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A new version of a Fortran multiprecision computation system, based on the Fortran 90
language, is described. With this new approach, a translator program is not required—transla-
tion of Fortran code for multiprecision is accomplished by merely utilizing advanced features of
Fortran 90, such as derived data types and operator extensions. This approach results in
more-reliable translation and permits programmers of multiprecision applications to utilize the
full power of Fortran 90. Three multiprecision data types are supported in this system: multi-
precision integer, real, and complex. All the usual Fortran conventions for mixed-mode opera-

tions are supported, and many of the Fortran intrinsic, such as SIN, EXP, and MOD, are
supported with multiprecision arguments. An interesting application of this software, wherein
new number-theoretic identities have been discovered by means of multiprecision computations,

is included also.
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1, INTRODUCTION

Readers may be familiar with the author’s previous multiprecision system

[Bailey 1993], which consists of the TRANSMP translator program and the

MPFUN package of multiprecision (MP) computation routines. Together they

permit one to write straightforward Fortran 77 code that can be executed

using an arbitrarily high level of numeric precision.

From its inception, the TRANSMP program was intended only as an

interim tool until Fortran 90 was available. This is because advanced Fortran

90 features such as derived data types and operator extensions permit one to

implement multiprecision translation in a much more natural way. Now that

day has arrived—Fortran 90 is currently available on several computer

systems, and it soon will be available from all major vendors of scientific

computers. Accordingly, the author has written a set of Fortran 90 modules

that permit the user to handle MP data like any other Fortran data type.
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With the new Fortran 90-based system, one declares variables to be of type

MP integer, MP real, or MP complex using Fortran 90 type statements. With

a few exceptions, one can then write ordinary Fortran 90 code involving these

variables. In particular, arithmetic operations involving these variables are

performed with a numeric precision level that can be set to an arbitrarily

high level. Also, most of the Fortran intrinsic functions, such as SIN, EXP, and

MOD, are defined with MP arguments.

In comparison to the TRANSMP approach, there are a few disappoint-

ments. To begin with, one has to give up the ability to run MP source code,

without change, as a standard single-precision or double-precision program.

Also, features such as read/write statements are not as elegant in the new

system—subroutines must now be called for formatted MP read and write.

On the other hand, features such as generic functions work much better in

the Fortran 90 version. Also, the coverage of Fortran features is more

complete with the Fortran 90 version than with TRANSMP-programmers

can now utilize the full power of the Fortran 90 language in an MP applica-

tion. Another important advantage of the Fortran 90 approach is that a very

reliable translation is produced, since the process of translation is performed

by the Fortran 90 compiler itself, rather than by the TRANSMP program.

This article gives an overview of this new software, including a brief

summary of the instructions for usage. It also describes an interesting

application of this software to mathematical number theory, showing how MP

calculations can be used to discover new mathematical identities.

This software is available by sending electronic mail to rep-request@

nas. nasa. gov. Include send index as either the subject line or the text of the

first message to this address. It is also available by using Mosaic software at

the address http:// www.nas. nasa.gov / RNR / software. html.

2. THE FORTRAN 90 MP TRANSLATION MODULES

The new MP translator is a set of Fortran 90 modules. These translation

modules serve as a link between the user’s program and MPFUN: the library

of MP computation routines. To utilize the MP translation facility, one inserts

the following line in the main program of the user’s application code, as well

as in any subprogram that performs MP operations:

USE MPMODULE

This line must be placed after the PROGRAM, SUBROUTINE, FUNCTION, or

MODULE statement, but before any implicit or type statements. This USE

statement connects the subprogram with the Fortran 90 translation modules
that define the MP data types and operator extensions.

At the beginning of the executable portion of the user’s main program, even

if the main program itself performs no MP operations, one inserts the

following line:

CALL MPINIT

The routine M PIN IT sets MPFUN library parameters, such as the precision

level, and precomputes constants needed in transcendental function routines

(see Section 4).
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Three derived types are defined in the translation modules: MP-INTEGER,
MP_REAL, and MP-COMPLEX. In an application program, one may explicitly

specify MP variables using Fortran 90 type statements, such as:

TYPE (MP_INTEGER) IA, IB, [c
TYPE (MP_REAL) A, B, c, D, E
TYPE (MP_COMPLEX) z

Alternatively, one may implicitly declare variables to be of one of the three

MP types by using an IMPLICIT statement, such as:

IMPLICIT TYPE (MP_REAL) (A-H, o-z)

MP constants are handled a bit differently than with TRANSMP. These are

now specified as literal constants, i.e., ‘1.23456789’. One may directly assign

an MP constant to an MP variable, but if an MP constant appears in an

expression, it must be as the argument to MPI NT, MPREAL, or MPCMPL,
depending on whether it is to be treated as MP integer, MP real, or MP

complex. For example:

1A= ‘333333333333333333333333333’
A = ‘1 .41421356237309504880 168872420 E-1O’
B = MPREAL (’1 .25’) /N
Z = 2 * MPCMPL (’1 .2345’, ‘6.7890’)

Note that without the quotes to indicate an MP constant, the integer constant

in the first line would overflow, and the floating constant in the second line

would not be converted with full MP accuracy.

Quotes are not really required in the third line, since 1.25 can be converted

exactly with ordinary arithmetic. However, note that simply writing B =

1.25 / N would not give a fully accurate result if, for example, N is an ordinary

integer with the value 7 (although it would be fine if N is 8). This is because

the division operation would be performed using ordinary single-precision

arithmetic, and the inaccurate result would then be converted to MP and

stored in B. The usage of the function M PREAL in the third line insures that

the division is performed with MP arithmetic. This is an example of the care

one must exercise in programming to insure that intermediate calculations

are performed with MP arithmetic when required. In this respect, the new

Fortran 90 translation system is like the FAST option of the TRANSMP

program.

The expressions in lines three and four are examples of mixed-mode

operations. Virtually all such operations are allowed, and the result is of the

type that one would expect. For example, the product of an MP real variable

and an integer constant is of type MP real, and the sum of a complex variable

and an MP real variable is of type MP complex. The only combinations that

are not currently allowed are some exponentiations involving MP complex

entities—these are defined only when the exponent is an integer.

Unformatted read and write statements with MP variables in the 1/0 list,
such as WRITE (1 1) A, B, are handled as expected. But formatted and

list-directed read and write statements, i.e., WRITE (6, * ) A, B, will not
produce the expected results for MP variables. These operations must now be
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handled using the special subroutines MPREAD and M PWRITE. The first

argument of either routine is the unit number. Arguments 2– 10 are the list of

MP variables to be input or output. Within a single call to either routine, the

MP variables in the list must all be the same type, either MP integer, MP

real, or MP complex. Examples are:

CALL MPREAD (5, 1A)
CALL MPWRITE (6, A, B, C, D, E)

An example of the format for input or output of MP numbers is

10 “ 40 X – 3.141 5926535897932384626433832795028841 971,

On input, the exponent field is optional, and blanks may appear anywhere;

but a comma must appear at the end of the last line of mantissa digits.

By default, only the first 56 mantissa digits of an MP number are output by

M PWRITE, so that the output is contained on a single line. This output

precision level can be changed by the user, either as a default setting or

dynamically during execution (see Section 4).

It should be noted that the Fortran 90 translation modules generate calls

to the standard arithmetic routines of the MPFUN library. If one wishes to

utilize the “advanced” routines, which are intended for precision levels about

1000 digits (see Section 5), contact the author.

3. MULTIPRECISION FUNCTIONS

The functions M PI NT, MPREAL, and M PCMPL were mentioned in the previous

section in the context of MP constants. These three functions are actually

defined for all numeric argument types, ordinary and MP. The result is MP

integer, MP real, or MP complex, respectively, no matter what the type of the

argument. Thus one may use MPREAL (A) to convert the ordinary floating-

point variable A to MP real.

The corresponding Fortran type conversion functions INT, REAL, DBLE,

CMPLX, and DCMPLX have also been extended to accept MP arguments. The

result, in accordance with Fortran language conventions, is of type default

integer, real, double precision, complex, and double complex, respectively.

Note that REAL (1A), where 1A is an MP integer, is not of type MP real—if

that is required, then MPREAL should be used instead.

Many of the other common Fortran intrinsic have been extended to accept

MP arguments, and they return true MP values as appropriate. A complete

list of the Fortran intrinsic functions that have been extended to MP is given

in Table I. In this table, the abbreviations I, R, D, C, DC, MPI, MPR, MPG
denote default integer, real, double precision, double complex, MP integer,

MP real, and MP complex, respectively.

Some additional MP functions and subroutines that users may find useful

are demonstrated in the following examples. Here N is an ordinary integer

variable, and A, B, and C are MP real.

A= MPRANF ( )
B = MPNRTF (A, N)
CALL MPCSSNF (A, B, C)
CALL MPCSSHF (A, B, C)
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Function

Name

ABS

ACOS

AIMAG

AINT

ANINT

ASIN

ATAN

ATAN2

CMPLX

CONJG

Cos

COSH

DBLE

DCMPLX

EXP

Table I MP Extensions of Fortran Intrinsic Functions

Arg.

1

MPI

MPR

MPC

MPR

MPC

MPR

MPR

MPR

MPR

MPR

MPI

MPR

MPC!

MPC

MPR

MPC

MPR

MPI

MPR

MPC

MP1

MPR.

MPC

MPR

kIPc

Arg.

2

MPR

MPI

MPR

MP1

MPR

Result

MPI

MPR

MPR

MPR

MPR

MPR

MPR

MPR

MPR

MPR

c

c

c

MPC

MPR

MPC

MPR

D

D

D

DC

DC

DC

MPR

NIPC

Function

Name

INT

LOG

LOGlO

MAX

MIN

MOD

NINT

REAL

SIGN

SIN

SINH

SQRT

TAN

TANH

Arg.

1

MPI

MPR

MPC

MPR

MPC

MPR

MPI

MPR

MPI

MPR

MPI

MPR

MPR

MPI

MPR

MPC

MPI

MPR

MPR

MPC

MPR

MPR

MPC

MPR

MPR

Arg.

2

MPI

MPR

MPI

MPR

MPI

MPR

MPI

MPR

Result

I

I

1

MPR

MPC

MPR

MPI

MPR

MPI

MPR

MPI

MPR

MPI

R

R

R

MPI

MPR

MPR

MPC

MPR

MPR

MPC

MPR

MPR

These calls produce a pseudorandom number in (O, 1), the Nth root of A, both

the cos and sin of A, and both the cosh and sinh of A, respectively. The above

call to MPN RTF k equivalent to, but significantly faster than, the expression
A x * (MpREAL (1) / N). This is because the latter expression requires log and

exp calculations, whereas MPNRTF uses an efficient Newton iteration scheme.

Similarly, the above call to MPCSSNF executes faster than B = COS (A) and

C = SIN (A), although the results are the same. A similar comment applies to

MPCSSHF.

4. GLOBAL VARIABLES

There are a number of Fortran 90 global variables defined in the MP

translation modules and in the MPFUN package. These variables, which are

listed in Table II, can be accessed by any user subprogram that includes a
USE MPMODU LE statement. The entries in the column labeled “Dynam.

change” indicate whether the values of these variables may be dynamically

changed by the user during execution of the program.
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Table II. Global Variables

L’ariab]e Dynam. Initial

Name Type Change Value Description

MPIPL Integer No (Iser sets Initial (and maximum) prerlslon, in digits

MPIOU Integer No ~Tser set,~ Initial output preclslon, in digits,

MPIEP Integer No user sets loglo of init]al MP epsilon

MPWDS Integer No See text Initial (and max]mum) precision, In words.

MPOUO Integer Yes MPIOU Current output precision, in dlg]ts,

MPEPS M P real Yes 1OMPIEP Current L’l P epsilon value,

MPL02 M P real No log, 2

MPL1O LIP real No log, 10

MPPIC MP real No T

MPNW Integer 1’?s MPWDS Current preris]on level. In words.

MPIDB Integer l’es o hlPFCTN debug level,

MPLDB Integer Yes 6 Logical unit for debug output,

MPNDB IIlteger Yt=s ~~ No. of words In debug output

MPIER Integer Yes o hlPFUN error indicator

MPMCR Integer Yes 7 Cross-over point for advanced rout,lues

MPIRD I]lteger 1’?s 1 ILIPF(TN ro)lnding optioIl

!IPKER Ir\t,eger }’?s o Array of error options,

The first three global variables listed in Table II are set by the user in

PARAMETER statements at the beginning of the file containing the MP

translation modules. M PIPL is the initial precision level, in digits, and is often

the only parameter that needs to be changed. MPIOU, the initial output

precision level, is ordinarily set to 56, although it may be set to as high as

MPI PL if desired. The parameter MPI EP, the initial MP “epsilon” level, is

typically set to 10 – M PIPL or so.
The call to MPI NIT at the start of the user’s main program sets initial

values for the next six variables in the list. The final eight global variables in

Table II are used in the MPFUN package and assume the values as shown.

See Bailey [ 1990b] for additional details on the definition and usage of these

variables.
As noted in Table II, M PN W is the current numeric precision level, mea-

sured in machine words. On IEEE and most other systems, the approximate

corresponding number of digits is given by (M PN W – 1) X 24 log lo 2. If one

wishes to perform the same computation with a variety of precision levels

without recompiling the translation modules, or if one needs to change the

working precision level dynamically during the course of a calculation, this
may be done by directly modifying the parameter MPNW in the user program,

as in the following:

MPNW = 127
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But be careful not to change MPNW to a value larger than MPWDS, the initial

precision level in words; otherwise array overwrite errors will occur. MPWDS
is computed from M PIPL, the user-defined initial precision level in digits,

using the expression int[MPIPL\(24log102) + 1], where int denotes greatest

integer. Because of possible numerical differences, it is recommended that

users reference the system’s value of M PWDS, rather than attempt to recalcu-

late this value using the above formula. On Cray vector systems, the constant

24 log102 = 7.22472 . . . in the above discussion should be replaced by

22 log102 = 6.62266.00.

With regards to the MP epsilon MPEPS, quotes should be used when

changing the value of this variable, as in the following example:

MPEPS = ‘1 E-500’

The quotes here insure that the constant is converted with full multiple

precision. Without quotes, the constant will not be accurately converted, and

in fact a constant of such a small size would result in an underflow condition

on IEEE arithmetic systems.

5. THE FORTRAN 90 MPFUN PACKAGE

The new Fortran 90 translation modules, like the older TRANSMP program,

generate calls to the MPFUN library, which contains all of the subroutines

that perform MP operations. With the advent of Fortran 90, the MPFUN

library has also been updated to use some of the advanced features of this

language. Among the changes in the new MPFUN package are the elimina-

tion of common blocks and the dynamic allocation of scratch space. Thus the

user never needs to worry about “insufficient scratch space” error messages.

One important algorithmic improvement introduced in the Fortran 90

version of the MPFUN library is the utilization of a faster scheme for

multiple-precision division, due to David M. Smith. The gist of this scheme is

that it is not necessary to normalize the individual machine words of the trial

quotient at every step of the division process. Instead, the normalization

operation may be performed only occasionally. See Smith [1995] for details.

On an IBM RS6000\590 workstation, this new division routine is as much as

four times faster than the previous routine. One of the author’s applications

runs nearly twice as fast as a result, although a savings of 109’o is more

typical since relatively few applications are divide intensive. This improve-

ment only affects the standard division routine. The advanced division rou-

tine, which is used for precision levels about 1000 digits, is not affected.

Another algorithmic change is the utilization of an improved fast Fourier

transform (FFT) algorithm [Bailey 1990a], which is used by the advanced MP

multiplication routine of MPFUN. This new FFT algorithm, which is vari-

ously called the “factored” or “four-step” FFT, exhibits significantly improved

performance on computers that employ cache memory systems.
That this new FFT scheme is significantly more efficient on modern RISC

systems can be seen from Table III, which compares the performance of the

new Fortran 90 MPFUN with the author’s previous Fortran 77 MPFUN.

ACM Transactions on Mathematical Software, Vol. 21, No. 4, December 1995.



386 . David H Bailey

Table 111, Time to Compute m on an IBM RS6000/590 Workstation

m

4

5

6

7

8

9

10

11

12

13

14

1.5

16

Prec. Level

(Digits)

115

~~1

462

!324

1349

:3699

7398

14?96

29592

59184

118369

?36’73!3

473479

C!P[l Time

Old MPFI-lN

0.0039

0.0077

00183

00494
0 1~,50

0.3090

0.66’70

14610

3.’2860

13.3!)00

,5.5.1200

150.3900

393.6800

New MPFUN

00035

00068

0.0160

0.0440

0.0840
o,~640

0.6150

1.3900

:31600

7.3500

16.’i’ioo

37.0400

83.4100

These timings were performed on an IBM RS6000\590 workstation and

compared the run time required to compute the constant r to the specified

precision levels (excluding binary-to-decimal conversion). The numbers of

digits shown in the second column correspond to 2 m numbers of words, which

are convenient precision levels for the FFT-based multiplication routine. Note

that the new MPFUN package is up to 4.8 times faster than the old on this

computation, even though the FFT routine only constitutes part of the

operations being performed.

A third algorithmic change introduced in the Fortran 90 MPFUN package

is the substitution of the author’s PSLQ integer-relation-finding algorithm

[Bailey et al. 1994; Ferguson and Bailey 1991] for the HJLS algorithm

[Hastad et al. 1988] that was used in subroutine MPINRL of the Fortran 77

MPFUN. The PSLQ algorithm does not exhibit the catastrophic numerical

instabilities that are a characteristic of the HJLS algorithm. With PSLQ,

integer relations can be reliably detected when the precision level is set to

only slightly higher than that of the input data.

One addition to the Fortran 90 MPFUN package is a routine to perform

binary-to-decimal string conversion for extra-high-precision arguments. This

routine, named MPOUTX, employs a divide-and-conquer scheme, which to-

gether with the extra-high-precision multiplication and division routines,

permits rapid conversion of MP numbers whose precision ranges from roughly
1000 digits to millions of digits. MPOUTX uses the same calling sequence as

the existing routine MPOUTC, which suffices for more-modest precision

levels. Extra scratch space is required for MPOUTX, but this space is

automatically allocated by the routine when required.

6. AN APPLICATION OF THE FORTRAN 90 MULTIPRECISION SYSTEM

In April, 1993, Enrico Au-Yeung, an undergraduate at the University of

Waterloo, brought to the attention of the author’s colleague Jonathan Bor-
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wein the curious fact that

. 2

q 1 +;+”.”

)

+; k-2 = 4.59987 . . . ~ :((4) . w

k=l 360

based on a computation to 500,000 terms. Borwein’s reaction was to compute

the value of this constant to a higher level of precision in order to dispel this

conjecture. Surprisingly, his computation to 30 digits affirmed it. The present

author then computed this constant to 100 decimal digits, and the above

equality was still affirmed.

Intrigued by this result, the author developed computer programs, using

the software described in this article, to compute sums of this sort to high

accuracy and to test if the numerical values satisfy simple formulae involving

basic mathematical constants. Numerous experimental identities of this sort

have now been obtained, and some of these have subsequently been estab-

lished by rigorous proof. See Bailey et al. [1994] for details.
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