
Melding Structured Abstracts anti the Worlcl Wide Web :for
Retrieval of Reusable Components

,Jeffrcy S. Poulin and Keith .J. Wcrkman

Lord Fdcral Systems

Owego, NY

i>o~jlil}j,kcitllw @]lfs.l(}ral.coil}

Abstract

Reusable Software Libraries (RSLs) ofien ,stffcr

j-em poor interjhm, too many fiwmal starldardr, high

lewels of training required for their us~j and moi~t of

all, a high cost to Imiki and maintain. [[ence, RSI,S

have laqyly ,faiIed to return the reuse bcngflts prom-

iwd by lheir developers This paper j?rst dcscrihes an

RSL imp@ncntation using the World JVide Web

(W[$”W) browser J40saic and shows how ii meets

tmsl RSL needs, avoid.f most RSL pitftlil~, and costs

oiIIy a ji-ac[ion of the COS1for lhe average commercial

RSL. Second, the paper describes a way to quickly

assess the imprwiant aspects of a piece of ,softM’are so

programmers can decide wh.elher or nol lo reuse it,

(Jsing the observation t?tat when programmers di.mm

software they lend to convey [Jte same kcy itrfbrmatiorr

i,t a somn~,hat predictable order, this paper describes

o method tO automat ical~ mimic lhi.r aclivity using a

Structured A bs~ras qf reusahk components. Struc-..—.. —
turcd A Mracts provide a natural, msy to use waj? ,for

developers to (J) search for components. (2) quick~l

assess the conrponen{ for me, and (3) submit compo-

rjenls 10 the RSL.

1..0 Overview

Tbc quest for ways to improve the soflware develop-

ment process has led man y organizations to pursue

the substantial benefits available ihrough software
reuse. Many orga~)izations focus their reuse initi-

atives on x rmrsc fibtar-y where members of the

organization can both store, reusable assets and

rstrieve asset.s when tl~cy need thcm. Traditional

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
SSR ’95, Seattle, WA, USA
0 1995 ACM 0-89791 -739-1 /95/0004,.. $3.50

RSL,s use specialized methods for component classi-

fication, search, and retrieval. IJnfortunatc[y, these

formal tools and techniques require both a large

invest ment to implement and substantial training to

use. i;or these reasons, many organizations have

seen little benetit from their 1{S 1.,s even though they

may contain a large number of quality assets. This

paper describes two initiatives aimed at remedying

this situation.

l;irst, we describe a software reuse library interface

and search ability using the Natiomd Center for
Super-Computer Research (NCSA) WWW bro wscr

Mosaic [2]. We developed this int.erfacc for the

I.oml Federal Systems RSI.,, which we call the

I“ederul Reuse Repository (FRR). Mosaic provides
an simple, easy-to-use method to search for and

extract reusable assets from the I;R R. With large

organizations investing as much as 80 to 130 person-
years to develop a formal RS1,, our Mosaic interface

cost. less than 10/0 of the cost to develop ancl nxlin-

tain a standard, comtnercial-qr. rality 1{S1, [l], [12],

[153. Despite the minimal investment, our Mosaic-

bascd RSI., has quickly gained favor due to its intui-

tive interface and powerful features.

Second, we have developed a technique that provides

the most needed reuse informal ion quickly and

naturally to the user. The method, called the Strw-

uwed Abstract (SA), works by always giving the

same, important informal ion in the same order.

Specifying the information to give guarantees the
user gets the information the user ncecls. Specifying

the order allows the user’s eye to train itself on the

spot in t.hc abstract containing the critical, decisive

data. Finally, presenting the information in an

natural-language abstl-act gives the information to

the user in a familiar way, mimicking the manner the

user would receive the information from a colleague
over the phone or in a conversation.

160

http://crossmark.crossref.org/dialog/?doi=10.1145%2F211782.211841&domain=pdf&date_stamp=1995-08-01

our work with St ructur.sd Abstracts investigates how

to best use the existing classification information

residing in government and industrial reuse libraries.

This allows us to Ievcrage the large investment made

in the original classification of components in these

RSLS. Because much of the information in an SA

already exists as part of a detailed classification, we

can automatically create a fast on-line or hardcopy

index of an RSL’S contents for use in any environ-

ment.

By using a standard SA template, we have an easy-

to-use method with which developers can search for

needed components. The standard template helps

users understand ret.ricved components so they can

quickly assess them for USC. The SA also provides a

standard templa(.e for describing components that a

developer wants to put into the 1<S1,. Final] y,

anyone familiar with software ,and a pointing device

can quickly grasp St twct ured Abstracts, thereby prac-

tically eliminating the neecl for any special reuse

Imowledgc or training.

2.0 An RSL using the WWW

We implemented the LFS FRR using the WWW

and an Mosaic interface to take advantage of the

explosive growth of the WWW within the company

[11]. ‘1’he I:RR contains several types of reusable

components, including documents and software in a

number of programming languages. ‘1’he easy-to-use

interface works with any WWW browser running on

virtually arty platform, including AIX,tm OS/2,tIrr
VM,tm [JNIX/m I>~S Windows,tm ~[ld Mac;m atld

provides high-performance searching by subject,

component source, and keyword search. Accessible

from virtually any platform at any location in the

company, t,hc W\TTW implemental ion replaces the

fbrmer mainframe-based RSL described in [12].

2.1 About the FRJl

The IJRR contains abstract data types, system utili-

ties, Application Programming Interfaces (APIs),

and other general-purpose functions that have wide

application across LFS. AJthough the FRR con-

ttins some clomai.n-specific collections, we consider
the FRR a d{>tllai[~-i~~clepenclent RSJ.,. Every soft-
ware asset. in the 171<R comes with a complete set of

support ing information to help users understand and
integmte the software into their product. J;or

example, if a user selects the Adabn implementation

of the “J>OSIX_Signals” package from the General

Purpo.w Ada library, the RSL returns an abstract,

interface information, usage instructions, etc., in

addition to the Ada body and Ada specflcation.

Loral FS Reuse - FRR

You’ ve reached the home page for the Lorai Federal Systems Reuse
Repository (FRR). The FRR contains severaI hundred reusable software
and document componentfi readrmre aborrt the FRR, and see what’s

comirw soon! Find out about external reuse sources.

FRR. hierarchical view (arranged by Language~lbrW)

W

--?+ ,,

. - ~ FRR. arranrzed bv Subiect

via WAIS)

Click here to contact the FRR Maintainer.

Allen Ma(heson owns this page.
Last upalrted: 22 Feb 95

Figure 1. The FRR 1Iome Page

2.2 Searching the FRR

‘1’he FRR currently provides three ways to locate a

needed component. As shown in Figure 1, a user

can search the lRR using a:

1. HierarcJtical view, arranged by Language or

Library,

2. Subject listing, and

3. Keyword search.

The hierarchical view firsts narrows the search based
on implementation language. If the user selects Ada,
the Mosaic page shown in Figure 2 appears. This

page lists the various collections of Ada software in

t hc FRJ<; users will find it the fastest way to locate a

particular component if they already know which

collection it comes from; for example, that they want
a component from the Boodr-zt da collection.

I Iowcvcr, a user often does not know (or care)
~,here a colnPonent comes from and would rather

161

Ada Reuse Collections

Select the library you need:

e Advanced Automation Svstem (AAS)

● Ada Run Time Environment (ARTE)
● Booth – Ada
o Booth – Ada Enhanced
● Common Ada Missile Packages (CA MP)

a Circuit Card Assemblv and Processing Svstem (CCAPS)
e General Pumose Ada
● Karlsruhe Abstract Data Tvces
o Realtime And Distributed Ada Services (RADAS)
● Sustainirw Base Information Svstems (SBIS) APIs _

Allen Mathcson owns this page

Last updated: 21 Feb 95

Figllre 2. TIIe Ada Language 1Iome Page

simply search for components that perform a partic-
ular function. The l~R R supports this need with the
second search option: ‘17te FRR, arranged by Subject.

Figure 3 shows a portion of the page produced if the
user selects thk option. For example, if the user

needs a monilor or a semaphore, the user would click

cm Synchronization Components on this component

listing.

FRR Component Listing by Subject

Seleet the type of component you need:

● Bit/String Manipulation Components
● Command Line Components
● co mmunication Co moonents
● Data Structures Co mDOnentsJlong list!)
. File Services Comuonents-
● Grar)hics Components
● Inout/ OutDut Comr)onents
● Miscellaneous Utilities
● Numerics and Math Packages
+ OS (POSIX) Interfaces
. Real–Time Components
● Sortin~ and Searchine Routines
● Synchronization Components

Figure 3. TIIC Subjccl. lLisl.ing [-tome Page

17inaUy, the third search option consists of a simple

keyworcl search. ‘Me F RR keyword searc}~, imple-

mented using publicly available Wide Aea Informa-
tion Services (WAIS) software, supports Ilooleau

queries and I’orter Stemming (partial matches). l-he

search runs very fast and rank-orders the search
results to help indicate which components most
closely meet a developer’s needs. For example, the
query “avl and tree” returned the following in less

than 2 seconds:

AVL Tree (Ada)

Score: 84, Total Bytes: 53323

Avl Tree Row Representation (Ada)
Score: 62, Total Bytes: 35538

AVL Tree (Ada)
Score: 60, Total Bytes: 29352

AVL Tree Repr Acc (Ada)

Score: 53, Total Bytes: 40072

3.0 The Classification Problem

Large Reusable Software Libmries (RSLS) often usc

a formal, extensive classflcation mechanist to

ciescribe their contents. This mechanism provides

detailed information upon which a user can search

for components. The classification can greatly

improve search precision, especiaUy in large organ-

izations or in situations where numerous R S1.s inter-

operatc by sharing access to components across a
network or the Internet [5].

Ilowever, the up-front presentation of thk informa-

tion causes a number of problems because of the dif-
ficulty of quickly extracting the relevant reuse

information from the plethora of other data [10].

To assist in reuse, the RSL must present the right
level of information to the reuser. Unfortunate y,

using an extensive classification scheme requires the

user to have a working knowledge of the issues and
techniques surrounding software class~lcation [13].

The reuser must especially have an understanding of

the scheme used by the user’s particular RSL [17].

Attempts to help casual or infrequent reusers locate

components similar to those asked for, such as con-

ceptual closeness graphs m synonym lists, aid in

retrievability but do nothing for understandability
and rapid reuse assessment. Mapping the user’s idea

of what the user needs to an existing component

must happen quickly, eff’cieut] y, and painlessly [9].

Expcriencc shows that reading a long list of compo-

nent classifiers, many of which may not have itnmc-

diate relevance, does not give an intuitive feel for the
applicability of a particular module to a specific situ-
ation. In fact, most programmers typically assess the

162

applicability of a potentially reusable part in n mat tcr

of seconds, much as potential buyers of a house get

their most lastiug imprcssio nfrotnit’s “rmrbappcai. ”

/\ rcuser nrxxls to make the most of those first pre-

cious scccmds and make the best possible muse deci-

sion.

4.() Understanding programs

Several program understanding techniques seek to

help users deal with the flood of information pro-

vided by iists of facet and attribute-value classilkrs.

Centrzd to these techniques lies the presrmtation of

information in a standard format. For example,

input-I’roccss-Output (II’()) diagrams provide an

early method of standardii,ing component

des&iptions. A 11’() diagram lists all program

inputs, outputs, and a description of each process or

function provided by the software [16].

Musser and Stepancrv [8] adopted a standard set of

information to describe the components in their Ada

generic fist package library. ‘IWs information

i.nchrdcs the interface specification, a short text

description of the function, complexity metrics,

examples, and dependencies on other routines.

I Iovmver, just. as with long lists of class~lers, the

method presents the information in a layout which

forces the user’s eye (and consciousness) to jump

around the page to acquire and digest the data the

user wants, in the orcicr the user wants it.

I/inn and Clancy present a standard module repre-

sentation which they fu~d useful in teaching pro-

FIaJllJning to bcginncts [6]. By providing a

schematic of a program and its function, they ailow

the student to picture the activities of the module

and Icarn how 10 builcl other modules. From a pro-

gramming uudcrstanding pcrspectivej such ‘ttem-

platcs” make it easy to comprehend how a module

works <and how to integrate it into a product.

llowcvcr, the supplier must painstakingly construct

t hc template by hand and although the template

follows a standard format, the depth of dctad does

not make it a suitable “quick assessment,” mech-

anism for a reuscr.

Natural language methods sewn uniqucl y absent

from current approaches. In fact, a recent stucly by

—

Maiden and Suttcliff examined the analytic am{

problcm solving strategies used by analysts to under-

stand and reuse program specifications [7]. ‘1’hey

founcl that although results varied by individual, ana-

lysts prcfcrrcd to assitnilatc and undcrstami mociulcs

from a narrative describing the underlying reusable
domain rather than from the formal specifications

norrnall y provicicd by a RSL. WC bciieve that any

effective rapid assessment methrxi should make use

of this preference.

5.0 Structured Abstracts

Structured Abstracts (SAS) help SOIVCthe component

ciassflcation anti program umicrstamiing problems

by presenting software descriptions in a logical, nar-

rative form and always providing the same informa-

tion in the same orxier. 13ccause the SA uses a

naturai text presentation, the rcuser finds the SA

easy and straightforward to understanci. Most

importantly, SAS transform the process of evaluating

components from one of sccanning a ranciornly -

orcicred list of (facet, kwn), (at lr-ibute, value) pairs to

one of reading an ortierly, concise, natural-ianguagc

narrative. Finaiiy, SAS have uscs beyomi searching

for and assessing components; rcusers can also usc

SAS to supply components to the RSI..

5.1 Concept

l’he method uses a paradigm analogous to the way

programmers informality exchange information about

software, such as when mcctiug in smail groups or in
discussions over the phone. “1’he programmers tend

to quickly convey the key aspects of the sc)ftwarc in

a fcw short sentences, thereby telling the intermtmi

party, in a very concise fashion, just enough inf(~r-

rnation to j udgc whether or not there exists a corn-

porrcnt of interest, ancl if so, whether or not the

component merits furti~er investigation.’

The following key bits of information about compo-

nents consistently appear in these conversations:

1, Programming language,

2. ikvironrncnt,
3. Function performed by the routine,

4. objects manipulated by the routine,

1 In wlkh case more clef.aile(i programming undcrslandirlg mcdvxls may ripply.

163

5. The plat[orm or operating system upon which it

runs, and,

6. Elcmcmts which make up the component.

And, if the party shows interest:

7. Whetc to get more information (a contact).

Further observation shows that the orcicr of the
above information tends to remain constant (e.g.,

language, function, object, platform, and contact).

‘~he SA implements these observations by using the

following layout:

ltcms in the SA

1. Computer language and Component type

2. Domain

3. Iiunction

4. Data
5. Operating Systwn

6. (Element., Ii,lerncnt)

7. Contact

The basic SA template ties infortnation from the

RS L database (shown here underlined and in paren-

thesis) with default connecting text, shown here in

italics. If a software component provides more than

one function, an optional second sentence may give

that function. The SA template looks like this:

A (Comrmter Language) (Component Type)

for (Domain) [/rut provide (Function) on

(~) data. A’uns on (Operating System).

Includes (&ncnt, ... , Element). Contact

(Contact).

%2 Sample Structured Abstracts

Ilxtracting classification and descriptive clement

information into the template may rcsuh in Strrrc-

t ured Abstracts similar to those below:

C + + classes that provide text buttons and

slide bars for the ~J[jl domain. Runs on

OS/2 and AIX. Includes documentation,
abstract, and test cases. Cent act. .Iohn Stnith

(smithj@abc,lfs.loral .tom).

C functions that provide calendar operations

on clalc ciata for the MIS domain. Calcu-

lates days between dates, date format con-

versions (,lu]ian, Roman), day of month,

and day of yew-, Runs on Zm-tech, 130rland,

and ‘I”op Speed cotnpilcrs. Inclu(ies liccnsc

agreement, documentation, and sample code.

Contact .Joan Brown (brownj @abc.lfs.loral.

co m) .

Ada packages that provide queues, stacks,

sets, tnaps, and bags for the Abstract Data

‘1’ype dom~in. Runs on Alsys, Vcrdix, and

MI L,SI’IK Ada compilers. Includes license

agreement, documentation, examples, and

test cases. (kntac.t Bill Iricd (fricdw@

abc.ifs.loral.tom).

5.3 implementation

we have implemented the Structured Abstract for

component search and component submission. For

the initial implementation we combined IIyperText

i14arkup Language ([i’rML) forms and the Common

Gateway Interface (CG1) capability of the WWW

with Pcrl scripts to route the selections to a
wAJS.indexed database. A couple of points add

merit to this approach. First, we continue to require

only minimal investment in software and itnplemen-

tation. Second, when we indexed the entire 1’RR

collection using WA IS, we used the formal classifica-

tion of the original RSL. Therefore, the facets, attri-

butes, and terms used in the IITML forms exact~

match those used to index the components with

WA IS. This leads to a high degree of exact matches,

unlike that of most keyword search mechanisms [4].

The current implementation works for software com-

ponents only. We have not attempted to use SAS

for other types of reusable assets, such as documents.

5.3.1 Experiences

As reflected in the following scenarios and figures,

we have made several modifications to our SA

search and submittal forms based rm user feedback.

First, sophisticated users indicated a preference fbr

the simple keyword search (the third FRR search
option) because they could create very specific

Boolean searches that they could not re-create using

the SA. To address this, we added an additional
“keyword” fieJd so users could use the SA in con-

junction with free text search.

Second, most users did not use the ‘(domain” field

when constructing queries. This fo]lows from our

view of the FRR as a (!omain-i~lciepel)clcrlt RSI,.

164

Figure 4. ‘The S1.ruclured Abstract Search Facility

Wc considered deleting domain from our implemen-
tation of the 5A; “however, the existence of some

domain-specific collections in the FR R and the fact

that some users insisted on retaining the field caused

us to keep it. The SA currently has a radio button

which explicitly makes the 5A domain-sensitive.

5.3.2 Query scenario

Figure 4 shows the 5A search mechanism. Recall
from Section 2.2 that a keyword query of the FRR

for “avl and tree” returned four components.

Suppose the user SIill needs software to establish an

AVL tree da! a structure in the Ada language, but the

routine must run on an AIX platform. The user

does not care about the original domain intended for

the component. To issue the query in the 5A, the

user goes to the WWW page containing the Struc-
tured Abstract. The user marks Ada, tree, and A 1X

in the appropriate boxes on the SA using the mouse

and enters ad in the text entry box. When com-

plete, the user clicks on the “Submit Query” icon.

In this case, the search returns exactly one compo-

nent from the FRR:

AVL Tree (Ada)

Sco~e: 47, Total Bytes: 53323

165

This component appeared as one of the four AVL

trees in the original I;R R query, but of the original

fbur only this ccmpc)ncnt has tested, ccmpilcd, and

run on A 1X. ‘l”he ranking of 47 differs from the ori-

ginal (84) because of the addition of the terms Ada
and av2to the query.

We ciynarnicaily generate this search result P3gc in

Mosaic, and present this information as I Iyper’Uext

links to the component inibrmation, The user

wouki next click on the phrase A VL Tree (Ad~~) to

see cietaiicd information such as test cases, usage

information, integration instructions, etc.

5.3.3 Submission scenario

Developers that supply reusable components to the

1{S L use exactly the same SA method as they do for

searching; the SA works equally weli in both roles.

In fact, because the submission abstract looks ahnost

identical to the search abstract wc do not include it
as a figure. in the submission abstract we changed

some of the fixed text between SA fields so it targets
a supplier rather tha o a searciler (i .c., rather than

start with “I need a... ” the submission SA starts with

“I have a... “). When the supplier completes the

form and clicks on the submit icon, we semi the form

by electronic mail to the RSI. librarian, who manu-

ally verities the information and ensures it meets

17RR standards for quality and completeness.

Many RSLS require that component suppliers
provide iltiormation which the SA cioes not cent sin.

This information will vary greatly depending on the

1{S L anti does not effect the contents or use of SAS.

The RSL can solicite this additional information

from the supplier using any convenient technique; as

silown in l:igure 5, we developed a companion

Ill”MI., form which acquires the information which

we happen ncccl, such as supplier name, etc.

6.0 Related Work

Since 1994 numerous repositories for ail types of

information have emerged on the WWW. One of

these, at the NationaJ Institute of Standards and

‘I”echno]ogy (NIST), provides an on-line cross-index

of available mathemat icai mocieling and statistical
anaiysis software [~3], Called GAMS, it provides

centralized access to such items as abstracts, doc-

umentation, and source cocie of the software

modules that it catalogs. ‘1’he GAMS WWW imple-

mentation uses a WAIS search across 1(] attributes

via WAIS-sf “structured fields. ” IIowcvcr, WAIS-sf
st ruct urcci fiekis oni y pr-ovicie independent attribute-

value pairs rather tlmn a crmrdinateci, textual

description of a component. such as prnvicied by
Structured Abstracts.

7.0 Future Work

We intend to show how to automatically generate

SAS from classifier information already in an RSL

ciatabase. This will involve completing the necessary

CGI ami Pcrl scripts necessary to extract formai

classifie~- information from the R S1., database, for-

matting the class~ler inforrnat ion into St ructureci

Abstracts, and generating output to soft and possibly

hardcopy catalogs. The quality of the English text

(subject-verb agreement, etc.) will depend on the

quality of existing data. However, we can supply

language rules to modify the standarci SA tempiate

anti controI the text output so that the resulting SA

sounds natural. This will allow us to create SAS at

very Iitt Ie cost and recover investments made when

classifying existing RSLS. We believe Structured

Abstracts will work with most RSI,S and proposed

standard classification schemes [14].

8.0 Conclusion

‘lhis paper describes a. Reusable Software L,ibrary

(RSL) interface and search tool implemented using

the WWW. In conjunction with a WWW browser,

we provide a simple, easy-to-use method to tirxi and

extract reusable assets from a RS L and allow distrib-

uteci access to RSL assets from a variety of plat-

forms. Through the use of IITML forms, we

implemented functions normally found in

commercial-grade RSLS. Autotnatic generation of

I lT”’M L pages and the use of commarrti scripts

further allows us to provide different views of the
RSL, such as search by subject. Finail y, integrating

the RSL with WAIS provided a keyword search with

minimal effort. Our WWW RSL cost less than 10/0

of the cost to develop a stanclard RSL and has

quickly gained favor due to its intuitive interface and

simple yet powerful information retrieval tools.

To help programmers search for and quiciciy assess

the important aspects of rctricveci software, this

paper describes the ,Ttnxtzwed Abstract. SAS help

166

Figure S. Additional Information Needed for Componenl, Submission

solve the software classification problem by avoiding

the long lists of rauciomly-presented data used in

other techniques. SAS help solve the program

understanding pro b]em by providing a natural-

language description of components in the same

format and style that programtners use to convey

key information about software.

We usc the Structured Abstract i.n three ways. lyirst,

we usc SAs to help developers search for compo-

nents by describing what they need the same way

they would communicate that need to a colleague.

Second, we use SAS to help quickly assess the com-

ponent for reuse because all the key information

appears in a prediet.able orcler. Third, we use SAS to

allow developers to describe components they

submit to the 1{S L.

Ackllow’leflgclncrlts

We would like to thank the FRR contractor, Allen

Ma.theson of Cirnarron (1 louston, TX), for his key

role in implementing the Mosaic inleiface to the
I~R R. Wc wo~lld like to thank Will Tracz for his

valuable guiciance and input, Tom Loggia of the

I,FS Reuse Steering Group for his support, and

Gary Kennedy, manager of the Software Engineering

department at LFS in Bethesda, MD, from IvhoJn
the I-;RR receives its funding.

9.0

[1]

[2]

[3]

Cited References

Berg, Klaus, “CLASSLIB - Class Management

and Reuse Support on a MVS Main frame,”

Rwsability Track of [he 1994 A Chf Symposium

on Applied Computing (SA <194) I’hoeni x,

Arizona, 6-8 March 1994, pp. 53-58.

Berners-Lee, Tim, Robert Cailliau, Ari

Luotonen, I Ienrik Frystyk Nielen, and Arthur

Secret, “The World Wide Web,” Communi-

cations of the ACM, Vol. 37, No. 8, August

1994, pp. 76-82.

Boisvert, Ronald P., ‘CA Web Gateway to a
Virtual Mathematical Software Repository,”

2nd International World Wide Web Confer-

ence: Mosaic and the Web, Chicago, Illinois,

17-20 October 1994, ht[p://gams.nist. govj

167

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

17urnas, G.llT., “Tile Vocabulary Problem in

IIuman-Systcxn Communication ,“ Communi-

cations of the ACM, November 1987, pp.

964-971.

Lillie, Charles W., ‘<Distributed Network of

Reuse Libraries Offers Best Approach to Suc-

cessful Software Reuse,” Proceedings of (he 3rd

international Conference on Sojhvare Reuse,

Rio de Janeiro, Brazil, 1-4 November 1994,
Pp. 207-208.

Linn, Marcia C. and Michael J. Clancy, “The

Case for Case Studies of Programming Prob-

lems,” Communications of the ACM, Vol. 35,

No. 3, March 1992, p. 121.

Maiden and Sutcliffe, “Analogously based

reusability y,” Behav. & Info, Technology, Vol.

11, No. 2, March/April 1992, pp. 79-98.
.

Musser, David R. and Alexander A. Stepanov,

The Ada Generic Library. Springer-Verlag,

New York, 1989.

Poulin, .Jcffrey S, and Martin Hardwick,

“Adapting Object-Oriented CAD Database

Concepts for Computer Aided Software J.3ngi-

neering,” Proceedings of the International Sym-

posium on Database Systems for Advanced

Applications, Seoul, Korea, April 1989, pp.

201-208.

Poulin, Jeffrey S., and Kathryn P. Yglesias,

“Experiences with a Uaceted Classification

Scheme in a Large Reusable Software Library

(RSL),” Seventeenth Annual International

Computer Soft ware and Applications Confer-

ence, I’hocnix, AZ, 3-5 November 1993, pp.

90-99.

Poulin, .Jeffrey S. and Keith W. Werkrnan,

‘ ‘.Soft ware Reuse Ltbraries with Mosaic, ” 2nd

international Worid Wide Web Conference:

Mosaic and the Web, Chicago, Illinois, 17-20

October 1994.

Poulin, Jeffrey S., ‘(Populating Software

Repositories: Incentives and Domain-Specific
So ftware,” to appear, JournaI of Systems and

Software, fall 1995.

Prieto-Diaz, Ruben and Peter Freeman, “Clas-

sifying Software for RcusabiIit y,” IEEE Soft-

ware, .January 1987, pp. 6-J 6.

[14]

[15]

[16]

[17]

RIG ‘Iechnicd Committee on Asset Exchange

Interfaces, “A Basic Interoperabilit y Data

Model for Reuse Libraries (BIDM),” Reuse

Interoperabiii~y Group (RIG) Proposed

Standard RPS-OOOi, 1 April 1993.

Sindre, G. Karlsson, E. Paul, P. “I Heuristics

for maintaining term structures for relaxed
search,” Proceedings of the lnternationa[Con-

ference on Database and Expert Systems Appli-

cations (DEXA 92), Valencia, Spain, 2-4

Septetnber i992, pp. 20-25.

Stay, J. F., “HIPO and Integrated Program

Design,” IBM Systems .iournal, Vol. 15, No. 2,

1976, pp. 143-154.

Yglesias, Kathryn P., “Limitations of Certif-

ication Standards in Achieving Successful Parts

Retrieval,” Proceedings of the 5th International

J4’orkshop on Software Retue, Palo Alto,

California, 26-29 October 1992.

168

