
Radiosity and Hybrid Methods

Lk3ZL0 NEUMANN and Al_W_A NEUMANN
Budapest

We examine various solutions to the global illumination problem, based on an exact mathemati-
cal analysis of the rendering equation. In addition to introducing e~cient radiosity algorithms,
we present a uniform approach to reformulate all of the basic radiosity equations used so far,
Using hybrid methods we are able to analyze possible combinations of the view-dependent
ray-tracing method and of the low-resolution radiosity-based method, and to offer new algo-
rithms,

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image
Generation—&,olayalgorithms; 1.3.7 [Computer Graphics]: Three-DimensionalGraphicsand
Realism

General Term: Algorithms

Additional Key Words and Phrases: Complete two-pass method, conjugated gradient method,
convergence criteria, coupling method, distributed ray tracing, double-patch method, non-diffuse
ambient term, photosimulation, radiosity method, rendering equation, residual image, separable
reflectance, Southwell algorithm

1. INTRODUCTION

The goal of this paper is to present efficient algorithms based on an exact
mathematical analysis of the computer synthesis of photorealistic images.
The radiosity method, which gives a complete but low-detail solution, is
examined first, and then possible combinations with the view-dependent
distributed ray-tracing method are analyzed. These hybrid methods combine
the advantages of radiosity and ray tracing, and they are the most promising
family of methods to solve the global illumination problem.

The radiosity method was introduced for diffuse systems based on analo-
gous systems for heat transfer by Goral et al. [ 1984] and then was further
developed by Cohen and Greenberg [ 1985], Cohen et al. [1986, 1988] and by
Nishita and Nakamae [ 1985] to lead to practical solutions for complex
systems. Extensions of the radiosity methods to include plane mirrors and
refractive surfaces were discussed by Rushmeier and Torrance [ 1990]. Ra-
diosity equations for environments including non-diffuse reflectors were con-
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234 . L. Neumann and A. Neumann

sidered by Immel et al. [1986] and by Neumann and Neumann [19891, while
practical algorithms were proposed by Shao et al. [1988] and by Neumann
and Neumann [1990]. A promising method based on hierarchical radiosity
was introduced by Hanrahan and Salzman [1990].

The distributed ray-tracing method was introduced by Cook et al. [1984],
and was further developed by Cook [1986], by Lee et al. [1985], and by
Purgathofer [1987]. An effective variance reduction method is due to Kajiya
[1986]. The first example of two-pass approaches combining the advantages of
radiosity and ray tracing with diffuse and specular reflection appeared in a
paper by Wallace et al. [19871, and the same approach was further developed
by Sillion and Puech [ 1989].

The mathematical foundations of this work, from radiometry, were given in
our previous paper [Neumann and Neumann 1989]. Section 2 of the present
paper, mostly theoretical, explains important basic concepts (albedo, effi-
ciency ) and, as a result, presents the first proof of the convergence of the
Neumann series for the rendering equation in power norm. In Section 3 the
basic radiosity equations are considered and reformulated. The concept of
radiance, or radiosity forms, as well as power forms are discussed, and
different solutions are indicated. These two different forms have sometimes
been confused in the literature. An important result of this paper is to
introduce the zero-order illumination component, permitting the simultane-
ous treatment of emissive effects and point light sources in radiosity-based
methods. All of the scenes in previous images from the literature are rather
similar since only diffuse (Lambertian) sources were allowed. This restriction
even applies to the non-diffuse systems used by Shao et al. [1988], as well as
the two-pass methods. On the other hand, images generated by ray tracing
generally have sharp shadow boundaries. The separate handling of the
zero-order component without interreflection presented here allows the effec-
tive merging of the two types of effects. Another result is the identification of
the sorted shooting method for diffise environments with the Southwell
relaxation algorithm [Krek6 1976]. This leads to a more comprehensive
approach that permits the same formulation to handle the case of diffuse,
separable, and general reflectance equations. We then introduce the double-
patch method to obtain an efficient solution for non-diffuse environments.
Because of its flexibility, this actually constitutes a family of methods,
Section 3 then considers a particular new category of problems for very bright
environments, where a version of the conjugate gradient method is showed to
be an efficient solution. Section 4 considers the generalization of the ambient
term for non-diffuse systems and its suitability to help integrate the various
radiosity-based methods. Section 5 addresses the scope of hybrid methods,
and we survey the possibilities of coupling ray-tracing and radiosity methods
based on the rendering equation and on the fundamental concepts of image of
order K and residual image of order K. After discussing the direct residual
image method and the coupling method, we present a complete two-pass
method with diffuse and specular decomposition that allows arbitrary illumi-
nation and that includes all of the possible diffuse/specular permutations of
light transport.
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2. THEORETICAL FOUNDATIONS

We will recapitulate concisely the formulations of light transport and the
rendering equation for interreflection. The main result is the first exact
analysis of the criteria for convergence. The concepts and symbols introduced
in this section are used throughout the paper.

2,1 Bidirectional Response

The local reflecting behavior of surfaces can be described by their bidirec-
tional reflectance function. When surfaces are partly translucent, one should
also use a bidirectional transmittance function. Reflectance and/or transmit-
tance are jointly described by means of the bidirectional response, whose
definition, which is based on radiometry, was given by Neumann and Neu-
mann [ 1989, 1990]. Let the unit vectors V and L point from a surface element
toward the viewer and the light source, The bidirectional response p is a
scalar-valued function with two vector variables:

P(L, V) >0, LGF, VGF, (2.1)

where F is the set of unit vectors whose origin is at the surface element. For
opaque surfaces, the appropriate range for reflection is the half-space H,
instead of F. The units of p are [ sr -1 ].

Bidirectional response has two important features in the case of linear,
passive optical material. One is the essential symmetry derived from
Helmholtz’s principle of reciprocity (see Chandrasekhar 1960):

p(L, V) = p(v, L). (2.2)

According to this principle, the value of p remains unchanged upon exchang-
ing the directions of the viewer and the light source, a fact put to use when
determining p experimentally. The other feature comes from energy conser-
vation, which requires that the total energy reflected or transmitted is less
than or equal to the incident energy. The difference, if any, is the energy
dissipated or absorbed by the material. The proportion of nondissipated
energy will be noted a(L):

a(L) = / P(L, V)INI d~v.
VCF

(2.3)

N is the unit vector normal to the surface element; hence, INV I = cos @v,

that is, the cosine of the angle of incidence. The absolute value is needed
since there is no stipulation on the direction of N. a(L) is the albedo for the
direction L. In its classic meaning, this term is used for diffuse materials
where a(L) = a = T. p and is constant irrespective of direction L. For reflect-
ing material, the albedo can also be called the reflectivity. With these
notations one can state the conservation of energy as a(L) s 1 for every
LGF.

The concept of average albedo can now be introduced. It is useful when it is
required to express with one scalar the fraction of total power not absorbed
by the surface, whether diffuse or non-diffuse. This fraction obviously de-
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236 . L. Neumann and A. Neumann

pends on the spatial distribution of the power of the incident light. Let us
assume an illumination uniformly distributed in radiance 1 (intensity) in any
direction of the (half-) space. Such an illumination allows us to define the
average albedo Z as a ratio between total input and output powers:

1
~=—

J
a(L) “ INLI dti~, (2.4)

V Lep

where a(L) is the albedo function from eq. (2.3). We used reciprocity (eq. (2.2))
to deduce eq. (2.4).

2.2 Point and Distributed Light Sources

Assume a point source of radiant power P at distance r from
element o!A. The output radiance in direction V, assuming no
medium, is given by

s“”’(v) = ~p(L,V)l~l.

a surface
absorbing

(2.5)

Surfaces within the scene may have emissivity of their own. For these
emitting surfaces, we denote their radiance function as SE(V). The combined
effect of the emission of the surface and of the reflected\ transmitted light
from the point light sources will be called the zero-order illumination compo-
nent:

Pi
s:=’(v) = SE(V) + f ~~(LJ, V) Nilh(Li), (2.6)

~=1 477r,

where the factor ML i) with O s ML i) s 1 depends on the occlusion of the
light source by other surfaces. It is O when the source is totally occluded, and
1 when the source is totally visible. The effect of a light-absorbing medium d
may be incorporated using h(Li) as a multiplying factor. In the case of
illumination by a “distributed” light source, the radiance of the source Sin(L)
has to be known for any direction L = F. In this case,

(2.7)

If the diffise light source has a constant radiance, Sin(L) = 1, for any L e F,
and from Eqs. (2.7) and (2.2), the reflected radiance is given by

SoU’(V) = a(V). (2.8)

1Spectral mdiance is a fundamental radiometric quantity in [Wm-2 sr - 1] units of a given
wavelength, to be derived from the radiant power of a differential surface element and a
differential solid angle element. Its exact definition is given by Neumann and Neumann [1989].
According to the CIE recommendation, it is denoted L, ,, the notation that is sometimes used in
computer graphics, but a more common terminology is intensity, denoted 1. Throughout this
paper spectral radiance is denoted S, as in Neumann and Neumann [1989, 1990].
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ALBEDOFUNCTION DISTRIBUTEDLIGHTSOURCE
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Figure 1

The term on the right-hand side is the albedo function (2.3) in the view
direction V. Eqs. (2.3) and (2,8) are in some sense reciprocal of each other (see
Figure 1).

2.3 The Efficiency

Assume a composite scene consisting of several surfaces. For every surface
point T‘ in the scene, we can define a set of directions F(T’ ) pointing from T‘
to the points in the scene visible from T‘. For the directions V = F(T’ ),
the point closest to T‘ in the direction V can be characterized by the light-
absorption factor O < d(T’, V) < 1. The efficiency is defined as

w(L) = f p(L, V)lNWd(T’, V) dwv. (2.9)
veF(7”)

As opposed to the albedo, the efhciency depends not only on the surface, but
also on the other elements of the scene. The purpose of w is to express the
ratio of power effectively incident on the surfaces in the system to the input
power from direction L. Efficiency will be of fundamental importance in the
investigation of convergence.

2,4 The Rendering Equation

Some notations will be introduced before we write down the rendering
equation2 to express the radiance incident on any point in the scene from any
other unoccluded point. Let T‘ be a point on a surface in the scene, and let T
and T“ be points visible from T‘. The radiance output from T‘ toward T has
two components: zero-order illumination according to eq. (2.6) and the
radiance from the light reflected from all of the points T“ through T‘
to T according to eq. (2.7). We define the unit vectors L = ( T“ – T‘) and
V = ( T – T‘ ); see Figure 2. If the bidirectional response at T‘ is p~ , then

Souf(v) = s;”’(v) + J p~.(L, V)lNIAS’n(L) dti~. (2.10)
L.= F(T’)

2 The rendering equation was first given and analyzed in computer graphics by Kajiya [1986]
using radiometric quantities. It has been given in a form closer to ours in a paper by Sillion and
Puech [1989],
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Next we consider the behavior of the whole system. For convenience we
transform the “local” S to3

S(T, –v) = s~(–v) = s$!~(v)”d(7’’, z’). (2.11)

d is the absorption effect of the medium, and s is the radiance computed from
the actual power transport between pairs of points. For each mutually visible
point pair, both sides of eq. (2. 10) are to be multiplied by d(T’ – T), yielding
for the two-variable function s the linear functional equation

S=s”+sz’s. (2.12)

The linear operator $? deriving from the integral term in eq. (2.10) is the
single reflection operator (or optical response operator ) for the whole system,
which assigns the input radiance from the scene s by exactly one reflection to
s itself, while so corresponds to the scene S~n. The total result after all of the
interreflection, the radiance of the scene s, ie the limit of the eeries starting
from an arbitrary s“ produced by successive applications of

– So += Sk,‘k+l — (2.13)

converging if 2 is a contraction, that is, if there exists some q < 1:

11.%’s11s q “ Ilsll. (2.14)

Using the Neumann series expansion, the series (2. 13) for SO = s“ converges
to the solution of (2.12) in the norm above as

S=s”+’%’so +’%’zso +”... (2.15)

2.5 Convergence Criteria

We will now give an exact analysis, the first in the computer graphics
literature, of the convergence of the operator eq. (2.12) and, hence, of the
rendering equation.

Any visual perception relies on the detection of energy. Therefore, if we
define the norm as the sum of the absolute values of the power assigned to s,
convergence to that norm will mean convergence as far as view is concerned,
though it is not a pointwise convergence. Let us now find a sufficient
condition for that type of convergence, that is, for @ to be a contraction. Let
us introduce a restriction ofs to a small area and solid angle:

(‘(A,~)(~’,L) = sin(~’, L),
if T’=A, LEU,

o,
(2.16)

otherwise.

3 In the presence of a light-absorbing medium (d # 1), it is meaningful to distinguish between
input and output magnitudes. For simplicity’s sake, in the rest of the paper it is not always
specified which one is actually used, or whether we assumed d # 1 or not. In any case, the
magnitudes can always be retrieved by properly multiplying by d and can be easily converted to
each other.

ACM Transactions on Graphics, Vol. 14, No. 3, July 1995



Radiosity and Hybrid Methods . 239

Figure 2

Using ds as the limit ofs in the above restriction, the efficiency and radiance
then become

W(T,L) = k!&-+,IJ, s,~(T,LJ = d@:;TLl(Tf,L,.(!2.1’7)

If .%’ is a contraction, then condition ll~s1l/lls\l < q has also to hold for S(A,.,,
and W(T’, L) s q has to hold for the efficiency for any T‘ and L. This is a
su~~cient condition for .$2 to be a contraction, as seen from

11%’S{I = ,(T,,/L=(T’,L)dti~ d.fl,

//

Il@dsll , Ildsll ,.—
T L Ilds(l ‘T ‘L)dwd& ,L)dmL d+

——
H

w(7’’, L) %( T’, L)dq. dATS/~,/Lq=(T’,L)d~~ d.A~
T’ L

Ildsll
—--( T’, L)d~~ dA* = qkk

‘q/T/ Ld@fl
(2.18)

We can accordingly state the following:

THEOREM 1. .4 is a contraction iff sup w(T’, L) < 1 is true.

We can define the efficiency w~ of order K as the fraction of undissipated
power remaining in the system after at most K interreflections. Obviously,
w~ # w‘. We can state the following (the detailed proof is omitted):

THEOREM 2. .XK is a contraction ifl w~(T’, L) < 1 is true.

If there is such a K, then the Neumann series in (2.15) is convergent, and its
limit s is the real view. Thus, if after a given number of steps the total power
assigned to s has decreased by more than a fraction q, then s will converge.
Losses in energy may be due to surface absorption, absorption by a partici-
pating medium, and transfer of energy outside of the system. In particular,
the observer’s pupil always absorbs energy. Note that the proof of the
theorems did not make use of the reciprocity condition (2.2).

3, RADIOSITY METHOD

The solution of the rendering equation by finite approximation is referred to
in the computer graphics literature as the radiosity method. This section is
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concerned with the systems of radiosity equations and the algorithms for
their solution. The known results will be surveyed briefly using a uniform
notation. The novel aspects will be the discussion in parallel of the
radiance/radiosity and power forms, and the introduction of the zero-order
illumination component including point sources. Then the South well atgo-
rithm will be described as an effective solution to the radiosity systems of
equations, a method identical in the diffuse case to the sorted shooting
method, a fact unnoticed until recently.4 Then we will introduce the double-
patch method to solve the system with nondiffuse reflectors. Finally, a
variation of the conjugate gradient method, mainly for very bright environ-
ments, will be introduced, and the claim of its efficiency will be supported by
test examples.

3.1 Reformulation of the Basic Radiosity Equations

3.1.1 Fundamentals. Let us establish the basic symbols. Let Ai, i = 1,
2 ,..., N, be the area of a patch, considered to be homogeneous. Let Z’i be a
distinguished point on patch i, for instance, the center if the patch is a
rectangle. The solid angle under which Ti views patch j (only its visible part)
is toi j. If Aj is completely visible, then

A; “ lNjVjl I
Utj = [sr],

ri~.
(3.1)

where r,j is the distance between Ti and Tj, and where V,j is the unit vector
form T, to Tj. If patch j is only partly visible from Ti, then Aj in eq. (3.1) is
the area of the visible part of the patch. We then define the form factor as5

F,, = o+,lNiVijl [ sr] . (3.2)

The absolute value in (3.2) (the cosine of the incident angle (E)ij) is needed
because of transmissive materials where Ni could point either way. The
equality stating the reciprocity of the form factors

AiFij = Aj~i (3.3)

is only approximate in our context, because of the discretization. There might
be cases where Aj is partly visible from Ti, but where Ai is not seen from ~..
There might be large errors as well for patches perpendicular to large
patches. For such problematic pairs (i, j), eq. (3.3) yields new corrected form
factors meeting the requirements of reciprocity by taking the arithmetic
mean of the left and right sides.

4Since this paper was submitted in 1989, a technical report by Gortler et al, [1993] established
the same connection.
5According to the usual notation in computer graphics, the form factor is as given in eq. (3.2), but
divided by rr.Our notation is advantageous by allowing discussion of the non-diffuse cases with a
consistent notation, while the diffuse case remains essentially unaltered,
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The radiant power P,l is emitted from patch i to patch j. Obviously, in
general, P,d + P],. The spectral radiance derived from P,, is

s,, = -.& [w77-2sr- 1].
1 ~J

(3.4)

3.1.2 Radiosity for Non. -Diffuse Environments. Let us now consider the
most general case. Let patch j be characterized by an arbitrary bidirectional
response p, (reflectance or transmittance), The unit vectors Vlk and V], point
from patch j to patches k and i, respectively.

The quantity p( k - j ~ i ) = pj(V,~, VJ,) is necessary to compute the contri-
bution of patch k (k = 1, 2,..., N; k #j) to the radiance S],. The finite
approximation of (2.10), first given by Immel et al. [ 1986] with somewhat
different symbols, is

This equation can be written for any pair (i, j) where F], >0. The constant
term S; corresponds to the finite approximation of the zero-order illumina-
tion component from (2.6):

(3.6)

S; is the value of the emissive component of the patch in the direction V,l. In
addition, there is a term on the right-hand side for the illumination due to L
punctual light sources. The inclusion of punctual light sources is an obvious
but important result here. The first reflection from the punctual light sources
is not included among patch-to-patch interreflection. Accordingly, their effect
appears in the right-hand-side constant vector of the system of equations,
rather than in the matrix coefficients.

The superscript * denotes that the given magnitude refers to a point source
corresponding to the subscript variable of the sum Z. The factor h], may
assume any value from O to 1, depending on the proportion of the area of
patch i illuminated by the given light source (occlusions can be determined,
e.g., with the hemicube technique; a point light source has to be surrounded
by a full cube). In addition, the point source might emit anisotropically. This
possibility is usually ignored in classic ray tracing, although it permits
spectacular effects. Such an anisotropic light source may be, for example, a
light from a slide projector or sunshine transmitted from a stained-glass
window (slides, photos of stained-glass windows, or silhouettes of real objects
can be digitized). Anisotropy in any direction can be described by a transmis-
sion factor ~ = [0, 1], which will be included as a multiplicative factor to h,
together with the light-absorbing coeftlcient d of the medium. For these 7
and d values, one also assumes mean values for patches. All of the effects
averaged at the patch level are illustrated in Figure 3.
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In Figure 3 the zero-order components from (3.6) are, of course, assumed at
pixel resolution, handling the anisotropic effects suggested above by ray
tracing. The computation of the interreflection effects at the pixel level is
outlined in Section 5.

Equation (3.5) can be written not only for radiance, but also directly for
power transport, using (3.3) and (3.4). This form of the equations has been
introduced by Neumann and Neumann [1989]:

(
N

)Pji = Fji AjS~i + ~ p(k ~j ~ i)P~j .
k=l

(3.7)

A row of eq. (3.7) contains a single form factor Fji on the output side, since the
form factors Fj~ are not explicit on the input side. The quantities P~j exist,
however, only for pairs (k, j) for which ~.~ >0. The difficulty is that (3.5) and
(3.7) lead to vew large systems, though with rather sparse matrices. For N
patches there are 0(N2) unknowns. Their exact number depends on the
occlusion conditions.

In the survey aspect of this paper, the basic equations such as these will
always be considered in two forms in parallel: in the radiance /radiosity form
and in the power form. The convergence characteristics and the solution
methods differ for each form.
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3.1.3 Radiosity for Diffuse Environments. Let us now discuss the best
known case for these equations, the diffuse case. In terms of radiosity
variables [W. m -2 ], the equations become

B, =El + p, “ ~ FllBj. (3.8)
j=l

This equation was introduced by Goral et al. [1984] by analogy from radiative
heat transfer. It has been further developed for occluded and complex sys-
tems by Nishita and Nakamae [ 1985], by Cohen and Greenberg [ 1985] and by
Cohen et al. [ 1986]. As a matter of fact, the sorted shooting method [Cohen et
al. [1988] relies on the power form of the diffuse equation, although (3.8) was
explicitly used. The power form is

P, =P: +pi. ; ~, P,, (3.9)
j=]

where P,” = A, E, and P, = Al B,. For the convergence criteria [Neumann and
Neumann 1989, 1990], we observe that eqs. (3.5), (3.7), (3.8), and (3.9) are of
the form x = Ax + b. In eqs. (3.5) and (3.8), the row norm of matrix A is less
than 1, while for eqs. (3.7) and (3.9), its column norm is less than 1. The
convergence of the classic, or Jacobi, iteration is guaranteed in either norm. A
known sufficient condition for the convergence of the Gauss-Seidel iteration
is met by the row norm. For the zero-order component, the constant term in
(3.8) is:

(3.10)

where a, is a dimensionless albedo (or reflectivity) constant, of value in the
interval [O, 1]. B,E is the emissivity of the patch, considered as a Lambertian
diffuse emitter, which is totally independent of direction.

For diffuse environments there are N unknowns and a relatively low
number of nonzero matrix elements. But for very complex occlusion condi-
tions, the matrix may be a sparse one.

3.1.4 Radiosit-y for Separable Reflectance. A mathematical generalization
of diffuse environments is environments with a separable reflectance, intro-
duced by Neumann and Neumann [1989]. This is the widest class of re-
flectance behavior where the distribution of the emitted radiance is indepen-
dent of the distribution of the incident radiance (of course, its magnitude is
not). The relevant system of equations includes the diffuse case as a special
case and has N unknowns as well. The bidirectional response p is separable
if it is of the form

P(L, V) = a(L) “6(V). (3.11)

ACM Transactions on Graphics, Vol 14, No. 3, July 1995.
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Due to reciprocity, the function a has to be equal to the function 6 within a
multiplicative constant. It is easy to see that a is equal to the dimensionless
albedo function if

J a(v)plvldfov= 1
V= F

(3.12)

holds. If (3.12) does not hold, 6[ sr - 1] is the distribution density fhnction of
the reflected light. For diffuse materials, a is the albedo, constant, and < 1,
and d = constant = l/T. Using the notations aij = ai(vij) and dji = 6j(Vji),
the system of equations becomes in the radiosity form

B1 = E, + ~ Fijaij6jiBj (3.13)
j=l

and in the power form

Pi = P; + ~ Fj, aiJ6j, Pj (3.14)
j= 1

where, as before, PiO= Ai Ei and Pi = Ai Bi. With these notations, the con-
stant term of the equations becomes

(3.15)

Remember that (3. 15) expresses the zero-order component, and so does the
term B,~ within it, describing the emissivity of the patch according to a
distribution given by 600. Once the equations are solved, the radiosities
found are also emitted according to this distribution, so that, in direction V,
patch i. is seen with a radiance Bi cti(v). In the diffuse case, again,
d = constant, so that, instead of radiance, the radiosity can be used directly.
Eq. (3.13) fails both conditions of row and column norms, while the column
norm of the power form (3.14) is less than 1.

3.1.5 A Generalization. The enumeration of the fundamental radiosity
equations will be concluded by an interesting generalization. In the diffuse
and separable case, the spatial distribution of the emission from the patches
could only be according to the distribution function 6. After reflection from a

point source, the distribution has to be such, but in the case of the light
directly emitted by the patch, it could follow an arbitrary distribution, as
shown below. Let the zero-order illumination component have the radiance
Sji in the direction Vji. The meaning of the radiosity and power variables also
has to change. They are now variables without the zero-order component,
which we call the zero-order residual components. With the new variables,
the system becomes

N

Bi = ~ FijaLj(~ji Bj + Syi) (3.16)
j= 1

ACM Transactionson Graphics,Vol. 14, No. 3, July 1995.
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and

P, = t FJ,a,j(~J, PJ + S~Aj), (3.17)
j=l

while the radiance observed by the viewer becomes

s,(v) = Z31cii(v)+ s:(v). (3.18)

3.2 The Sorted Shooting Algorithm and the Southwell Algorithm

Now we will establish that the well-known Southwell relaxation algorithm
(see, e.g., Krek6 [ 1976]) is identical to the sorted shooting algorithm described
by Cohen et al. [ 1988]. Again we use a uniform notation to discuss the
shooting method for the already-known diffuse case and a similar method for
the separable reflectance case.

The Southwell algorithm is derived from Gauss-Seidel elimination, but is a
simpler method. In the Southwell algorithm, the row with the largest error in
absolute value is selected, and the element from that row on the main
diagonal is modified so that there is no error on that row. As well, the whole
error vector is recomputed. The convergence criteria with this method are
different from those in the Gauss–Seidel method. Convergence maybe proved
for either a positive definite matrix or for a strict column norm condition.
None of these conditions is met by the matrix arising from the radiosity
equations. However, for a zero initial vector, the convergence of the power
form of the equations can be proved.

Let us start from a system of radiosity equations in the power form, that is,
(3.9) for diffuse reflectance, (3.14) for a separable reflectance, or (3.7) for a
general, non-separable case. This has the general form x = Ax + b, which
can be rearranged as (I – A)x = b, defining C = (I – A), Cx = b. Let us
define the error vector e as e = b – Cx, and the initial approximation as
x “ = O. Therefore, initially e = b, the constant vector of the system of equa-
tion, that is, the vector of the zero-order illumination components.

Lete=(el, ez, ..., e,v ). Among the elements of e, the one with the maxi-
mum value e~ will be chosen. For the starting vector given, all of the
elements of e will remain non-negative during the iteration. The column k of

) The sums of the elements of column k andthe matrix C is (clh, czh,...,c~~ .
of the error vector are denoted Vh and E, respectively. Now we can state the
steps of the Southwell algorithm:

O. Repeat until E < ●

1. Select k such that e~ is maximum

2. Xh = Xk + eh (alteration of a single element)

3. e, = e, – ek ~C,h (for i = 1, 2,..., N; compute the new error vector)

4. E= E-uh”eh

The algorithm repeats until the absolute norm of the error vector (in this
case, simply E) drops below a given value ● . For the power form, the column
norm of C is less than 1; hence, Uk s V < 1 (K = 1, 2, . . . . N), permitting us
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to assert the fractional decrease in value of E in step 4. Using ek ~ E/N, the
speed of convergence may be assessed as

v
E

()
new< Eold” 1–— .N

(3.19)

The actual convergence is faster than that, especially in the first steps
[Neumann and Neumann 1990]. The convergence of the Southwell algorithm
is manifest for the power form of the equations, and the sorted shooting
algorithm is identical to the Southwell algorithm. Let us look specifically at
the diffuse case of eq. (3.14). The error vector is called the unshot power by
Cohen et al. [1988]. The counterpart of the elements of the matrix C is
Cik = – ~i~~i for k + i, and Cii = 1. The solution of vec~r x gives the power
emitted by the patches as the result of interreflection. During the iteration
the value of the power in x changes only in the row selected by the Southwell
algorithm, so we do not have to rewrite all of the values of x at each step, but
we have only to compute x for the image (in the form of x + e) at the last step
after meeting the error criterion.

There is, of course, a possibility of image in the meantime. To do so, the
solution of the residual problem has to be approximated. At some point in the
iteration, the values of the solution vector and of the error vector be x = x =PP
and e = e~PP, respectively. The residual problem is of the form Cx,c~ = e= ~P.
The problem is simply approximated by a single classic (Jacobi) iteration
step, that is, x,e~ = e.PP, and the image can be computed from the power
values x = X=PP + x,c~. Another solution is to use the ambient term dis-
cussed in Section 4.

The discussion above is valid for all of the shooting algorithms, whether
with diffuse, separable, or general reflectance. Let us consider how the
method works for extended systems in the diffuse and separable cases. The
form factors are computed as by Cohen et al. [1988]; that is, the selected
column of matrix C is always computed by solving a single hidden surface
problem by the hemicube method. If only a small number of patches are
emissive and the system contains no point light sources, then the constant
vector b has few nonzero terms from which light is emitted into the system.
At first, the zero components of the vector b increase slowly in the process,
but generally are less than the initial power values of the emissive patches
and are as a rule seldom selected. That means that this method is really
effective for relatively dark, large systems and that, in fact, much fewer than
N hidden surface problems have to be solved. It also means that real
interreflections are omitted by this method. This case corresponds in practice
to a classic problem without interreflection with many light sources, needing
O(N) operations (providing that there are a O(1) number of emissive patches).
In cases where interreflection effects are accounted for, the main advantage
of the method of Gauss- Seidel iteration is lost since the algorithm requires
0(lV2) computations; this is because the hidden surface problem has to be
solved for most of the patches, which involves the whole matrix in the
computation. An example of this is a simple light-colored interior illuminated
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by a point source. Still, the Southwell algorithm is asymptotically faster than
the Gauss–Seidel method.

Another advantage of the Southwell algorithm manifests itself in the case
of general reflectance. This large problem (3.5) of a sparse matrix has been
solved before by the Gauss–Seidel method [Immel et al. 1986] by intuitively
selecting the order of operation and expecting to follow the propagation of
light in the system. The SouthwelI algorithm specifies a rule for objective
selection for solving the power form of the non-diffuse eq. (3.7). Although in
practice, non-diffuse reflectance is effectively approximated by diffuse plus
specular decomposition [Shao et al. 1988; Neumann and Neumann 1990],
often, the high cost of the computation of the general case cannot be avoided,
such as for very dull reflecting materials. In such cases, the Southwell
algorithm introduced in Neumann and Neumann [ 1990] is the most efhcient
method known and can be complemented with the generalized ambient term
described in Section 4.

Remember that step 4 of the algorithm may be omitted and that the error
may be taken as e~. The value of E, however, is better related to the
convergence. The problem of finding a better selection criterion also arises.
Selecting the variable for which the value Uh. e~ is maximum would obviously
yield the maximum decrease in a given step; the algorithm so modified,
however, seems to converge more slowly later in spite of this initial advan-
tage. On the other hand, the column sums v~ of matrix C will only be known
if the hidden surface problem has been solved for all of the patches and if all
of the form factors have been computed. The main advantage of the shooting
method is that it is sufficient to solve the hidden surface problem only for the
selected patches. If this advantage is to be kept, then there is no better
selection rule than to select the maximum e~ value. It is still possible to
assign initially an average for the sum of the columns not yet selected,
gradually replacing them with the sums of the columns already selected so
that Vk can be taken into account in the selection.

This method, however, can be further developed even when using maxi-
mum error selection and keeping the relaxation character of the method,
where in one step a single coordinate is modified. Overrelaxation seems
advisable where the maximum error coordinate drops to a negative value
rather than to O and, therefore, where the other error components grow
faster, anticipating a power increase due to interreflection. Step 2 of the
modified algorithm wi]l then be of the form x~ ‘= xk + ~” ek, where the 7
value will be chosen so as to effect a maximum decrease for a given error
function E(r). An error function such as E = Constant E e; + (Z e, )2 is
suggested for a numerical test.

3.3 The Double-Patch Method (DPM)

The solution of the radiosity equation for the general reflectance model ((3.5)
and (3.7)) is rather laborious even with the Southwell algorithm. The com-
plexity of 0( N o) seems unavoidable for general, non-separable reflectance
models. For such cases, an approximate solution of complexity 0( N 2), with
exact zero- and first-order components, is given by the albedo-equivalent
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separable model introduced by Neumann and Neumann [1990]. There is an
exact and efficient radiosity solution in cases where the reflectance model can
be decomposed into diffuse (or separable) and specular forms, so that the
specular part is only relevant within a cone of a rather small solid angle.6
The first example of this family of methods has been introduced by Shao et al.
[1988], and their method exhibited convergence in practice in the cases they
presented, but this convergence has not yet been proved. In this method, the
solution is approximated by a set of equations with different matrices of the
same size as the diffuse problem. Methods with fixed-size matrices, an
essentially different approach, were introduced by Neumann and Neumann,
relying on the power form equation system given in Neumann and Neumann
[1990, sect. 3]. It has been solved by Jacobi iteration, and has been proved to
converge, by the conjugate gradient method, as well as by the sorted gather-
ing and shooting methods. These methods, as well as DPM, to be presented
later, result in a pure radiosity solution relying on the decomposition between
diffuse (or separable) and specular components. They are distinct from two-
pass methods, which also use decomposition of the reflectance, but are
characterized by the use of ray tracing to compute the image; the latter are
the hybrid methods discussed in Section 5.6.

The DPM method is expected to reconcile the following two contradictory
requirements: For the separable problem, an equation system of ZV variables
sufices, but every patch reflects toward any other non-occluded patch. In the
case of scenes with purely specular surfaces, this equation system will have
O(N 2) variables, but a rather sparse matrix, since a power incident on a
patch from a given direction will be reflected only toward a small number of
patches within the effective specular cone. If one cannot take advantage of
these two types of situations, then the original eqs. (3.5) and (3.7) will have to
be used in spite of their high cost.

An efficient solution is still possible using the double-patch method, as
suggested in Neumann and Neumann 1989. Consider the two reflection
components of the same physical patch as belonging to two formally separate
patches with the same incoming illumination. There is a restriction, namely,
that the two patches cannot directly reflect light on each other. One member
of the double patch can only have separable (or diffuse) reflectance, and the
other can only have specular reflectance. The specular reflectance may be
replaced by another arbitrary component, even of negative value, because in
the method that counts is that the light is reflected only toward a small part
of space.

The bidirectional response, either reflectance or transmittance, is of the
form

p(L, V) = a(L)6(V) + ps(L, V). (3.20)

dThis algorithm has a complexity of C .0( IVz), where C is the average number of patches
within the specular cones. It is diflicult to obtain an exact theoretical complexity for C, but it is
in the range 0(1) to O(IV).
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The first term of the sum is a separable part of the form given in (3,11), while
p‘ is the specular component. It has to verify the law of energy conservation:

a(L) + ~ps(L, V)lNVl duv < 1. (3.21)

If the separable part is simply diffuse, the albedo a(L) = a is constant, and so
is 6(V) = 1/ rr. The simplest type of reflector for (3.20) is a difise material
with a mirrorlike component (polished). The degree of polish should be
somewhat moderate, so that the specular component is within a small solid
angle, larger than for a pure mirror. A still more general model is a separable
lacquer model [Neumann and Neumann 1989] with the same kind of polish-
ing, actually making the lacquer model more similar to real varnish.

To ensure convergence, the power form equations are used. Let the total
power of the separable term of the double patch k be P~, emitted according to
the density function d, as in eqs. (3.11) and (3.12). The patch j receives the
fraction Fh)cikl of power Ph. Let P~J be the power going by specular reflection
from the specular member of double patch k to patch j. The system of
equations written according to (3.7), (3.14), and (3.17) becomes

(3.22a)

where Z(j, i ) is the set of subscripts for the patches in important directions
involving subscripts k such that for input directions k + j the direction j + i
is within the reflection cone (defined by Y greater than a given ●), The
reciprocity of Y’ implies the reciprocity of the cones; that is, k & 1( i, j) iff
i c 1( j, k). In eqs. (3.22a) and (3.22b), the constant term may be zero. It
seems advisable, however, to separate the term P]” emitted according to the
distribution function aJ in the case of point sources (see eq. (3.15)).

The system of equations for the DPM is of the form x = Ax + b. If eq.
(3.21) holds, then the column norm of matrix A is less than 1. For extremely
bright systems, this value may be greater than 1 because of errors of finite
approximation, but this is not a concern in practice. The DPM equations can
be solved by Jacobi iteration. It is possible to speed up the solution of eq. (3.9)
if 1( j, i) is much less than N. For instance, if an environment has 2,000
patches and, on the average, 20 patches affect the important directions, then
the computation for eq. (3.22b) is accelerated 100 times (in principle, there
may be as many as 4 million variables).

The DPM equations can also be solved by the Southwell algorithm. This
method is especially appropriate for the double-patch approach, since depend-
ing on whether the separable or the specular parts dominate, the frequency of
selecting eq. (3.22a) or eq. (3.22b) may be rather different.

The flexibility of the DPM method makes it suitable for other situations as
well. For example, in a case with a very bright separate term the following
procedure may be applied: One first solves separately the separable part of
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eq. (3.22a) with fixed specular variables by the conjugate gradient method,
and then one updates the specular variables of eq. (3.22b) by the Jacobi or
Southwell method. These two steps are then repeated until a prescribed error
criterion is met. For the final step, the formula to compute the radiance for
the image becomes

Pg.
skj=~”&h# -m.

k k k]
(3.23)

3.4 The Conjugate Gradient Method

A version of the gradient method for solving the linear equation system by
the radiosity method was described in Neumann and Neumann 1989. The
paper also suggested applying the two-parameter method for the least error
terms. These methods are convenient for moderately bright environments.

Up to now, however, there was no fast converging method applicable both
to systems with a mean albedo close to 1 and to systems with a low albedo. To
correct this we give below a version of the conjugate gradient method that
can be applied in these cases.

3.4.1 Notations and Algorithms. The system of equations for radiosity
again is of the form Cx = b. Rather than to apply the usual symmetric
positive definite form CC* [Marcsuk 1976], let us define an error function
F(x) as the sum of the square of errors in each row:

24 F(x) = f (b, – ctx)2 = f ei(x)2. (3.24)
1=1 1=1

The minimum point of F(x) is the solution of eq. Cx = b if the minimum
value is zero, which always holds in our case. Let us minimize F(x) by means
of the Stiefei-Hestenes version of the generalized conjugate gradient method
[Kbsa 1979]. The basic step of that method is to determine the gradient vector
g(x) = VF(X). The coordinate j of the gradient vector (j = 1, 2,..., N) is
given by

N
gj = – ~ Cij “et(x). (3.25)

1=1

It means that to compute g knowing the error vector e requires N 2 multipli-
cations. Let the initial vector be the zero vector; that is, x: = O and e: = bt.
Furthermore, let p“ = go = g(x” ). Initially setting k = O, we have the follow-
ing algorithm:

~ e) .cipk

1. Tk = i=;

~ (CiPk)2
i=l

2. Xk+l=xk+rk”pk
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Table 1. Quadratic Mean Values of Row-wise Errors by the
Conjugated Gradient Method for Three Test Problems

Iteration step number I H 111

0 56.20166 56.20166 56.20166
1 9.76466 35.21932 48.12593
2 0.12021 3.25783 47.65600
3 0.00005 0.00560 0.00003
4 0,00000 0.00000 0,00000

3. ef+’ = ef– ~kc,pk (i=l,2 ,..., N)ifmax(e~+l ) < ● , then output the
image and stop

4.g/’1 = - g c,,ef+’ (j=l,2,..., N)
1=1

~k+l(gk+l _ ~k)

5. /3k = (the parameter of the Stiefel-Hestenes method)
g:

6.pk+l=gk+l+
pk ‘Pk; ~ ‘= k + 1; GOTO 1.

3.4.2 Numerical Observations. After tests with the diffuse case, we can
make some observations on the numerical computations. Simple unoccluded
environments with random reflectivity distribution have been generated for
N = 1000. A dark (I), a medium-bright (II), and an extremely bright (III)
system have each been investigated (see Table I). The constant vector was the
same in all three cases with the components, which are also the initial values
of the error vector, being uniformly distributed random numbers in the
interval [0, 100]. The values of albedo for cases I, II, and HI are, respectively,
in the intervals [0, 0.3], [0, 1], and [0.9998, 1], with a uniform random
distribution. That makes the respective average light reflection to be 15
percent, 50 percent, and 99.99 percent (!), The computed values are, in
general, typical of unoccluded or slightly occluded environments. The latter
case is understood as meaning nearly zero mean optical distance [Neumann
and Neumann 1989] between pairs of patches, which also means a minimum
number of reflections in the light path from one patch to the other. One step
of the conjugate gradient method involves twice the number of operations
needed in Jacobi iteration. It, therefore, becomes equivalent to the classic
method for systems with average brightness needing five or six Jacobi
iteration steps, but replacing them with three steps of the conjugate gradient
method. The conjugate gradient method is doubtless the most efficient method
for bright and extremely bright systems, where it is slow or almost impossible
to compute the image by other methods. For this system the conjugate
gradient method shows an interesting behavior. The mean error hardly varies
in the first two steps, while it abruptly drops in the third step. Combining the
solution with an ambient term, a single step may suflice for dark systems
(equivalent to the classic gradient method), while for medium-bright systems,
two steps are enough. As the complexity of the occlusion conditions increases,
of course, the number of steps also increases. As a very coarse rule, it can be
stated that the increase is proportional to the mean optical distance.
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Table II. p = c . NH”

n c max E (mean albedo)

0.00

0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00
64.00

128.00
256.00
512,00

1
— = 0.318309
‘i?

0.326031
0,333823
0.349615
0.381971
0.449378
0.592204
0.895028
1.521918
2.790185
5.334177

10.425892
20,611186

1,000 (diffuse)

0.964
0.932
0.879
0.800
0.706
0.620
0.562
0.531
0.516
0.508
0.505
0.504

4. AMBlENT TERM

The ambient-term method gives a coarse approximation for global illumina-
tion without solving the radiosity equation. This approximation, however, is
only suitable for illustrative purposes. Its main advantage is to generate an
image easily since it uses little a priori information, but of course, the result
is only approximate. There are several ways to extend the ambient-term
method by combining it with the shooting-type solution of diffuse systems
(introduced by Cohen et al. [1988]).

4.1 The Mean Albedo

Consider a system with general, nondifluse reflectance. The average reflectiv-
ity of patch i may be described by the mean albedo value ii, as in (2.4). The
fraction of energy reradiated into the half-space depends, of course, on the
spatial distribution of the illumination. Without any a priori information, in
conformity with the Bayes principle used in statistics, we assume a uniform
distribution, as in eq. (2.4). As an illustration, consider Table II, which was
computed by numerical integration and which used the mean albedo values
from the Phong [1975] model, that is, a bidirectional reflectance of the form
~=c.~n , with various n. The albedo function is admissible; that is,
a(L) s 1 when condition c s c~~X is met for parameter c. If c = cm~X, then
a(L) = 1 is met for a perpendicularly incident light. The mean albedo in Table
II refers to c = c~aX. The system as a whole has a mean albedo of a~ue,
computed from the mean albedo of patches weighted by their areas:

(4.1)
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4.2 Computation of the Zero-Order Component

Let P“ be the overall power due to all of the zero-order components of the
system. P“ is the sum of all of the terms ( PO’~ ), the power emitted by the
emissive patches (the extended light sources), and the terms ( P“I p ), the
power reflected by the patches directly illuminated by the punctual light
sources, Now consider closed environments without any light-absorbing
medium. Open environments can be made closed by surrounding them with
black surfaces. In this case it is advisable to find or approximate the mini-
mum enclosing surface that does not change occlusions in the original system
(otherwise, the mean ef%ciencies have to be used instead of the mean albedo,
which requires in practice that the values of the form factors be known). The
emissive patch i irradiates a power given by

p:J =Ai.
/

S;(V) INIVI dq, . (4.2)
VSH,

The value given by (4.2) can be determined numerically. The effect of point
light sources is determined as follows: Let each point light source k (k = 1, 2,
3 ,. ... N) be surrounded by a cube whose faces are covered by a square mesh,
and let it be used to compute occlusion by forming a depth-buffer on them, as
in the hemi-cube algorithm. Take an elementary square of the mesh of a face,
and call A o the solid angle it supports from light source k. If the closest
visible surface is patch i, with an albedo function a,, then the fraction of
power reaching patch i and re-radiated in the half-space above is

Aid
AP=P~Za, (V,~). (4.3)

The power elements A P have to be summed for all of the mesh elements and
all of the point lights. To compute (4.3) more efllciently, it is advisible to
tabulate the albedo function for the isotropic reflectance model as a function
of the angle of incidence.

4.3 Approximation of Interreflection

The effect of interreflections is expressed by an equation with a single
unknown:

P =P* + aQ,,, .P, (4.4)

where P is the total power within the entire scene emitted by interreflection.
The solution of (4.4) can be expressed as

ao,.P
P= P”+ P’’=Po+ ~P“.

1 – a~,,t,
(4.5)

There is no need for additional information about the scene, and the excess of
power P over P ‘), noted ~, is distributed among patches according to albedo
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and area. The power P, irradiated by patch i is given by

Ai . ~i
P,= P:+ F;= P:+ ~ . F“

~Ai. iii
i=l

(4.6)

4.4 Image Computation for Nondiffuse Environments

The albedo function allows us to determine the radiances Si(V) at a point of
patch i seen by a viewer from direction V. Again, it is assumed that the
surface receives a uniform illumination as a result of the interreflection. Now,
using eq. (2.8), (3.11), and (3.12), we have

F;
S[(V) = S:(V) + ~ “di(V).

1

(4.7)

In this case the ambient term for the known difise case is included. It should
be pointed out that the ambient term can be determined without computing
the form factors. This method can be seen as the simplest form of the hybrid
method that ie discussed in Section 5. The first term (4.7), the zero-order
component according to (2.6), can be computed at pixel resolution by the
classic ray-tracing method, while the effect of interreflections is represented
by the second term of the sum in (4.6), the ambient term, as a rough
approximation. This method is rather convenient for scenes illuminated by a
few point sources, and ray-tracing programs (many are available) are simply
complemented by the ambient term. In the nondiffuse case, the radiance or
color of the ambient term varies for each pixel within the same surface
according to the view vector V.

The drawback of this method is that it does not include either soft penum-
bra from interreflection or any typical local interreflection effect, depending
on the occlusion conditions. It takes into account, however, global interreflec-
tion effects such as a global color shift. Namely, any dominant color manifests
itself in the mean albedo of the system. This is also enhanced by the resultant
interreflection effect, especially for very bright environments. As an illustra-
tion consider a system with a mean albedo (.7, .8, .9) corresponding to the
color components RGB, illuminated by a point source. The scene is then
bright and of rather unsaturated color with a B/R ratio of 9/7 = 1.222. With
an approximation of the ambient term, the color resulting from interreflec-
tion becomes (3.33, 5, 10} that is, the ratio B/R goes to 3! Therefore, the
resulting color will be more saturated in the most intense color component.
Bright environments with cold white surfaces will look bluish, while a warm
white will acquire an overall brownish color because of the ambient term.

4.5 Other Generalizations

An important extension for the ambient term is as follows: Rather than using
a shooting-type method alone, every iterative procedure can be complemented
by ambient terms. Consider a radiosity equation system with arbitrary power
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variables to be written in the usual form Cx = b. For an arbitrary approxi-
mate solution x. ~P, row i is affected by an error et = b, – c,x~PP (i = 1,

2,.. ., N). The solution can be directly obtained using a Jacobi, Southwell, or
gradient-type solution. Separating x =PP, the missing component x,,, of the
solution is sought as a solution of Cx,,, = e, where e = (e], ez, . . . . e~).
Vector e in the equation may be considered as the zero-order illumination
component of the modified problem. For this modified problem, the ambient
term can be determined as described earlier. Any procedure suitable for a
convergent system of equations can be complemented by an ambient term
updated in a stepwise fashion. Obviously, when x~PP -+ x, that is, when
Iel -+ O, the ambient term goes to zero and gradually fades as we approach
the real solution. Note that e, may be negative, for instance, with the
gradient-type methods. These zero-order components are then power sinks,
rather than sources.

A qualitatively new form for the ambient term, better suited to the radios-
ity problem, can be written even for very complex environments by grouping
the surfaces. A linear system of equations may be written for the power
transport between groups. The total power within a group is distributed
between the surfaces by analogy with the classic ambient-term method. The
equations above, in particular, (4.4), realize the case where the surfaces have
been put in a single group. The simplest grouping is defined by the histogram
of A, a, or orientation of N,, etc. A generalized ambient-term method, taking
the occlusion conditions into consideration, and, therefore, half way between
the ambient term and the radiosity method, will be reported in a subsequent
paper by the same authors.

5. HYBRID METHODS

5.1 Comparison between Radiosity and Ray Tracing

Ray-tracing or radiosity methods may involve errors usually avoidable by a
proper combination of the two methods. That is the motivation for hybrid
methods. The ray-tracing method is suitable to compute an image from a
given viewpoint at high resolution, but when taking increasing levels of
interreflection into account, the variance of the radiance in the image in-
creases abruptly. More precisely, the cost of computation for a given error
tolerance increases almost exponentially and cannot be dealt with by vari-
ance reduction methods. The increase of the variance is relatively slower for
highly specular reflectance. This is exactly the property two-pass methods
make use of.

In the radiosity method, the rendering equation is approximated by the
radiosity equations. The radiosity solution is view-independent; that is, it
produces a complete solution, but unfortunately, only at patch level and,
therefore, at low resolution. Partial images of order j (containing exactly j
patch-to-patch interreflections) decrease in accuracy with increasing j val-
ues. This is especially true for highly specular reflectance in a radiosity
system for an environment consisting of mirrors. The mirror images of
emissive patches will be larger and with a flatter light distribution, involving
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more and more patches. The system of equations yields initially an approxi-
mate matrix, and the successive powers of this matrix are increasingly rough
approximations of the corresponding operators for the infinite problem. This
degeneration is a phenomenon characteristic of the radiosity method. It is
less serious for diffuse materials, but very relevant for very bright and
specular environments. The radiosity method is nevertheless widely applica-
ble, and its main advantage is that the solution of its equation system is a
complete approximate solution that includes all of the power transported by
interreflection processes.

The hybrid method we will present combines the advantages of the two
basic procedures described above. The advantage of the ray-tracing procedure
is that it works at pixel resolution and that the variance is still acceptable for
first- or second-order interreflection. On the other hand, the radiosity method
offers a total solution, and the higher-order reflection effects are obtained at a
bearable cost, even if biased by degeneration.

Specifically, for two-pass methods we use the decomposition into diffuse
and specular reflectance. The variance of the specular part can be managed
by ray tracing. The diffuse part, a single diffuse reflection of the complete
solution, is computed by the radiosity method, with a degeneration less than
that for the complete solution. Note that, for bright environments containing
many highly reflective specular surfaces, even the hybrid methods give an

approximation with large errors,

5.2 Definitions

In addition to the concepts and notations introduced in Section 2, we now
introduce some new ones.

The convergent conditions of the Neumann series have been discussed in

Section 2.5. If these are met, the image can be computed from eq. (2.15):

s = ~sz’Jso. (5.1)
jxf)

Althoughs is the vector of radiances within the complete scene and the image
is the vector of radiances from a single viewpoint, for the sake of simplicity
we will call s an image. s as in (5.1) is called the complete image, and
component BJ50, a partial image of order j. It consists of rays involved in

exactly j interreflections between surfaces. The zero-order illumination com-
ponent so is identical to the partial zero-order image. It includes emissive
surfaces and the effect of point light sources. Their energies get into the
system by reflection or refraction, but there is no interreflection between
surfaces and, hence, no power term involving .%’. The sum of the partial
images of order O, 1, 2,. , ., K is the image of order K:

K

SK = ~ ‘%?Jso. (5.2)
jzo
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The difference between the complete image and the image of order K is the
residual image of order K:

5K=s-sK = ~ ,wJs<). (5.3)
;=K+I

In finite approximations, Jacobi iterations are the counterpart of the Neu-
mann series. It is the method producing K-order images from zero-order
illuminations as initial approximations.

5.3 Direct Residual Image Method

5.3.1 Fundamental Case. This section deals with the simplest hybrid
method appropriate for diffuse or separable environments illuminated by
point light sources. The efllciency of this method resides in the ability to
compute the image given the radiosity solution while obtaining the sharp
shadow edges from point sources at pixel accuracy without further adaptive
refinement. The zero-order image SO including the direct effects of point
sources can be computed by ray tracing at pixel resolution, It is natural to
complement this sharp image at high resolution by the zero-order residual
image component ii,,, including all of the interreflection effects, By definition,
the zero-order residual image 30 = s – s,, is the overall radiosity solution
minus the constant vector of the system. Its image at pixel resolution can be
computed by interpolation, as in Gouraud shading. For a diffuse environ-
ment, obviously radiosity may be used instead of radiance. The method is
especially advantageous for images with a large zero-order component and
many shadow boundaries. This method is also suitable for textures at pixel
resolution. This is obvious for the zero-order component. For the residual
image in the diffuse case, for a given patch at a given pixel the interpolation
yields the radiosity B.,,,,, without the texture. Since, in the radiosity approach
pa,,,, for the patch is the area weighted average of p within the patches, in the
computation of the residual image the radiosity for a given pixel is given by

Bpixel = B=,,, . ~
Ppatch

(5.4)

Remember that, instead of the complete radiosity solution s, its approxima-
tions by the first- or second-order image and their ambient terms can be used.
In some cases, the ambient term as a rough approximation of interreflection
is enough, providing that the zero-order image is dominant (see Section 4.3).

In the general case, the direct residual image method relies on the decom-
position SK + GK. For a low K value (in practice, K < 2), the component SK
can be computed at pixel resolution by distributed ray tracing, while the
residual image i3K is computed by interpolation. In the case K > 0, the
residual image can be computed by solving the radiosity problem by Jacobi
iteration up tc a K-order image, which is then stored. The iteration may then
be solved by another method, and finally, the K-order image would be
obtained from this solution.
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The disadvantage of the direct residual image method is that the residual
image can be dim and that the fine penumbra transitions are often incor-
rectly rendered at pixel resolutions. This can be helped by adaptive refine-
ment of the residual image, but this is costly. The necessity to use a local
threshold value for the brightness gradient if refinement is used forces us to
take into account the brightness value of the image component determined by
ray tracing in order to avoid overrefining. Further improvements can be
obtained by the method presented below, where the residual image is not
directly used; instead, its first- or higher-order reflection obtained by dis-
tributed ray tracing is used.

5.3.2 Direct Residual Image Method with Extended Radiosity. An impor-
tant generalization is based on the extended radiosity method of Rushmeier
and Torrance [1990]. It permits the inclusion of some mirrors (and/or
refractions) in the radiosity system, by means of an extended interpretation of
form factors. The drawback of this method is in the exponential increase of
the number of virtual viewpoints or virtual worlds as a function of the
number of mirrors, with a proportional increase in the cost of computation. In
the case of extended radiosity, the zero-order ray-traced image may be
obtained by the classic tree-graph ray-tracing method of Bouville et al. [1985],
which also includes the effects of emissive surfaces and point sources across
mirrors and refractions. The difference between the complete solution of the
extended radiosity problem and the extended zero-order component is the
zero-order residual image with extended interpretation. The extended inter-
pretation may also be applied to the hybrid method below.

5.4 Coupling Methods

These methods rely on performing some ray reflections by distributed ray
tracing, and then coupling the ray to the complete radiosity image. The
radiosity image results from all of the rays sharing any number of interreflec-
tions. The ray coupled to this network automatically includes all higher-order
image components. We then have

~’s “$?’- ~ c%%,= f C!%’JS,‘ii’.,. (5.5)
j-o j.K

Using eq. (5.5), the complete image is

S= SK. l +5’.1 = so +9’s0 + “.. +Aw%o +@Ks. (5.6)

Equation (5.6) summarizes the coupling method. The distributed image of
order (K – 1) is determined by distributed ray tracing. The details of this
method have been presented, for instance, by Kajiya [1986]. The first step is
to compute the zero-order image SO. For each pixel, a ray starts from the
viewpoint to the closest surface in the scene. Here, it assumes the value of the
zero-order illumination component at that point according to eq. (2.6). From
this first intersection point, the ray branches out in several directions as in
distributed ray tracing, again producing intersection points, and so on itera-
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tively. The algorithm involves repetition of two types of fundamental opera-
tions: multiplication by the actual bidirectional reflectance values (belonging
to the pair of directions before and after reflections) at the actual reflection
point of the rays, and multiplications by the zero-order component at the
actual intersection point. For more details about this algorithm and adaptive
refinement to reduce the variance, see Kajiya 1986. Once the ( K – I)-order
image is thus produced, the next step is similar to that of computing the
K-order image, but in this step the rays at the intersection points are
multiplied by the complete solution s known from the radiosity solution. The
latter is the total interreflection radiance, as opposed to s,, as used before.
This is the step where coupling to the radiosity solution, the gist of the
method, occurs. The s is known at patch resolution, so its value at a given
point has to be interpolated. It should be stressed that in the last step the
coupling is to the complete solution s rather than to some residual image of
order K, as might be assumed for reasons of complementarily. The method’s
efficiency can be compared with importance sampling techniques and with
the selection of a different appropriate K values for each ray.

Let K = 1 in eq. (5.6). Now the image is in the form so + AS, where SO is a
classic zero-order ray-traced image at pixel resolution. The term M% may be
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computed by adaptive refinement at pixel resolution. This can be done by the
method of Cohen et al. [1986] for diffuse environments. If SOcontains only the
diffuse emissive component, then in the case where K = 1, the coupling
method is the same as that of Cohen et al. [1986]. For non-diffuse environ-
ments, the integral .$% is not strictly computed by patchwise summation,
since in the important directions one patch may require several samples. In
this case, for better accuracy the method introduced in Section 5.3 may be
applied, with the residual term =0 at the given point computed from patch-
wise values by interpolation. The term SO including the effects of texture and
anisotropic light sources may be handled separately.

Let us compare the direct residual image method and the case K = 1 of the
coupling method. Especially for non-diffuse environments, there is a marked
difference between the direct image equation and the coupling equation. In
the latter the patches blurred by interpolation are not seen directly, but only
through the reflections by %. This is an enormous difference mainly because
reflectance and occlusion conditions may vary abruptly at each pixel. The
advantage of coupling may be illustrated by the fact that when perceived
across a very blurred reflection an object can be replaced by its rough finite
element approximation without visible difference. That is why we can use
approximations to s instead of the complete solution.

Let us have a look at further possibilities of generalization of the coupling
method, even though they are still only of theoretical significance.

5.5 Coupling to a Residual Image

The coupling method can be further generalized by coupling the ray from ray
tracing to the radiosity solution at an intermediary reflection/refraction
point, rather than at its end point. This effectively couples the ray to a
residual image, and according to eqs. (5.4) and (5.6), this method of residual
image coupling approximates the real image as

S=so+.%’so +... +@so +@EK +S@+lso + . . . +s%’~+~so, (5.7)

where the term 9L i4~ is obtained by coupling. L and K are arbitrary
nonnegative integers. L = O corresponds to the direct residual method de-
scribed in Section 5.3. The case K = O is also of interest and constitutes an
exact handling of the zero-order component SO at the ray end point. This case
can be applied to eqs. (5.6) and (5.9), as seen below.

5.6 Complete Two-Pass Method

In Section 5.1 we have compared the advantages and disadvantages of ray
tracing and radiosity. The two-pass methods take advantage of diffise reflec-
tion to limit the radiosity result to a small degeneration, while the purely
specular (but not totally mirrorlike) reflectance results in an acceptable
variance even after several steps of distributed ray tracing. In this approach,
the smaller the cone of important directions determined by the specular
reflection (see Section 3.3), the less is the variance.
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Let us again decompose the bidirectional reflectance of some patches in
the scene into diffuse and specular, p = p ~ + ps. Other decompositions are
possible, as long as they create one separable term of flat response and one
term above some threshold ~ only over a small solid angle. Transmittance
can also be included with both terms of the decomposition. The reflection
operator 1 characteristic of the system has a decomposition of the form
:x’ =Q +<Y’.

The Neumann series for the solution becomes

S=s(, + (.9 +LY’)S()+ (!> +> ’)2so + . . . . (5.8)

including every possible sequence of diffuse or specular transfer exactly once.
Successive applications of the equality s = s{, + S2s + .Ys show that for K z O
we have the relation

s = (<y’(~ +</’1 + . . . +N). (s(, +9s) +.x”K’ ls. (5.9)

The first term on the right-hand side contains the chains starting with at
most K times .Y, and the second term, those starting with at least K + 1

times .Y’. Eq. (5.9) suggests effective ways to apply ray tracing and radiosity.
The value of K is limited in practice by the increase in variance during ray
tracing, so let us consider the case K = 1 as an illustration. Eq. (5.9) becomes

s = s,, +.9s +, Y’(S(, +9s) +< Y’2S. (5.10)

From eq. (5. 10) we conclude that the procedure comprises the following steps:

(1) A complete radiosity solution for the general non-diffuse problem, com-
puting the spectral radiances s for pairs of patches.

(2) The determination of ~s from s known at patch resolution. This involves
a single diffuse interreflection, to be computed at patch resolution by
matrix multiplications (the form factors have to be known).

(3) The computation of image SO at pixel resolution. This is the classic
ray-traced image of the zero-order component, including direct reflection
from point sources in addition to the direction-dependent emission.

(4) The computation of the image for the directly visible component SZs at
pixel resolution, from the value at patch resolution, either by Gouraud
shading or by adaptive refinement based on the brightness gradient.

(5) The computation of the first term with operator Y. This is a distributed
ray-tracing step using the specular components p’q. It can be done, for
example, using a depth-buffer within the reflection cone (cf. Wallace et al.
[ 1987]). We compute the first intersection point with the scene of a ray
centered at each pixel. At this point the ray branches out, and at the end
of these secondary rays, when they intersect another surface, the primary
rays within the cone are multiplied by the auxiliary image value (s,, + ~s).
The first term s,, of the auxiliary image includes emission of patches and
tracing to unoccluded light sources; the second term is computed by
interpolation at the given point from the stored @s values for patches. At
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this level, intemolation is sufficient, and there is no need for adaptive.
refinement since $3s is obtained indirectly through specular reflection.

In the general case, step (5) has to be repeated K times.

(6) The tree of distributed rays is continued within the narrow cones deter-
mined by ps. When the rays intersect surfaces, they are multiplied by the
complete solution s, obtained by interpolation of the complete non-diffise
radiosity solution. This computes the term S’2s in eq. (5.10).

We can make the following remarks about this algorithm: There are several
efficient methods available for solving the non-diffise radiosity problem in
step (l). The methods utilizing diffuse and specular decomposition, in addi-
tion to that by Shao et al. [1988], are the effective gathering and shooting
method introduced by Neumann and Neumann or the double-patch method
described in Section 3.3.

The ray tracing in steps (5) and (6) consists of generating uniformly
distributed directions inside the cone and then multiplying by ps at the point
of ray intersection.
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Step (6) involves coupling to s. This can be refined by the decomposition
s,, + ~(, discussed earlier where s,, is exactly known, so that it is suf%cient to
use a less exact interpolated approximation for the term S(,.

Let us compare the above procedure to the two types of two-patch methods
known from the literature. The two-pass method has been introduced by
Wallace et al. [1987]. Their diffuse and specular transfer chains miss many
terms. In particular, between each pair of diffuse pixels a single specular
transfer was allowed that in practice restricts it to mirrorlike reflection.
Curiously, in spite of this restriction, this method resulted in rather spectacu-
lar images. As generalized by Sillion and Puech [1989], the general two-pass
method theoretically involves all of the possible diffuse and specular terms.
The only serious restriction, occurring also in Wallace et al. 1987, is that
emission can only be diffuse, that is, Lambertian. As well, out of all of the
possible purely specular chains between diffuse-diffuse transfer this method
takes only few into account. This is achieved by computing 0( N 2) additional
form factors by ray tracing. Even then this short chain can only be efficiently
determined for the mirrorlike specular component or refractive transmit-
tance. Of course, in cases where the ratio of specular to diffuse components is
low, or if all of the system is of moderate brightness, the images made by this
method are hardly distinguishable from the exact complete solution, since
anything omitted is negligible.

In the method presented, the full radiosity solution or its default has been
used, taking all possible diffuse-specular into consideration. The .Y’~” 1s
terms in (5.9) take into account the higher-order reflection terms, for in-
stance, for an object made entirely of shiny metal. Its decisive advantage is
with non-diffuse emission with the inclusion of the zero-order component
presented in Section 2. This then unites the application of point light sources
preferred in pure ray tracing and of emissive surfaces preferred in classic
radiosity, and keeps the definite advantages of the two-pass approach.

6, CONCLUSIONS

After considering various solutions for radiosity equations and hybrid meth-
ods, the question now is which to apply and when? In the case of diffuse and
separable reflectance, as well as for the case where decomposition into diffuse
and specular is not appropriate, the Southwell algorithm is the most effective
for dark- or medium-bright systems. For very bright systems where slowly
decaying higher-order interreflections are significant, the conjugate gradient
method, in the form introduced in this paper, is the most effective. In
radiosity, most of the difficulties are due to the general bidirectional re-
flectance. If it can be decomposed into diffuse and specular components (with
a small solid angle), then several solution methods are available. Two meth-
ods seem to be the most effective: (1) the double-patch method, solved by the
Southwell algorithm; or (2) the sorted gathering and shooting method intro-
duced earlier [Neumann and Neumann 1990]. For very bright environments,
the solution is either the double-patch method or the power form equation
introduced in Neumann and Neumann [ 1990], solved by the conjugate gradi -
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ent method. It means that for every case there is a solution more efficient
than the Gauss–Seidel method. Jacobi iteration is useful if the K-order image
is to be used by itself, for instance, in the hybrid methods. All of the radiosity
methods may be complemented by the generalized ambient term.

We have discussed extensively hybrid methods, which compute the image
with high-resolution ray tracing, starting from the low-resolution radiosity
solution. The simplest such method is that of direct residual images, yielding
a fast solution for diffuse scenes with point light sources. Another new
method presented is the coupling method, a general form of ray tracing
coupled with a radiosity solution. Last, the complete two-pass method using
diffuse and specular decomposition has been presented, allowing anisotropic
emissive surfaces and spotlights, as opposed to earlier two-pass approxima-
tions. In particular, it includes all of the possible diffuse-specular permuta-
tions.

Beside giving the advantages of these methods, this paper also points to
the limits of their applicability. For ray tracing, it is primarily the increase of
variance; for radiosity, it is the phenomenon of degeneration.

The many methods discussed provide efficient new algorithms coping with
a wide range of practical problems. We are still faced with the problem of
undertaking comparative numerical testing of the large number of available
radiosity and hybrid methods in standard environments. The test results
should then be included in a decision tree or in an expert system to guide one
toward an optimal solution method for actual problems.
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