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ABSTRACT 

Continuum scale models have been used to study 

subsurface flow, transport, and reactions for many years. 

Recently, pore scale models, which operate at scales of 

individual soil grains, have been developed to more 

accurately model pore scale phenomena, such as 

precipitation, that may not be well represented at the 

continuum scale.  However, particle-based models become 

prohibitively expensive for modeling realistic domains. 

Instead, we are developing a hybrid model that simulates 

the full domain at continuum scale and applies the pore 

model only to areas of high reactivity.  The hybrid model 

uses a dimension reduction approach to formulate the 

mathematical exchange of information across scales. Since 

the location, size, and number of pore regions in the model 

varies, an adaptive Pore Generator is being implemented to 

define pore regions at each iteration. A fourth code will 

provide data transformation from the pore scale back to the 

continuum scale.  These components are coupled into a 

single hybrid model using the Swift workflow system.  Our 

hybrid model workflow simulates a kinetic controlled 

mixing reaction in which multiple pore-scale simulations 

occur for every continuum scale time step. Each pore-scale 

simulation is itself parallel, thus exhibiting multi-level 

parallelism. Our workflow manages these multiple parallel 

tasks simultaneously, with the number of tasks changing 

across iterations. It also supports dynamic allocation of job 

resources and visualization processing at each iteration. We 

discuss the design, implementation and challenges 

associated with building a scalable, Many Parallel Task, 

hybrid model to run efficiently on thousands to tens of 

thousands of processors.  
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1. INTRODUCTION 
Continuum scale models have been used to study 

subsurface flow, transport, and reactions for many years. 

However, they simulate the reaction model in an averaged 

sense and do not represent subsurface phenomenon at 

particle level. The pore scale models operate at scales of 

individual soil grains, and can accurately model 

phenomenon such as precipitation, and fractures[1] etc., 

that may not be well represented at the continuum scale. 

Since a realistic domain may contain on the order of 

billions of particles, the pore-scale models become 

prohibitively expensive for modeling a large domain. 

Developing a hybrid subsurface model that couples the 

macro-scale model which can simulate the overall system, 

with the pore-scale model which can accurately represent 

particle interactions, provides a balance between 

computation time and model accuracy.  We developed the 

hybrid model, proposed by Scheibe et al [2], which 

simulates the full domain at continuum scale and applies 

the pore-scale model only to areas of high reactivity.  

Subsurface Transport Over Multiple Phases (STOMP) [3] 

and Smooth Particle Hydrodynamics (SPH) [4] codes are 

applied for the macroscale and pore-scale modeling 

respectively. A separate component is being implemented 

which identifies the regions of high reactivity which need 

microscale simulations. Other components are required to 

provide transformations between the pore and continuum 

domains. The Swift workflow system [5] is used to develop 

the model in which tasks execute independently and form a 

workflow connected using files. An iteration of the 

continuum scale involves executing multiple independent 

pore-scale simulations, each of which is a parallel run. The 

workflow hence follows the many task computing [6, 7] 

paradigm, executing multiple parallel task concurrently.  

A tightly coupled model may offer performance benefits 

but we choose to follow a loosely coupling approach for  

some important reasons. “First, the two models have very 

different data structures. Tight integration of shared 

structure is not required. Second, each of these codes is 

being developed independently by separate groups and 

undergoing large-scale development. In addition, the code 

which determines pore regions, their locations and 

characteristics would also have to be integrated. Tight 

integration will require significant effort to manage and be 

disruptive to ongoing efforts [8].” Finally, adding analysis 

and visualization methods to the coupled process will 

further complicate the model.  



We present the design and implementation of our “many 

parallel task” based hybrid model and discuss it in context 

of our target problem domain. The rest of the paper is 

organized as follows: section 2 discusses the background 

and related work. We discuss our target problem in section 

3. The different components of the hybrid model are 

described in section 4 and the design and implementation 

of workflow are presented in section 5. We discuss our 

experimental configuration section 6. We conclude and 

discuss future work in section 7. 

2. BACKGROUND AND RELATED WORK  
The coupling approach for developing novel models by 

using multiple independent codes, have been widely used 

in several domains [9-12]. An MPI [13] based approach to 

coupling generally requires modifications to existing codes 

where each component should perform communication 

steps for the coupled model. The workflow based 

approaches using scripting languages have been popular 

due to the ease of implementation maintenance and 

portability. A coupled model using python as scripting 

language was developed for multi-physics simulations [9]. 

The ESSE used shell scripting to develop a workflow for 

running an ensemble of climate model simulations [12]. 

The IPS (Integrated Plasma Simulator) framework [10] by 

Foley et al. used Swift for coupled multi-physics simulation 

of fusion plasmas.  

Several frameworks [14-16] have been implemented over 

last few years that provide an abstraction from the details of 

workflow execution, job scheduling, resource management 

and error handling etc. The Swift workflow language, used 

to develop the hybrid subsurface model, offers an implicitly 

parallel and deterministic programming model [17], which 

is central to our multi-parallel task based workflow design. 

It also provides functional mappers, which allows external 

applications to be applied to file collections.  Moreover, a 

C-like syntax and abstraction from complex details of 

parallel execution greatly simplifies the implementation 

process. 

2.1 Swift 
A Swift script describes data, application components, and 

invocations of applications. A Swift workflow generally 

involves executing a large number of independent tasks in 

an HPC or distributed environment. The advantages to 

using Swift include an elegance of remote execution that is 

inherent to the language. Swift also provides file and data 

management capabilities. The file mapper constructs are 

used to specify disk-resident data. The Swift mappers use 

an expression language to query for output files produced 

by the simulation then groups each file set into an array 

structure so they can be managed together.  

Swift has an inherent parallel nature; when iterating over 

arrays, each task is performed in parallel. This makes the 

execution of parameter studies much more efficient.  Also, 

the complexities of parallelization are encapsulated.  This 

makes the launching of multiple remote jobs in parallel and 

the monitoring their status, simple to implement.  Swift will 

launch every job in parallel and wait for them to finish.  

Once each job is complete Swift will check for the 

expected output files. 

3. PROBLEM DESCRIPTION 
Our hybrid subsurface model developed by Scheibe et al 

[2], will simulate the parallel transport of two solutes with a 
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Figure 1: Modeling Target Problem Domains using STOMP and SPH 



mixing-controlled kinetic precipitation reaction occurring 

at the interface between the two solutes. The system is 

filled with porous medium like sand.  The sand is saturated 

with water, flowing from bottom to top at a specified 

volumetric flux rate (corresponding to a specified average 

pore velocity). As the solutions flow upward through the 

flow cell, they mix along the centerline by diffusion, 

leading to super-saturation and precipitation of calcium 

carbonate mineral.  The precipitated mineral phase 

modifies the pore geometry, blocking pores and inhibiting 

mixing of the two solutes. Therefore there is a strong 

coupling/feedback at the pore scale that strongly impacts 

macroscale behavior. The coupling approach will utilize the 

Dimension Reduction with Numerical Closure (DRNC) 

method as presented by Tartakovsky [18].     

Use Case 1 (Uniform - Equal size pore scale runs): The 

system is filled with uniform sand. Thus, the mixing region 

is known and can be divided into equal size pore domains 

[Figure 1: Use Case 1)]. At the beginning of the simulation, 

the solutes are injected from bottom. Initially, there will be 

no mixing at the top of the pore domain so pore models will 

not be run in this location. Likewise, as the simulation 

proceeds, the mixing will cause precipitate to form at the 

bottom and no further reaction may occur so these areas 

may not require detailed simulation later. The simulation 

zone will be like a moving window that moves up the 

system. 

Use Case 2 (Non-Uniform Variable size pore scale 

runs): The experimental system is packed heterogeneously 

with two different types of sand having different hydraulic 

conductivities and porosities (red is low conductivity and 

blue is high)[Figure 1: Use Case 2], thus the path of two 

solutes is indeterminate. The mixing zone will vary, 

resulting in non-uniform unequal sized pore domains.  

We target the uniform use case as our initial problem 

domain. The pore-scale region in this case can be modeled 

as a single pore domain. However this would not be 

extensible for the generic case. Hence, we implement it as 

MTC model.  

4. HYBRID MODEL WORKFLOW 
The workflow consists of four main modules [Figure 2]. 

We are using a serial version of the macroscale code 

(STOMP) to model the full problem domain though for a 

larger domain, a parallel version can be inserted into the 

workflow seamlessly. The code that determines pore 

regions (PG) and the algorithm to calculate mixing 

coefficient (GPG) are serial. The pore-scale simulations 

(SPH) will involve millions of particles and requires 

parallel execution for each region. The pore domain will be 

fixed for the uniform case when modeling it as a single 

SPH run; and variable otherwise. Each of the SPH domain 

will be equal in number of particles for the uniform case 

and unequal otherwise [Section 3].   

A complete simulation will involve executing many 

iterations of the hybrid model. The workflow components 

are summarized in the following sections, with an emphasis 

on changes required to support the hybrid model in the case 

of the existing codes.  

 

4.1 STOMP 
The STOMP [3] code models the macro-scale reaction. 

Since the concentrations of particles in the pore-scale 

domain changes after the last macro-scale calculations have 

been performed, the STOMP code was modified to 

incorporate mixing coefficient calculations. If a mixing 

coefficient file is present, the stomp calculates initial 

concentrations based on the mixing coefficient of the 

particular grid and the STOMP restart file. A default value 

is used otherwise, in which case the initial concentration 

are assumed to be same as that in the restart file produced 

at the end of previous STOMP simulation.   

4.2 Pore Generator 

The Pore Generator (PG) is a python program that provides 

Figure 2: Hybrid model workflow, depicting the components and data flow 



mathematical model to calculate particle properties from 

macroscale to the microscale (pore) domain. The PG 

consists of two modules : 1) An Adaptivity Manager  

determines how many and which pore-scale subdomains  

require simulation and 2) A Pore Concentration Generator 

which performs the “reconstruction” of the pore-scale 

initial conditions for pore-scale subdomains. 

4.2.1  Adaptivity Manager: A pore-scale subdomain is 

considered active when the average of initial concentrations 

of the fluid particles reaches a user specified minimum 

threshold value. The average concentration of the pore-

domain is obtained from the STOMP output. Let for any 

pore-scale domain ‘i’: 

[A]  = average concentration of solute A 

[B] = average concentration of solute B, and  

Ksp = solubility constant 

We define a pore-scale domain to be active when,  

[A]*[B]/Ksp > 1.01,  

For the first time step, the number of pore-scale domains is  

Nps = 1. The Nps parameter is incremented each time one or 

more pore domains are added. 

4.2.2 Pore Concentration Generator:  This module 

performs the “reconstruction” of the pore-scale initial 

conditions for Nps pore-scale subdomains. The initial 

concentration of particles in the pore-scale domain are 

calculated  based on output from STOMP, and pore-scale 

output from the previous time step. The boundary 

conditions are dependent not only on the previous SPH 

runs for that domain but also on neighboring pore-scale 

domains. For e.g., for use case 1: 

 For iteration 1, particles near the inlet boundary in 

the bottom( z=0) SPH domain,  are assigned 

concentration A=1 on left half,  and B =1 on right 

half.  

 The particles near the inlet boundary are assigned 

concentrations from the adjacent uppermost grid 

cell of the neighboring SPH domain.    

    Ai
n+1

 = A
n

klm for all fluid particles i, for zi < zBC 

 The remaining particle concentrations are assigned 

according to: 

     Ai
n+1

 = cAA
n
 for all fluid particles i, for zi > zBC, 

where, 

    
        ∑   

   
     

∑         

n = iteration number, A= particle concentration, i = id of 

fluid particle, Npf = number of fluid particles, Aavg = 

Average concentration of grid cell from macroscale, z= 

vertical distance of particle from pore domain boundary, zbc 

= user defined percentage threshold for boundary condition. 

4.3 SPH 
At the microscale, SPH code is used to model particle 

interactions. The current SPH code [4] requires some 

modifications in order to completely integrate it into the 

multiscale coupling scheme. The “A+B ->C” reaction 

model needs to be modified to support a new boundary 

condition corresponding to injection of A and B from the 

bottom of the system. In addition, particles that flow out of 

the top of the system and are re-injected at the bottom must 

be assigned proper values. A nearest neighbor approach 

will be used to determine these values. To support future 

complete modeling of the precipitation reaction, a new 

chemistry module that supports direct modeling of the 

precipitate will be developed.  

4.4 Grid Parameter Generator 
The Grid Parameter Generator (GPG) is a python script that 

creates STOMP input files based on output from SPH runs.  

During the invocation of GPG, a list of SPH outputs 

mapped to their corresponding STOMP grid cell are passed 

as input. 

The GPG parses output files from the last time step of 

every SPH job to obtain the concentrations of each 

constituent, A and B, at each fluid particle in the reaction 

chamber.  These concentrations are used to calculate a 

mixing coefficient using the following equation.   

  
  ̅̅ ̅̅

 ̅ ̅
   

∑     
  
   

∑   
  
   

∑   
  
   

 

Note that Np is the number of fluid particles (not including 

solid particles). 

A file of values of m for each STOMP grid cell is then 

generated in the STOMP file format, in which m for those 

STOMP cells corresponding to an SPH simulation domain 

are obtained from the computation above applied to the 

SPH output, and m for all the other STOMP cells set to a 

value of 1.0.  The STOMP code has been modified to read 

the mixing coefficients and modify the internal reaction 

rates. 

5. DESIGN AND IMPLEMENTATION 
Our hybrid subsurface model, implemented as a multi-

parallel task workflow is presented in Figure 3. The 

workflow is adaptive and portable. It supports dynamic 

scheduling of tasks, and utilizes Swift‟s logging and error 

handling capabilities. We add visualization and provenance 

capabilities in the workflow which will allow scientists to 

track the overall simulation during and after the run. The 

hybrid model workflow is launched by invoking a single 

instance of Swift, along with request to allocate all the 

resources needed during the execution. A typical job launch 

script would contain request for resources that is typical to 

the underlying system, along with command to launch 

Swift as a serial controller that manages the compute tasks. 

As the resources are acquired at the beginning of the 

execution, it eliminates the need to go through job queue 

multiple times.   The number of iterations to be executed 

and the number of processes available are specified at the 

command line. 



The Swift workflow requires simple methods to act as an 

interface to system calls.  Such functions are implemented 

as „app‟. Due to temporary issues in Swift‟s 

filesys_mapper, we design the PG module into two separate 

components. The adaptivity manager first specifies number 

of pore regions (Nps), the workflow then uses it to construct 

an array of length Nps and alleviating the need to use 

arbitrary array size. We create an „app‟ [Figure 3] each for 

the stomp(), pg_adaptivity_mgr(), pg_conc_gen(), sph() 

and gpg() corresponding to the different components of the 

model as discussed in Section 4. The app interface  is 

required to clearly identify the input and output parameters 

and files. Since, swift is designed to execute in separate 

independent workspace than the current work directory, the 

files that are not specified as I/O for an app are not moved 

back and forth between the two and may get lost. The 

Hybrid model function issues first call to STOMP, which 

generates an array of output files. The file written at the last 

STOMP time step is used as an input to the PG‟s adaptivity 

manager. This produces a output file which specifies 

number of pore-scale runs „N‟ needed for the particular 

iteration and the location of the pore-regions.  The 

subsequent call is made to PG‟s concentration generator 

which prepares the input file, containing the concentration 

of each pore-scale grain, for each of the N pore-scale 

simulations.  

 The pore-scale simulations are launched using the Swift‟s 

“foreach” construct which executes the tasks in parallel. 

Each of these SPH runs is launched as an MPI [11] job. 

Our current implementation assumes that the size of the 

pore-regions are nearly equal and can be modeled in similar 

time. Hence, the processes are divided equally between the 

pore simulations. Once all pore-scale runs complete, the 

GPG uses the output files to generate mixing coefficients 

which feeds back into STOMP. The main driver of the 

workflow executes each iteration serially using Swift‟s 

“iterate” construct.  

5.1 Adaptive and Dynamic Scheduling 
The number of pore-scale simulation varies between 

iterations as the reaction travels upward through the 

system. Once the number of pore-scale regions has been 

determined for a given iteration, the pore-scale simulations 

are launched by evenly distributing available processes 

among the pore-regions. For the non-uniform case, this 

may lead to load balancing issues. A weighed scheduling 

policy can be implemented to address the load imbalance, 

however this may require identifying number of particles or 

other features of each pore-domain prior to launch.    

In case the number of pore-regions is more than the 

available processes, the workflow queues the pore-tasks 

and launches them in multiple batches. This allows for 

efficient and maximum utilization of the available 

resources. In the worst case scenario (number of processes 

=1), all pore-scale simulations can be launched as serial job 

in an iterative manner.  

5.2 Portability 
Our Swift workflow is portable, the system specific details 

being provided through the Swift configuration file. A 

configuration script identifies the underlying resource 

Figure 3: Swift Workflow for the Hybrid Subsurface Model 



manager and prepares the task launching command. For 

example, on a system running PBS, the parallel pore tasks 

are launched using an „aprun‟ command while for a 

machine using SLURM resource manager, the tasks are 

launched using srun or mpirun. Swift itself is configured to 

run on the login node thus bypassing any issues with 

invoking tasks from compute nodes, which is not supported 

on all systems. 

Note that our Swift workflow does not use the recently 

developed JETS [5] functionality in which the tasks are 

managed by MPICH based task manager. The workflow 

simply uses Swift as a scripting language and manages the 

parallel tasks explicitly in the workflow. We plan to 

evaluate our workflow with JETS task manager as it 

becomes available with support for multiple MPI tasks.  

5.3 Data Management 
The hybrid model workflow produces tremendous amount 

of data. Swift‟s „file mappers‟ and arrays provide a simple 

interface to perform pattern matching against named files 

on disk. By specifying an expression on output files for the 

run, the desired files are placed into an array automatically.  

If there are no files produced that match the expression 

specified in the script, then an exception is thrown and the 

user is notified.  The error handling capabilities described 

occur as part of the language and do not have to be written 

within the script. 

Swift also simplifies data management by implicitly 

removing files that are not specified as part of the 

workflow. However it necessitates that all files that might 

be needed for provenance/visualization or other data 

analysis capabilities are identified in the workflow in order 

to be preserved. Swift also ensures that each swift job 

executes in an independent work directory, hence multiple 

jobs can be submitted without risk being over-written. The 

hybrid model itself is designed to map every pore-scale run 

to a different directory, which are identified by a unique 

pore-id.    

5.4 Visualization  
Visualizations of SPH output are performed using Visit. 

Visit is invoked through the Swift workflow and passed a 

python script that contains instructions for automating the 

generation of 3D visualizations from SPH output. Initially, 

visualizations will be performed at every iteration, it can 

be modified to control the frequency of image generation. 

The SPH visualization [Figure 4] shows a contour of liquid 

particles (green) with concentrations of the constituent 

(red) flowing through the medium.  Note that the brown 

color represented is actually the constituent (red) flowing 

behind the liquid particles (green). 

Visualizations of STOMP output [Figure 5] are also created 

through the swift workflow using Visit.  After a STOMP 

simulation has completed, Swift invokes a data translation 

script to convert the output to tecplot format. This is then 

used as an input to the Visit tool to generate the plot. Note 

that visit will support both 2D and 3D data produced by 

STOMP.  

Figure 5 shows the STOMP visualization for the test case 

when Na2CO3 and CaCl2 are injected from two different 

sides at the bottom.  The thin multi-colored line where z = 

25 shows where the two constituents are reacting and 

forming a precipitate.   

5.5 Provenance  
Provenance information is important for monitoring 

simulations in real time, post-analysis, and for long term 

tracking and knowledge capture of the modeling process.  

In the case of the hybrid model, additional Swift apps 

dedicated to the capture of provenance information are 

added to the workflow. These apps are responsible for 

synthesizing and recording provenance in a format suitable 

for ingest into the SALSSA user environment [21] which 

will be used to run the hybrid model.  Currently SALSSA 

expects provenance to be represented as a Resource 

Description Framework (RDF) serialization of the Open 

Provenance Model (OPM) [22] for ingest into its 

provenance repository.  Provenance collected by the apps 

includes: iteration number, start/end time for iteration, 

number of pore regions per iteration, location of pore 

regions per iteration, size of pore regions per iteration, 

result of last time step per simulated pore region, and 

geometry file(s) used by each iteration. 

These provenance apps are designed and customized 

specifically for supporting provenance requirements for the 

hybrid model use case.  However, it should be possible to 

provide provenance capture techniques for use within the 

Figure 4: SPH visualization 

Figure 5: STOMP Visualization for Target 

Problem 



workflow scripting environment itself, supporting a more 

general approach.  For example support for different 

provenance recording serializations, support for metadata 

extraction rules to harvest provenance information from 

selected input and output files, support for identification of 

file types to include or exclude in the provenance capture, 

and selection of processes (i.e. apps) to include or exclude 

in the provenance capture. 

For the hybrid model, provenance will only be collected at 

the STOMP iteration level. Normally SALSSA would 

expect provenance relationships to be captured for each 

SPH process as well.  However, due to the large amount of 

provenance this would generate, its impact to workflow 

performance, and arguably the lack of usefulness this 

would have for a user it was decided to summarize SPH 

provenance information for each iteration.  This would 

include geometry file(s) used and information regarding the 

simulated pore regions (e.g. size and location).  Given this 

information, SALSSA could provide a real time 

visualization of the simulation‟s progress, as it moves from 

one iteration to the next. 
 

6. EXPERIMENTAL CONFIGURATION 
Our initial target problem domain consists of a 50 cm 

(wide)* 60 cm (height) 2D system. The system is filled 

with uniform sand, Na2CO3 and CaCl2 are injected from 

two different sides at the bottom. As the mixture is 

homogeneous in porosity, the two solutes are expected to 

diffuse at the centerline (x = 25). The STOMP grid is 

uniform, 0.5 mm in each direction. It‟s designed to ensure a 

single grid line is centered at the middle of the domain and 

wide enough so that a single center grid line can then be 

used to model the pore-scale phenomenon.  The number of 

pore-scale regions (grid cells) (0.5 * 0.5 mm) can vary from 

1 to 120.  

We target NERSC‟s Franklin system to demonstrate the 

hybrid model workflow. We implement and test the Swift 

workflow system using stubs for different components as 

the test case geometries and other model specific input  

files are prepared. The PG module is currently under 

development too. A 3D periodic pore-scale geometry is 

generated to ensure all pore-scale simulations were 

consistent with the complete domain configuration, and a 

2D slice was extracted [Figure 6] for demonstration of the 

model.   

For our target problem domain (homogeneous use case), 

the STOMP (macroscale) simulations are expected to 

complete in order of seconds.  Each of the pore-scale 

regions will  contain nearly 5 million particles. The 

workflow will execute on the order of 1-120 of these SPH 

runs in parallel for each iteration, and a total of ~100 

iterations of the model. The SPH code has been 

demonstrated to take 2 minutes 36 seconds for a 3.4M 

particle simulation with 1K processes.  On average we 

expect each of the SPH run to be executed using 128 

processors, and to take between 10-15 minutes for 

execution. The serial components are not expected to take 

significant time. We incorporate parallel I/O for SPH to 

reduce the read/write overhead but additional methods may 

be needed. Thus, the model is expected to take around 30-

40 hours for the complete run. The computing costs will 

increase significantly for a complete 3D simulation and less 

uniform problems.  

We plan to run the model on nearly 10K processes for the 

initial 2D simulation. As the number of pore-regions is 

expected to increase with iterations, the number of 

processes for each SPH run will decrease as we move 

further along in the simulation. We need to introduce 

changes to the workflow to ensure each SPH simulation 

should run for a certain number of processes only. For e.g, 

during the first iteration, the workflow may not be able to 

successfully execute single SPH job on 10K processes. 

7. CONCLUSION AND FUTURE WORK 
In this paper we have presented the design of our portable, 

MTC based hybrid subsurface model. The model is 

implemented using a loose coupling approach, with Swift 

workflow language. The workflow has been tested with 

stubs using  similar interface as by the different 

components of the hybrid model. The model targets the use 

case where all parallel tasks can be assumed to take similar 

amount of time to complete, however its generic and can be 

used in non-uniform problem domains as well. The load-

imbalance problem may be addressed by incorporating 

weighed scheduling for less-uniform problem domains. 

The model uses Swift‟s data management, error handling 

and inherent parallel model execution capabilities. The 

workflow is expected to undergo minor modifications as 

complex problem domains are used, requiring additional 

data mappings. Reducing I/O overhead may require 

incorporating novel solutions like RAM disk architectures.  

Additional data analysis techniques for the model may be 

added as well, per scientific requirements. Minor 

Figure 6 - Generating pore-scale geometry: A 2D 

geometry is generated by slicing a plane through 

3D. 



modifications will be made to the workflow, to threshold 

the visualization and provenance data generated, and enable 

them only at selected iterations.  We also plan to integrate 

the Swift workflow with the SALSSA framework, which 

will provide an abstract interface for launching the  hybrid 

subsurface model  on different systems.  
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