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DEFECT POLYTOPES AND COUNTER-EXAMPLES

WITH POLYMAKE

MICHAEL JOSWIG AND ANDREAS PAFFENHOLZ

Abstract. It is demonstrated how the software system polymake can be used
for computations in toric geometry. More precisely, counter-examples to con-
jectures related to A-determinants and defect polytopes are constructed.

1. Defect Polytopes

The purpose of this note is to demonstrate how polymake’s features can be used
to establish explicit counter-examples to some conjectures on defect polytopes in
toric geometry. More precisely, we consider several invariants of lattice polytopes
proposed by Di Rocco [3], show a way to compute them with polymake, and use this
to give answers to questions posed in Section 6 of that paper. For basic properties
of polytopes and related toric varieties we refer to Ewald [6].

We start by introducing some notation. Let P be a lattice polytope, i.e., a
polytope whose vertices are contained in Zd. Let F(P ) the set of all non-empty
faces of P , including P itself. Further, we let FP (k) be the set of k-dimensional
faces of P . For t ∈ N we define

(1) ct(P ) :=

d∑

k=0

(−1)d−k (k + t)!

k!

∑

F∈FP (k)

lvol(F ) ,

where lvol(F ) is the normalized volume of F in the lattice

Z

F := Z

d ∩ aff(F ) ;

see [3, p. 101]. For smooth polytopes P the invariant c1(P ) is a function that
records the degree of homogeneity of a certain rational function, the A-determinant,
where A := P ∩ Zd is the set of lattice points in P . Starting with the seminal
monograph [8] this invariant was extensively studied; see also [2, 4, 5, 10] for recent
results, and generalizations to the singular case. By [8, §11, Thm. 1.6] the number
c1(P ) is non-negative for simple lattice polytopes whose associated toric variety is
quasi-smooth. (and thus, in particular, for smooth polytopes). By [4, Pro. 3.2] this
also holds for arbitrary lattice simplices, while it is open for more general simple
polytopes. A polytope P is a defect polytope, if P is a smooth lattice polytope and
c1(P ) = 0. In terms of the associated toric variety P is a defect polytope if the
dual variety is not a hypersurface. By a result of Dickenstein and Nill [3, Thm. 1.6]
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any defect polytope is a smooth strict Cayley polytope. A strict Cayley polytope is
a polytope that is affinely isomorphic to

Q0 ⋆ · · · ⋆ Qk = conv(Q0 × {e0}, . . . , Qk × {ek})

where ej is a lattice basis of Zk+1 and Q0, . . . , Qk are strictly isomorphic lattice
polytopes inRm (i.e. having the same normal fan) such that dim(aff(Q0, . . . , Qk)) =
m.

2. The Software

polymake is a software system for computations in geometric combinatorics and
related areas. The project was initiated in 1995 by Gawrilow and the first author [7],
and many people helped to continuously expand it since. Recently, two important
additions to the system have been accomplished [9]:

(1) polymake now comes with an interactive shell similar to most computer
algebra systems.

(2) polymake has been extended to allow computations specific to the class
of lattice polytopes, i.e., convex polytopes with integral vertex coordinates,
and their relation to combinatorial commutative algebra, toric geometry,
and integer programming.

The latest release 2.9.9 of polymake was published on November 9, 2010 and can
be obtained from http://www.polymake.org. It is distributed as source code and
precompiled binaries for Mac OS X and several Linux distributions. It is released
under the GNU GPL, version 3.

polymake’s functionality is organized in various applications. Currently, these
are polytope for computations with convex polyhedra, matroid and graph for
purposes revealed by their names, topaz (which is short for “topology application

zoo”) for finite simplicial complexes, and tropical for tropical geometry. Each
application centers around objects, a representation for the basic mathematical ob-
jects dealt with, e.g., Polytope<Rational> or LatticePolytope in the application
polytope. Technically, objects are organized in a class hierarchy written in (a
slightly extended dialect of) Perl. These extensions include the possibility to use
C++-style template parameters (e.g., <Rational> to specify a coordinate domain
for polytopes) and a shared-memory communication model to interface with com-
piled C++-code. Semantically, objects are defined by their properties with can be
used to derive further properties according to an extendible set of rules. For more
about the general ideas behind polymake the reader should consult [7], while [9] is
a more recent account with a focus on lattice polytopes.

3. Computations and Code Fragments

We prepare a function, written in polymake’s Perl dialect, that computes the
function c from (1). It takes a polytope P in the first, and the parameter t in the
second argument.
sub ct_invariant {

my ($P, $t) = @_;

my $v = $P->VERTICES;

my $hd = $P->HASSE_DIAGRAM;

my $sign = 1;

my $c = new Integer(0);

for (my $d = $P->DIM; $d > 0; --$d) {

http://www.polymake.org
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foreach (@{$hd->nodes_of_dim($d)}) {

my $F = new Polytope(VERTICES=>

$v->minor($hd->FACES->[$_],All));

my $vol = $F->LATTICE_VOLUME;

$c += $sign*fac($d+$t)/fac($d)*$vol;

}

$sign = -$sign;

}

$c += $sign*fac($t)*$P->N_VERTICES;

return $c;

}

The code of all functions used in this section, together with some explanations how
to use them, is also available as a tutorial in the polymake wiki at http://www.

polymake.org/doku.php/tutorial/a_determinants. polymake has interfaces to
several other software packages for the computation of some special properties, such
as the volume with respect to a given lattice, in the example above. polymake 2.9.9
uses Normaliz [1] for this type of computation by default.

Now we can interactively apply the function ct invariant to some examples,
e.g., [3, Example 2, p. 86]. Each input line to the polymake shell is preceded with
the name of the currently active application, which is polytope throughout this
extended abstract:

polytope > $S = simplex(2);

polytope > $P = prism($S);

polytope > print $P->SMOOTH;

1

polytope > print ct_invariant($P,1);

0

Here we have assigned conv{(0, 0), (1, 0), (0, 1)}, the standard simplex in R2, to
the variable $S and defined $P to be the prism over $S (with distance 1 between
base and top). We can check for non-singularity of the associated toric variety by
asking for the property SMOOTH in polymake. The output “1” represents the boolean
value “true”. Calling the function ct invariant defined above shows that, indeed,
c1(P ) = 0. So the prism over the standard triangle is a defect polytope. It is
a Cayley polytope of 3 segments. We can repeat the same computation for the
hypersimplex ∆(3, 6), which is not simple and hence not smooth:

polytope > print ct_invariant(hypersimplex(3,6),1);

136

Notice that the value given in [3, Ex. 10] is not correct.
Using the connection between lattice polytopes and toric varieties Di Rocco

proves that ct(P ) ≥ 0 for t ≥ 1 and any smooth lattice polytope P [3, Cor. 4].

4. Counter-Examples

In the sequel we use polymake to give answers to three questions raised in [3].

4.1. Lattice polytopes with c1 negative. Conjecture 4 in that paper asks if
c1(P ) ≥ 0 for any lattice polytope, not necessarily smooth. We introduce some
more notation in order to give counter-examples. Let P be a lattice polytope in
R

d. The lattice pyramid of P is the lattice polytope

pyr(P ) := conv(P × {0} ∪ v × {1}) ,

http://www.polymake.org/doku.php/tutorial/a_determinants
http://www.polymake.org/doku.php/tutorial/a_determinants
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where v is a vertex of P (any other lattice point at distance 1 fromRd×{0} ⊆ Rd+1

gives an equivalent lattice polytope). We define the r-fold lattice pyramid of P
inductively via

pyrr(P ) := pyr(pyrr−1(P )) for r ≥ 1,

pyr0(P ) := P .

We define another small function to compute r-fold pyramids.
sub r_fold_pyr {

my ($P, $r) = @_;

for (; $r>0; --$r) {

$P = lattice_pyramid($P);

}

return $P;

}

We can apply this to the standard unit cube, and compute some of the invariants
ct for lattice pyramids over the cube.
polytope > $C=cube(3,0);

polytope > print ct_invariant($C,0);

-2

polytope > print ct_invariant($C,1);

4

polytope > print ct_invariant(r_fold_pyr($C,1),1);

-1

polytope > print ct_invariant(r_fold_pyr($C,2),2);

-2

polytope > print ct_invariant(r_fold_pyr($C,3),3);

-6

With the knowledge of this example it is not hard to see that

cr(pyr
r(P )) = r!c0(P ) + (−1)d+1r! .

for any d-dimensional lattice polytope P and r > 0. We have seen in the previous
computation that c0(C) = −2 for the standard unit cube C, so that

cr(pyr
r(C)) = r!c0(C) + r! = −r! < 0 .

4.2. Convolutions of Ehrhart polynomials. Conjecture 5 in [3] asks whether
all coefficients of the polynomial

f(P, t) :=

d∑

k=0

(−t)(d−k)(k + 1)!
∑

F∈FP (k)

|ZF ∩ tF |

=

d∑

k=0

∑

F∈F(P )

(k + 1)! ehr(F, t)t(d−k)

in the indeterminate t are non-negative. Here ehr(F, t) is the Ehrhart polynomial of
F , and the coefficients of f(P, t) are integral, as k! ehr(F, k) has integral coefficients
for any k-dimensional lattice polytope. Again we will provide counter-examples. In
polymake, we can use the following function to compute the coefficients of f(P, t).
sub f_poly_coeff {

my ($P) = @_;

my $d = $P->DIM;

my $v = $P->VERTICES;

my $hd = $P->HASSE_DIAGRAM;

my $sign = 1;
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my $f = new Vector<Integer>($d+1);

for (my $k = $d; $k > 0; --$k) {

foreach (@{$hd->nodes_of_dim($k)}) {

my $q = new Polytope(VERTICES=>

$v->minor($hd->FACES->[$_],All));

my $h = (zero_vector<Rational>($d-$k))

|$q->EHRHART_POLYNOMIAL_COEFF;

$f += $sign*fac($k+1)*$h;

}

$sign = -$sign;

}

$f += $sign*$P->N_VERTICES

*unit_vector<Rational>($d+1,$d);

return $f;

}

The returned vector lists the coefficients of the polynomial with increasing degree,
i.e., the last entry is the leading coefficient of the polynomial.

We can use the same example as before to show that the coefficients need not
be non-negative. We start out with the 3-dimensional unit cube stored in $C.
polytope > print f_poly_coeff($C);

24 36 24 4

polytope > print f_poly(lattice_pyramid($C));

120 192 114 32 -1

It is not hard to see that the leading coefficient of this polynomial coincides with
c1(P ). Looking at iterated pyramids, by re-using our function r fold pyr, we
obtain:
polytope > print f_poly_coeff(r_fold_pyr($C,3));

5040 9060 5538 1698 188 -3 0

polytope > print f_poly_coeff(r_fold_pyr($C,5));

362880 717696 491304 163056 28086 1490 -15 0 0

We are not aware of an example where another but the leading coefficient of the
polynomial is negative.

4.3. Cayley polytopes. It is finally asked in [3, p. 103] whether c1(P ) = 0 implies
that P is a strict Cayley polytope as defined above. This is not true, as the example
of a two-fold pyramid over the unit square shows:
polytope > $Q=cube(2,0);

polytope > print ct_invariant(r_fold_pyr($Q,2),1);

0

However, in the above definition for a Cayley polytope we could drop the con-
dition that all factors have the same normal fan. With this slightly more general
notion the 2-fold lattice pyramid over the 0/1-square is a non-strict Cayley polytope
of two segments and two points. On the other hand, it is known [5, Prop. 2.14] that
the set of lattice points of a defect polytope is contained in two parallel hyperplanes
with distance one, so any defect polytope is always a non-strict Cayley polytope
over a segment.
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