
Design and Implementation of “Many Parallel Task” Hybrid

Subsurface Model

Khushbu Agarwal, Jared M. Chase, Karen L. Schuchardt, Timothy D. Scheibe, Bruce J. Palmer,
Todd O. Elsethagen

Pacific Northwest National Laboratory

902 Battelle Blvd,

Richland WA 99354

{Khushbu.Agarwal, Jared.Chase, Karen.Schuchardt, Timothy.Scheibe, Bruce.Palmer, Todd.Elsethagen}@pnnl.gov

ABSTRACT

Continuum scale models have been used to study

subsurface flow, transport, and reactions for many years.

Recently, pore scale models, which operate at scales of

individual soil grains, have been developed to more

accurately model pore scale phenomena, such as

precipitation, that may not be well represented at the

continuum scale. However, particle-based models become

prohibitively expensive for modeling realistic domains.

Instead, we are developing a hybrid model that simulates

the full domain at continuum scale and applies the pore

model only to areas of high reactivity. The hybrid model

uses a dimension reduction approach to formulate the

mathematical exchange of information across scales. Since

the location, size, and number of pore regions in the model

varies, an adaptive Pore Generator is being implemented to

define pore regions at each iteration. A fourth code will

provide data transformation from the pore scale back to the

continuum scale. These components are coupled into a

single hybrid model using the Swift workflow system. Our

hybrid model workflow simulates a kinetic controlled

mixing reaction in which multiple pore-scale simulations

occur for every continuum scale time step. Each pore-scale

simulation is itself parallel, thus exhibiting multi-level

parallelism. Our workflow manages these multiple parallel

tasks simultaneously, with the number of tasks changing

across iterations. It also supports dynamic allocation of job

resources and visualization processing at each iteration. We

discuss the design, implementation and challenges

associated with building a scalable, Many Parallel Task,

hybrid model to run efficiently on thousands to tens of

thousands of processors.

General Terms

Design, Algorithms, Performance

Keywords

Parallel Tasks, Workflow, Subsurface Modeling.

1. INTRODUCTION
Continuum scale models have been used to study

subsurface flow, transport, and reactions for many years.

However, they simulate the reaction model in an averaged

sense and do not represent subsurface phenomenon at

particle level. The pore scale models operate at scales of

individual soil grains, and can accurately model

phenomenon such as precipitation, and fractures[1] etc.,

that may not be well represented at the continuum scale.

Since a realistic domain may contain on the order of

billions of particles, the pore-scale models become

prohibitively expensive for modeling a large domain.

Developing a hybrid subsurface model that couples the

macro-scale model which can simulate the overall system,

with the pore-scale model which can accurately represent

particle interactions, provides a balance between

computation time and model accuracy. We developed the

hybrid model, proposed by Scheibe et al [2], which

simulates the full domain at continuum scale and applies

the pore-scale model only to areas of high reactivity.

Subsurface Transport Over Multiple Phases (STOMP) [3]

and Smooth Particle Hydrodynamics (SPH) [4] codes are

applied for the macroscale and pore-scale modeling

respectively. A separate component is being implemented

which identifies the regions of high reactivity which need

microscale simulations. Other components are required to

provide transformations between the pore and continuum

domains. The Swift workflow system [5] is used to develop

the model in which tasks execute independently and form a

workflow connected using files. An iteration of the

continuum scale involves executing multiple independent

pore-scale simulations, each of which is a parallel run. The

workflow hence follows the many task computing [6, 7]

paradigm, executing multiple parallel task concurrently.

A tightly coupled model may offer performance benefits

but we choose to follow a loosely coupling approach for

some important reasons. “First, the two models have very

different data structures. Tight integration of shared

structure is not required. Second, each of these codes is

being developed independently by separate groups and

undergoing large-scale development. In addition, the code

which determines pore regions, their locations and

characteristics would also have to be integrated. Tight

integration will require significant effort to manage and be

disruptive to ongoing efforts [8].” Finally, adding analysis

and visualization methods to the coupled process will

further complicate the model.

We present the design and implementation of our “many

parallel task” based hybrid model and discuss it in context

of our target problem domain. The rest of the paper is

organized as follows: section 2 discusses the background

and related work. We discuss our target problem in section

3. The different components of the hybrid model are

described in section 4 and the design and implementation

of workflow are presented in section 5. We discuss our

experimental configuration section 6. We conclude and

discuss future work in section 7.

2. BACKGROUND AND RELATED WORK
The coupling approach for developing novel models by

using multiple independent codes, have been widely used

in several domains [9-12]. An MPI [13] based approach to

coupling generally requires modifications to existing codes

where each component should perform communication

steps for the coupled model. The workflow based

approaches using scripting languages have been popular

due to the ease of implementation maintenance and

portability. A coupled model using python as scripting

language was developed for multi-physics simulations [9].

The ESSE used shell scripting to develop a workflow for

running an ensemble of climate model simulations [12].

The IPS (Integrated Plasma Simulator) framework [10] by

Foley et al. used Swift for coupled multi-physics simulation

of fusion plasmas.

Several frameworks [14-16] have been implemented over

last few years that provide an abstraction from the details of

workflow execution, job scheduling, resource management

and error handling etc. The Swift workflow language, used

to develop the hybrid subsurface model, offers an implicitly

parallel and deterministic programming model [17], which

is central to our multi-parallel task based workflow design.

It also provides functional mappers, which allows external

applications to be applied to file collections. Moreover, a

C-like syntax and abstraction from complex details of

parallel execution greatly simplifies the implementation

process.

2.1 Swift
A Swift script describes data, application components, and

invocations of applications. A Swift workflow generally

involves executing a large number of independent tasks in

an HPC or distributed environment. The advantages to

using Swift include an elegance of remote execution that is

inherent to the language. Swift also provides file and data

management capabilities. The file mapper constructs are

used to specify disk-resident data. The Swift mappers use

an expression language to query for output files produced

by the simulation then groups each file set into an array

structure so they can be managed together.

Swift has an inherent parallel nature; when iterating over

arrays, each task is performed in parallel. This makes the

execution of parameter studies much more efficient. Also,

the complexities of parallelization are encapsulated. This

makes the launching of multiple remote jobs in parallel and

the monitoring their status, simple to implement. Swift will

launch every job in parallel and wait for them to finish.

Once each job is complete Swift will check for the

expected output files.

3. PROBLEM DESCRIPTION
Our hybrid subsurface model developed by Scheibe et al

[2], will simulate the parallel transport of two solutes with a

MTAGS’11, November 14th, 2011, Seattle, WA, USA.

Copyright © 2011 ACM 1-58113-000-11/14/2011…$10.00.

Figure 1: Modeling Target Problem Domains using STOMP and SPH

mixing-controlled kinetic precipitation reaction occurring

at the interface between the two solutes. The system is

filled with porous medium like sand. The sand is saturated

with water, flowing from bottom to top at a specified

volumetric flux rate (corresponding to a specified average

pore velocity). As the solutions flow upward through the

flow cell, they mix along the centerline by diffusion,

leading to super-saturation and precipitation of calcium

carbonate mineral. The precipitated mineral phase

modifies the pore geometry, blocking pores and inhibiting

mixing of the two solutes. Therefore there is a strong

coupling/feedback at the pore scale that strongly impacts

macroscale behavior. The coupling approach will utilize the

Dimension Reduction with Numerical Closure (DRNC)

method as presented by Tartakovsky [18].

Use Case 1 (Uniform - Equal size pore scale runs): The

system is filled with uniform sand. Thus, the mixing region

is known and can be divided into equal size pore domains

[Figure 1: Use Case 1)]. At the beginning of the simulation,

the solutes are injected from bottom. Initially, there will be

no mixing at the top of the pore domain so pore models will

not be run in this location. Likewise, as the simulation

proceeds, the mixing will cause precipitate to form at the

bottom and no further reaction may occur so these areas

may not require detailed simulation later. The simulation

zone will be like a moving window that moves up the

system.

Use Case 2 (Non-Uniform Variable size pore scale

runs): The experimental system is packed heterogeneously

with two different types of sand having different hydraulic

conductivities and porosities (red is low conductivity and

blue is high)[Figure 1: Use Case 2], thus the path of two

solutes is indeterminate. The mixing zone will vary,

resulting in non-uniform unequal sized pore domains.

We target the uniform use case as our initial problem

domain. The pore-scale region in this case can be modeled

as a single pore domain. However this would not be

extensible for the generic case. Hence, we implement it as

MTC model.

4. HYBRID MODEL WORKFLOW
The workflow consists of four main modules [Figure 2].

We are using a serial version of the macroscale code

(STOMP) to model the full problem domain though for a

larger domain, a parallel version can be inserted into the

workflow seamlessly. The code that determines pore

regions (PG) and the algorithm to calculate mixing

coefficient (GPG) are serial. The pore-scale simulations

(SPH) will involve millions of particles and requires

parallel execution for each region. The pore domain will be

fixed for the uniform case when modeling it as a single

SPH run; and variable otherwise. Each of the SPH domain

will be equal in number of particles for the uniform case

and unequal otherwise [Section 3].

A complete simulation will involve executing many

iterations of the hybrid model. The workflow components

are summarized in the following sections, with an emphasis

on changes required to support the hybrid model in the case

of the existing codes.

4.1 STOMP
The STOMP [3] code models the macro-scale reaction.

Since the concentrations of particles in the pore-scale

domain changes after the last macro-scale calculations have

been performed, the STOMP code was modified to

incorporate mixing coefficient calculations. If a mixing

coefficient file is present, the stomp calculates initial

concentrations based on the mixing coefficient of the

particular grid and the STOMP restart file. A default value

is used otherwise, in which case the initial concentration

are assumed to be same as that in the restart file produced

at the end of previous STOMP simulation.

4.2 Pore Generator

The Pore Generator (PG) is a python program that provides

Figure 2: Hybrid model workflow, depicting the components and data flow

mathematical model to calculate particle properties from

macroscale to the microscale (pore) domain. The PG

consists of two modules : 1) An Adaptivity Manager

determines how many and which pore-scale subdomains

require simulation and 2) A Pore Concentration Generator

which performs the “reconstruction” of the pore-scale

initial conditions for pore-scale subdomains.

4.2.1 Adaptivity Manager: A pore-scale subdomain is

considered active when the average of initial concentrations

of the fluid particles reaches a user specified minimum

threshold value. The average concentration of the pore-

domain is obtained from the STOMP output. Let for any

pore-scale domain ‘i’:

[A] = average concentration of solute A

[B] = average concentration of solute B, and

Ksp = solubility constant

We define a pore-scale domain to be active when,

[A]*[B]/Ksp > 1.01,

For the first time step, the number of pore-scale domains is

Nps = 1. The Nps parameter is incremented each time one or

more pore domains are added.

4.2.2 Pore Concentration Generator: This module

performs the “reconstruction” of the pore-scale initial

conditions for Nps pore-scale subdomains. The initial

concentration of particles in the pore-scale domain are

calculated based on output from STOMP, and pore-scale

output from the previous time step. The boundary

conditions are dependent not only on the previous SPH

runs for that domain but also on neighboring pore-scale

domains. For e.g., for use case 1:

 For iteration 1, particles near the inlet boundary in

the bottom(z=0) SPH domain, are assigned

concentration A=1 on left half, and B =1 on right

half.

 The particles near the inlet boundary are assigned

concentrations from the adjacent uppermost grid

cell of the neighboring SPH domain.

 Ai
n+1

 = A
n

klm for all fluid particles i, for zi < zBC

 The remaining particle concentrations are assigned

according to:

 Ai
n+1

 = cAA
n
 for all fluid particles i, for zi > zBC,

where,

 ∑

∑

n = iteration number, A= particle concentration, i = id of

fluid particle, Npf = number of fluid particles, Aavg =

Average concentration of grid cell from macroscale, z=

vertical distance of particle from pore domain boundary, zbc

= user defined percentage threshold for boundary condition.

4.3 SPH
At the microscale, SPH code is used to model particle

interactions. The current SPH code [4] requires some

modifications in order to completely integrate it into the

multiscale coupling scheme. The “A+B ->C” reaction

model needs to be modified to support a new boundary

condition corresponding to injection of A and B from the

bottom of the system. In addition, particles that flow out of

the top of the system and are re-injected at the bottom must

be assigned proper values. A nearest neighbor approach

will be used to determine these values. To support future

complete modeling of the precipitation reaction, a new

chemistry module that supports direct modeling of the

precipitate will be developed.

4.4 Grid Parameter Generator
The Grid Parameter Generator (GPG) is a python script that

creates STOMP input files based on output from SPH runs.

During the invocation of GPG, a list of SPH outputs

mapped to their corresponding STOMP grid cell are passed

as input.

The GPG parses output files from the last time step of

every SPH job to obtain the concentrations of each

constituent, A and B, at each fluid particle in the reaction

chamber. These concentrations are used to calculate a

mixing coefficient using the following equation.

 ̅̅ ̅̅

 ̅ ̅

∑

∑

∑

Note that Np is the number of fluid particles (not including

solid particles).

A file of values of m for each STOMP grid cell is then

generated in the STOMP file format, in which m for those

STOMP cells corresponding to an SPH simulation domain

are obtained from the computation above applied to the

SPH output, and m for all the other STOMP cells set to a

value of 1.0. The STOMP code has been modified to read

the mixing coefficients and modify the internal reaction

rates.

5. DESIGN AND IMPLEMENTATION
Our hybrid subsurface model, implemented as a multi-

parallel task workflow is presented in Figure 3. The

workflow is adaptive and portable. It supports dynamic

scheduling of tasks, and utilizes Swift‟s logging and error

handling capabilities. We add visualization and provenance

capabilities in the workflow which will allow scientists to

track the overall simulation during and after the run. The

hybrid model workflow is launched by invoking a single

instance of Swift, along with request to allocate all the

resources needed during the execution. A typical job launch

script would contain request for resources that is typical to

the underlying system, along with command to launch

Swift as a serial controller that manages the compute tasks.

As the resources are acquired at the beginning of the

execution, it eliminates the need to go through job queue

multiple times. The number of iterations to be executed

and the number of processes available are specified at the

command line.

The Swift workflow requires simple methods to act as an

interface to system calls. Such functions are implemented

as „app‟. Due to temporary issues in Swift‟s

filesys_mapper, we design the PG module into two separate

components. The adaptivity manager first specifies number

of pore regions (Nps), the workflow then uses it to construct

an array of length Nps and alleviating the need to use

arbitrary array size. We create an „app‟ [Figure 3] each for

the stomp(), pg_adaptivity_mgr(), pg_conc_gen(), sph()

and gpg() corresponding to the different components of the

model as discussed in Section 4. The app interface is

required to clearly identify the input and output parameters

and files. Since, swift is designed to execute in separate

independent workspace than the current work directory, the

files that are not specified as I/O for an app are not moved

back and forth between the two and may get lost. The

Hybrid model function issues first call to STOMP, which

generates an array of output files. The file written at the last

STOMP time step is used as an input to the PG‟s adaptivity

manager. This produces a output file which specifies

number of pore-scale runs „N‟ needed for the particular

iteration and the location of the pore-regions. The

subsequent call is made to PG‟s concentration generator

which prepares the input file, containing the concentration

of each pore-scale grain, for each of the N pore-scale

simulations.

 The pore-scale simulations are launched using the Swift‟s

“foreach” construct which executes the tasks in parallel.

Each of these SPH runs is launched as an MPI [11] job.

Our current implementation assumes that the size of the

pore-regions are nearly equal and can be modeled in similar

time. Hence, the processes are divided equally between the

pore simulations. Once all pore-scale runs complete, the

GPG uses the output files to generate mixing coefficients

which feeds back into STOMP. The main driver of the

workflow executes each iteration serially using Swift‟s

“iterate” construct.

5.1 Adaptive and Dynamic Scheduling
The number of pore-scale simulation varies between

iterations as the reaction travels upward through the

system. Once the number of pore-scale regions has been

determined for a given iteration, the pore-scale simulations

are launched by evenly distributing available processes

among the pore-regions. For the non-uniform case, this

may lead to load balancing issues. A weighed scheduling

policy can be implemented to address the load imbalance,

however this may require identifying number of particles or

other features of each pore-domain prior to launch.

In case the number of pore-regions is more than the

available processes, the workflow queues the pore-tasks

and launches them in multiple batches. This allows for

efficient and maximum utilization of the available

resources. In the worst case scenario (number of processes

=1), all pore-scale simulations can be launched as serial job

in an iterative manner.

5.2 Portability
Our Swift workflow is portable, the system specific details

being provided through the Swift configuration file. A

configuration script identifies the underlying resource

Figure 3: Swift Workflow for the Hybrid Subsurface Model

manager and prepares the task launching command. For

example, on a system running PBS, the parallel pore tasks

are launched using an „aprun‟ command while for a

machine using SLURM resource manager, the tasks are

launched using srun or mpirun. Swift itself is configured to

run on the login node thus bypassing any issues with

invoking tasks from compute nodes, which is not supported

on all systems.

Note that our Swift workflow does not use the recently

developed JETS [5] functionality in which the tasks are

managed by MPICH based task manager. The workflow

simply uses Swift as a scripting language and manages the

parallel tasks explicitly in the workflow. We plan to

evaluate our workflow with JETS task manager as it

becomes available with support for multiple MPI tasks.

5.3 Data Management
The hybrid model workflow produces tremendous amount

of data. Swift‟s „file mappers‟ and arrays provide a simple

interface to perform pattern matching against named files

on disk. By specifying an expression on output files for the

run, the desired files are placed into an array automatically.

If there are no files produced that match the expression

specified in the script, then an exception is thrown and the

user is notified. The error handling capabilities described

occur as part of the language and do not have to be written

within the script.

Swift also simplifies data management by implicitly

removing files that are not specified as part of the

workflow. However it necessitates that all files that might

be needed for provenance/visualization or other data

analysis capabilities are identified in the workflow in order

to be preserved. Swift also ensures that each swift job

executes in an independent work directory, hence multiple

jobs can be submitted without risk being over-written. The

hybrid model itself is designed to map every pore-scale run

to a different directory, which are identified by a unique

pore-id.

5.4 Visualization
Visualizations of SPH output are performed using Visit.

Visit is invoked through the Swift workflow and passed a

python script that contains instructions for automating the

generation of 3D visualizations from SPH output. Initially,

visualizations will be performed at every iteration, it can

be modified to control the frequency of image generation.

The SPH visualization [Figure 4] shows a contour of liquid

particles (green) with concentrations of the constituent

(red) flowing through the medium. Note that the brown

color represented is actually the constituent (red) flowing

behind the liquid particles (green).

Visualizations of STOMP output [Figure 5] are also created

through the swift workflow using Visit. After a STOMP

simulation has completed, Swift invokes a data translation

script to convert the output to tecplot format. This is then

used as an input to the Visit tool to generate the plot. Note

that visit will support both 2D and 3D data produced by

STOMP.

Figure 5 shows the STOMP visualization for the test case

when Na2CO3 and CaCl2 are injected from two different

sides at the bottom. The thin multi-colored line where z =

25 shows where the two constituents are reacting and

forming a precipitate.

5.5 Provenance
Provenance information is important for monitoring

simulations in real time, post-analysis, and for long term

tracking and knowledge capture of the modeling process.

In the case of the hybrid model, additional Swift apps

dedicated to the capture of provenance information are

added to the workflow. These apps are responsible for

synthesizing and recording provenance in a format suitable

for ingest into the SALSSA user environment [21] which

will be used to run the hybrid model. Currently SALSSA

expects provenance to be represented as a Resource

Description Framework (RDF) serialization of the Open

Provenance Model (OPM) [22] for ingest into its

provenance repository. Provenance collected by the apps

includes: iteration number, start/end time for iteration,

number of pore regions per iteration, location of pore

regions per iteration, size of pore regions per iteration,

result of last time step per simulated pore region, and

geometry file(s) used by each iteration.

These provenance apps are designed and customized

specifically for supporting provenance requirements for the

hybrid model use case. However, it should be possible to

provide provenance capture techniques for use within the

Figure 4: SPH visualization

Figure 5: STOMP Visualization for Target

Problem

workflow scripting environment itself, supporting a more

general approach. For example support for different

provenance recording serializations, support for metadata

extraction rules to harvest provenance information from

selected input and output files, support for identification of

file types to include or exclude in the provenance capture,

and selection of processes (i.e. apps) to include or exclude

in the provenance capture.

For the hybrid model, provenance will only be collected at

the STOMP iteration level. Normally SALSSA would

expect provenance relationships to be captured for each

SPH process as well. However, due to the large amount of

provenance this would generate, its impact to workflow

performance, and arguably the lack of usefulness this

would have for a user it was decided to summarize SPH

provenance information for each iteration. This would

include geometry file(s) used and information regarding the

simulated pore regions (e.g. size and location). Given this

information, SALSSA could provide a real time

visualization of the simulation‟s progress, as it moves from

one iteration to the next.

6. EXPERIMENTAL CONFIGURATION
Our initial target problem domain consists of a 50 cm

(wide)* 60 cm (height) 2D system. The system is filled

with uniform sand, Na2CO3 and CaCl2 are injected from

two different sides at the bottom. As the mixture is

homogeneous in porosity, the two solutes are expected to

diffuse at the centerline (x = 25). The STOMP grid is

uniform, 0.5 mm in each direction. It‟s designed to ensure a

single grid line is centered at the middle of the domain and

wide enough so that a single center grid line can then be

used to model the pore-scale phenomenon. The number of

pore-scale regions (grid cells) (0.5 * 0.5 mm) can vary from

1 to 120.

We target NERSC‟s Franklin system to demonstrate the

hybrid model workflow. We implement and test the Swift

workflow system using stubs for different components as

the test case geometries and other model specific input

files are prepared. The PG module is currently under

development too. A 3D periodic pore-scale geometry is

generated to ensure all pore-scale simulations were

consistent with the complete domain configuration, and a

2D slice was extracted [Figure 6] for demonstration of the

model.

For our target problem domain (homogeneous use case),

the STOMP (macroscale) simulations are expected to

complete in order of seconds. Each of the pore-scale

regions will contain nearly 5 million particles. The

workflow will execute on the order of 1-120 of these SPH

runs in parallel for each iteration, and a total of ~100

iterations of the model. The SPH code has been

demonstrated to take 2 minutes 36 seconds for a 3.4M

particle simulation with 1K processes. On average we

expect each of the SPH run to be executed using 128

processors, and to take between 10-15 minutes for

execution. The serial components are not expected to take

significant time. We incorporate parallel I/O for SPH to

reduce the read/write overhead but additional methods may

be needed. Thus, the model is expected to take around 30-

40 hours for the complete run. The computing costs will

increase significantly for a complete 3D simulation and less

uniform problems.

We plan to run the model on nearly 10K processes for the

initial 2D simulation. As the number of pore-regions is

expected to increase with iterations, the number of

processes for each SPH run will decrease as we move

further along in the simulation. We need to introduce

changes to the workflow to ensure each SPH simulation

should run for a certain number of processes only. For e.g,

during the first iteration, the workflow may not be able to

successfully execute single SPH job on 10K processes.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented the design of our portable,

MTC based hybrid subsurface model. The model is

implemented using a loose coupling approach, with Swift

workflow language. The workflow has been tested with

stubs using similar interface as by the different

components of the hybrid model. The model targets the use

case where all parallel tasks can be assumed to take similar

amount of time to complete, however its generic and can be

used in non-uniform problem domains as well. The load-

imbalance problem may be addressed by incorporating

weighed scheduling for less-uniform problem domains.

The model uses Swift‟s data management, error handling

and inherent parallel model execution capabilities. The

workflow is expected to undergo minor modifications as

complex problem domains are used, requiring additional

data mappings. Reducing I/O overhead may require

incorporating novel solutions like RAM disk architectures.

Additional data analysis techniques for the model may be

added as well, per scientific requirements. Minor

Figure 6 - Generating pore-scale geometry: A 2D

geometry is generated by slicing a plane through

3D.

modifications will be made to the workflow, to threshold

the visualization and provenance data generated, and enable

them only at selected iterations. We also plan to integrate

the Swift workflow with the SALSSA framework, which

will provide an abstract interface for launching the hybrid

subsurface model on different systems.

8. ACKNOWLEDGMENT
We would like to thank Michael Wilde and Justin Wozniak

at Argonne National Laboratory for their help and support

with Swift workflow system.

This work was under Office of Science, SciDAC(Scientific

Discovery through Advanced Computing) project.

9. REFERENCES
[1] Tartakovsky, A. M., P. Meakin, T. Scheibe, and B. D. Wood,

"A smoothed particle hydrodynamics model for reactive

transport and mineral precipitation in porous and fractured

porous media," Water Resources Research, 43(5):Art. No.

W05437.

[2] Scheibe, T. D., A. M. Tartakovsky, D. M. Tartakovsky, G. D.

Redden, and P. Meakin, 2007. Hybrid numerical methods for

multiscale simulations of subsurface biogeochemical

processes, Journal of Physics: Conference Series 78: 012063.

[3] Nichols, W.E., N.J. Aimo, M. Oostrom, and M.D. White.

1997. STOMP Subsurface Transport Over Multiple Phases:

Application Guide PNNL-11216 (UC-2010), Pacific

Northwest National Laboratory.

http://stomp.pnnl.gov/documentation/guides/application.pdf

[4] Palmer, B. J, Y. Fang, G. E. Hammond, and V. Gurumoorthi,

2007. Component-based framework for subsurface

simulations, Journal of Physics: Conference Series

78:012047, doi:10.1088/1742-6596/78/1/012047.

[5] Wilde, M., Foster, I., Iskra, K., Bechman, P., Zhang Z.,

Espinosa A., Hategan M., Clifford B., Raicu I. 2009. Parallel

Scripting for Applications at the Petascale and Beyond,

Computer, Vol. 42, No. 11.

[6] Ioan Raicu, Ian Foster, Yong Zhao. “Many-Task Computing

for Grids and Supercomputers”, IEEE Workshop on Many-

Task Computing on Grids and Supercomputers (MTAGS08).

Vol. no. pp.1-11, 17-17 Nov 2008

[7] E. Ogasawara, D. de Oliveira, F. Chirigati, C. E. Barbosa, R.

Elias, V. Braganholo, A. Coutinho, and M. Mattoso,

“Exploring Many Task Computing in Scientific Workflows,”

in MTAGS ‟09: Proc. of the 2nd Workshop on Many-Task

Computing on Grids and Supercomputers, Nov 2009.

[8] Schuchardt, K. L., Palmer B., Agarwal K., Scheibe T. 2011.

Many Parallel Task Computing for a Hybrid Subsurface

Model. SciDAC 2011.

[9] J. U. Schlüter, X. Wu, S. Kim, S. Shankaran, J. J. Alonso,

and H. Pitsch, A Framework for Coupling Reynolds-

Averaged with Large Eddy Simulations for Gas Turbine

Applications, Journal of Fluids Engineering, 127(4):608-

615, 2005.

[10] Foley, S.S.; Elwasif, W.R.; Bernholdt, D.E.; Shet, A.G.;

Bramley, R.; 2010. Many Task Applications in the

Integrated Plasma Simulator, IEEE Workshop on Many Task

Computing on Grids and Supercomputers (MTAGS) 2010.

[11] P. Marshall, M. Woitaszek, H. M. Tufo, R. Knight, D.

McDonald, and J. Goodrich, “Ensemble Dispatching on an

IBM Blue Gene/L for a Bioinformatics Knowledge

Environment,” in MTAGS ‟09: Proc. of the 2nd Workshop

on Many-Task Computing on Grids and Supercomputers,

Nov 2009.

[12] C. Evangelinos, P. F. Lermusiaux, J. Xu, P. J. Haley, C. N.

Hill, “Many Task Computing for Multidisciplinary Ocean

Sciences: Real-Time Uncertainty Prediction and Data

Assimilation,” MTAGS ‟09: Proc. of the 2nd Workshop on

Many-Task Computing on Grids and Supercomputers, Nov

2009.

[13] Message Passing Interface Forum, “MPI: A message passing

interface standard version 2.2.” http://mpi-

forum.org/docs/mpi-2.2/mpi22-report.pdf, September 2009.

[14] R. Costa, F. Brasileiro, G. L. Filho, and D. M. Sousa,

“OddCI: Ondemand distributed computing infrastructure,” in

MTAGS ‟09: Proc. Of the 2nd Workshop on Many-Task

Computing on Grids and Supercomputers,2009.

[15] I. Raicu, I. Foster, M. Wilde, Z. Zhang, K. Iskra, P.

Beckman, Y. Zhao, A. Szalay, A. Choudhary, P. Little, C.

Moretti, A. Chaudhary, D. Thain, “Middleware support for

many-task computing,” Cluster Computing, vol. 13, no. 3,

pp. 291–314, 2010.

[16] L. Hui, Y. Huashan, L. Xiaoming, “A Lightweight Execution

Framework for Massive Independent Tasks,” in IEEE

Workshop on Many-Task Computing on Grids and

Supercomputers (MTAGS08), Nov 2008.

[17] Wilde, M., Hategan M., Wozniak J. M., Z., Clifford B., Katz

D. S., Foster I., Swift: A language for distributed parallel

scripting. ◦

[18] Tartakovsky A. M., A Panchenko, and KF

Ferris. 2011. Dimension reduction methods for multiphase

flow and reactive transport in porous media."

[19] Wozniak, J. M., Wilde M., JETS: Language and System

Support for Many Parallel Task Computing. Preprint

ANL/MCS-P1885-0411, April 2011.

[20] MPICH2:http://www.mcs.anl.gov/research/projects/mpich2/i

ndex.php

[21] Schuchardt, K., J. Chase, J. Daily, T. Elsethagen, B. Palmer

and T. Scheibe, 2009. Application of the SALSSA

framework to the validation of smoothed particle

hydrodynamics simulations of low Reynolds number flows,

Journal of Physics: Conference Series 180: 012065.

[22] Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y.,

Groth, P., Kwasnikowska, N., Miles, S., Missier, P., Myers,

J., Plale, B., Simmhan, Y., Stephan, E. and Van den Bussche,

J. (2010) The Open Provenance Model core specification

(v1.1). Future Generation Computer Systems.

