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ABSTRACT
A prerequisite for leveraging the vast amount of data available on
the Web is Entity Resolution, i.e., the process of identifying and
linking data that describe the same real-world objects. To make this
inherently quadratic process applicable to large data sets, blocking
is typically employed: entities (records) are grouped into clusters
- the blocks - of matching candidates and only entities of the same
block are compared. However, novel blocking techniques are re-
quired for dealing with the noisy, heterogeneous, semi-structured,
user-generated data in the Web, as traditional blocking techniques
are inapplicable due to their reliance on schema information. The
introduction of redundancy, improves the robustness of blocking
methods but comes at the price of additional computational cost.

In this paper, we present methods for enhancing the efficiency
of redundancy-bearing blocking methods, such as our attribute-
agnostic blocking approach. We introduce novel blocking schemes
that build blocks based on a variety of evidences, including entity
identifiers and relationships between entities; they significantly re-
duce the required number of comparisons, while maintaining block-
ing effectiveness at very high levels. We also introduce two theoret-
ical measures that provide a reliable estimation of the performance
of a blocking method, without requiring the analytical processing
of its blocks. Based on these measures, we develop two techniques
for improving the performance of blocking: combining individual,
complementary blocking schemes, and purging blocks until given
criteria are satisfied. We test our methods through an extensive
experimental evaluation, using a voluminous data set with 182 mil-
lion heterogeneous entities. The outcomes of our study show the
applicability and the high performance of our approach.
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1. INTRODUCTION
The Linked Data principles1 are of central importance for the

effective re-use of the (semi-)structured, heterogeneous data that
are increasingly becoming available in the Web. They enable ex-
posing, sharing, and connecting these data, thus making it possi-
ble to leverage the investment in creating and collecting them [2].
However, the currently available Web data are not as “linked” as
this paradigm envisions; content providers tend to use their own
entity (resource) identifiers and schemata rather than re-using ex-
isting ones. As a result, the Web of Data ends up consisting of
heterogeneous, overlapping islands of knowledge that pose signif-
icant challenges in the effort to combine entity information from
different sources [9].

To remedy this problem, Entity Resolution (ER) is typically used;
it is the process of automatically identifying sets of entities that cor-
respond to the same real-world object. In principle, ER is a task of
quadratic complexity, as it requires comparing each entity with all
others. To scale it to large data collections, approximate ER meth-
ods drastically reduce the required number of comparisons, sacri-
ficing some of their effectiveness (i.e., number of detected dupli-
cates) in order to enhance their efficiency. Among these methods,
data blocking is the most prevalent one: it clusters data into blocks,
such that potential duplicates are placed in the same block with a
high probability. Thus, instead of operating on the entire collection,
it suffices to handle the data inside each block separately [6].

However, generating and processing blocks for large heteroge-
neous data sets imposes serious, new challenges; their inherent
characteristics - i.e., loose schema binding, noise, missing or in-
consistent values, as well as unprecedented levels of heterogene-
ity - break the fundamental assumptions of existing blocking tech-
niques and turn them inapplicable [19]. To deal with these settings,
blocking methods typically rely on redundancy (i.e., the common
practice of placing each entity in multiple blocks); a representative
example is the attribute-agnostic blocking approach [19], which
achieves higher performance by splitting its functionality in two
layers: (i) the effectiveness layer, which minimizes the likelihood
of missed matches with the help of redundancy, and (ii) the effi-
ciency layer, which employs a series of techniques to scale up the
ER process by saving a large portion of the unnecessary compar-
isons (i.e., repeated ones or comparisons between non-matching
entities) [20, 21]. Through these layers, we are able to handle large
volumes of noisy and heterogeneous data, without relying on any
assumptions about their schemata.

In more detail, we introduce blocking mechanisms for heteroge-
neous data that keep redundancy under control, without diminish-
ing the blocking effectiveness of our attribute blocking approach.

1http://en.wikipedia.org/wiki/Linked_data#Principles



We actually aim at enhancing the blocking efficiency at no impact
on the number of duplicates that share at least one block. In partic-
ular, we present novel, schema-independent blocking schemes that
operate at a higher level of granularity, distinguishing three sources
of evidence in entity profiles: (a) strings used for entity identifica-
tion (typically URIs), (b) entity identifiers used for linking entities
with each other (relationships), and (c) literal values used in entity
descriptions. The use of these evidences in blocking significantly
reduces the resulting number of required comparisons, thus offer-
ing substantially higher efficiency. However, they are less robust
in isolation, since they make more assumptions on the entity pro-
files than attribute-agnostic blocking. Therefore, we experiment
with composite blocking schemes, which combine the functionality
of two or more - preferably complementary - individual blocking
techniques in order to ensure increased robustness.

We also introduce two theoretical measures for a priori estimat-
ing the performance of a blocking method, without requiring any
analytical processing of its blocks. We verify the high correla-
tion of these metrics with the blocking effectiveness and efficiency,
and demonstrate how they can be employed in the context of block
purging [19], i.e., the process of discarding oversized blocks in or-
der to save superfluous comparisons at a limited and controllable
cost in effectiveness.

The main contributions of this paper are as follows:
1. We introduce two theoretical metrics that quantitatively cap-

ture the trade-off between blocking effectiveness and effi-
ciency. Their values provide a reliable estimation of the per-
formance of a blocking method, without requiring any an-
alytical block examination. Therefore, they are suitable for
a-priori estimating the best performing among a set of block-
ing methods.

2. We present a set of atomic blocking schemes that are crafted
for large-scale ER within heterogeneous collections of data.
They rely on different aspects of entity descriptions and, thus,
can be combined into composite schemes of higher robust-
ness and enhanced performance.

3. We introduce an intelligent technique for block purging that
enhances the efficiency of a blocking method at a negligi-
ble and controllable cost in its effectiveness. It relies on our
theoretical metrics in order to discard the excessively large
blocks and save the superfluous comparisons they entail.

4. We apply our techniques on a real-world data set that com-
prises 182 million entities, which are described by 1.15 bil-
lion statements - the largest entity collection ever employed
in the context of Entity Resolution. The overall evaluation
demonstrates the utility of the proposed theoretical metrics
and verifies the higher efficiency of our blocking techniques
in comparison with attribute-agnostic blocking.

The rest of the paper is organized as follows: Section 2 discusses
the related work, while Section 3 defines the problem. In Section 4
we propose three new blocking methods, we explain the benefits of
merging them into composite ones, and we present a new algorithm
for block purging. Section 5 reports the results of our experimen-
tal evaluation, while Section 6 provides conclusions and discusses
future work.

2. RELATED WORK
Being a traditional problem of Computer Science, a variety of

methods for ER have already been proposed in the literature. They
employ a rich diversity of techniques that - among others - include
string similarity metrics [4], similarity methods that rely on trans-
formations [23], as well as relationships among entities [5]. A com-
prehensive overview of the most important works in this domain
can be found in [6].

The most important ER blocking methods are summarized in [3].
They typically associate each record with a Blocking Key Value
(BKV), which summarizes the values of selected attributes, and
operate exclusively on it [6]. For instance, the Sorted Neighbor-
hood approach [10] orders records according to their BKV and then
slides a window of fixed size over them, comparing the records
it contains. The StringMap method [14] maps the BKV of each
record to a multi-dimensional, Euclidean space and employs suit-
able data structures to efficiently identify pairs of similar records.
The q-grams blocking technique [7] builds overlapping clusters of
records that share at least one q-gram (i.e., sub-string of length
q) of their BKV. Canopy clustering [16] employs a cheap string
similarity metric for building high-dimensional overlapping blocks,
whereas the Suffix Arrays approach [24] considers the suffixes of
the BKV instead. Whang et al. [25] explores another aspect of these
blocking approaches, arguing that more duplicates can be detected
and more pair-wise comparisons can be saved through the iterative
distribution of identified matches to subsequently (re-)processed
blocks. The same principle lies at the core of HARRA [13], a suite
of LSH-based, iterative blocking algorithms that scale well in the
context of homogeneous information spaces. [22] presents a prin-
cipled framework for parallelizing any sound ER method at a min-
imum message passing cost. Note, though, that all these methods
are not suitable for handling the heterogeneous entity collections
of the Web of Data, due to their core assumption that entities are
described by the same schema(ta), and that the quality of the indi-
vidual attributes is known a priori.

In addition, the vast majority of the above methods depends on
fine-tuning several application- and data-specific parameters in or-
der to achieve their optimal performance [24]. To automate the
parameter setting procedure, existing methods typically model it
as a machine learning problem. For instance, [17] defines it as
learning disjunctive sets of conjunctions that consist of an attribute
(used for blocking) and a method (used for comparing the corre-
sponding values). Similarly, [1] considers disjunctions of blocking
predicates (i.e., conjunctions of attributes and methods) along with
predicates combined in disjunctive normal form (DNF). These ap-
proaches, however, are only applicable to data sets involving a re-
stricted number of distinct attributes. Otherwise, they have to con-
sider an excessively high number of attribute combinations. They
do not scale, therefore, in the context of heterogeneous information
spaces.

In sharp contrast to existing approaches, attribute-agnostic block-
ing requires no fine-tuning, while assuming no background knowl-
edge of the data at hand [19]. Instead, it completely disregards the
schemata of the heterogeneous information spaces and solely con-
siders the values of their entity profiles. It ensures high robustness
and blocking effectiveness (i.e., the vast majority of the matching
entities have at least one block in common), by creating one block
for each token that appears in at least two entity profiles. Although
this approach scales well to middle-sized entity collections (with
few million entities), its fine granularity conveys extremely high
levels of redundancy when applied to large entity collections, like
the BTC09.

In this work, we argue that Heterogeneous Information Spaces
allow for blocking schemes of higher granularity that involve sub-
stantially lower levels of redundancy. They are, thus, more effi-
cient, while maintaining high levels of blocking effectiveness. In
addition, they can be arbitrarily combined, forming more robust
and more effective blocking methods, which are more efficient than
the original attribute-agnostic blocking. To the best of our knowl-
edge, there is no prior work on blocking techniques that can handle
hundreds of millions of entities described by arbitrary schemata.



3. PROBLEM DEFINITION
To describe the problem succinctly, we follow the unifying data

model that was introduced in [19]. Entity profiles are basically
composed of a globally unique identifier (e.g. URIs) coupled with
a set of attributes names and the values that accompany them. We
assume the existence of an infinite set of attribute namesAN , along
with an infinite set of possible valuesV and an infinite set of iden-
tifiers ID.

Definition 1. An entity profile pid is a tuple 〈id, Apid 〉, where
id ∈ ID is a globally unique identifier of the profile, and Apid is
a set of attributes ai. Each attribute ai ∈ Apid is a tuple 〈ni, vi〉,
consisting of an attribute name ni ∈ AN and an attribute value
vi ∈ (V ∪ ID).

The simplicity of this model enables it to accommodate entities
in more complex formats, such as RDF and XML, and to represent
data both in Web [26] and dataspace applications [8, 11]. For ex-
ample, multiple values can be assigned to the same attribute name,
while the attribute name can be a mere empty string, thus allowing
for tag-style attributes (i.e., no associated attribute name). In ad-
dition, attribute values can contain entity identifiers, enabling the
representation of relationships between entities.

Definition 2. An entity collection E is a tuple 〈ANE,VE, IDE,
PE〉, where ANE ⊆ AN is the set of attribute names appearing in it,
VE ⊆ (V ∪ ID) is the set of values used in it, IDE ⊆ ID is the set
of global identifiers contained in it, and PE ⊆ IDE × ℘(ANE × VE)
is the set of entity profiles that it comprises.

3.1 Resolution through Blocking Techniques
We expect that data aggregated from diverse sources contain du-

plicate entity profiles, which describe the same real-world objects.
Two such profiles pi and p j are said to match, a situation that is
denoted as pi ≡ pj. The general problem of entity resolution can,
thus, be defined as follows:

Problem Statement 1 (Entity Resolution). Given an entity
collection E that contains duplicates, detect all matches as effec-
tively (i.e., with high recall) and efficiently (i.e., with few entity
comparisons) as possible.

In this work, we focus on two particular cases of Entity Res-
olution: (i) the Dirty-Clean ER, where the goal is to identify the
matching entities among a duplicate-free (i.e., clean) entity collec-
tion and another collection containing duplicates (i.e., dirty), and
(ii) the Dirty-Dirty ER, which deals with the resolution of two dirty
collections. Both cases are equivalent to detecting the duplicates
within a single dirty entity collection that is derived from the union
of the individual input data sets (i.e., Dirty ER). Therefore, in the
following, we assume that the input to our blocking methods com-
prises a single set of - possibly matching - entities.

ER apparently constitutes a quadratic problem, whose naive so-
lution (i.e., comparing each entity with all others) does not scale to
large entity collections. To reduce the number of comparisons, we
follow the paradigm of data blocking: our goal is to define meth-
ods that group the given set of profiles into blocks according to a
blocking scheme. For our purposes, we model a blocking scheme
as a combination of two functions:

Definition 3. A blocking scheme bst,c for an entity collection
E is defined by a transformation function ft : E 7→ T and a set of
constraint functions f i

c : T × T 7→ {true, f alse}, where T stands for
the space of all possible blocking representations for entity profiles.
The transformation function ft derives the appropriate represen-
tation for blocking from the complete entity profile (or parts of it).
The constraint function f i

c is a transitive and symmetric function,
encapsulating the condition that has to be satisfied by two entities,
if they are to be placed in the same block bi.

To elucidate this definition, consider a homogeneous data collec-
tion of demographic data; a possible blocking scheme could com-
prise a transformation function that represents each person through
her/his zip code, and a set of constraint functions that define blocks
on the equality of the zip code (each constraint function corre-
sponds to a single zip code, and, thus, to a single block). However,
for heterogeneous data sets, other, less attribute dependent transfor-
mation functions are required.

Applying a blocking scheme bst,c to an entity collection E yields
a set of blocks BEt,c, whose instances are defined as follows:

Definition 4. A block bi ∈ BEt,c is a maximal subset of the given
entity collection E - having a minimum cardinality of 2 - that is de-
fined by the blocking scheme bst,c, i.e., by the transformation func-
tion ft and the constraint functions f i

c: bi ⊆ E ∧ ∀p1, p2 ∈ E :
f i
c( ft(p1), ft(p2)) = true⇒ p1, p2 ∈ bi.

The challenge in developing an efficacious blocking method -
including a blocking scheme and a method for block processing -
is to successfully balance the trade-off between the following two
competing quality targets [1, 17, 19, 24]:

Pair Completeness: Duplicates should share at least one common
block, otherwise they cannot be detected. A blocking method
should, therefore, minimize the matching entities that have
no block in common. This requirement is expressed through
the metric of Pair Completeness (PC), which is formally
defined as PC = dm/rm, where dm denotes the detected
matches (i.e., the number of matches that share at least one
block), and rm represents the number of real matches. It
takes values in the interval [0, 1], with higher values indicat-
ing higher effectiveness of the blocking method. Note that
PC is comparable to the Recall metric of Information Re-
trieval (i.e., Blocking Recall), but is different from the Recall
of the entire ER process, though having a direct impact on it.

Reduction Ratio: Each block should contain as few irrelevant en-
tities as possible, in order to reduce the number of unnec-
essary pair-wise comparisons. This requirement is typically
measured with respect to a baseline blocking method through
the metric of Reduction Ratio (RR); this measure is defined
as RR = 1 − mc/bc, where mc stands for the method’s num-
ber of comparisons and bc for the number of baseline com-
parisons. RR takes values in the interval [0, 1] (for mc ≤ bc),
with higher values denoting higher efficiency of the blocking
scheme.

In this context, the formal definition of the problem we are tack-
ling in this work is the following:

Problem Statement 2 (Blocking for Entity Resolution).
Given an entity collection E that contains duplicates and a base-
line blocking method, cluster its entities into blocks, such that Pair
Completeness and Reduction Ratio are maximized.

Maximizing RR means that the process of Entity Resolution can
be efficiently applied to large data sets, while maximizing PC satis-
fies the application requirements (i.e., an acceptable level of effec-
tiveness for heterogeneous data sets).

3.2 Metric Space for Blocking Techniques
To meet the goal of high PC in the context of noisy or het-

erogeneous information spaces, blocking methods typically rely
on redundancy: entities are associated with multiple, overlapping
blocks, thus minimizing the likelihood of missed matches [3, 19,
24, 25]. In this way, effectiveness is significantly enhanced, though
at the cost of the second target: redundancy has a substantial impact
on efficiency, due to the increased number of comparisons between



entities. There is, therefore, a clear trade-off between these two tar-
gets: higher blocking redundancy increases PC, but lowers RR, and
vice versa.

To concretely express this general observation, we define two
measures that a priori assess the performance of blocking meth-
ods. The first one - called Blocking Cardinality (BC) - captures the
proportional relationship between redundancy and the number of
blocks associated with each entity, on average:

Definition 5. Given an entity collection E along with a block-
ing scheme bst,c, the Blocking Cardinality (BCEt,c) of the resulting
set of blocksBEt,c is defined as the average number of blocks bi ∈ B

E
t,c

an entity profile pid ∈ E is placed in:

BCEt,c =

∑
pid∈E
|bi ∈ B

E
t,c : pid ∈ bi|

|E|
=

∑
bi∈B

E
t,c
|bi|

|E|
,

where |E| denotes the size of the given entity collection E, and |bi|

the size of block bi.
BC takes values in the interval [0, |E| − 1], with higher values de-
noting higher levels of redundancy. A value of 1 denotes a tech-
nique that is close to a partitioning blocking method (i.e., one that
partitions the given entity collection into non-overlapping blocks).
Values lower than 1 indicate blocking methods that fail to place
each entity in at least one block; this is possible, for instance, with
blocking techniques that exclusively rely on a single attribute and
ignore entity profiles that do not possess it. The maximum value
of BC is set to |E| − 1, since there is no point in associating every
entity with all others more than once.

Another crucial factor for the performance of a blocking method
is the distribution of block sizes: a large set of individually small
blocks is substantially more efficient than a set of few, but ex-
tremely large blocks, even if these sets share the same BC value.
To quantify this notion, we introduce the metric of Comparisons
Cardinality (CC):

Definition 6. Given an entity collection E along with a block-
ing scheme bst,c, the Comparisons Cardinality (CCEt,c) of the re-
sulting set of blocks BEt,c is defined as the ratio between the sum of
block sizes and the total number of comparisons entailed in BEt,c:

CCEt,c =

∑
bi∈B

E
t,c
|bi|∑

bi∈B
E
t,c
|bi| · (|bi| − 1)/2

,

where |bi| denotes the size of block bi.
In essence, CC denotes the number of block assignments (i.e.,

associations between a block and an entity) that account for a sin-
gle comparison. It takes values in the interval [0, 2], with higher
values corresponding to block size distributions that are dominated
by small blocks, and, thus, are more efficient. In fact, its maxi-
mum value CCmax = 2 corresponds to the ideal case of a blocking
method that associates each entity of the input collection E with a
single block that contains just another entity: CC = |E|

|E|/2 = 2. In
contrast, for a blocking method that places all given entity profiles
in a single block, we have CCmax = |E|

|E|·(|E|−1)/2 = 2
|E|−1 � CCmax.

On the whole, the closer the CC is to CCmax, the more efficient the
corresponding blocking method is.

Note that both the BC and the CC depend on the input entity col-
lection as well as the blocking method at hand: the same blocking
scheme can yield different levels of redundancy and different block
size distributions, when applied to different entity collections.

The combination of these two metrics - BC and CC - captures
in a comprehensive way the trade-off between effectiveness and ef-
ficiency, that is inherent in any blocking method. This trade-off

can be actually visualized by mapping a blocking method onto a

CC

2
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Method

BC

|E|-11

Partitioning 

Method
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Figure 1: Illustration of the metric space for blocking methods.

Cartesian space, with its X-axis corresponding to BC values, and
its Y-axis corresponding to CC values. We call it the BC-CC space
(see Figure 1). A partitioning method has a BC value of 1, while
its CC value depends on the distribution of block sizes; thus, it is
mapped to some point on the x = 1 line. The ideal point (i.e., point
(1,2)) corresponds to the ideal case of a partitioning method that
completely disregards non-matching entities and builds a block of
minimum size for each pair of duplicates. A typical redundancy-
bearing blocking method is mapped to a point lying somewhere
between the lines x = 1 and x = |E| − 1.

In the following, we demonstrate that the conjunction of the
BC and CC metrics is appropriate not only for describing block-
ing methods, but also for providing a reliable estimation of their
actual performance. There is indeed a high correlation between
the BC value of a blocking method and its effectiveness (i.e., Pair
Completeness). The same holds true for CC and its relation to the
efficiency of a method. The metric space of BC-CC can be used,
therefore, for comparing a priori a set of blocking methods: the
closer a blocking method is to the ideal point (1,2), the better its
performance. The main advantage of this methodology is its neg-
ligible cost: both metrics are computed in linear time, O(|BEt,c|),
simply by passing over the given set of blocks in order to record
their size2. Below we also explain how the BC-CC mapping of a
blocking method can be used as a guide for further enhancements
in its performance, such as in block purging.

4. BLOCKING TECHNIQUES
Our approach to blocking for large-scale heterogeneous data sets

is inspired by three observations: (i) The data sets we are con-
sidering entail loose schema binding and unprecedented levels of
heterogeneity. The latter pertains to the schemata describing the
same entity types as well as to different profiles describing the
same entity. Google Base3, for instance, encompasses 100, 000
distinct schemata that correspond to 10, 000 entity types [15]. Con-
sequently, these conditions strongly oppose to a crucial role of at-
tributes in blocking and duplicate detection. (ii) Many identifiers in
the Web of Data, (i.e., URIs) contain semantics, thus constituting
a strong basis on which entities can be matched. This was experi-
mentally verified in [18], where a large-scale analysis of matching
entities according to the semantics of their identifiers had a preci-
sion well over 90% and a recall exceeding 70%. (iii) Relationships
between entities provide important evidences for matching them
and can be exploited in numerous ways. For example, after de-
tecting a pair of duplicates, positive and negative evidences can be
propagated across related entities in order to increase the precision
and recall of ER [5].

Based on the above observations, we developed a set of block-
ing schemes that are robust enough to tolerate high schema het-
erogeneity, as well as inconsistencies and noise (i.e., missing or
incorrect values in the entity profiles). Observation (i) inspired us

2This is the reason why CC considers the entire amount of com-
parisons, including the redundant ones: its value is derived from
the plain inspection of the blocks at hand, without looking into the
entities they contain.
3http://www.google.com/base



Prefix Infix Suffix
(a) http://dblp.l3s.de/d2r/resource/publications/books/sp/wooldridgeV99 /ThalmannN99

http://bibsonomy.org/uri/bibtexkey/books/sp/wooldridgeV99 /ThalmannN99 /dblp

Prefix Infix Suffix
(b) http://liris.cnrs.fr /olivier.aubert /foaf.rdf#me

http://bat710.univ-lyon1.fr /˜oaubert /foaf.rdf#me
Figure 2: Examples of URI pairs in the PI(S) form that refer to the same real-world entity.

to develop techniques that completely ignore the schema informa-
tion and exclusively rely on the values of entity profiles [19]; all
blocking schemes that are presented in the following adhere to this
principle. Observation (ii) advocates the creation of blocks on the
basis of evidence drawn from the semantics of entity identifiers
(Blocking Scheme A.1). In view of observation (iii), we addition-
ally consider blocking schemes that rely on the relationships be-
tween entities, exploiting the semantics contained in the identifiers
of affiliated resources (Blocking Scheme A.2).
4.1 Preliminaries: Entity Identifier Analysis

Even though the W3C explicitly discourages users from incorpo-
rating semantics into URIs [12], the latter often contain substrings
that provide clues about the corresponding entity. These substrings
usually stem from well-established, often hierarchical, human la-
beling schemes (e.g., names, titles, or addresses), or explicit stan-
dardization efforts (e.g., industry-wide product codes or digital ob-
ject identifiers - DOI). Hence, they constitute a natural source of
evidence appropriate for matching duplicate entities. Indeed, [18]
verified experimentally that approximately 66% of the 182 million
URIs of the BTC09 data set4 follow a common pattern: the Prefix-
Infix(-Suffix) scheme - PI(S) for short. Each component of this form
plays a special role: the Prefix part contains information about the
source (i.e., domain) of the URI, the Infix part is a sort of local
identifier, and the optional Suffix part contains either details about
the format (e.g., .rdf and .n3), or a named anchor.

Our approach builds upon this pattern in order to extract match-
ing evidences from entity identifiers. We actually expect the In-
fixes of URIs, which are more source-independent than the Prefixes
and the Suffixes, to contain the most discriminative information for
our purpose within a URI [18]. As an example, consider the du-
plicate pairs shown in Figure 2. Pair (a) shows that despite the
high heterogeneity in the Prefixes of the URIs, the Infix remains
the same. Moreover, the Suffix (e.g., dblp) is optional and can be
ignored when matching URIs. Pair (b) illustrates the limitations of
the approach: non-identical Infixes such as (olivier.aubert and
˜oaubert) can only be matched with the help of appropriate simi-
larity methods. In the following, we explain how this situation can
be resolved through blocking methods that combine evidence from
different aspects of entity profiles.
4.2 Atomic Blocking Schemes

Given an entity profile pid, our blocking schemes disregard all
schema information (i.e., attribute names), and rely exclusively on
the remaining description items that are illustrated in Figure 3: the
identifier id of the profile (its Infix, in particular), the URIs con-
tained in pid as values for denoting entity relationships, and the
literal values5 that are used to represent textual values of attributes.
Blocking methods that rely solely on one category of the aforemen-
tioned information are atomic blocking schemes, in contrast to
composite blocking schemes, which consider evidence from two
or more of the above information sources.

To apply our blocking schemes to a collection of RDF data, we
generate the entity profiles from its statements in line with Defi-
nition 1: all triples with a particular subject s, form the basis for
4http://vmlion25.deri.ie.
5In RDF statements, these are objects that are neither URIs nor
blank nodes.

an entity profile ps that has s as its identifier, while the respective
predicates and objects correspond to the set Aps of the name-value
pairs of ps.

In the following, we formally define our blocking schemes A.1
to A.3. For this purpose, we use two functions: In f ix(id)6, which
extracts the Infix from the given entity identifier id, and tokenize(v),
which tokenizes a string value v on all special characters (i.e., char-
acters that are neither letters nor digits).

A.1. Infix Blocking. This blocking scheme conveys a trans-
formation function that extracts the Infix from the id of each en-
tity profile: ft(pid) = In f ix(id). Its constraint functions define
blocks on the equivalence of Infixes: every block is associated
with an Infix and contains all entities that share it. More formally,
f i
c(pid1 , pid2 ) = ((i = In f ix(id1)) ∧ (i = In f ix(id2))), where i is an

Infix.
Apparently, this blocking scheme places each entity in just one

block, thus resulting in non-overlapping blocks, i.e., BC ≤ 1. For
example, the entity of Figure 3, is placed solely in the block that
corresponds to the Infix “Barack_Obama”, together with all other
entities sharing the same Infix. Values lower than 1 denote that the
given entity collection contains profiles, whose URIs lack an Infix.
The absence of redundancy together with the discriminative infor-
mation of Infixes ensure blocks of small size and high CC values
(i.e., high Reduction Ratio). However, its blocking effectiveness as
well as its robustness is expected to be limited, as a side-effect of
its low BC value. For instance, it does not apply to entities with a
blank node7 or a random URI as their id; the reason is that, in these
cases, the corresponding identifier has merely a local scope, thus
not providing a meaningful Infix for entity matching.

A.2. Infix Profile Blocking. The Infix Profile of an entity profile
pid - denoted by IPpid - is the set of the Infixes of all URIs contained
in pid as attribute values, with the exception of its own identifier
(i.e., id): IPpid = {In f ix(idi) : ∃ni :< ni, idi >∈ Apid ∧ idi , id}.

Based on this concept, we can define a blocking scheme with a
transformation function that represents each entity profile pid by its
IPpid (i.e., ft(pid) = IPpid ), and a set of constraint functions that
form blocks on Infix equality: f i

c(pid1 , pid2 ) = ((i ∈ IPpid1
) ∧ (i ∈

IPpid2
)), where i is an Infix.

The cardinality of an IPpid can be larger than one, since an en-
tity is typically associated with multiple entities. Hence, every
entity with a non-empty Infix Profile can be placed in multiple
blocks, which are now overlapping (i.e., BC ≥ 1 if all entities have
a non-empty Infix Profile). For example, the entity of Figure 3,
is contained in three blocks: those corresponding to the Infixes
“Michelle_Obama", “Hawaii", and “Joe_Biden". This redundancy
leads to larger blocks - on average - and inevitably to a lower CC
value than Infix Blocking. RR is, therefore, lower to the benefit of
higher PC and robustness. This blocking scheme has actually the
potential to cover duplicates, where pure Infix Blocking is inappli-

6See [18] for an efficient approach to splitting a collection of URIs
into the PI(S) form in order to extract the Infix from the individual
URIs.
7Blank nodes constitute anonymous nodes in an RDF graph that
are typically used whenever there is no information available about
the corresponding resource. Consequently, their identifiers do not
carry any semantics.



URL: <http://dbpedia.org/resource/Barack_Obama>

birthname: “Barack Hussein Obama II”

dateOfBirth: “1961-08-04”

birthPlace: “Hawaii” <http://dbpedia.org/resource/Hawaii>

shortDescription: “44th President of the United States of America”

spouse:  <http://dbpedia.org/resource/Michelle_Obama>

Vicepresident: <http://dbpedia.org/resource/Joe_Biden>
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Figure 3: Illustration of the description items of an entity profile that are used by our blocking schemes.

cable: even though blank nodes and numerical URIs have no Infix,
their Infix Profile can be non-empty. The same applies to match-
ing entities with non-identical Infixes: their Infix Profile is likely to
share at least one Infix of a related entity. Regarding its mapping to
the BC-CC space, this schema is placed to the right of A.1 on the
X-axis and lower than it on the Y-axis (assuming that both schemes
are applied to the same entity collection).

However, the coverage of this strategy is also limited: entities
with numerical/arbitrary URIs tend to be related to other numeri-
cal/arbitrary URIs of the same domain, thus lacking an Infix Profile,
unless they are used in multiple domains. Moreover, it cannot cover
the cases of entity profiles that lack an Infix Profile (e.g., profiles
that solely contain literal values).

A.3. Literal Profile Blocking. The Literal Profile of an entity
profile pid - denoted by LPpid - comprises the set of all tokens of
the literal values contained in it: LPpid = {ti : ∃ni, vi :< ni, vi >∈
Apid ∧ ti ∈ tokenize(vi) ∧ vi < ID}.

This textual information can be employed in the context of a
blocking method that has the following transformation function:
ft(pid) = LPpid . Blocks are based on the equality of tokens, with
each block corresponding to a single token and each entity associ-
ated with multiple blocks. For instance, in Figure 3 we can see that
the depicted entity will be placed in 18 blocks, one for each token
in its Literal Profile. More formally, the constraint functions are
defined as follows: f ti

c (pid1 , pid2 ) = ((ti ∈ LPpid1
) ∧ (ti ∈ LPpid2

)),
where ti is a token.

Note that this blocking scheme is similar to that presented in [19]
with the difference that it does not tokenize the URIs contained in
entity profiles as values. It is expected, therefore, to be inapplicable
to cases where a profile has no literal values. Still, PC is potentially
higher than that of A.1 and A.2, as the only prerequisite for an eligi-
ble entity profile is to contain at least one literal value that is shared
with other entities. However, its efficiency (i.e., RR) is expected
to be lower, due to the higher degree of redundancy: each block
corresponds to a single token, with the number of entities sharing
a token being typically higher than those sharing an Infix (Infixes
normally consist of several tokens concatenated together, and are
less common than individual tokens). This results in blocks that
are larger, on average, thus reducing the value of CC. Its mapping
to the BC-CC space is placed to the right of A.1 on the X-axis and
lower than it on the Y-axis (assuming that both schemes are applied
to the same entity collection).

4.3 Enhancing Effectiveness:
Composite Blocking Schemes

In isolation, the individual atomic blocking schemes are of lim-
ited robustness, with their effectiveness depending upon the charac-
teristics of the entity collections at hand. To remedy this situation,
we propose the combination of atomic blocking schemes into com-
posite ones. Given that the individual blocking schemes rely on
different aspects of entity profiles, they are complementary. Thus,
the composite blocking schemes derived from their union are ex-
pected to exhibit significantly higher robustness, leading to signif-
icantly higher PC. This is at the cost of efficiency, however, since

the new scheme entails more blocks that are larger in size, due to
the common constraint functions (i.e., those stemming from differ-
ent atomic blocking schemes, but corresponding to the same token
or Infix).

In Figure 4, we illustrate the effect of merging atomic block-
ing schemes into composite ones on the BC-CC space: combining
Method1 with Method2 leads to Method3 that has increased BC
value (i.e., higher redundancy) and lower CC value (i.e., restricted
efficiency ), due to the larger - on average - blocks.

In the following paragraphs, we present all four possible com-
binations of the above atomic schemes and explain the rationale
behind them. Note that all of them produce overlapping blocks.

B.1. Complete Infix Blocking. This blocking scheme is de-
rived from the combination of the schemes A.1 and A.2. Thus, the
transformation function extracts from an entity profile the union of
its Infix and its Infix Profile: ft(pid) = In f ix(id) ∪ IPpid . Blocks
are again built on the equivalence of Infixes, with each block cor-
responding to a single Infix and each entity potentially placed in
multiple blocks: f i

c(pid1 , pid2 ) = ((i = In f ix(id1)∨ i ∈ IPpid1
)∧ (i =

In f ix(id2) ∨ i ∈ IPpid2
), where i is an Infix.

Compared to Infix Blocking, it covers profiles with a synthetic
identifier (i.e., a blank node or a random URI) and is able to match
entities with non-identical Infixes. Compared to Infix Profile Block-
ing, it applies to entities with empty Infix Profiles which, neverthe-
less, have an Infix. The only case that this scheme is not applicable
is for entities that lack any meaningful URI in their profile; these
are entities that have arbitrary, synthetic URIs as ids and are solely
associated with identifiers of the same kind as well as with literal
values. Most importantly, though, this combination takes advan-
tage of Infixes that originally did not result in blocks, due to their
scarcity in the individual blocking schemes (i.e., they appeared in
just one profile). As verified in Section 5, this results in signifi-
cantly higher robustness that brings about higher PC, as well.

B.2. Infix-Literal Profile Blocking. This scheme results from
the combination of A.1 with A.3: its transformation function rep-
resents each entity by the union of its Infix and its Literal Profile:
ft(pid) = In f ix(id) ∪ LPpid , while its constraint functions build
blocks on the equality of Infixes or tokens: f i

c(pid1 , pid2 ) = ((i =

In f ix(id1) ∨ i ∈ LPpid1
) ∧ (i = In f ix(id2) ∨ i ∈ LPpid2

)), where i is
an Infix and/or a token.

It is worth noting that the merge of these two atomic schemes is
more than just the union of the blocks of the individual schemes:
some Infixes merely consist of a single token, leading to some con-
straint functions that are common among both schemes (e.g., the
Infix “Hawaii” of the entity in Figure 3 appears as a token of a lit-
eral value, as well). Thus, this composite scheme involves blocks
common among the atomic ones; these blocks have a larger size
than before, entailing more comparisons and resulting in lower effi-
ciency and lower CC values. However, robustness and effectiveness
are substantially enhanced: the only profiles that are not covered by
this composite scheme are those having a blank node or a random
URI as id, while containing no literal values in their set of attribute
values. Apparently, this case is highly unlikely.



CC

BC

Method3

|E|-1

Method2

2

Method1

Method4

Ideal Point

1

Figure 4: Illustration of the effect on the BC-CC space of
two optimization techniques: (i) merging individual blocking
schemes (Method1 and Method2) into composite ones (Method3),
and (ii) purging the oversized blocks of a blocking technique
(Method3) to produce a more efficient one (Method4).

B.3. Infix Profile-Literal Profile Blocking. This scheme is de-
rived from the combination of the schemes A.2 and A.3. Similar to
B.2, the transformation function extracts from an entity profile the
union of its Infix and its Literal profile (i.e., ft(pid) = IPpid ∪LPpid ),
while the constraint functions define blocks on the equality of In-
fixes or tokens: f i

c(pid1 , pid2 ) = ((i ∈ IPpid1
∨ i ∈ LPpid1

) ∧ (i ∈
IPpid2

∨ i ∈ LPpid2
)), where i is an Infix and/or a token.

For the reasons explained in B.2, it exhibits higher redundancy
(i.e., higher BC value) than the individual blocking schemes it com-
prises, thus involving higher robustness coupled with higher ef-
fectiveness. The main difference between B.2 and B.3 lies in the
cases that B.3 does not cover: this scheme does not apply to pro-
files whose set of attribute values contains solely blank nodes and
random URIs.

B.4. Total Description Blocking. This blocking scheme is
formed by the combination of all atomic ones. Thus, it represents
entities by the Infixes of all URIs contained in their profiles and
the tokens of all their literal values: ft(pid) = In f ix(id) ∪ IPpid ∪

LPpid . Blocks are then defined on the equality of tokens or Infixes:
f i
c(pid1 , pid2 ) = ((i = In f ix(id1) ∨ i ∈ IPpid1

∨ i ∈ LPpid1
) ∧ (i =

In f ix(id2) ∨ i ∈ IPpid2
∨ i ∈ LPpid2

)), where i is an Infix and/or a
token.

The interplay of all atomic blocking methods leads to the highest
robustness among all schemes presented in this paper: this combi-
nation fails only in the highly unlikely cases where an entity profile
has a non-meaningful identifier as its id and exclusively contains
identifiers of this kind in its set of attribute values. This results not
only in the highest effectiveness among all methods, but also in the
highest BC value: it entails the highest number of blocks, which are
also expected to be larger - on average - than the blocks of the other
schemes. They entail, therefore, a considerably higher number of
comparisons that leads to lower efficiency and lower CC values.
4.4 Enhancing Efficiency: Block Purging

BC and CC are useful not only for assessing the performance of
blocking techniques, but also for improving it. In fact, they can be
employed in the context of block purging, a method introduced in
[19] as a way of increasing the efficiency of redundancy-bearing
blocking methods. In essence, it is based on the observation that
very large blocks entail a high cost (in terms of comparisons), al-
though they have a negligible contribution to Pair Completeness
(i.e. it is very unlikely that they contain duplicates that have no
other block in common). Based on this observation, Block Purging
specifies an upper limit on the size of the blocks that are processed,
and discards all blocks that exceed it.

The effect of this approach on the BC-CC space is illustrated in
Figure 4 by Method3 and Method4. With the removal of any block,
the overall number of block assignments is reduced together with
Blocking Cardinality (as its denominator remains stable); thus, the
BC-CC mapping of a blocking method moves to the left on the
X-axis. On the other hand, CC increases, as the removal of large
blocks leads to a more even distribution of block assignments across

Algorithm 1: Tuning for Block Purging.
Input: B a set of blocks
Output: optimalBlockS ize the optimal, maximum block size for block purging

1 B′ ← orderBySize(B);

2 blockAssignments← 0;
3 comparisons← 0;
4 lastBlockS ize← 2;
5 index← 0;
6 statistics[]← {};
7 foreach bi ∈ B′ do
8 if lastBlockS ize < bi.size() then
9 statistics[index].size = lastBlockS ize;

10 statistics[index].cc =
blockAssignments

comparisons ;
11 index++;
12 lastBlockS ize← bi.size();

13 blockAssignments← blockAssignments + bi.size();

14 comparisons← comparisons +
bi .size()·(bi .size()−1)

2 ;

15 statistics[index].size = lastBlockS ize;
16 statistics[index].cc =

blockAssignments
comparisons ;

17 optimalBlockS ize← lastBlockS ize;
18 for i← statistics.size()-1 to 1 do
19 if statistics[i].cc ≈ statistics[i − 1].cc then
20 optimalBlockS ize← statistics[i].size;
21 break;

22 return optimalBlockS ize;

the remaining collection of blocks. In the general case, therefore,
block purging moves the original method (Method3) to the direc-
tion of Method4 (i.e., closer to the ideal point (1,2)).

The key for successfully applying this technique is the selec-
tion of the upper limit on block sizes. A simple method for this
task was introduced in [19], but it is crafted for the Clean-Clean
case of ER and is not applicable to the Dirty ER we are consid-
ering. To replace it, we introduce a novel method for selecting
the optimal threshold on the maximum block size that relies on
the CC metric. It is based on the following observation: starting
with the exclusion of the largest block and going down towards
the smaller ones, the value of Comparisons Cardinality slowly in-
creases. This is because the removal of large blocks (i.e., blocks
with |bi| � 2) decreases its denominator (i.e., number of compar-
isons -

∑
bi∈B |bi| · (|bi| − 1)/2) faster than its numerator (i.e., number

of block assignments -
∑

bi∈B |bi|). Block purging should stop, there-
fore, as soon as there is no more increase in the value of CC to be
expected; discarding additional blocks would just reduce BC and,
consequently, PC, while having a negligible effect - if any - on RR.
For this reason, we use the following termination criterion: block
purging stops as soon as two consecutive block sizes have the same
value for CC.

The outline of our approach to Block Purging is presented in
Algorithm 22. Line 1 orders the given collection of blocks B in
ascending order of block sizes, and, thus, makes it possible to cal-
culate the Comparisons Cardinality value for each block size with
a single pass (Lines 2-19). Lines 15-16 ensure that the last block is
also taken into account in the computation of the statistics. Start-
ing from the largest block size, the CC values of consecutive sizes
are then compared in Lines 17-22. The procedure is terminated as
soon as the CC value remains stable. Apparently, the complexity of
our algorithm is dominated by the initial sorting and is equivalent
to O(|B| log |B|), where |B| stands for the size of the given collection
of blocks B.

5. EVALUATION
5.1 Setup

Baseline. Previous studies have shown that — in the context



of heterogeneous information spaces — existing blocking meth-
ods, which rely on schema information, exhibit high efficiency (i.e.,
very few entities per block), but they suffer from remarkably poor
recall (i.e., PC): they place less than half the matching entities into
(at least) one common block [19]. In this paper, we do not repeat
the comparison experiments to such blocking methods. Instead we
use as baseline for our experiments the original attribute-agnostic
blocking method of [19], which outperforms previous techniques.
It is denoted by Total Tokenizer and essentially works as follows:
given an entity profile, this blocking scheme tokenizes all the val-
ues it contains on their special values and defines blocks on the
equality of tokens. The only values that are excluded from this
procedure are the URIs that correspond to blank nodes. As stated
above, the goal is to prove that the blocking schemes presented in
this paper provide a better balance between PC and RR: they main-
tain blocking effectiveness at equally high levels, while requiring a
significantly lower amount of pair-wise entity comparisons.

Performance Metrics. To assess our blocking techniques, we
employ the two metrics that have been established in the blocking
literature and were introduced in Section 3.1: Pair Completeness
and Reduction Ratio. The former estimates the ratio between the
true matches that share at least one block and the true matches in
the entire data set; the latter measures the reduction in the number
of pair-wise comparisons the examined blocking method achieves
with respect to the baseline one. Note that we follow the litera-
ture [1, 17, 19, 24], and focus on the performance of the blocking
methods, thus ignoring the precision of entity matching techniques.
The latter is actually out of the scope of this paper, as the proposed
schemes can be integrated with any entity comparison method.

Technical Metrics. The second group of metrics we consider
elucidates important technical characteristics of blocking methods,
providing the grounds for their measured performance. The consid-
ered measures are the following: (i) Method Coverage denotes the
portion of the given entities that qualify for the respective blocking
method, (ii) Blocks Coverage expresses the percentage of entities
that are placed in at least one block. In conjunction with Method
Coverage, it estimates those entities that qualify for the blocking
scheme, but share no description item(s) with any other entity8,
(iii) Disk Space occupied on the hard drive, (iv) Average Block Size
denotes the average entities per block, (v) Number of Blocks gener-
ated by the technique.

The first two measures are indicative of the robustness of a block-
ing scheme, with higher values corresponding to more robust meth-
ods. The remaining ones are related to the efficiency aspects of
a method (including storage efficiency), with higher values corre-
sponding to lower efficiency; for example, the larger the blocks of a
blocking method are on average, the more comparisons they entail
and the lower its efficiency is.

Large-scale Data Set. We evaluated our approaches on the real-
world data set of BTC09, the largest one ever used in the context of
Entity Resolution. It comprises more than 182 million distinct en-
tities that are described by 1.15 billion RDF statements. They have
been crawled from several thousand sources of the Semantic Web,
each having its unique characteristics for the format and the quality
of the contained information. As a result, BTC09 constitutes a size-
able and representative heterogeneous information space, which is
suitable for deriving safe conclusions about the generality of our
blocking techniques.

As ground-truth we employed two collections of matching en-
tities: the first one - denoted by SameAs - was derived from the
explicit owl:sameAs statements and encompasses 5.99 million

8Note that each block has to contain at least 2 entities.

matches of the form pi ≡ p j that, in total, involve 8.67 million
distinct entities. The second ground-truth set - symbolized as IFP
- was inferred from the implicit equivalence relationships of the
InverseFunctionalProperties9 and contains 11, 553 matches among
17, 990 distinct entities.

The reason for considering two sources of ground-truth is the
bias that is perhaps lurking in the explicit equivalence relationships:
it is possible that some of them consist of machine-generated same-
as statements, which typically follow specific URI patterns (i.e.,
they change solely the Prefix and the Suffix of a URI, leaving the
Infix intact). This is the case, for instance, with the transformation
of Wikipedia URIs to DBPedia ones. To have a better understand-
ing of the general performance and the robustness of our algorithm,
we need, therefore, an additional data set that involves a higher va-
riety of equivalence relationships, derived from a rich diversity of
sources. The ground-truth set of implicit equivalence relationships
(i.e., IFP) serves this need perfectly.
5.2 Blocking Schemes Performance

Technical Metrics. The technical metrics of our thorough ex-
perimental comparisons are presented in the left side of Table 1.
Regarding Method Coverage, we can see that the atomic block-
ing schemes individually cover less than 2/3 of all entities, while
their combinations have substantially higher coverage - well over
90% in most of the cases. Nevertheless, the coverage of Infix and
Infix Profile blocking alone is larger than one would expect. To ex-
plain this phenomenon, we investigated the extent to which blank
nodes are used as ids, not only for uniquely identifying entities, but
also for expressing the associations between entities. We found out
that, among all data sources of BTC09, less than a third of their
entities (32.61%) have a blank node as an id, and a mere 4.99% of
their statements have a blank node as their object. Consequently,
blank nodes are completely outweighed by real URIs, and have a
restricted impact on the applicability of our method.

The values of Blocks Coverage follow the same pattern as those
of Method Coverage: they are slightly lower than 66% for atomic
blocking schemes, but significantly higher for the composite ones.
It is worth noting that - in almost all the cases - the value of Blocks
Coverage is around 2% lower than that of Method Coverage. This
means that our blocking schemes place almost all entities that con-
tain the required description item(s) in at least one block. The only
exception to this is Infix Blocking: there is a discrepancy of 36%
between its Blocks and its Method Coverage. This is caused not
only by the arbitrary entity identifiers (i.e., random or numerical
URIs), but also by the scarcity of Infixes (i.e., a considerable part
of Infixes appears in just one entity identifier, thus not forming a
block).

It is interesting to examine why this does not apply to Infix Pro-
file Blocking, as well. A possible reason is the connectivity of
the resources contained in BTC09; in fact, it was reported in [18]
that 12.55% of the resources appear only as subjects, 30.49% ap-
pear solely as objects, while the rest (56.96%) appear both as sub-
jects and objects. This evidence suggests that there are strong con-
nections between the nodes of the RDF graph and, consequently,
many relations between the entities of different domains. There-
fore, sources with synthetic URIs are connected to other domains
that do not necessarily follow the same methodology for generating
identifiers. Thus, they pose no serious threat to the robustness of
Infix Profile blocking and the blocking schemes built on it.

The results on the efficiency characteristics are quite intuitive:

9InverseFunctionalProperties (IFPs) provide a reliable means of
discovering implicit equivalence relationships in the Semantic
Web: any two resources that share the same value for an IFP are,
actually, identical.



Technical Metrics Performance Metrics
Blocking Method Blocks Disk Space Blocks Av. Block RR PCIFP PCSameAs BC CC
Scheme Coverage Coverage (GB) (×106) Size (%) (%) (×10−7)

Infix 67.20% 31.32% 13 15.34 3.83 99.98 59.31 49.60 0.32 94.20
Infix Profile 66.17% 64.84% 26 23.59 17.80 95.86 84.19 43.78 2.30 3.92
Literal Profile 55.63% 54.95% 59 17.83 111.39 89.68 94.49 24.51 10.90 7.43
Complete Infix 98.91% 97.25% 33 68.87 8.13 95.77 85.16 87.14 3.07 5.10
Infix-Literal Pr. 91.88% 74.18% 65 27.90 74.07 87.46 96.43 65.67 11.34 6.36
Infix Pr.-Literal Pr. 69.29% 68.13% 75 38.44 62.14 85.30 96.64 52.09 13.11 6.61
Total Description 99.66% 98.90% 83 81.08 31.05 84.96 97.98 91.13 13.82 6.13
Total Tokenizer 100.00% 100.00% 114 31.16 112.45 - 99.32 92.26 19.23 1.35

Table 1: General statistics and performance of the proposed blocking schemes in comparison with the baseline method.

composite blocking schemes have more blocks, which are larger
in size (on average) and occupy more disk space. Their efficiency
is, therefore, lower than that of the atomic schemes. The baseline
method is the least efficient, as it requires more than 25% addi-
tional disk space and has the largest average block size. This is a
side-effect of its low-granularity, which results in rather frequent
blocking units (e.g., most of the URIs contain the token “http”).
This also explains why the average size of its blocks is only com-
parable to that of Literal Profile: they both rely on the same block-
ing units. However, the latter involves a lower number of tokens
and can be combined with the other atomic blocking schemes to
produce blocks of smaller - on average - size, thus increasing its
efficiency.

Performance Metrics. The actual performance of our blocking
schemes is presented on the right side of Table 1. We notice that
RR takes values over 85% in all cases (there is no RR value for
Total Tokenizer, since it is the baseline against which RR is com-
puted). This means, the Total Tokenizer performs an order of mag-
nitude more comparisons than those required by the other methods.
In absolute values, the former involves 2.59 × 1016 comparisons,
while the comparisons for our methods range from 6.24× 1012 (In-
fix Blocking) to 3.90×1015 (Total Description); that is, the required
pair-wise comparisons per entity drop from 107 to a value between
104 and 106 (we further reduce these numbers to a significant ex-
tent in Section 5.4). The very low efficiency of Total Tokenizer is
depicted in its CC value as well: it is the lowest by far, while Infix
Blocking has the highest one - almost an order of magnitude higher.

Regarding effectiveness, we can see that - independently of the
ground-truth set - PC is quite low for the atomic blocking schemes,
but substantially higher for the composite ones. This pattern actu-
ally constitutes a strong evidence in favor of merging complemen-
tary blocking schemes: their PC is always considerably larger than
the maximum value of the individual schemes comprising them.
For this reason, the highest PC is achieved by the method that com-
bines all three atomic schemes (i.e., Total Description), being lower
than Total Tokenizer by just 1%, for both benchmark sets. Note
also that there is a clear association between the values of PC and
BC, with high BC values conveying high PC ones. This interesting
association is analytically discussed in the following section.

Overall, we note that the atomic blocking schemes exhibit the
highest levels of efficiency, but suffer from deficient robustness and
effectiveness. The composite blocking methods improve on both of
these weaknesses, without a significant sacrifice of their efficiency.
In fact, the method that encompasses all atomic schemes exhibits
similar levels of robustness and effectiveness with Total Tokenizer,
while saving almost 85% of all comparisons. Thus, it achieves our
goal by having two crucial differences from the baseline: first, it
considers the Infix of URIs that appear as attribute values, instead
of extracting all tokens from them, and second, it exploits the URIs
that are used as entity identifiers, extracting their Infixes, as well.

5.3 BC-CC mapping vs Real Performance
In this section, we experimentally verify that the combination

of BC and CC metrics provides a highly accurate estimation of a
blocking method’s real performance. The values of BC actually
exhibit a high correlation with those of PC, while the same applies
for CC and RR. Our analysis relies on the Pearson correlation co-
efficient (ρX,Y), a well established measure for estimating the linear
dependency between two variables X and Y . It takes values in the
interval [−1, 1], and the higher its absolute value is, the stronger the
correlation of the given variables is. A value of |ρX,Y | = 1 indicates
a completely linear relationship of the form X = α · Y + β, where
α, β ∈ R and 0 < α if ρX,Y = 1, while α < 0 if ρX,Y = −1.

Our analysis consists of two parts: first, we measure the corre-
lation between the above metrics with respect to different block-
ing schemes. We also investigate to which extent the BC and CC
metrics can identify the best performing among a set of blocking
methods; to this end, we examine the relation between a blocking
method’s distance from the ideal point of the BC-CC space (i.e.,
(1,2)) and its deviation from the optimal real performance (i.e.,
PC=100% and RR=100%). Second, we analyze the same correla-
tions in the context of block purging, i.e., with respect to the same
blocking scheme, for various thresholds on the maximum size of
the blocks. Our goal is to demonstrate the usefulness of BC and
CC for determining the optimal cutting point for this process.

For the first case, Pearson’s ρ can be derived directly from the
values in the right part of Table 1. We have: ρPCIFP ,BC = 0.84,
ρPCS ameAs ,BC = 0.37, and ρRR,CC = 0.63. We can see that BC accu-
rately predicts the value of PC with respect to IFP, but this applies
to a minor extent for the SameAs ground-truth set. In both cases,
however, there is a positive correlation between these two metrics,
with an average value of ¯ρPC,BC = 0.61. This is sufficiently high for
a good and valuable estimation, given that BC can be easily derived
from a simple inspection of the blocks at hand. The same applies
to the correlation between CC and RR. We can, thus, deduce that
BC and CC can discern the best technique among a set of blocking
methods with a relatively high accuracy.

This conclusion is also advocated by the positive correlation be-
tween a blocking method’s deviation from its optimal performance
and its distance from the ideal point of the BC-CC space. To quan-
tify this correlation, we consider the PC-RR space: a two-
dimensional space defined by PC on the X-axis and RR on the
Y-axis. Apparently, the optimal point in this space is (100,100),
which corresponds to the perfect blocking efficiency and effective-
ness. Based on the numbers of Table 1, the correlation between the
distances from the ideal points of the PC-RR and the BC-CC space
was found to be ρIFP = 0.49 and ρS ameAs = 0.45 with respect to
the IFP and the Same-As ground-truth sets, respectively. There is,
therefore, an indisputably positive correlation between these dis-
tances, which is high enough (0.47 on average) for discerning be-
tween the low and the high performing blocking schemes.

To evaluate the functionality of the BC-CC mapping in the con-
text of block purging, we systematically applied various upper lim-
its on the block size of all blocking schemes and estimated the re-
sulting PC and BC values (we ignored the efficiency metrics CC



ρPCIFP ,BC ρPCSameAs ,BC

Infix 0.99 0.76
Infix Profile 0.97 0.82
Literal Profile 0.67 0.89
Complete Infix 0.97 0.73
Infix-Literal Pr. 0.71 0.67
Infix Pr.-Literal Pr. 0.75 0.66
Total Description 0.77 0.56
Total Tokenizer 0.68 0.93

Table 2: Pearson Correlation between PC and BC.
and RR, since RR is at nearly 100% for all block sizes due to the
high reduction). To ensure a large variety of block sizes, we de-
termined the maximum block size according to the following for-
mula: |bimax | = 10log |E|/di , where |bimax | is the maximum block size,
|E| is the size of the input entity collection, and di is an integer that
takes all values in the interval [1, 10]. The outcomes of our analysis
are presented in Table 2. The average correlation of BC and PC is

¯ρPCIFP ,BC = 0.83 and ¯ρPCS ameAs ,BC = 0.73, with respect to the IFP and
to the SameAs ground-truth sets, respectively. On the average case
(across both ground-truth sets), it is equal to ¯ρPC,BC = 0.78. These
high values lead to the safe conclusion that the BC metric accu-
rately determines whether a cutting point for block purging has a
significantly negative impact on Pair Completeness. In this case, a
higher value for the block size threshold is required.
5.4 Block Purging Performance

To check the performance of Algorithm 22, we applied it to all
the aforementioned blocking schemes, and the outcomes are pre-
sented in Table 3. Note that, instead of RR values, we present
the absolute number of pair-wise comparisons, because RR had
the maximum value (i.e., 100%) for all blocking schemes. The
required number of comparisons actually dropped by four orders
of magnitude in all cases (e.g., from 1012 to 108 for Infix blocking).
At the core of this substantial improvement lies the restriction im-
posed by block purging on the maximum block sizes: from several
millions entities they were reduced to several thousands of entities.

Most importantly, though, we can see that block purging achieves
a better balance between Pair Completeness and Reduction Ratio:
although the latter is greatly enhanced, there is a negligible de-
crease in the former; the values of PC are lower than in Table 1
by just 1% or 2%, in most of the cases. The only exceptions to
this rule are the Infix Profile and the Complete Infix with respect to
the IFP, and the Total Tokenizer with respect to the SameAs golden
standard. This is a strong indication of limited robustness for the
corresponding methods, as their initially high effectiveness exten-
sively depends on their oversized blocks. In complete contrast, To-
tal Description is the only one that retains its PC (i.e., around 90%)
for both ground-truth sets, thus constituting the most robust of the
proposed blocking schemes. Note also that our experimental re-
sults verify the behavior of block purging on the BC-CC space, as
demonstrated in Figure 4: the BC values move to the left of the
X-axis, while the CC values move higher on the Y-axis.
6. CONCLUSIONS

We introduced novel blocking schemes tailored for heteroge-
neous data. Individually, they achieve high efficiency, but suffer
from low robustness. To enhance it, we combine them into com-
posite, more effective blocking methods and discard the largest of
their blocks, thus boosting their efficiency as well. The trade-off

between Pair Completeness and Reduction Ratio led to the idea of
introducing two blocking scheme assessment metrics (BC and CC),
which are easily derived from the external characteristics of a set
of blocks. Their values are highly correlated with the actual perfor-
mance of a blocking method and provide a quite accurate, a priori
estimation for it. Our techniques were thoroughly tested on the
largest, real-world data collection ever used for this task, and the

Comp. PCIFP PCSameAs BC CC
(×1011) (%) (%) (×10−4)

Infix 0.004 58.85 49.54 0.28 1144.70
Infix Profile 1.62 76.53 41.36 1.42 15.97
Literal Profile 9.37 94.34 18.29 2.90 5.63
Complete Infix 1.69 72.64 86.60 2.14 23.21
Infix-Literal Pr. 8.79 94.48 63.75 3.07 6.38
Infix Pr.-Literal Pr. 12.00 93.57 50.03 4.29 6.52
Total Description 11.64 95.37 89.35 4.96 7.77
Total Tokenizer 15.49 96.79 60.52 4.31 5.07

Table 3: Performance of our Block Purging algorithm for all
blocking schemes.
outcomes verified the usefulness of our metrics The main conclu-
sion is that combining Total Description with Block Purging yields
a blocking method that excels in all aspects of performance (i.e.,
robustness, efficiency and effectiveness). In the future, we intend
to investigate ways of parallelizing the required pair-wise compar-
isons, based on the MapReduce paradigm.
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