cations to the client-side of the replication protocol.

As part of the FAS product line, there are several vari-
ants of the replication system. We refer to these variants
as the replication system product line and express them as
features. Figure 3 shows the feature diagram of the replica-
tion system. The feature diagram has three main features:
Job Processing, Replication Item and Load.

The feature Job Processing requires an alternative choice
between the two subfeatures Seq and Concur, capturing the
choice between sequential and concurrent client job pro-
cessing, respectively. The feature ReplicationItem allows
choosing between three replication item types represented
by the features Dir, File and Journal. The Dir feature
is mandatory, that is, all versions of the replication system
support replicating complete file directories. The File fea-
ture is optional and is selected to support replicating a file
set, whose files’ name matches a particular pattern. the
Journal feature is optional and is selected to support repli-
cating database journal. In particular, the Journal feature
requires the feature Seq which means that variants of the
replication system that support database journal replication
may only schedule client jobs sequentially.

The feature Load is an optional feature that configures the
load of the replication system. It offers subfeatures Client,
CheckPoint and Schedule. The feature Client changes the
default number of synchronisation clients, and defines the
constraint that if client job processing is sequential, the num-

ber of clients must be less than ten. The feature CheckPoint
changes the default number of updates allowed per execution
and defines the constraint that if the client job processing
is sequential, the number of updates must be less than five.
The feature Schedule configures the number of locations in
the file system at which changes to different replication item
types are monitored. It is an optional feature that offers sub-
features DSched, FSched and JSched to record the number
of locations for directory, file set, and journal replication re-
spectively. Note that FSched and JSched cannot be selected
unless features File and Journal are selected respectively.

5. MODELING THE CASE STUDY
In this section we present how to model the members of
the replication system product line using the DMW. To re-
alize the implementations of the product line, we turn to
the ABS language, which has been described in Section 3.
We use a monospaced font to denote delta-names and ABS
constructs, and a cursive font to denote feature-names and
mathematical constructs from the DMW.

Based on the DMW, we let (Ψ,�) be the specification of
the replication system product line, where Ψ is the struc-
tural feature model of the replication system and Φ is its
representative set of feature configurations. Figure 3 shows
the diagrammatic representation of Ψ. The following shows
its corresponding µTVL representation:

root RS {
group allof {
JobProcessing { ... },
ReplicationItem { ... },
opt Load {

group [1..3] {
Client { Int c in [1 .. 20]; Seq -> c < 10; },
CheckPoint { ... },
Schedule {
group [1..3] {
DSched { Int s in [1 .. 5]; },
FSched { Int f in [1 .. 5]; require: File; },
JSched { Int l in [1 .. 5]; require: Journal;}

}}}}}}

� is the feature satisfaction relation. It specifies when a
product satisfies the specifications of a set of features. In
FAS, the feature specifications are mostly in the form of de-
scriptions (as described in Section 4) and use-cases. Note-
worthy in this product line is that the features Client and
JSched require some extra implementation effort to make
them interact properly. Or, formally:

∃p : p�{Client} ∧ p�{JSched} ∧ p 6 �{Client, JSched}

Also, the features Load and Schedule are only subcatego-
rizations with no semantics at all. Or, formally:

∀p : p�F =⇒ p�F ∪ {Load,Schedule}

For reasons of space and to focus on the application of
the DMW, we consider only the modeling of the features
RS, Load, Client, Schedule, DSched, FSched and JSched as
the representative parts of the replication system variability.
These features are shaded in the feature diagram of Figure 3.
As a result, the µTVL model above is also only partially
shown and we use ellipses to omit parts of the model in or-
der to focus on those that are important for this paper. So
we only consider a subset of this product line specification,

CheckPoint

Int cp in [1..10]

Seq -> cp < 5

Replication

System

Replication

Item

Dir Journal File

<<require>>

Job

Processing

Concur Seq

Load

Schedule

DSched JSchedFSched

Int s in [1..5] Int f in [1..5] Int l in [1..5]

<<require>>

<<require>>

Client

Int c in [1..20]

Seq -> c < 10

Figure 3: Feature diagram of the replication system

denoted as (Ψ′,�′), where Ψ′ is defined as follows,

Ψ′ = ({RS}, {(RS,Load)}, {(Load,Client),
(Load,Schedule), (Schedule,DSched),
(Schedule,FSched), (Schedule, JSched)},
∅,∅).

Φ′ is defined accordingly and �′ is � restricted to the smaller
set of features. As an example, a valid feature configuration
is {RS,Load,Schedule,DSched} ∈ Φ′.

To implement this product line specification we follow
DMW: we consider the specification (Ψ′,�′) and start with
the empty product line implementation (c,∅,∅,∅). To
align with ABS implementation guidelines the core prod-
uct c is defined as class Main {} { new Main();}. The
main block contains one instruction to instantiate a name-
less, typeless object of Main. Initially class Main provides no
method and field definitions.

We implement the features in some linear extension of the
transitive closure of —•∪—◦. That is, we consider first the
base features, and then their subfeatures. As such, we first
work on the base feature RS. We implement that feature by
the following delta RD:

delta RD {
adds data SchedType = Dir | File | Journal;
adds type CId = Int; ...
adds class System(...) { ... }
modifies class Main {

adds Map<CP,Map<FId,Content>> datas = map[...];
adds Map<SchedType,List<Schedule>> ss = map[...];
adds Set<CId> cids = set[...];
adds Unit run() {
Map<CP,Map<FId,Content>> is = this.getDatas();
List<Schedule> ss = this.getSchedules();
Set<CId> cs = this.getCids();
new System(is,ss,cs);

}
adds List<Schedule> getSchedules() {

return lookup(ss,Dir);
}
adds Map<CP,Map<FId,Content>> getDatas() {

return datas;
}
adds Set<CId> getCids() { return cids; }

}
}

This delta adds preliminary type definitions, the class System,
and modifies the definition of class Main by adding fields and
methods. The delta assumes the built-in function lookup

over Map data type such that lookup(ms,k) returns the value
from the map ms with the key k. For brevity, we omit the
full definitions of fields datas, ss and cids of Main, various
type definitions and the definition of class System; their com-
plete definition can be found in the HATS project report [8].
Specifically, the class Main provides a run() method, which
is executed immediately after object creation. This method
performs the following tasks: It first gathers the number of
updates allowed per execution; this is recorded by the Map

variable is. It then defines the schedules, or the number
of locations in the file system at which changes to different
replication item types are monitored; this is recorded by the
List variable ss. It then defines the set of synchronisation
clients to replicate data to; this is recorded by the Set vari-
able cs. Finally, it instantiates another typeless, nameless
object of class System that takes variables is, ss and cs as
constructor arguments. This object essentially implements
the replication protocol.

After implementing base feature RS, we have the prod-
uct line (c, {RD},∅, {(RD,Φ′)}). Since there is only one delta
and one feature, there are neither feature interactions to be
implemented nor delta conflicts to be resolved. Since RS is
a mandatory feature, RD is applied for all feature configura-
tions in Φ′.

Next in line is the feature Load. Recall that it has no
semantics. If we want to follow the DMW closely, we could
create an empty delta to ‘implement’ this feature. But we
choose not to do so. From here on, we ignore both Load and
Schedule, and treat their subfeatures as subfeatures of RS.

The next feature to implement can be any one of the four
left unimplemented, as none of those is a subfeature of the
others. We first consider the optional feature Client. It is
implemented by the following delta CD:

delta CD(Int c) {
modifies class Main {

modifies Set<CId> getCids() {
return takeSet(c, RD.original());

}
}

}

This delta modifies method getCids() of class Main to change
the number of synchronisation clients for the replication sys-
tem. The function takeSet is a built-in function over the
Set data type such that takeSet(c,s) returns c number of
elements from set s.

We now obtain the resulting product line, where we write
S? for the transitive closure of binary relation S:

RS = (c,D,≺, γ) where
D = {RD, CD},
≺ = {(RD, CD)}?,
γ = {(RD,Φ′), (CD, {F ∈ Φ′ | Client ∈ F})}.

Delta CD is to be applied after RD, as it implements a sub-
feature of RS. It is applied whenever the Client feature is
selected.

The next feature we consider is DSched. This feature
records the number of locations for directory replication.
We implement this feature with the following delta DSD:

delta DSD(Int s) {
modifies class Main {

modifies List<Schedule> getSchedules() {
List<Schedule> ss = RD.original();
return take(lookup(ss,Dir),s);

}
}

}

DSched does not interact with Client, nor is its delta in
conflict with CD. So, with no feature interaction or conflict
resolution to implement, we obtain the following product
line RS = (c,D,≺, γ) where

D = {RD, CD, DSD},
≺ = {(RD, CD), (RD, DSD)}?,
γ = {(RD,Φ′), (CD, {F ∈ Φ′ | Client ∈ F}),

(DSD, {F ∈ Φ′ | DSched ∈ F})}.

Next we consider feature FSched for recording the number of
locations for file set replication. This feature is implemented
by the following delta FSD:

delta FSD(Int f) {
modifies class Main {

modifies List<Schedule> getSchedules() {
return take(lookup(ss,File),f);

}
}

}

This feature modifies getSchedules() to return f file set
replication schedules.

We notice delta FSD causes a conflict with delta DSD. We
resolve this conflict by providing the following delta DFD:

delta DFD {
modifies class Main {

modifies List<Schedule> getSchedules() {
List<Schedule> ss = DSD.original();
return appendRight(ss,FSD.original());

}
}

}

The delta DFD assumes the built-in function appendRight

over two List values. Specifically, the delta DFD resolves the
conflict between FSD and DSD by insisting that the returned

list of schedules must contain a (possibly empty) list of di-
rectory replication schedules followed by a (possibly empty)
list of file set replication schedules. With no further feature
interaction and conflict resolution, we obtain the following
product line RS = (c,D,≺, γ) where

D = {RD, CD, DSD, FSD, DFD},
≺ = {(RD, CD), (RD, DSD), (RD, FSD),

(DSD, DFD), (FSD, DFD)}?,
γ = {(RD,Φ′), (CD, {F ∈ Φ′ | Client ∈ F}),

(DSD, {F ∈ Φ′ | DSched ∈ F}),
(FSD, {F ∈ Φ′ | FSched ∈ F}),
(DFD, {F ∈ Φ′ | {DSched,FSched} ⊆ F})}.

The final feature that must be considered is JSched, for
recording the number of locations for journal replications.
This feature is implemented by the following delta JSD:

delta JSD(Int l) {
modifies class Main {

modifies List<Schedule> getSchedules() {
return take(lookup(ss,Journal),l);

}
}

}

This feature modifies getSchedules() to return l file set
replication schedules.

When replicating journals, it is important to maintain sta-
bility at the client side. To this end, we need to make sure
there exist at least two SyncClient instances in the replica-
tion system as a fail-safe mechanism. This means we need to
implement feature interaction between features Client and
JSched. We implement this interaction using delta JCD:

delta JCD {
modifies class Main {

modifies Set<CId> getCids() {
Set<CId> cs = CD.original();
if (size(cs) == 1) { cs = Insert(failSafe(),c); }
return cs;

}
}

}

We assume the built-in functions size() and failSafe()

to return the size of a set and the id of the default fail-
safe synchronization client respectively. This delta has to
be applied after the deltas implementing Client and JSched,
and only when those features are selected.

We also note that delta JSD causes a conflict with both
deltas DSD and FSD. The DMW would dictate that we con-
struct a conflict resolving delta for both pairs of deltas left
in an unresolved conflict (the conflict FSD E DSD was already
resolved). Then, a final conflict resolving delta would be cre-
ated to handle the case where all three features are selected
together. This scenario is shown in Fig. 4. However, since
all four of these conflicts are resolved quite consistently in
each case, we can save a lot of effort if we create one conflict
resolving delta DFJD for all four of these cases, parametrized
with the selection status of the relevant features. This delta
is greater in the partial order than all three original conflict-
ing deltas, and it is to be applied when at least one of the
three relevant features is selected. Note that this disjunc-
tion differs from the usual conjunctive application condi-
tions. This is usual when working with parametrized deltas,

DSD

DSched

FSD

FSched

JSD

JSched

DFD

DSched ∧ FSched

DJD

DSched ∧ JSched

FJD

FSched ∧ JSched

DFJD

DSched ∧ FSched ∧ JSched

Figure 4: Example of the three-way conflict resolu-
tion between the scheduling features. The dashed
boxes are deltas. The partial order ≺ is represented
by the arrows and each delta x ∈ D is decorated with
a propositional logic formula representing γ(x).

in which the distinction between different feature configura-
tions is made in the code rather than on the level of delta
modeling.

delta DFJD(Bool DSched, Bool FSched, Bool JSched) {
modifies class Main {

modifies List<Schedule> getSchedules() {
List<Scdedule> ss = Nil;
if (DSched) { ss = appendRight(ss,DSD.original()); }
if (FSched) { ss = appendRight(ss,FSD.original()); }
if (JSched) { ss = appendRight(ss,JSD.original()); }
return ss;

}
}

}

This delta can now replace conflict resolver DFD, as it encom-
passes that specific case. This scenario is shown in Fig. 5.

With no further feature interaction or conflict resolution
to implement in this iteration, and no further features to
implement at all, we obtain the following final product line
RS = (c,D,≺, γ) where

D = {RD, CD, DSD, FSD, JSD, JCD, DFJD},
≺ = {(RD, CD), (RD, DSD), (RD, FSD), (RD, JSD),

(DSD, DFJD), (FSD, DFJD), (JSD, DFJD),
(CD, JCD), (JSD, JCD)}?,

γ = {(RD,Φ′), (CD, {F ∈ Φ′ | Client ∈ F}),
(DSD, {F ∈ Φ′ | DSched ∈ F}),
(FSD, {F ∈ Φ′ | FSched ∈ F}),
(JSD, {F ∈ Φ′ | JSched ∈ F}),
(JCD, {F ∈ Φ′ | {Client, JSched} ⊆ F}),
(DFJD, {F ∈ Φ′ |

{DSched,FSched, JSched} ∩ F 6= ∅})}.

The corresponding product line configuration is encoded in
ABS as follows.

DSD

DSched

FSD

FSched

JSD

JSched

DFJD

DSched ∨ FSched ∨ JSched

Figure 5: Example of the three-way conflict res-
olution between the scheduling features by one
parametrized delta.

productline RS {
features RS, Client, DSched, FSched, JSched;
delta RD when RS;
delta CD (Client.c) when Client;
delta DSD(DSched.s) when DSched;
delta FSD(FSched.f) when FSched;
delta JSD(JSched.l) when JSched;
delta JCD when Client and JSched after CD, JSD;
delta DFJD(DSched, FSched, JSched)

when DSched or FSched or JSched
after DSD, FSD, JSD;

}

Using the product line RS we confirm that the application of
DMW terminates for this case study and that all products
generated by RS are unique and implement the required
features. Table 1 lists all feature configurations F ∈ Φ′

against its unique generated product prod(RS,F) and its
corresponding product selection in ABS.

6. DISCUSSION
The case study described in this paper considered the repli-
cation system, which is part of the Fredhopper Access Server
(FAS) product line. The existing FAS product line is imple-
mented in Java, and has over 150,000 lines of code. As part
of future work we aim to extend this case study beyond the
replication system. Table 2 shows some metrics about the
existing implementation and the ABS model of the repli-
cation system. In particular, the number of deltas reduces
from 10 to 7 if three-way conflict resolution between schedul-
ing features is applied, while the number of products reduces
from 12108 to 96 if feature attributes are ignored.

Metrics Java ABS
Nr. of lines of code 6400 5000
Nr. of classes 44 40
Nr. of interfaces 2 43
Nr. of user-defined functions N/A 80
Nr. of user-defined data types N/A 17
Nr. of features N/A 15
Nr. of deltas N/A 10 (7)
Nr. of products N/A 12108 (96)

Table 2: Metrics about Case Study

DMW provides a step-by-step guide for developing a com-
plete software product line from a product line specification

Feature Configuration Generated Product ABS Product Selection
{RS} RD(c) product P1(RS)

{RS,DSched} DFJD(DSD(RD(c))) product P2(RS,DSched{s=4})

{RS,FSched} DFJD(FSD(RD(c))) product P3(RS,FSched{f=3})

{RS,JSched} DFJD(JSD(RD(c))) product P4(RS,JSched{l=4})

{RS,DSched,FSched} DFJD(FSD(DSD(RD(c)))) product P5(RS,DSched{s=4},FSched{f=3})

{RS,DSched,JSched} DFJD(JSD(DSD(RD(c)))) product P6(RS,DSched{s=4},JSched{l=4})

{RS,FSched,JSched} DFJD(JSD(FSD(RD(c)))) product P7(RS,FSched{f=3},JSched{l=4})

{RS,DSched,FSched,JSched} DFJD(JSD(FSD(DSD(RD(c))))) product P8(RS,DSched{s=4},FSched{f=3},JSched{l=4})

{RS,Client} CD(RD(c)) product P9(RS,Client{c=5})

{RS,DSched,Client} DFJD(DSD(CD(RD(c)))) product P10(RS,DSched{s=4},Client{c=5})

{RS,FSched,Client} DFJD(FSD(CD(RD(c)))) product P11(RS,FSched{f=3},Client{c=5})

{RS,JSched,Client} JCD(DFJD(JSD(CD(RD(c))))) product P12(RS,JSched{l=4},Client{c=5})

{RS,DSched,FSched,Client} DFJD(FSD(CD(DSD(RD(c))))) product P13(RS,DSched{s=4},FSched{f=3},Client{c=5})

{RS,DSched,JSched,Client} JCD(DFJD(JSD(CD(DSD(RD(c)))))) product P14(RS,DSched{s=4},JSched{l=4},Client{c=5})

{RS,FSched,JSched,Client} JCD(DFJD(JSD(CD(FSD(RD(c)))))) product P15(RS,FSched{f=3},JSched{l=4},Client{c=5})

{RS,DSched,FSched,JSched,Client} JCD(DFJD(JSD(CD(FSD(DSD(RD(c))))))) product P16(RS,DSched{s=4},FSched{f=3},JSched{l=4},Client{c=5})

Table 1: Delta Derivations

that consists of a feature model and satisfaction relation. In
this section we discuss our experiences while applying the
DMW to the implementation of the FAS case study. This
case study did not only raise discussion points about the
pros and cons of DMW, but also guided the development of
DMW while its practical applicability was put to the test.

Completeness Following DMW we are able to, in a top-
down fashion, systematically implement all features in
the feature model to obtain an SPL for the replication
system. We are also able to systematically implement
all necessary feature interaction and resolve implemen-
tation conflicts between deltas, since we are directed to
consider every situation by the workflow. So we avoid
accidentally forgetting to implement some functional-
ity from a complex feature model.

Flexibility Following DMW we are able to reduce the num-
ber of deltas, in the product line, while still ensuring
the final product line is complete and globally unam-
biguous. Specifically, we introduce the delta DFD orig-
inally to resolve the conflict between deltas DSD and
FSD. However, after introducing the delta JSD for fea-
ture JSched, we are able to provide the single delta
DFJD to resolve all conflicts between all combinations
of DSD, FSD and JSD. Since DFJD is greater in the par-
tial order than all of DSD, FSD and JSD, and can se-
mantically resolve the conflict between DSD and FSD, it
replaces the delta DFD. Reducing the number of deltas
in this case also reduces redundancy and enhances the
reusability of the code base.

Evolution DMW assumes the initial core product to be
the empty product. We relaxed this assumption to
facilitate product line evolution. In practice it is often
the case that a product line will not be implemented
from scratch, but will be built on legacy code, which
lends itself to be incorporated as the core product.

Collaboration During the case study, we were unsure how
to apply DMW in a collaborative development envi-
ronment. Feedback from this case study has lead to a
better formalization of concurrent development in the
Delta Modeling Workflow.

Tool support In the FAS product line, we use µTVL to
specify the feature model of the replication system.
As a result of the case study, we feel that it would

be beneficial to provide a mechanical translation from
µTVL to the corresponding DMW’s feature model Φ
and structural feature model Ψ. While this might be
outside of the scope of the development workflow, in
terms of applicability, such a translation should be
automated as we have found that manual translation
can be error-prone. Similarly, after obtaining the final
product line for the replication system, we manually
extract necessary information into the ABS product
line configuration. While this translation may be be-
yond the scope of DMW, it would help to provide soft-
ware support for the translation.

Overall we have found DMW offers a useful guideline for
systematically traversing the feature model and implement-
ing its features to arrive at a software product line which
is globally unambiguous (that is, for each feature configura-
tion there is only one product) and complete (that is, each
product is guaranteed to match its specifications).

7. RELATED WORK
The Abstract Behavioral Specification (ABS) language was
designed within the HATS project [10]. The core ABS lan-
guage [12] is a general purpose specification language for dis-
tributed object-oriented systems. The delta modeling exten-
sion of ABS [5] adds support for developing software product
lines. Based on the Fredhopper case study, we have extended
the language further, to support parametrized deltas and
targeted original calls.

Abstract Delta Modeling [4], the formalism on which the
Delta Modeling Workflow (DMW) [11] is based, is not the
only way to model variability of product lines [2, 3, 9, 14,
18] but it is the first that inherently lends itself to a system-
atic workflow for developing product lines from scratch that
support automated generation of all member products with
minimal code duplication and explicit handling of interac-
tion and conflicts.

8. CONCLUSION
Delta modeling is a relatively new paradigm for developing
software product lines and, as such, has not yet been thor-
oughly evaluated in a “real life” development scenario. This
paper is the first account of using delta modeling to imple-
ment a system of industrial scale and of practical use. We
used the Delta Modeling Workflow to guide the modeling

and implementation of the Fredhopper FAS replication sys-
tem in the ABS language. This case study served as a test
bed for DMW, providing feedback that was used to refine
the workflow. It also served as evaluation of the practical ap-
plicability of ABS and led to the addition of a more flexible
mechanism for method invocation.

ABS and its implementation of delta modeling offers a
lot of flexibility in designing the code base of an SPL as a
core and a set of deltas, and in associating these with the
feature model. Meanwhile, best practices and patterns of
good delta design have yet to be established. DMW provides
some much needed guidance for applying delta modeling in
practice. Using DMW comes with the benefit of obtaining,
through concurrent development, an SPL implementation
that is both globally unambiguous and complete.

Acknowledgements
We would like to thank the anonymous referees for their
useful suggestions and comments.

9. REFERENCES
[1] The ABS Language Specification, 2011. http://tools.

hats-project.eu/download/absrefmanual.pdf.

[2] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Trans. Software Eng.,
30(6), 2004.

[3] L. Bettini, F. Damiani, and I. Schaefer. Implementing
Software Product Lines using Traits. In Proc. of
Object-Oriented Programming Languages and Systems
(OOPS), Track of ACM SAC, 2010.

[4] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract
Delta Modeling. In Proceedings of the ninth
international conference on Generative programming
and component engineering, GPCE ’10, pages 13–22,
New York, NY, USA, Oct. 2010. ACM.

[5] D. Clarke, R. Muschevici, J. Proença, I. Schaefer, and
R. Schlatte. Variability modelling in the ABS
language. In Formal Methods for Components and
Objects, volume 6957 of LNCS. Springer, 2011.

[6] A. Classen, Q. Boucher, and P. Heymans. A
text-based approach to feature modelling: Syntax and
semantics of TVL. Science of Computer Programming,
76(12):1130–1143, 2011.

[7] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison Wesley Longman,
2001.

[8] Evaluation of Core Framework, Aug. 2010. Deliverable
5.2 of project FP7-231620 (HATS), available at
http://www.hats-project.eu.

[9] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and
A. Black. Traits: A mechanism for fine-grained reuse.
ACM TOPLAS, 28(2), 2006.

[10] Highly Adaptable and Trustworthy Software using
Formal Models, Mar. 2009.
http://www.hats-project.eu.

[11] M. Helvensteijn. Delta Modeling Workflow. In
Proceedings of the 6th International Workshop on
Variability Modelling of Software-intensive Systems,
Leipzig, Germany, January 25-27 2012, ACM
International Conference Proceedings Series. ACM,
2012.

[12] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and
M. Steffen. ABS: A core language for abstract
behavioral specification. In B. Aichernig, F. S.
de Boer, and M. M. Bonsangue, editors, Proc. 9th
International Symposium on Formal Methods for
Components and Objects (FMCO 2010), Lecture
Notes in Computer Science. Springer-Verlag, 2011. To
appear.

[13] K. C. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-Oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR-021, Carnegie Mellon University
Software Engineering Institute, 1990.

[14] C. Kästner and S. Apel. Type-Checking Software
Product Lines - A Formal Approach. In ASE, pages
258–267. IEEE, 2008.

[15] K. Pohl, G. Böckle, and F. Van Der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, Heidelberg, 2005.

[16] I. Schaefer. Variability modelling for model-driven
development of software product lines. In
D. Benavides, D. S. Batory, and P. Grünbacher,
editors, International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS),
volume 37, pages 85–92. Universität Duisburg-Essen,
2010.

[17] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella.
Delta-oriented programming of software product lines.
In Proceedings of the 14th international conference on
Software product lines: going beyond, SPLC’10, pages
77–91. Springer, 2010.

[18] I. Schaefer, A. Worret, and A. Poetzsch-Heffter. A
Model-Based Framework for Automated Product
Derivation. In Proc. of Workshop in Model-based
Approaches for Product Line Engineering (MAPLE
2009), 2009.

[19] J. Schäfer and A. Poetzsch-Heffter. JCoBox:
Generalizing active objects to concurrent components.
In European Conference on Object-Oriented
Programming (ECOOP’10), volume 6183 of Lecture
Notes in Computer Science, pages 275–299.
Springer-Verlag, June 2010.

[20] A. van Deursen and P. Klint. Domain-specific
language design requires feature descriptions. Journal
of Computing and Information Technology, 10(1):1–18,
2002.

