

SIP APIs for Voice and Video Communications on the Web

Carol Davids
Illinois Institute of

Technology
Wheaton, IL

davids@iit.edu

Alan Johnston
Washington University

St. Louis, MO

alan.b.johnston@
gmail.com

Kundan Singh
Intencity Cloud Tech
San Francisco, CA

kundan10@
gmail.com

Henry Sinnreich
Unaffiliated

Richardson, TX

henry@
sinnreich.net

Wilhelm
Wimmreuter

SCCT, Germany

wilhelm@
wimmreuter.de

ABSTRACT

Existing standard protocols for the web and Internet telephony fail

to deliver real-time interactive communication from within a web

browser. In particular, the client-server web protocol over reliable

TCP is not always suitable for end-to-end low latency media path

needed for interactive voice and video communication. To solve

this, we compare the available platform options using the existing

technologies such as modifying the web programming language

and protocol, using an existing web browser plugin, and a

separate host resident application that the web browser can talk to.

We argue that using a separate application as an adaptor is a

promising short term as well as long-term strategy for voice and

video communications on the web.

Our project aims at developing the open technology and sample

implementations for web-based real-time voice and video

communication applications. We describe the architecture of our

project including (1) a RESTful web communication API

over HTTP inspired by SIP message flows, (2) a web-friendly set

of metadata for session description, and (3) an UDP-based end-to-

end media path. All other telephony functions reside in the web

application itself and/or in web feature servers. The adaptor

approach allows us to easily add new voice and video codecs and

NAT traversal technologies such as Host Identity Protocol. We

want to make web-based communication accessible to millions of

web developers, maximize the end user experience and security,

and preserve the huge global investment in and experience from

SIP systems while adhering to web standards and development

tools as much as possible. We have created an open source

prototype that allows you to freely use the conference application

by directing a browser to the conference URL.

Keywords

Real-time Web communication; browser API; voice and video;

SIP API for Web communications.

1. INTRODUCTION
At present, rich Internet applications (RIA) on the web and real-

time interactive applications such as voice-over-IP (VoIP) do not

interact either all all, or not seamlessly because the protocols,

programming language APIs, developer tools and communities

are distinct for voice and web applications. Most Internet

applications on the web use HTTP [2] as the only application

protocol. At the same time, the global voice communications for

both fixed and mobile telephony use the Session Initiation

Protocol (SIP) [7] standards for interoperability, but have not

produced any significant new applications other than emulating

legacy telephony services.

We believe that the disconnect between RIA and VoIP is due to

technical as well as non-technical reasons: (1) web developers and

organizations work in a fast-paced quick turn-around easy-to-use

application mind set, and do not want to entertain the complexity

of SIP-family of standards, (2) web organizations want to own

their content and customer interactions and hence prefer

proprietary protocols over standards-based open systems, and also

(3) critical programming primitives such as UDP transport,

listening socket and native device access that are needed for VoIP

are missing in present web languages and browsers. With the

tremendous growth and innovation on the web in recent years,

web developers started using browser plugins and server gateways

to support communication within the limitations of a browser.

Hundreds of applications exist for audio/video communication.

Some examples are standalone Skype, browser-based Gmail video

chat, Flash Player based TinyChat and iPhone’s Facetime. Note

all of them use standards in their design and also have key parts

proprietary. Even though the signaling and control technology

behind these are drastically different, every real-time

communication application tends to establish some form of end-

to-end UDP media path, and falls back to relays if that fails. IETF

standards exist to establish such media paths, end-to-end or via

relays.

Research [10] has identified that only two protocols are required

for web communication applications: (1) HTTP for signaling and

control, basically data, including rendezvous, and (2) UDP for

real-time media transport. All other application or telephony

specific functions are not embedded in the network protocols but

can reside in an application in the user client and/or in a web

feature server. With this insight, we started our voice and video on

web project with the main objective to develop the technology and

sample implementations for web-based real-time communication

[4]. Our project aims for web communication widgets to become

as common on web pages as other components such as layout,

buttons, images and multimedia players. We believe that the

transformational benefits for both web applications and

communications are (1) in enabling millions of web developers to

include communications on their web pages and (2) in the

seamless integration of web applications with communications

having the potential of new, innovative applications.

More recently, standards bodies have identified two parts to web

communications [8, 12]: (1) specific HTML/Javascript extensions

to enable new elements for devices, codecs, and communication,

and (2) on-the-wire protocol to enable end-to-end communication

among browser instances. While standardization of these tasks in

W3C and IETF may take a few years, we focus on pre-standard

implementations using existing technologies and describe the

short and long term benefits of our project.

Imagine a standard-compliant application that runs on user's

machine independent of the browser, but allows any application

including browser to establish real-time media-path. The browser

can use existing HTTP to interact with this adaptor application.

The adaptor is not owned by a specific vendor, but is installed by

the end-user. This avoids re-implementing the feature by every

application developer who wants to do real-time communication.

The main advantage of this approach is that it does not require

changing the browser or HTML. It can easily add new voice or

video codec or NAT traversal technology, and can be used by web

and desktop applications alike. Our proposed API is inspired by

the modern RESTful web services [6] known to web developers

and uses the lessons learned from SIP systems, albeit in a web

friendly manner.

The paper is organized as follows: Section 2 lists some differences

of web communication with SIP systems. Section 3 compares

available platform options, describes related work and lists the

benefits of our approach. Section 4 describes the project

architecture in detail using message flows, API description and

preliminary implementation. Finally, we present conclusions and

future work in Section 5.

2. DIFFERENCES WITH SIP SYSTEMS
In theory, an Internet SIP system follows the end-to-end principle

of the Internet: keep the intelligence in the endpoint (or user

agent) because the IP network and SIP proxies are transparent to

applications in the endpoints. In practice however, a commercial

SIP provider creates a closed walled garden using smart network

elements (aka intermediaries) to prevent your SIP-capable device

from directly using a third-party service without going through

your provider’s billable and “managed” services. Unlike

telephony model, the web has evolved differently because the

end-user is not tied to a specific web site. The difference with SIP

systems conforming to the trapezoid mode is that interoperability

between two web sites is usually a non-issue as all communicating

parties are on the same web site. By keeping the signaling part

outside the standard, we avoid the walled garden debate for web

communication, and let the web site implement it in its own taste.

Typically a SIP-based user facing application is either a software

rendition of a phone or a phone book to talk to your friends. There

are other behind-the-scene components such as rendezvous server,

application gateway or conference server. On the other hand, web

communication is more immersive in what the end user is already

doing on the web. For example, if you want to call a phone

number listed on a web page, you want to click there to call

instead of starting your SIP phone to make the call. This logical

phone embedded in the web page is unlike a regular phone as it is

meant to dial one number, and does not receive calls. Another

example is if you are visiting a news page, and want to see who

else is reading on the page and chat with them within the browser.

You do not want to add them to your phone book or send them

emails to invite them in a call. For example, in social networks,

communication models may fundamentally differ from say a

legacy business telephone call where a secretary forwards an

incoming call to her manager. Thus, the web communication

shifts the focus from telephony to immersive web communications

within your browsing or collaboration experience.

The trust model and related message flows are also different.

Typically, a user is already authenticated, e.g., using Google

account when accessing its cloud applications such as email. A

third-party application can re-use this user identity to provide

services, e.g., many web sites now use other authentication

services such as Facebook to connect and to authenticate a user

for posting comments in its discussion forum. Similarly, a web

communication application would use existing user identity

provided by any third-party instead of asking the user to create a

SIP account on every communication enabled web site. Thus, the

web allows a multitude of authentication technologies ranging

from simple passwords to ID cards or PKI services.

A caller in SIP typically invites a callee, joins a conference or is

invited to a conference, before the session begins. In particular

there is an explicit session invitation with offer/answer of session

description. On the other hand, a web page can advertise its

session parameters and any visitor can start the session by landing

on that page. The invitation mechanism is outside the scope, and

is usually done out of band via email, instant messaging or

through other web pages.

For these reasons, we believe that many of the traditional SIP call

flows are not quite relevant to web communications. However,

some lessons from SIP are applied to web communication in our

architecture.

3. PLATFORM OPTIONS
Since current browsers lack the full capability to support audio

and video communication, we compare the available architecture

choices and platform options as shown in Fig. 1. Our external

application approach is shown in Fig. 1 (b)

3.1 Extend Web Protocol and Language
One approach is to improve the HTML/Javascript to support real-

time communication [8, 12]. An existing browser such as Firefox

can be modified to include the missing features. These features are

exposed to the web application using new elements similar to how

Ajax defines XMLHttpRequest or as HTML5 has the video element.

Browser
HTML

Web

server
(a)

Browser

HTTP/TCP

Browser
UDP HTML HTML

Browser

Browser Browser

 FP
HTML

 FP
HTML

proprietary/UDP

Media

server

proprietary

/TCP

(b)

Figure 1. Platform Options: (a) extend web protocol

and language, (b) use Flash Player plugin, (c) use new

browser plugin, or (d) use external application (App).

Web

server Browser

App

HTTP/TCP

HTML

App

HTML

UDP

(d)

Web

server Browser Browser

Plugin

HTTP/TCP

HTML
Plugin
HTML

UDP

(c)

Depending on the granularity of the API, it can define high level

registration and session objects, or low level camera, microphone

and media connection objects as discussed next.

3.1.1 Implement SIP/RTP in Browser
Implementing SIP and related protocols in the browser enables

existing applications to use the emerging standard SIP API such

as to register, to make outbound calls, to receive and accept or

reject an incoming call from SIP services. However, the SIP-

family of protocols is very complex due to numerous extensions

such as call transfer, conferencing and various other telephony

services, and is described in thousands of pages of RFCs. We can

consider only a subset of standards that is needed for a SIP user

agent to turn your browser in to a programmable SIP user

agent[11]. We consider that even with a small set of standards, the

problem is too complex for all browser vendors to agree on a

consistent API in HTML/Javascript.

3.1.2 Add New Codecs and Transport in Browser
Unlike the previous approach, in this approach the signaling part

uses existing HTTP and websocket technology, but only the media

and transport are added to the browser using a low level API. A

websocket [13] allows converting an HTTP request connection to

a persistent general purpose TCP connection for client-server data

exchange. The application can define the data that goes on the

TCP connection, e.g., using JavaScript object notation or XML.

Web developers can thus pick any asynchronous custom protocols

and data formats for rendezvous and session negotiation. The new

API in the browser allows an application to use real-time codecs

and capture devices of the local host and create end-to-end media

path between two browser instances using NAT traversal

techniques.

This approach is in-line with the evolution of web protocols as it

uses HTTP as the only network application protocol and defines

only a minimum set of new primitives to represent devices and

connections, to connect a device with a connection, and to select

preferences such as desired codecs. The resulting HTML/

Javascript application is complex due to the low level API.

There are some open questions: (1) Should the minimum set of

audio and video codecs be defined or be left to the browser

vendor? (2) Should RTP be used for media transport between

browsers or do we need another layer of multiplexing to reduce

open bindings at the NAT? (3) Should interoperability with SIP

systems be done in the browser or a separate gateway? (4) Should

the connection be used for only the media path or also for other

data communications, such as IM? (5) Should it enable

interoperability between different web sites or leave it to web

developer to configure cross domain authentication? (6) Should

the end-user give permission to allow new connections or should

it be controlled by cross domain policy of web sites? Hopefully,

the new standards working groups in the IETF and W3C will be

able to resolve the issues.

The main advantages of modifying web protocols are (1) no other

dependency on external plugin or application besides the browser,

(2) modifications can eventually be included in standards, and (3)

numerous web developers can contribute to building applications.

The problems with this approach however are that users are

generally reluctant to change their browser, even after new

standards have emerged and hence getting ubiquitous user

adoption may take a long time, dealing with device interfaces in a

portable manner is a challenge, and device access and sharing

across multiple instances of same browser or different browsers is

not clear. In the past, incompatibility in HTML among browsers

has been a nightmare for web developers, and extending HTML

for yet another feature is bound to cause more interoperability

problems. Browser vendors are sometimes not too keen to add a

new feature, e.g., for business reasons, if it competes with the

manufacturer's existing product or service. Two interoperability

scenarios are significant: between browsers from different vendors

running the same web page, and between two different web sites.

The latter is tricky from security point of view if open standards

are used.

3.2 Use Plugins such as Flash Player or

Silverlight
Existing web-based video conferencing systems typically use a

browser plugin such as Flash Player or Silverlight to work around

the browser limitations [5]. The more popular Flash Player uses

proprietary media transport protocols such as client-server RTMP

over TCP and end-to-end RTMFP over UDP. Beyond just an

audio/video player, it is a virtual machine to execute application

code and provides secure and portable access to computer

resources such as camera and microphone.

The main advantages of using Flash Player are: (1) ubiquitously

available to almost everyone with a computer and an Internet

connection, (2) browser agnostic implementation, (3) excellent

developer tools for familiar web programming languages and a

fast application development cycle, (4) provides integrated and

rich web browsing experience, and (5) requires no additional

installation for most users. Compared to other platform options

described here, the Flash Player approach works with little effort

because all the complexity is hidden in the plugin.

The main problems with browser plugins are: (1) while they

supports outbound TCP connection, the cross domain restriction

allows only closed, proprietary implementations of application

protocols, e.g., SIP, (2) they lack general purpose UDP transport

and listening sockets needed for VoIP, and (3) they do not give

access to encoded audio and video data to the application hence

one cannot build a standard compliant VoIP phone in the browser.

While people have built gateways to translate between Flash

Player and standard SIP/RTP systems, in general the closed nature

of plugins means that the web developer depends on the plugin

vendor, e.g., for echo cancellation, new codec, portability to new

a device, and security updates.

3.3 Building a New Browser Plugin
Instead of using Flash Player, one can build a new browser plugin

to perform media transport and processing. It works with or

without an existing plugin, e.g., the need to delegate the media

capture and playback to Flash Player. In that case you only need

to implement missing pieces in the plugin, e.g., UDP transport,

TCP listening socket and real-time codecs to be used by the Flash

application. The main problems are portability across operating

systems and browsers and user adoption of the new plugin. It also

has limited flexibility once the plugin is deployed.

3.4 Use Separate Adaptor Application
We understand the limitations of a web browser and HTML, and

do not “add” audio/video communications to it. Instead of

improving the web browser using new protocols or plugins, we

take a more general approach of a standalone application or

service that runs on the user’s host computer for real-time

communications. Local browsers as well as other local

applications can talk to this separate voice/video-on-web adaptor

application using its HTTP-based API to enable real-time

communication as shown in Fig. 1(d). Alternatively, a Flash

application in the web page can use that API to control the

adaptor. The user interface of the application is shown in the

browser, but the actual video communication is done in the

adaptor.

Using an adaptor application to fix existing software is not new,

for example a P2P-SIP adaptor [9] running on a local machine or

network can turn a client-server SIP phone to P2P-SIP. The

adaptor approach is similar to the Google Mail plugin that enables

video chat display within the browser using Flash Player but

instead uses its own communication protocol in the external

plugin process to enable end-to-end media path and standard

voice/video codecs.

Unlike other approaches, where the application dies as soon as

you close the web page, our adaptor is a persistent long-lived

service. This has several advantages, e.g., we can pre-detect NAT

and firewall configuration, pre-detect closest media relays for low

latency, and/or build a distributed peer-to-peer network for

scalability and robustness. The separate application can keep track

of persistent communication state even when the user goes from

one web page to another. Moreover, for NAT traversal, a host

specific technology, e.g., Host Identity Protocol (HIP) [3] can be

efficiently implemented only with our approach, whereas other

approaches need to use per session solution, e.g., Interactive

Connectivity Establishment (ICE). HIP also provides VPN-like

security, IPv6 capability, mobility and multihoming. We believe

that a general purpose NAT/firewall traversal solution is superior

to application-specific one in the long term.

To address privacy and security concerns, the adaptor must

directly ask permission from the end-user before initiating or

accepting a connection or using devices. This is similar to how

Flash Player asks the end-user for permission to capture from

microphone or camera.

The main advantages of our approach are: (1) it has the flexibility

of using any transport protocol including UDP, adding any new

codecs or NAT traversal technologies, (2) one can use portable

programming languages such as Python or Java to quickly build

it, whereas modification to browser typically requires C/C++, (3)

it is browser independent and hence easier to implement, (4) one

can use it together with a Flash application for portable device

access to further simplify the implementation.

Table 1. Platform options: (a) modify web protocols, (b) use

browser plugin, (c) use separate application

Properties (a) (b) (c)

With existing technology No Yes Yes

Emerging standard protocol Yes No Yes

Allows walled garden Difficult Easy Difficult

Requires new install No Maybe Yes

App dies on page close Yes Yes No

Re-use web security means Yes Yes No

The main problems are: (1) it requires yet another installation by

the end user and this potentially hampers wide adoption, (2)

security and access control requires careful design to prevent

unauthorized access and leaking of private information in the

adaptor to the web page or to other users on a multi user system,

(3) it is difficult to re-use authentication mechanisms already

provided by standard web-browsers for media path.

In summary, this approach benefits from being an independent

application with less restriction as well as uses the simplicity,

portability and flexibility of the web platform. Table 1 presents

the summary.

4. ARCHITECTURE
Among the available platform options, the separate application

raises some deployment concerns but seems to work well in

enabling web communications in light of existing tools and

constraints. The block diagram in Fig. 1(d) shows three

components: client, server and a separate adaptor application that

runs on the same computer. The web server provides signaling

using HTTP and asynchronous bidirectional channels such as

websocket. The client (web browser) runs HTML, a Javascript or

Flash application to display the front-end widget. Note the

communication application has two components: (1) the business

logic, for example the video-telephone state machine and (2) the

user interface which is critical for a pleasing experience. The

client also communicates with the adaptor using an authenticated

API. In this section we describe the client-server communication

for signaling, the client-side communication widgets, and the

functions and API of the adaptor. The availability of free code and

lack of license restrictions may facilitate its large scale adoption.

4.1 The Signaling API
The client-server communication is called the signaling API as it

is used for rendezvous or “match making” among web users for

communication.

4.1.1 Requirements
1) It should support long-lived connection so that asynchronous

events can be delivered when needed. In practice, several options

exist for this such as Bidirectional Stream over Synchronous

HTTP (BOSH), Comet-style Javascript programming, new

websocket and Google App Engine’s channel API backed by

XMPP.

2) It should be based on RESTful architecture in-line with modern

scalable web services [6]. A resource is identified using an URL,

and allows operations such as create, read, update or delete using

HTTP methods POST, GET, PUT or DELETE, respectively.

3) It should allow publish/subscribe style communication, so that

one can subscribe to a resource URL and get notified when the

resource changes. For example, a user subscribes to his voice mail

resource to get notified when someone adds a new item there.

This needs two new methods to subscribe and notify on the web

URL, similar to the SIP event framework. To work with existing

systems that do not support these additional methods, one can use

an URL parameter, e.g., command=subscribe, to indicate a

subscribe request. A subscription creates a long-lived connection

to receive asynchronous notifications.

The actual API is dependent on the application, but here we give

an idea using an example of two-party voice communication

system. Similar to a SIP registrar, the web server keeps track of

online users, and facilitates rendezvous. Consider an example, in

which a web site keeps track of all the users visiting that site. It

displays a list of online users. When a visitor clicks on an online

user’s name, the visitor’s web page sends call invitation to the

user, and instructs the adaptors of the two parties to establish an

end-to-end voice path. This works well, but is not RESTful.

4.1.2 Example of a RESTful API
Let us define a RESTful API for this client-server communication.

The web application server provides two core resources, /login and

/call, to represent a list of currently logged in users and list of

active calls. The client uses standard HTTP with XML or JSON

data format, e.g., using Ajax in the web page, to access and

manipulate these resources as shown in Fig.2. Dotted lines

indicate regular HTTP request-response, whereas solid lines are

for subscribe-notify messages over long-lived HTTP.

Login: The SIP user registration is mapped to the /login/{email}

resource. For example, Alice does POST /login/alice@example.net
with a request body containing the additional contact information

including listening media transport candidates to register. The

response contains an identifier, c2, for this contact resource which

can now be accessed at /login/alice@example.net/c2. Later, she can

use DELETE on it to unregister this contact or PUT to update it.

The actual representation of the login contact resource can be in

XML, JSON or plain text and is application dependent. One can

combine the presence update including rich presence with the

registration method. Existing data formats defined in various SIP

presence specifications can be re-used. Clearly the login update

requires appropriate authentication, but standard web

authentication works well here. Doing a GET on /login gives list of

current online users. Additionally, URL parameters such as

offset=20&limit=10 allow pagination of result. To know if a

particular user is online or not, do GET /login/{email}. A registering

user also subscribes to her contact resource to receive

notifications sent to her.

Call: The call logic is split in to two parts: conference resource

and invitation. The conference resource is /call/{call-id}, where a

client can POST /call to create a new call identifier, or POST

/call/c123 to join an existing call, c123. The conference resource

represents the list of participants. Again, the data formats defined

in the SIP centralized conferencing can be re-used.

Call invitation is optional in the API as it can be done via other

means, e.g., sending a web URL via email, instant messaging or

another web page. Within the API, call invitation can be done by

using the notify request on the callee’s login resource, e.g., using

POST /login/bob@example.net?command=notify with the request body

containing the invitation attributes such as conference resource,

time of invitation, return notification data. We need notification

for both call invitation as well as cancellation. When the callee

accepts the call, he also joins the same conference resource.

Each participant subscribes to the conference resource, so that he

can get notification about membership change. Each conference

participant resource has session parameters such as media stream

URL for centralized conference, or transport data and media

capabilities of his client for end-to-end media path. The session

parameter includes media transport addresses as well as supported

and preferred media codecs. Instead of using outdated SDP, we

use web friendly XML or JSON to format the application specific

session parameters. Once it learns the session parameters of the

other participant, it can initiate end-to-end media path.

Thus, a RESTful interface for web communication signaling is

feasible using existing web protocols and tools. The goal is not to

replace SIP, but to provide a new mechanism that allows web-

centric applications to use communication services and to allow

building such easy to use application servers. Other RESTful

resources are also possible, e.g., /user/{email} can represents a

signed up user, and has sub-resources for profile data, voice mail,

contact list, etc.

The signaling API is invoked by the client application or widget.

Although, Fig. 2 shows a lot of messages, it ensures simplicity of

the REST API. In practice, scalable web servers can handle many

such requests without perceived signaling latency. For example, a

browser typically downloads many additional files (script, style,

image, etc.) when displaying a single web page today.

Gateway

WebRTC

Browser

phone

REST

API

Figure 3. Gateway translating between REST and SIP

Web

server REST

API

SIP

phone

PSTN

gateway

Bob Alice

POST /login/alice

Figure 2. Example RESTful message flow

Web

server

media path

POST /login/bob

GET /login

[‘/alice’, ‘/bob’]

POST /call

{‘id’: ‘c123’}

{‘id’: ‘c2’}

 {‘id’: ‘b4’}

POST /login/bob?subscribe

POST /login/bob?notify

 {‘url’: ‘/call/c123’}

POST /call/c123

{session1}

{‘url’: ‘/call/c123’}

POST /call/c123

{session2}

POST /call/c123?subscribe

GET /call/c123

[session1, session2] GET /call/c123

[session1, session2]

{‘add’: ‘session2’}

4.1.3 Other use cases for RESTful APIs
In addition to web browsers, the signaling API can be used by a

gateway to interoperate between HTTP APIs on one side, and SIP

or PSTN on the other side as shown in Fig. 3. It provides

interworking between web browser and legacy communication

systems based on SIP.

4.2 Communication Widgets
From a web developer’s point of view, it should be easy to add

new communication primitives to a web page similar to other

elements such as a text input or multimedia player. Following are

some example communication widgets.

1) A click-to-call label or text-input, which when clicked initiates a

VoIP call to the target browser, phone number or SIP address-of-

record (AoR). The state of the label or text-input updates to

indicate the call progress, and also allows the user to end the call.

The text-input can store call history using a drop-down combo

box. In a web page this appears as a clickable text, image or edit

box.

2) A contact list object that displays zero or more contacts similar

to that on existing instant messengers. It displays user presence by

getting the data on asynchronous communication channel. It can

be used to display regular contact list as well as conference

members list. For example, a web site that allows its visitors to

chat with each other may bind the contact list object with the active

visitor list resource.

3) A web phone object that allows a web user to make or receive

voice and video call within the browser. The web developer

configures certain attributes of the object such as server addresses.

The video displays are bound to local or remote media streams,

and laid-out in picture-in-picture or tile mode. It includes an

asynchronous communication channel to receive call events.

4) A web conference object that allows a visitor to join an existing

voice, video and/or text conference. Unlike a web phone, this does

not receive call invitations, but represents a joined conference.

Additionally, it implements optional conference controls by the

owner or moderator, or the web site itself.

The list is obviously not complete, but gives an idea about the

high level elements that web developers expect. A widget uses the

API of the adaptor and talks to the web server. In particular, a

widget includes HTML/Javascript code which can use native

communication support in the browser if available, or fall back to

Flash Player plugin for media. A web developer can create new

widgets to support more web applications using the adaptor API.

4.3 The Adaptor API
As discussed before, the separate adaptor application implements

the media and transport for web communications. The client

widget connects to the adaptor on the local host over a long-lived

HTTP connection to issue commands and to receive notifications.

If the widget cannot connect, it assumes that the adaptor is not

running and prompts the user to download and install it. Once

installed, it runs as a service in the background. Some widgets are

distributed with the adaptor itself so that web pages can access

them immediately, while others must be downloaded from third-

party web sites.

After connecting, the adaptor authenticates the client application.

It then uses the transport and media classes to implement end-to-

end media path for voice and video communication. When the

widget creates a new object, e.g., UDP transport, it gets a unique

object identifier within the authorized scope of its authentication

key. The HTML web application can use this object identifier as a

regular Javascript object and invoke methods on it or install

callbacks to receive notifications. The widget internally translates

the method to an RPC over HTTP to the adaptor so that the latter

can actually perform those API functions.

The adaptor exposes several object-oriented transport and media

related classes to the widget. We use web friendly data format

such as XML or JSON (Javascript Object Notation) for our

command and notification. For any sensitive method, the adaptor

prompts the end user using a native dialog box to approve the API

request. The widget should gracefully handle any request denial.

4.3.1 Application Authentication
Each application that connects to the adaptor needs approval from

the end user. On first connection, the adaptor issues a time-bound

secure token to the application so that a subsequent connection by

the same application does not need approval. This allows for the

same application to be distributed across different web pages or

even multiple browser instances, e.g., one browser window for

each participant video in a conference. The user can ask to always

allow a particular application, in which case a permanent secure

token is generated by the adaptor and stored on the web server by

the client application. For better security, the adaptor may require

web site’s certificate-based identity from the web application.

4.3.2 Transport Classes
The adaptor implements several transport related classes. These

transport objects enable high level application protocols such as

vanilla SIP or low level transport connections such as an ICE

session. A UDP transport implemented using the datagram socket

can bind to any ephemeral port (higher than 1024) to receive

packets as a server or send packets as a client. The adaptor

prompts the user for approval before binding and

sending/receiving for first time from/to a target IP address. A TCP

transport with optional secure attribute for TLS and using an

outbound stream socket connection is enough for a TCP bound

media path, especially with UDP-blocking firewalls. ICE based

transport combines multiple UDP and TCP transports in to a

single logical object to hide the complexity of approval and data

handling. The API allows initiating the various phases of ICE and

allow sending of data after the connection setup is successful.

Similarly, the RTP transport contains two UDP transports, for

RTP and RTCP, as a single logical object. It should be possible to

merge an RTP, ICE and HIP transports, so that multiple functions

are included.

4.3.3 Media Classes
The four basic classes, Microphone, Speaker, Camera and Display,
represent the corresponding audio and video functions and are

implemented natively in the adaptor. The API includes the

attributes such as sound volume and codec name. The video

Display object due to rendering and size requirements is

particularly difficult to implement in a browser without using a

plugin. Initially, we plan to keep the API of these components

similar to that in the Flash Player so that we can leverage it for

capture and display if needed. The client can connect these device

objects to each other or to a transport. Unlike Flash Player, the

client can also get access to the encoded audio and video data if

needed. The adaptor prompts for approval if the media data is sent

to the client.

4.4 Preliminary Implementation
Our preliminary implementation is available as open source and

open client-server API [4]. Fig. 4 shows two screen captures from

a web conference among the authors in San Francisco, Chicago,

Dallas and Munich. The demonstration uses Google Chrome

browser and integrated Flash Player 10.3 with built-in echo

cancellation. Performance depends as of this writing strongly on

the type of machines used.

The client software in the browser has in principle several

components: the protocol machinery emulating SIP or some other

signaling data exchange, the real time media transport for audio

and video such as RTP or proprietary, the audio codec and echo

control, the video codec, the business (call) logic, and the user

interface. These components can be quite independent and each of

them can be implemented using either standards or proprietary

approaches, such as in Flash or Silverlight.

Figure 4. Screen captures of (a) presentation and (b)

voice/video/text chat modes during a web conference

The current implementation has two separate parts: (1) the

signaling protocol machinery, business logic and the graphical

user interface are written using standard HTML, CSS and

JavaScript code, (2) the media part is using the Flash Player

plugin as an intermediate solution until we implement the separate

application. At present, the Flash Player solves several hard

problems in a bundled way: real-time end-to-end media transport,

NAT traversal, audio and video encoding, echo control and end-

user control over access permission to the audio/videos resources

of the machine. As standards emerge, some or all of these parts

may be adapted in the various conference modules.

5. CONCLUSIONS AND FUTURE WORK
We propose a voice and video communication architecture on the

web and compare it with other alternatives. Using a separate

adaptor application has several advantages compared to modifying

the web protocol and language or using the Flash Player plugin.

In particular, the architecture is platform independent, can be

easily implemented, and is flexible enough to accommodate new

codecs, application protocols (e.g., SIP/RTP) or NAT/firewall

traversal techniques in the long term. For instance, with the

emergence of CDN, one can easily use media over HTTP for

many application scenarios using the adaptor approach [1]. In the

short term, our approach is easy to implement because of browser

independence, and use of existing web protocols and tools. One

major challenge is to dynamically find the best quality settings

that perform satisfactorily across various platforms and networks.

Security and privacy concerns need to be carefully considered to

avoid misuse of user’s resources, leaking private conversation

data, or overwhelming the user or adaptor with too many requests.

Analyzing the more trustworthy flavors of authentication such as

open-ID, info-cards and PKI can seed deployment and overcome

known trust issues for principals and relying parties. As a result

we can avoid or reduce current authentication and trust issues of

SIP by re-using web authentication technology. This will lower

the barrier to use strong authentication for SIP calls and allows a

healthy re-use of available web-based identity and authentication

mechanisms for real time voice and video communication

services. Another challenge is that we require a new installation,

which may slow down user adoption.

A future task is to re-factor the implementation and various APIs

so that a module can be easily replaced once a standard emerges,

e.g., the real-time media transport. By standards, we mean here

both de jure and some dominant market based standards. For

commercial quality products, where user experience matters more

than standards, a complete plugin or proprietary technology based

implementation should also be possible.

Our current and future work involves implementing a prototype of

the separate application using client-side adaptor in C/C++. We

plan to build a few more widgets using end-to-end media path and

optional fall back to client-server tunneling. The RESTful client-

server API and client-side widgets are useful for other platform

options as well, e.g., with the upcoming WebRTC standards.

6. REFERENCES
[1] Amirante, A., et al. NTRULO: A tunneling architecture for

multimedia conferencing over IP. NEW2AN’10, St.

Petersburg, Russia. pp 460-472. Aug. 2010

[2] Fielding, R., et al. Hypertext transfer protocol – HTTP/1.1.

RFC 2616. IETF. Jun.1999

[3] Komu, M., et al. Basic HIP extensions for traversal of NAT.

RFC 5770. IETF. Apr.2010

[4] Project: voice and video on web. Illinois Institute of

Technology. https://sites.google.com/site/vvowproject/

[5] Project: Flash based audio and video communication.

http://code.google.com/p/flash-videoio/

[6] Richardson, L., Ruby, S. RESTful Web Services. O'Reilly.

May 2007. ISBN 978-0-596-52926-0

[7] Rosenberg, J., Schulzrinne, H., et al. SIP: session initiation

protocol. RFC 3261. IETF. Jun.2002

[8] RTC-Web IETF working charter proposal. Mar.2011.

http://rtc-web.alvestrand.com/ietf-activity

[9] Singh, K., Schulzrinne, H. SIPpeer: a SIP-based P2P Internet

telephony client adaptor. Implementation Report. Columbia

University. New York, NY. 2004

[10] Sinnreich, H., Johnston, A. SIP APIs for communications on

the web. IETF Internet draft. “work in progress”. Jun 2010

[11] Sinnreich, H., Johnston, A., Shim, E., Singh, K. Simple SIP

usage scenario for applications in the endpoints. RFC 5638.

IETF. Sep.2009

[12] Web real-time communications working group charter. W3C.

Dec.2010. http://www.w3.org/2010/12/webrtc-charter.html

[13] Fette, I., The websocket protocol, IETF Internet draft, “work

in progress”. Jun 2011.

