Check for
Updates

Melding Structured Abstracts and the World Wide Web for
Retrieval of Reusable Components

Jeffrey S. Poulin and Keith J. Werkman
Loral Federal Systems
Owego, NY
poulinj keithw @lfs.Joral.com

Abstract

Reusable Software Libraries (RSLs) often suffer
from poor interfaces, too many formal standards, high
levels of training required for their use, and most of
all, a high cost to build and maintain. Ience, RSLs
have largely failed to retirn the reuse benefits prom-
ised by their developers. This paper first describes an
RSL implementation using the World Wide Web
(WWW) browser Mosaic and shows how it meets
most RSL needs, avoids most RSL pitfalls, and costs
only a fraction of the cost for the average conunercial
RSL. Second, the paper describes a way to quickly
assess the important aspects of a piece of software so
programmers can decide whether or not lo reuse il.
Using the observation that when programmers discuss
software they tend to convey the same key information
in a somewhat predictable order, this paper describes
o method to automatically mimic this activily using a
Structured Absiract of reusable components. Struc-
tured Abstracts provide a natural, easy to use way for
developers to (1) search for components, (2) quickly
assess the component for use, and (3) submit compo-
nents to the RSL.

1.0 Overview

The quest for ways to improve the software develop-
ment process has led many organizations to pursue
the substantial bencfits available through software
reuse. Many organizations focus their reuse initi-
atives on a reuse library where members of the
organization can both store reusable assets and
retrieve assets when they need them. Traditional

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy othetwise, or to republish, requires
a fee and/or specific permission.

SSR '95, Seattle, WA ,USA
© 1995 ACM 0-89791-739-1/95/0004...$3.50

RSLs use specialized methods for component classi-
fication, search, and retrieval. Unfortunatcly, these
formal tools and techniques require both a large
investment to implement and substantial training to
use. YTor these reasons, many organizations have
seen little benefit from their RSLs even though they
may contain a large number of quality assets. This
paper describes two initiatives aimed at remedying
this situation.

Tirst, we describe a software reuse library interface
and search ability using the National Center for
Super-Computer Rescarch (NCSA) WWW browser
Mosaic [2]. We developed this interface for the
Loral Federal Systems RSIL, which we call the
Iederal Reuse Repository (FRR). Mosaic provides
an simple, easy-to-use method to search for and
extract reusable assets from the FRR. With large
organizations investing as much as 80 to 130 person-
years to develop a formal RSL, our Mosaic interface
cost less than 1% of the cost to develop and main-
tain a standard, commercial-quality RSL [13, [12],
[15]. Despite the minimal investment, our Mosaic-
based RSL. has quickly gained favor due to its intui-
tive interface and powerful features.

Second, we have devcloped a technique that provides
the most needed reuse information quickly and
naturally to the user. The method, called the Struc-
tured Abstract (SA), works by always giving the
same, important information in the same order.
Specifying the information to give guarantees the
user gets the information the user needs. Specifying
the order allows the user’s eye to train itself on the
spot in the abstract containing the critical, decisive
data. Finally, presenting the information in an
natural-language abstract gives the information to
the user in a familiar way, mimicking the manner the
user would receive the information from a colleague
over the phone or in a conversation.

160

http://crossmark.crossref.org/dialog/?doi=10.1145%2F211782.211841&domain=pdf&date_stamp=1995-08-01

Qur work with Structured Abstracts investigates how
to best use the existing classification information
residing in government and industrial reuse libraries.
This allows us to leverage the large investment made
in the original classification of components in these
RSLs. Because much of the information in an SA
already exists as part of a detailed classification, we
can automatically create a fast on-line or hardcopy
index of an RSL’s contents for use in any environ-
ment.

By using a standard SA template, we have an easy-
to-use method with which developers can search for
neceded components. The standard template helps
users understand retrieved components so they can
quickly asscss them for use. The SA also provides a
standard template for describing components that a
developer wants to put into the RSL. Finally,
anyone familiar with software and a pointing device
can quickly grasp Structured Abstracts, thercby prac-
tically climinating the need for any special reuse
knowledge or training.

2.0 An RSL using the WWW

We implemented the LFS FRR using the WWW
and an Mosaic interface to take advantage of the
explosive growth of the WWW within the company
[11]. The I'RR contains several types of reusable
components, including documents and software in a
number of programming languages. The easy-to-use
interface works with any WWW browser running on
virtually any platform, including AIXm OS/2m
VM,m UNIX,'m DOS Windows,m and Mac,m and
provides high-performance scarching by subject,
component source, and keyword search. Accessible
from virtually any platform at any location in the
company, the WWW implementation replaces the
former mainframe-based RSL described in [12].

2.1 About the FRR

The FRR contains abstract data types, system utili-
ties, Application Programming Interfaces (APlIs),
and other general-purpose functions that have wide
application across LFS. Although the FRR con-
tains some domain-specific collections, we consider
the FRR a domain-independent RSI.. Fvery soft-
ware asset in the FRR- comes with a complete set of
supporting information to help users understand and
integrate the software into their product. For

example, if a user selects the Adatm implementation
of the “POSIX Signals” package from the General
Purpose Ada library, the RSL returns an abstract,
interface information, usage instructions, etc., in
addition to the Ada body and Ada specification.

Loral FS Reuse - FRR

You’ve reached the home page for the Loral Federal Systems Reuse
Repository (FRR). The FRR contains several hundred reusable software
and document components; read more about the FRR, and see what's
coming soon! Find out about gxternal reuse sources.

FRR, hierarchical view (arranged by Language/Library)

| FRR, arranged by Subject

Search the FRR (via WAIS)

Click here to contact the FRR Maintainer.

Allen Matheson owns this page.
Last updated: 22 Feb 95

Figure 1. The FRR Home Page

2.2 Searching the FRR

'The FRR currently provides three ways to locate a
needed component. As shown in Figure |, a user
can search the FRR using a:

1. Hierarchical view, arranged by Language or
Library,

2. Subject listing, and

3. Keyword search.

The hierarchical view firsts narrows the search based
on implementation language. If the user selects Ada,
the Mosaic page shown in Figure 2 appears. This
page lists the various collections of Ada software in
the FRR; users will find it the fastest way to locate a
particular component if they already know which
collection it comes from; for example, that they want
a component from the Booch-Ada collection.

Ilowever, a user often does not know (or carc)
where a component comes from and would rather

161

Ada Reuse Collections

Select the library you need:

Advanced Automation System (AAS)

Ada Run Time Environment (ARTE)

Booch — Ada

Booch —~ Ada Enhanced

Common Ada Missile Packages (CAMP)

Circuit Card Assembly and Processing System (CCAPS)
General Purpose Ada

Karlsruhe Abstract Data Types

Realtime And Distributed Ada Services (RADAS)
Sustaining Base Information Systems (SBIS) APIs BfS%

Allen Matheson owns this page.
Last updated: 21 Feb 95

Figure 2. The Ada Language Home Page

simply scarch for components that perform a partic-
ular function. The I'RR supports this need with the
second scarch option: The IFRR, arranged by Subject.
Figure 3 shows a portion of the page produced if the
user selects this option. For example, if the user
needs a monitor or a semaphore, the user would click
on Synchronization Components on this component
listing.

FRR Component Listing by Subject

Select the type of component you need:

Bit/String Manipulation Components
Command Line Components
Communication Components

Data Structures Compgnents (long list!)
File Services Components,
Graphics Components_

nput/Qutput Componen
Miscellaneous Utilities

Numerics and Math Packages

OS (POSIX) Interfaces

Real-Time Components

Sorting and Searching Routines
Synchronization Components

® 6 8 & 05 06 0 0 0 0 00
—

Figure 3. The Subject Listing Home Page

Finally, the third scarch option consists of a simple
keyword search. 'The PRR keyword search, imple-
menied using publicly available Wide Area Informa-
tion Services (WAIS) software, supports Boolean

querics and Porter Stemming (partial matches). The
search runs very fast and rank-orders the search
results to help indicate which components most
closcly meet a developer’s needs. For example, the
query “avl and tree” returned the following in less
than 2 seconds:

AVL Tree (Ada)

Score: 84, Total Bytes: 53323
Avl Tree Row Representation (Ada)

Score: 62, Total Bytes: 35538
AVL Tree (Ada)

Score: 60, Total Bytes: 29352
AVL Tree Repr Acc (Ada)

Score: 53, Total Bytes: 40072

3.0 The Classification Problem

Large Reusable Software Libraries (RSLs) often use
a formal, extensive classification mechanism to
describe their contents. This mechanism provides
detailed information upon which a user can search
for components. The classification can greatly
improve search precision, especially in large organ-
izations or in situations where numerous RSLs inter-
operate by sharing access to components across a
network or the Internet [5].

However, the up-front presentation of this informa-
tion causes a number of problems because of the dif-
ficulty of quickly cxtracting the relevant reuse
information from the plethora of other data [10].
To assist in reuse, the RSL must present the right
level of information to the reuser. Unfortunately,
using an extensive classification scheme requires the
user to have a working knowledge of the issues and
techniques surrounding software classification [13].
The reuser must especially have an understanding of
the scheme used by the user’s particular RSL [17].
Attempts to help casual or infrequent reusers locate
components similar to those asked for, such as con-
ceptual closeness graphs or synonym lists, aid in
retrievability but do nothing for understandability
and rapid reuse assessment. Mapping the user’s idea
of what the user nceds to an existing component
must happen quickly, efficiently, and painlessly [9].

[xperience shows that reading a long list of compo-
nent classifiers, many of which may not have imme-
diate relevance, does not give an intuitive feel {or the
applicability of a particular module to a specific situ-
ation. In fact, most programmers typically assess the

162

applicability of a potentially reusable part in a matter
of seconds, much as potential buyers of a house get
their most lasting impression from it’s “curb appeal.”
A reuser needs to make the most of those first pre-
cious scconds and make the best possible reuse deci-
sion.

4.0 Understanding Programs

Several program understanding techniques scck to
help users deal with the flood of information pro-
vided by lists of facet and attribute-value classifiers.
Central to these techniques lies the presentation of
information in a standard format. For example,
Input-Process-Output (IPQ) diagrams provide an
early method of standardizing component
descriptions. A 1PO diagram lists all program
inputs, outputs, and a description of cach process or
function provided by the softwarc [16].

Musser and Stepanov {8} adopted a standard sct of
information to describe the components in their Ada
generic list package library. This information
includes the interface specification, a short text
description of the function, complexity metrics,
examples, and dependencies on other routines.
However, just as with long lists of classifiers, the
method prescats the information in a layout which
forces the user's eye (and consciousness) to jump
around the page to acquire and digest the data the
user wants, in the order the user wants it.

Linn and Clancy present a standard module repre-
sentation which they find useful in teaching pro-
gramming to beginners [6]. By providing a
schematic of a program and its function, they allow
the student to picture the activities of the module
and learn how to build other modules. Trom a pro-
gramming understanding perspective, such “tem-
plates” make it easy to comprehend how a module
works and how to integrate it into a product.
However, the supplier must painstakingly construct
the template by hand and although the template
follows a standard format, the depth of detail does
not make it a suilable “quick assessment” mech-
anism for a reuser.

Natural language methods secem uniquely absent
from current approaches. In fact, a recent study by

Maiden and Suttcliff examined the analytic and
problem solving strategies used by analysts to under-
stand and reusc program specifications [7]. They
found that although results varied by individual, ana-
lysts preferred to assimilate and understand modules
from a narrative describing the underlying reusable
domain rather than from the formal specifications
normally provided by a RSL. We believe that any
effective rapid assessment method should make use
of this preference.

5.0 Structured Abstracts

Structured Abstracts (SAs) help solve the component
classification and program understanding problems
by presenting software descriptions in a logical, nar-
rative form and always providing the same informa-
tion in the same order. Because the SA uses a
natural text presentation, the reuser finds the SA
casy and straightforward to understand. Most
importantly, SAs transform the process of evaluating
components from one of scanning a randomly-
ordered list of (facet,term), (atiribute, value) pairs to
one of reading an orderly, concise, natural-language
narrative. Finally, SAs have uses beyond searching
for and assessing components; reusers can also usc
SAs to supply components to the RSL.

5.1 Concept

The method uses a paradigm analogous to the way
programmers informally exchange information about
software, such as when meeting in small groups or in
discussions over the phone. The programmers tend
to quickly convey the key aspects of the software in
a few short sentences, thereby telling the interested
party, in a very concise fashion, just enough infor-
mation to judge whether or not there exists a com-
ponent of interest, and if so, whether or not the
component merits further investigation.!

The following key bits of information about compo-
nents consistently appear in these conversations:

1. Programming language,

2. Environment,

3. Function performed by the routine,
4. Objects manipulated by the routine,

! In which case more detailed programming understanding methods may apply.

163

5. The platform or operating system upon which it
runs, and,
6. Illements which make up the component.
And, if the party shows inlercst:
7. Where to get more information (a contact).

IFurther observation shows that the order of the
above information tends 1o remain constant {c.g.,
language, function, object, platform, and contact).
The SA implements these observations by using the
following layout:

Itcmus in the SA

Computer language and Component type
Domain

Function

Data

Operating System

(Element, ... , Ilement)

Contact

R N

The basic SA template ties information from the
RSI., database (shown here underlined and in paren-
thesis) with default connecting text, shown here in
italics. 1If a software component provides more than

one function, an optional second sentence may give |

that function. The SA template looks like this:

A (Computer Language) (Component Type)
for (Domain) that provide (Function) on
(Data) data. Runs on (Operating_System).
Includes (Llement, ... , Element). Contact
(Contact).

5.2 Sample Structured Abstracts

ixtracting classification and descriptive element
information into the template may result in Struc-
tured Abstracts similar to those below:

C+ + classes that provide text buttons and
slide bars for the GUI domain. Runs on
0S8/2 and AIX. Includes documentation,
abstract, and test cases. Contact John Smith
(smithj@abc Ifs.loral.com).

C functions that provide calendar operations
on date data for the MIS domain. Calcu-
Jates days between dates, date format con-
versions (Julian, Roman), day of month,
and day of year. Runs on Zortech, Borland,
and Top Speed compilers. Includes licensc

agreement, documentation, and sample code.
Contact Joan Brown (brownj@abc.lfs.loral.
com).

Ada packages that provide queues, stacks,
sets, maps, and bags for the Abstract Data
Type domain. Runs on Alsys, Verdix, and
MILSPLC Ada compilers. Includes license
agreement, documentation, cxamples, and
test cases. Contact Bill Fried (fricdw@
abe Mfs.loral.com).

5.3 Implementation

We have implemented the Structured Abstract for
component search and component submission. For
the initial implementation we combined HyperText
Markup Language (HTML) forms and the Common
Gateway Interface (CGI) capability of the WWW
with Perl scripts to route the selections to a
WAIS-indexed database. A couple of points add
merit to this approach. First, we continue to require
only minimal investment in software and itoplemen-
tation. Second, when we indexed the entire FRR
collection using WAIS, we used the formal classifica-
tion of the original RSL. Therefore, the facets, attri-
butes, and terms used in the HTML forms exactly
match those used to index the components with
WAIS. This leads to a high degree of exact matches,
unlike that of most keyword search mechanisms [4].

The current implementation works for software com-
ponents only. We have not attempted to use SAs
for other types of rcusable assets, such as documents.

5.3.1 Experiences

As reflected in the following scenarios and figures,
we have made several modifications to our SA
search and submittal forms based on user feedback.
First, sophisticated users indicated a preference for
the simple keyword search {the third FRR search
option) because they could create very specific
Boolean searches that they could not re-create using
the SA. To address this, we added an additional
“keyword” field so users could use the SA in con-
junction with free text search.

Second, most users did not use the “domain” field
when constructing queries. This follows from our
view of the 'RR as a domain-independent RSIL..

164

Figure 4. The Structured Abstract Search Facility

We considered deleting domain from our implemen-
tation of the SA; however, the existence of some
domain-specific collections in the FRR and the fact
that some users insisted on retaining the field caused
us to keep it. The SA currently has a radio button
which explicitly makes the SA domain-sensitive.

5.3.2 Query scenario

Figure 4 shows the SA search mechanism. Recall
from Section 2.2 that a keyword query of the FRR
for “avl and tree” returned four components.
Suppose the uscr still needs software to establish an
AVL tree data structure in the Ada language, but the

165

The user

routine must run on an AlX platform.
does not care about the original domain intended for
the component. To issue the query in the SA, the
user goes to the WWW page containing the Struc-
tured Abstract. The user marks Ada, tree, and AIX
in the appropriate boxes on the SA using the mouse

and enters avl in the text entry box. When com-
plete, the user clicks on the “Submit Query” icon.
In this case, the search returns exactly one compo-
nent from the FRR:

AVL Tree (Ada)
Score: 47, Total Bytes: 53323

This component appeared as one of the four AVL
trees in the original FRR query, but of the original
four only this component has tested, compiled, and
run on ATX. The ranking of 47 differs from the ori-
ginal (84) because of the addition of the terms Ada
and avl to the query.

We dynamically generate this search result page in
Mosaic, and present this information as IHyperText
links to the component information. ‘The uscr
would next click on the phrase AVL Tree (Ada) to
see detailed information such as test cases, usage
information, integration instructions, etc.

5.3.3 Submission scenario

Developers that supply reusable components to the
RSL use exactly the same SA method as they do for
searching; the SA works equally well in both roles.
In fact, because the submission abstract looks almost
identical to the scarch abstract we do not include it
as a figure. In the submission abstract we changed
some of the fixed text between SA fields so it targets
a supplier rather than a scarcher (i.c., rather than
start with “I need a...” the submission SA starts with
“T have a...). When the supplier completes the
form and clicks on the submit icon, we send the form
by electronic mail to the RSL librarian, who manu-
ally verifies the information and ensures it meets
I'RR standards for quality and completeness.

Many RSLs require that component suppliers
provide information which the SA does not contain.
This information will vary greatly depending on the
RSI, and does not effect the contents or use of SAs.
The RSL can solicite this additional information
from the supplier using any convenient technique; as
shown in Figure 5, we developed a companion
HTML form which acquires the information which
we happen nced, such as supplier name, etc.

6.0 Related Work

Since 1994 numerous repositories for all types of
information have emerged on the WWW. One of
these, at the National Institute of Standards and
Technology (NIST), provides an on-line cross-index
of available mathematical modeling and statistical
analysis software [3]. Called GAMS, it provides
centralized access to such items as abstracts, doc-
umentation, and source code of the software

modules that it catalogs. The GAMS WWW imple-
mentation uses a WAIS search across 10 attributes
via WAIS-sf “structured fields.” [fowever, WAIS-sf
structured fields only provide independent attribute-
value pairs rather than a coordinated, textual
description of a component such as provided by
Structured Abstracts.

7.0 Future Work

We intend to show how to automatically generate
SAs from classifier information already in an RSL
database. This will involve completing the necessary
CGI and Perl scripts necessary to extract formal
classifier information from the RSIL database, for-
matting the classifier information into Structured
Abstracts, and generating output to soft and possibly
bardcopy catalogs. The quality of the Linglish text
(subject-verb agreement, etc.) will depend on the
quality of existing data. However, we can supply
language rules to modify the standard SA template
and control the text output so that the resulting SA
sounds natural. This will allow us to create SAs at
very little cost and recover investments made when
classifying existing RSLs. We believe Structured
Abstracts will work with most RSLs and proposed
standard classification schemes [14].

8.0 Conclusion

This paper describes a Reusable Software Library
(RSL) interface and search tool implemented using
the WWW. In conjunction with a WWW browser,
we provide a simple, easy-to-use method to find and
extract reusable assets from a RSL and allow distrib-
uted access to RSL, assets from a variety of plat-
forms. Through the use of HTML forms, we
implemented functions normally found in
commercial-grade RSLs. Automatic gencration of
HTMIL, pages and the use of command scripts
further allows us to provide different views of the
RSL, such as search by subject. Finally, integrating
the RSL with WAIS provided a keyword search with
minimal effort. Qur WWW RSL cost less than 1%
of the cost to develop a standard RSL and has
quickly gainced favor due to its intuitive interface and
simple yet powerful information retrieval tools.

To help programmers search for and quickly assess
the important aspects of retrieved software, this
paper describes the Structured Abstract. SAs help

166

Figure 5. Additional Information Needed for Componenl Submission

solve the software classification problem by avoiding
the long lists of randomly-presented data used in
other techniques. SAs help solve the program
understanding problem by providing a natural-
language description of components in the same
format and style that programmers use to convey
key information about software.

We use the Structured Abstract in three ways. First,
we use SAs to help developers search for compo-
nents by describing what they need the same way
they would communicate that need to a colleague.
Second, we use SAs to help quickly assess the com-
ponent for reuse because all the key information
appears in a predictable order. Third, we use SAs to
allow dcvelopers to describe’” components. they
submit to the RSL.

Acknowledgements

We would like to thank the FRR contractor, Allen
Matheson of Cimarron (Houston, TX), for his key
role in implementing the Mosaic interface to the
FRR. We would like to thank Will Tracz for his
valuable guidance and input, Tom Loggia of the
LFS Reuse Stecering Group for his support, and

Gary Kennedy, manager of the Software Engincering
department at LFS in Bethesda, MD, from whom
the FRR receives its funding.

9.0 Cited References

[17 Berg, Klaus, “CLASSLIB - Class Management
and Reuse Support on a MVS Mainframe,”
Reusability Track of the 1994 ACM Symposium
on Applied Computing (SAC'94) Phoenix,
Arizona, 6-8 March 1994, pp. 53-58.

[2] Berners-Lee, Tim, Robert Cailliau, Ari
Luotonen, Henrik Frystyk Nielen, and Arthur
Secret, “The World Wide Web,” Communi-
cations of the ACM, Vol. 37, No. 8, August
1994, pp. 76-82.

[3] Boisvert, Ronald IF., “A Web Gateway to a
Virtual Mathematical Software Repository,”
2nd International World Wide Web Confer-
ence: Mosaic and the Web, Chicago, lllinois,
17-20 October 1994, htp.//gams.nist. gov/

167

(4]

(31

(6]

[7]

(8]

[%]

[1o]

(11]

[12]

(13]

Furnas, G.W., “The Vocabulary Problem in
[Tuman-System Communication,” Communi-
cations of the ACM, November 1987, pp.
964-971.

Lillie, Charles W., “Distributed Network of
Reuse Libraries Offers Best Approach to Suc-
cessful Software Reuse,” Proceedings of the 3rd
International Conference on Software Reuse,
Rio de Janeiro, Brazil, 1-4 November 1994,
pp- 207-208.

Linn, Marcia C. and Michael J. Clancy, “The
Case for Case Studies of Programming Prob-
lems,” Communications of the ACM, Vol. 35,
No. 3, March 1992, p. 121.

Maiden and Sutcliffe, “Analogously based
reusability,” Behav. & Info. Technology, Vol.
11, No. 2, March/April 1992, pp. 79-98.

Musser, David R. and Alexander A. Ste;)anov,
The Ada Generic Library. Springer-Verlag,
New York, 1989.

Poulin, Jeffrey S. and Martin Hardwick,
“Adapting Object-Oriented CAD Database
Concepts for Computer Aided Software Engi-
neering,” Proceedings of the International Sym-
posium on Database Systems for Advanced
Applications, Scoul, Korea, April 1989, pp.
201-208.

Poulin, Jeffrey S., and Kathryn P. Yglesias,
“Experiences with a [Faceted Classification
Scheme in a Large Reusable Software Library
(RSL),” Seventeenth Annual International
Computer Software and Applications Confer-
ence, 'hoenix, AZ, 3-5 November 1993, pp.
90-99.

Poulin, Jeffrey S. and Keith W. Werkman,
“Software Reuse Libraries with Mosaic,” 2nd
International World Wide Web Conference:
Mosaic and the Web, Chicago, Illinois, 17-20
October 1994.

Poulin, Jeffrey S., “Populating Software
Repositories: Incentives and Domain-Specific
Software,” to appear, Jowrnal of Spstems and

Software, fall 1995.

Prieto-Diaz, Ruben and Peter reeman, “Clas-
sifying Software for Reusability,” [EEE Soft-
ware, Januvary 1987, pp. 6-16.

168

[14]

[15]

[16]

[17]

RIG Technical Committee on Asset Exchange
Interfaces, “A Basic Interoperability Data
Model for Reuse Libraries (BIDM),” Reuse
Interoperability Group (RIG) Proposed
Standard RPS-0001, 1 April 1993.

Sindre, G. Karlsson, E. Paul, P. “Ieuristics
for maintaining term structures for relaxed
search,” Proceedings of the International Con-
Jference on Database and Expert Systems Appli-
cations (DEXA 92), Valencia, Spain, 2-4
September 1992, pp. 20-25.

Stay, J.F., “HIPO and Integrated Program
Design,” IBM Systems Journal, Vol. 15, No. 2,
1976, pp. 143-154.

Yglesias, Kathryn P., “Limitations of Certif-
ication Standards in Achieving Successful Parts
Retrieval,” Proceedings of the Sth International
Workshop on Software Reuse, Palo Alto,
California, 26-29 October 1992.

