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ABSTRACT
We present a novel method for obtaining a concise and math-
ematically grounded description of multivariate differences
between a pair of clinical datasets. Often data collected
under similar circumstances reflect fundamentally different
patterns. For example, information about patients under-
going similar treatments in different intensive care units
(ICUs), or within the same ICU during different periods,
may show systematically different outcomes. In such circum-
stances, the multivariate probability distributions induced
by the datasets would differ in selected ways. To capture
the probabilistic relationships, we learn a Bayesian network
(BN) from the union of the two datasets. We include an
indicator variable that represents the dataset from which a
given patient record is obtained. We then extract the rele-
vant conditional distributions from the network by finding
the conditional probabilities that differ most when condi-
tioning on the indicator variable. Our work is a form of
explanation that bears some similarity to previous work on
BN explanation; however, while previous work has mostly
focused on justifying inference, our work is aimed at explain-
ing multivariate differences between distributions.
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1. INTRODUCTION
Identifying and explaining the similarities and differences

between two clinical datasets can be very valuable. For ex-
ample, consider two intensive care units (ICUs) in a health-
care system that collect similar electronic medical record
(EMR) data, including patient history, symptoms, signs,
therapies, and outcomes. If the two ICUs experience dif-
ferent outcomes (e.g., different patient re-admission rates),
a clinical researcher may wish to compare these datasets to
gain insight regarding as to how they otherwise differ. As
another example, suppose an ICU has a marked decrease
in the use of a given medication from one period of time
to another. A quality-assurance officer may find it useful
to gain insight into the details of this change. There are
numerous other circumstances in which it is natural to com-
pare the similarities and differences of two clinical datasets,
such as clinical research trials and comparative effectiveness
research.

This paper presents a novel method for examining the dif-
ferences between two clinical datasets. We represent each of
the datasets using a multivariate probability distribution,
and then systematically examine the two distributions to
gain insight into how they are different, and in what way.
The explanation of why they differ is based on finding the
subgroups that most contribute to the differences and de-
scribing how they combine to account for the differences.
While there are many ways to implement these general ideas,
the current paper describes an approach that seems promis-
ing as a launching point for this direction of research.

1.1 Overview of the Approach
This section is a brief overview of the basic technical

methodology; details are provided in the methods section
below. We use a Bayesian network (BN) to represent a mul-
tivariate, joint probability distribution over a set of variables
X = {X1, . . . , Xn} in a clinical dataset D. A BN consists of
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Figure 1: A Bayesian network structure for a simple
example.

a directed acyclic graph on a set of nodes that represent vari-
ables, and a conditional distribution, P (Xi|parents(Xi)),
for each variable Xi given its parents [5]. The joint distri-
bution of a BN can be factored as follows:

P (X) =

n∏
i=1

P (Xi|parents(Xi)).

Let DA and DB be two datasets being compared that
contain the same set of variables X. We are interested in
comparing various aspects of the joint distributions PA(X)
and PB(X), which represent datasets DA and DB , respec-
tively. Rather than represent the two distributions with two
different BNs, we instead use the conditional distribution
P (X|Z = 0) to represent PA(X), and P (X|Z = 1) to rep-
resent PB(X). As we will see, doing so renders the compar-
isons more parsimonious and coherent.

Our method first learns a BN among the variables in X.
For convenience, we assume Z is a member of X, and we
place it first in the node ordering of the variables. If the
BN is a causal model, then the explanations provided will
be causal. Otherwise, the explanations will be probabilistic,
but not necessarily causal. Those variables with an arc from
Z have different conditional distributions, depending on the
value of Z. These nodes are the key nodes in the sense that
all differences between P (X|Z = 0) and P (X|Z = 1) are
due to differences in the conditional distributions of the key
nodes given their respective parents, including Z.

Next, the method identifies those variables Xi in X for
which P (Xi|Z = 0) is substantially different from P (Xi|Z =
1); call each of these probabilities marginal distributions. It
then uses the BN to explain the main reasons for those differ-
ences. One reason could be that P (Xi|parents(Xi), Z = 0)
may be different from P (Xi|parents(Xi), Z = 1). Another
reason could be that P (parents(Xi)|Z = 0) is different than
P (parents(Xi)|Z = 1). Also, both reasons may hold. We
conjecture that decomposing the differences into their com-
ponent parts will provide insight into the source of the differ-
ences, which will be useful in understanding those differences
more deeply.

We now describe a simple, fictitious example to convey the
main ideas introduced above. Figure 1 shows a BN that has
been learned from a fictitious ICU dataset with four domain
variables, plus the dataset variable Z. Age is the patient’s
age in years. Ventricular tachycardia is a type of abnor-
mally rapid heartbeat; this variable represents whether it
ever occurred during the ICU stay. Amiodarone is a medi-
cation that is sometimes used to prevent or treat ventricular
tachycardia and other heart conditions; this variable repre-
sents whether it was ever given during the ICU stay. Re-

admitted denotes whether the patient was previously in the
ICU within the past 30 days. A realistic BN would contain
many more nodes and arcs.

Suppose that age, re-admitted, and amiodarone have dif-
ferent marginal distributions for different values of Z. Qual-
itatively, this difference is indicated by the arc from Z to
age; it can also be quantified probabilistically. Since age
has no parents, these two ICU populations simply have dif-
ferent age distributions. Upon further analysis, it turns out
that the rate of being re-admitted is higher in ICUA (Z = 0)
than in ICUB (Z = 1) due to the difference in age distri-
butions; for a given age and ventricular-tachycardia status,
the rate of being re-admitted is otherwise the same for the
two ICUs. Regarding amiodarone, it is given to patients
more commonly in ICUB when ventricular tachycardia is
present; however, the prevalence of ventricular tachycardia
is about the same in the two ICUs. These analyses convey
a deeper understanding of why age, re-admitted, and amio-
darone have different distributions in the two ICUs.

1.2 Related Work
We briefly discuss related methods for presenting informa-

tion captured in BNs that have been explored in the litera-
ture in the context of BN explanation. The BN explanation
literature largely focuses on the task of explaining inference.
The task of BN inference is, given some evidence e in the
form of an assignment of a subset of the variables in the
network to values, to obtain a posterior probability P (x|e)
where x represents the assignment of one or more variables
in the network (that are not a part of e) to values. There
are two major approaches to inference explanation: abduc-
tion and influence-tracing. Abduction consists of providing
a most probable explanation (MPE) in terms of the assign-
ment of unobserved variables to their most probable values.
The methods of abduction themselves can be divided into
methods of total abduction [1, 9, 4], where all unobserved
variables are assigned values, and methods of partial abduc-
tion [4, 10], where only variables that are relevant to the
particular inference task are assigned values.

In influence-tracing a description might include statements
such as “Xi positively influences Xj” for example, meaning
that an increase inXi increases the probability of an increase
in Xj [6]. Our method is closer to influence-tracing meth-
ods than to abduction methods. Influence-tracing methods
aim to describe the influence that evidence has on unob-
served variables in terms of the relationships between the
variables. The literature contains methods for describing
such influences both qualitatively [3] and quantitatively us-
ing differences [7], log-ratios [8], and other functions such as
cross-entropy [11, 12] for comparing conditional probabili-
ties. We follow a similar approach to quantitatively com-
pare probabilities that are obtained by conditioning on Z.
However, existing inference explanation methods focus on
explaining the arrival at a posterior probability, hence they
do not provide an explanation of the differences a particular
variable induces. Our method is unique in that, unlike previ-
ous methods, it explicitly identifies the contribution of par-
ticular subgroups to the marginal differences. Additionally,
by targeting a more focused task we are able to coherently
compare probabilities in terms of differences where probabil-
ities are decomposed additively, and in terms of ratios where
probabilities are decomposed multiplicatively.
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2. METHOD
We now describe in detail the method for providing a

description of multivariate differences between two clinical
datasets. The method identifies the terms responsible for the
differences using a two-level report-generating procedure for
comparison of probabilistic relationships (CPR). Figures 2
and 3 show an algorithmic representation of the process,
while the following text explains the process and provides
its mathematical foundation.

We first learn a BN from the union of the two datasets to
which we have added a binary indicator variable Z ∈ {0, 1}
that indicates which dataset a record appears in. While the
particular choice of the BN learning algorithm inherently in-
fluences all resulting analysis, the analysis of this influence
is outside of the scope of this paper. Learning of the net-
work is restricted to only consider networks where Z has
no parents. Note that, in principle, this restriction of the
structure does not reduce the space of possible joint proba-
bility distributions that can be represented by the resultant
network.

The learned BN is taken to be a representation of the
probability distribution of the data within the original data-
sets. The use of a BN model allows us to explore the con-
ditional dependencies encoded in the model in an organized
fashion while maintaining the frame of comparison between
the two datasets. Suppose that the distribution of Xi is
different between the two datasets. This would be reflected
in the network by the fact that the marginal probability
P (Xi = xi|Z = 0) is different from P (Xi = xi|Z = 1)
for xi, a particular value of Xi. The difference P (xi|Z =
1) − P (xi|Z = 0) is used as a measure to quantify how dif-
ferent those two probabilities are.

When the node Xi has parents other than Z in the BN we
explain the difference in the distribution of Xi between the
two datasets in terms of its parents. Z may or may not be a
parent ofXi in the general case. Let Πi := parents(Xi)\{Z}
denote the set of nodes that are parents of Xi, with Z ex-
cluded. Denoting possible assignments of Πi to particular
values by πi, and a particular assignment of Z to 0 or 1 by
z, we get the equality:

P (xi|z) =
∑
πi

P (xi, πi|z). (1)

Let z1 := argmaxz P (xi|z). Then

P (xi|z1)− P (xi|1− z1) =∑
πi

[P (xi, πi|z1)− P (xi, πi|1− z1)] . (2)

Hence for each assignment of the parents πi, a positive dif-
ference P (xi, πi|z1)−P (xi, πi|1−z1) contributes towards the
difference of interest P (xi|z1)−P (xi|1− z1), and a positive
difference P (xi, πi|1− z1)− P (xi, πi|z1) contributes against
it. Since the number of parent configurations πi grows ex-
ponentially with the number of parents |Πi|, the number of
such additive terms can be quite large. For this reason we
only report those terms that match or exceed a user-defined
threshold t. The threshold controls the number of terms in
the sum that are displayed: a smaller t displays more terms
(t = 0 displays all terms) and a larger t displays less terms
(t > 1 displays no terms).

Further analysis of the terms of largest magnitude in the
sum produces an explanation in terms of the probabilities

CPRL1( Xi, t ):
for xi ∈ possible values of Xi, ordered in decreasing order
by |P (xi|Z = 1)− P (xi|Z = 0)| do

Let z1 := argmaxz P (xi|z)
Present the difference P (xi|z1)− P (xi|1− z1)
% List large positive contributions:
for πi ∈ possible configurations of Πi such that
P (xi, πi|z1)− P (xi, πi|1− z1) ≥ t ordered in descending
order by the difference do

Call CPRL2(xi, πi, z1)
end for
% List large negative contributions:
for πi ∈ possible configurations of Πi such that
P (xi, πi|1− z1)− P (xi, πi|z1) ≥ t ordered in descending
order by the difference do

Call CPRL2(xi, πi, 1− z1)
end for

end for

Figure 2: The first level of CPR for a given variable
Xi and a threshold t.

that contribute most to (and against) the difference of dis-
tributions of Xi between the two datasets. Figure 2 shows
an algorithmic representation of this first level of analysis
described so far. The first level triggers the second level of
analysis for each additive term that we now describe.

Since it is difficult to assign intuitive meaning to the term
P (xi, πi|z), we take advantage of the natural decomposition
of this term that is provided by the BN:

P (xi, πi|z) = P (xi|πi, z)P (πi|z). (3)

Let z2 := argmaxz P (xi, πi|z). In order to meaningfully
relate the multiplicative decomposition in Equation 3 to the
additive nature of the differences discussed above, observe
that:

P (xi, πi|z2)− P (xi, πi|1− z2)

P (xi, πi|1− z2)
=

P (xi, πi|z2)

P (xi, πi|1− z2)
− 1. (4)

The choice of z2 allows for a natural interpretation of these
terms: the left hand side of the equation is simply the fold
increase in probability from the dataset indicated by Z =
1 − z2 (the one with the smaller probability for that term)
to the other dataset, indicated by Z = z2. The right hand
term is just a ratio of probabilities (guaranteed to be greater
than or equal to 1) minus one, hence we have a way to relate
the ratio to the difference. The decomposition of the ratio
into multiplicative terms follows:

P (xi, πi|z2)

P (xi, πi|1− z2)
=

P (xi|πi, z2)

P (xi|πi, 1− z2)

P (πi|z2)

P (πi|1− z2)
. (5)

Here P (xi|πi, z) is a conditional probability of an assignment
of Xi given its parents.1 P (πi|z) is the joint probability of
the assignment of the parents within one of the datasets. We
further decompose P (πi|z) into a product by representing
the parents of Xi explicitly as Πi = {Y1, . . . .Ym}:

P (πi|z) =

m∏
j=1

P (yj |y1, . . . , yj−1, z) (6)

1When Z is not a parent of Xi, the fact that Xi cannot be
an ancestor of Z implies that conditioning on Xi’s parents
and not conditioning on any descendants of Xi d-separates
Xi from Z, making the probability equal to P (xi|πi).
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CPRL2(xi, πi, z2):
Present P (xi, πi|Z = z2) and P (xi, πi|Z = 1− z2), their
difference, and ratio.
Present the conditional probabilities P (xi|πi, z2),
P (xi|πi, 1− z2) and their ratio.
Let {Y1, . . . , Ym} = Πi be the parents of Xi other than Z.
Let {y1, . . . , ym} be the assignments of {Y1, . . . , Ym} in πi.

% List the ratios contributing towards P (xi,πi|z2)
P (xi,πi|1−z2)

:

for Yj ∈ Πi ordered in descending order by
P (yj |y1,...,yj−1,z2)

P (yj |y1,...,yj−1,1−z2)
do

Present P (yj |y1, . . . , yj−1, z2),
P (yj |y1, . . . , yj−1, 1− z2) and their ratio.

end for
% List the ratios contributing against P (xi,πi|z2)

P (xi,πi|1−z2)
:

for Yj ∈ Πi ordered in descending order by
P (yj |y1,...,yj−1,1−z2)
P (yj |y1,...,yj−1,z2)

do

Present P (yj |y1, . . . , yj−1, 1− z2),
P (yj |y1, . . . , yj−1, z2) and their ratio.

end for

Figure 3: The second level of CPR for a given vari-
able assignment xi, a parent assignment πi, and a
Z-assignment z2.

and obtain the following decomposition of the ratio

P (πi|z2)

P (πi|1− z2)
=

m∏
j=1

P (yj |y1, . . . , yj−1, z2)

P (yj |y1, . . . , yj−1, 1− z2)
. (7)

Examining each term in the resultant product leads to two
observations: testing whether a term is greater or less than
1 shows whether it contributes towards or against the ratio
P (xi,πi|z2)
P (xi,πi|1−z2)

. Moreover, we obtain a measure of the magni-

tude of the contribution as a multiplicative factor by looking
at the value of the ratio for terms that contribute towards
P (xi,πi|z2)
P (xi,πi|1−z2)

and at the inverse of the value for terms that

contribute against the ratio. Figure 3 shows an algorithmic
representation of this phase of the analysis.

We can expand the explanation capabilities by repeating
the process with yj as xi; however, we leave such analysis for
future work as stronger theoretical grounding is required in
order to make such a recursive explanation process coherent.

3. APPLICATION TO A DATASET ON
PATIENTS WITH PNEUMONIA

We applied our method to a clinical dataset that has been
previously used to study community acquired pneumonia.
The data used were collected in a prospective cohort study
of hospitalized and ambulatory care patients conducted from
October 1991 to March 1994 at five medical institutions [2].
Patients included in the study had to have one or more
symptoms suggestive of pneumonia, as well as radiographic
evidence of pneumonia within 24 hours of presentation. The
variables available in the dataset include categorical vari-
ables, continuous variables, and discretized versions of con-
tinuous variables. We restricted ourselves only to categori-
cal variables and one discretization of each continuous vari-
able, yielding 165 variables. The available variables included
demographic information, history and physical examination

information, laboratory results, chest X-ray findings, and
outcomes.

To demonstrate our method we selected two of the five
medical institutions that participated in the study as the two
data sources to compare. We will refer to these institutions
as subsite A and subsite B. Our merged dataset then consists
of patient records from subsite A and subsite B, and the
indicator variable Z corresponds to the subsite variable.

We learned a BN from the merged dataset using a two-
phase greedy algorithm. The algorithm attempts to max-
imize the K2 score of the structure by adding arcs to an
initially empty network in the first phase, and removing
arcs from the result in the second phase [5]. The struc-
ture was constrained to at most five parents per node. The
order of the variables in the network was, ordered from an-
cestors to descendants, constrained as follows: the subsite
variable is first, followed by demographic variables such as
age and sex, followed by variables that describe the patient’s
history and state at admission such as smoke (whether the
patient smokes) and flu (whether the patient had influenza
six weeks prior to presentation), followed by other variables
which represent findings such as test results and other infor-
mation about the patient’s state while in the hospital, and
outcome variables such as dead30pr and dead90pr (whether
the patient has died within 30 or 90 days after presenta-
tion) are last. While the order constraints have a loosely
causal and temporal justification, the resultant network is
not guaranteed to be causal, and the results must be inter-
preted probabilistically rather than causally.

The threshold we selected to use with our method for the
purposes of these evaluations is t = 0.01, as it was found to
provide an informative yet manageable level of detail. In a
practical application, the threshold would be selected based
on the user’s (e.g. clinical researcher’s) goals and preference
for level of detail. In the learned BN, there were 15 variables
that were children of the subsite variable, and their marginal
differences exceeded the threshold. We selected two of these
variables, flu and aspevent (aspiration event), to illustrate
the features of the method.

For the flu variable, the marginal probability for the value
flu = yes, P (flu = yes|subsite), is 0.130 for subsite A and
0.326 for subsite B, yielding a difference of 0.196. In the BN,
the variable has only one parent besides subsite, namely, age.
The additive terms that contribute to this difference take the
form

P (flu = yes, age|subsite = B)−
P (flu = yes, age|subsite = A).

The values of age (as discretized ranges) corresponding to
terms that have a positive difference that exceeds the 0.01
threshold are: 30-44 years old, 0.082; 18-29 years old, 0.056;
75-90 years old, 0.037; 60-74 years old, 0.011. No terms
exceeded the threshold and contributed negatively to the
difference.

Proceeding to the second level of analysis for the first of
these terms, we compute the ratio

P (flu = yes, age = 30-44|subsite = B)

P (flu = yes, age = 30-44|subsite = A)
= 3.307,

which is further decomposed into the conditional part

P (flu = yes|age = 30-44, subsite = B)

P (flu = yes|age = 30-44, subsite = A)
= 2.713
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and the parent part

P (age = 30-44|subsite = B)

P (age = 30-44|subsite = A)
= 1.415.

Thus, both parts contribute to the main ratio, with the con-
ditional part contributing more, meaning that the difference
for the subgroup of patients between 30 and 44 years of age
is mostly explained by a higher proportion of 30-44 year-
olds that had influenza recently, but the fact that there are
proportionally more patients that are 30-44 also contributed
to the difference. We observe similar numbers for the terms
corresponding to an age value of 18-29 and 75-90, with the
notable exception that the parent part of the 75-90 ratio
contributes slightly against the additive term’s ratio:

P (age = 75-90|subsite = B)

P (age = 75-90|subsite = A)
= 0.987.

These results show that the higher proportion of patients
with flu at subsite B is explained by the observation that
subsite B patients who were 18-29, 40-44, and 75-90 had
more flu recently than subsite A patients, and additionally,
there were proportionally more patients with age 18-29 and
30-44 at subsite B than subsite A.

The analysis for the aspevent variable is both more in-
teresting and more complex. The marginal distribution dif-
ference is 0.083 for aspevent = yes, with subsite A seeing
proportionally more aspiration events. Unlike flu, aspevent
has alert (patient alertness level), swalldia (presence of swal-
lowing disorders), nutrstaa (malnutrition or poor nutritional
status), and sza (seizures) as parents. Only two additive
terms exceed the difference threshold of t = 0.01, both cor-
respond to absence of swalldia, nutrstaa and sza, and both
contribute positively to the marginal difference. One term
corresponds to alert = alert (patient is alert) and the other
to alert = lethargic (patient is lethargic). The decomposed
ratios of both terms show that the contribution of the con-
ditional term (with a factor between 8 and 9) outweighs the
contribution of the parent terms (all with factors close to 1).

These results show that the higher proportion of aspira-
tion events at subsite A is primarily explained by the obser-
vation that among patients without malnutrition, swallow-
ing disorders, or seizures, who are either alert or lethargic,
more experience aspiration events at subsite A than at sub-
site B.

4. CONCLUSIONS AND FUTURE WORK
We have presented a method for exploring the probabilis-

tic relationships between variables that are relevant to exam-
ining the differences between two datasets. In order to do so
we first learn a BN that captures the probabilistic relation-
ships in the datasets. We then present a decomposition of
the marginal probabilities according to the learned BN in a
way that identifies particular subgroups of records that con-
tribute most to the difference between datasets. The anal-
ysis of the pneumonia patient dataset yielded good results:
isolated subgroups that were primarily responsible for the
differences of probabilities in the dataset were successfully
identified. The results exemplified the explanatory power of
the method and showed reasonable findings. This encour-
ages further development and extensions of the method.

While we have focused the application to clinical datasets,
the method presented here can be applied to other kinds of
data as well. A possible extension of the method mentioned

above, involves in expanding the analysis produced beyond
a given node and its parents in the BN. The idea is to re-
cursively examine each parent Yj as we examined the initial
variable Xi in the analysis here. Another direction for ex-
tending the method is the incorporation of model averaging
to enable the estimation of the variance of probabilities in
the analysis. Yet another improvement on the method that
is more in the spirit of explanation would add the capability
to consolidate the explanations provided, in order to auto-
matically generate the sort of summaries that were compiled
by hand in this paper.

5. ACKNOWLEDGMENTS
This research was supported by grant IIS-0911032 from

the National Science Foundation.

6. REFERENCES
[1] E. Charniak and S. E. Shimony. Cost-based abduction

and map explanation. Artificial Intelligence,
66:345–374, 1994.

[2] G. F. Cooper, V. Abraham, C. F. Aliferis, J. M.
Aronis, B. G. Buchanan, R. Caruana, M. J. Fine, J. E.
Janosky, G. Livingston, T. Mitchell, S. Monti, and
P. Spirtes. Predicting dire outcomes of patients with
community acquired pneumonia. Journal of
Biomedical Informatics, 38(5):347 – 366, 2005.

[3] M. J. Druzdzel. Probabilistic reasoning in decision
support systems: from computation to common sense.
PhD thesis, Pittsburgh, PA, USA, 1993. UMI Order
No. GAX93-22863.
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