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ABSTRACT 
High performance computing (HPC) has crossed the 
Petaflop mark and is reaching the Exaflop range quickly. 
The exascale system is projected to have millions of nodes, 
with thousands of cores for each node. At such an extreme 
scale, the substantial amount of concurrency can cause a 
critical contention issue for I/O system. The contention can 
destroy the request locality, increase the access latency, and 
waste the precious I/O interconnection bandwidth. This 
study proposes a dynamically coordinated I/O architecture 
for exascale systems. The fundamental idea is to coordinate 
I/O accesses according to access pattern, network topology, 
interconnection condition, and data distribution on storage 
devices to reduce the contention and regain the locality. 
The preliminary results have shown the promise of a 
dynamically coordinated I/O architecture. It has a potential 
to manage the substantial amount of I/O concurrency and 
provides a scalable I/O architecture for exascale systems.   

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Design studies. D.4.3 [File 
Systems Management]: Access methods. 

General Terms 
Performance 

Keywords 
Exascale systems; parallel I/O; parallel file systems; 
scalable I/O architecture; storage; many-task computing; 
high performance computing 

1. INTRODUCTION 
Many scientific and engineering simulations in critical areas 
of research, such as nanotechnology, astrophysics, climate, 
bioinformatics, and high-energy physics, are highly data 
intensive [DBMA11, IBCL11, DOSW09, SACC09, 
RaFZ08, Brya07, DICI]. These applications contain a large 
number of I/O accesses, where large amounts of data are 

stored to and retrieved from storage. The application teams 
are beginning to process terabytes or tens of terabytes of 
data in a single simulation. For example, a turbulence 
simulation code GTC (Gyrokinetic Toroidal Code) running 
on 29K cores of the Jaguar machine at the Oak Ridge 
Leadership Computing Facility (OLCF) of Oak Ridge 
National Laboratory (ORNL) generated over 54 terabytes of 
data in a 24-hour period [GTC, Jaguar]. As discussed in 
[RLUW09], 12 out of 20 INCITE applications run at the 
Argonne Leadership Computing Facility (ALCF) of 
Argonne National Laboratory (ANL) generated datasets in 
the terabyte range and store them on-line [INCITE]. The 
volume of the data and the pressure on the I/O system 
capability substantially increases over the time.  

The exascale system is projected to appear around the year 
of 2018. By that time, application teams are predicted to 
process hundreds of terabytes or even petabytes of data in a 
single simulation run [DBMA11]. Such an extreme-scale 
system is projected to have millions of nodes, with 
thousands of cores for each node [DBMA11, ShDM10]. 
Table 1 shows a potential exascale HPC system design and 
a comparison with current HPC systems in terms of factor 
changes for the peak performance, system size, etc. 
[VTYR08]. It should be noted that the most significant 
change is the total concurrency with a factor change of 
4,444. This change of the total concurrency is anticipated 
as the most challenging issue for HPC systems to achieve 
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Table 1 Potential Exascale Computer Design and 
Its Relationship to Current HPC designs [VTYR08] 

 2010 2018 Factor 
Change 

System Peak 2 Pf/s 1 Ef/s 500 

Power 6 MW 20 MW 3 

System Memory 0.3 PB 10 PB 33 

Node Performance 0.125 Tf/s 10 Tf/s 80 

Node Memory BW 25 GB/s 400 GB/s 16 

Node Concurrency 12 CPUs 1000 CPUs 83 

Interconnect BW 1.5 GB/s 50 GB/s 33 

System Size (nodes) 20 K nodes 1 M nodes 50 

Total Concurrency 225 K 1 B 4444 

Storage 15 PB 300 PB 20 

Input/Output 
Bandwidth 

0.2 TB/s 20 TB/s 100 

 



an exascale. Such a factor change means that an exascale 
system will have billions of processes running on millions 
of nodes in order to achieve the anticipated exaflop 
performance. The exascale system brings critical 
challenges than ever for the I/O system to be able to meet 
billions of processes’ demand of processing hundreds of 
terabytes of data simultaneously. The I/O system 
performance is predicted as one of the most critical 
challenges presented by the exascale HPC systems 
[DBMA11, LPGK11, ABBD10, SACC09, BBFG09, 
RaFZ08]. The limited I/O system capability could 
considerably lower the sustained performance of exascale 
systems. There is a great research need in visiting the I/O 
system challenges, and designing and developing an I/O 
architecture that is able to achieve such an extreme scale 
and to meet the applications’ demand on exascale systems.  

Various methods have been developed to improve HPC I/O 
system performance. These methods have been focused on 
two directions in general, exploring parallelism and 
exploring locality. Both parallelism and locality are not 
easily achieved for exascale systems. At an exascale, the 
substantial amount of concurrency can cause a critical 
contention issue, at multiple levels including node level, 
card level, plane level, and storage level. The contention at 
various levels can destroy the locality that generations of 
researchers have been striving to achieve, because the 
contention causes I/O requests compete and interfere with 
each other. Many critical challenges presented by exascale 
systems have to be investigated and well addressed for us 
to enter an exaflop era. The current HPC I/O architecture 
has been designed as one-set-for-all and has been static. 
Such a one-set-for-all and static I/O architecture does not 
manage the concurrency intelligently and limits the 
scalability and the potential of I/O systems at an extreme 
scale. 
This study proposes a dynamically coordinated I/O 
architecture (or coordinated I/O in short) for exascale 
systems. We argue that coordinating I/O accesses according 
to access pattern, network topology, and data distribution 
on storage devices to reduce the contention and regain the 
locality is critical and fundamental to exascale systems. 
The goal of the dynamically coordinated I/O architecture is 
to manage the substantial amount of concurrency with 
coordination among I/O requests on the fly to achieve 
parallelism but avoid the critical contention issue at an 
extreme scale. It should be an important component for 
many-task computing paradigm [RaFZ08], where many 
tasks and processes can cause serious contention in I/O 
accesses without a proper coordination. The preliminary 
tests conducted for both independent I/O and collective I/O 
have shown the promise of a dynamically coordinated I/O 
architecture. It has a real potential to manage the enormous 
amount of I/O concurrency and provide a scalable I/O 
architecture for exascale systems.   

2. RELATED WORK 
There has been significant amount of research efforts in 
improving I/O performance and providing scalable I/O 
solutions at various levels. At the library level, notable 
solutions include collective I/O [MayJ01, ThGL99], two-
phase and extended two-phase I/O [BoRC93, ThCh96], 
server-direct I/O [SCJJ95], disk-directed I/O [Kotz97], 
partitioned collective I/O [YuVe08], and resonance I/O 
[ZhJD09]. Parallel file systems (PFS), such as Lustre 
[Cfsi00], GPFS [ScHa02], PanFS [WUAG08], 
PVFS/PVFS2 [CLRR00], and PPFS2 [TrRe04], enable 
concurrent I/O accesses from multiple clients to files. All 
these file systems provide high bandwidth for large, well-
formed parallel I/O requests. Recent studies that improve 
the I/O system performance for petascale/exascale machines 
include data staging services [IBCL11, AWEK10, 
AEWS11], I/O forwarding (either a hardware or software 
solution) that ships the I/O calls to dedicated I/O nodes to 
improve the performance [VHIK10, ACIK09, IRYB08], 
latent I/O asynchrony approach [WPBW09, WWAM11], 
interference removal with a data replication approach 
[ZhJi10], and caching and prefetching optimizations 
[NiLC08, EHHN10, BCST08, CBST08a, ZLMZ08]. These 
existing studies have shown the great need of improving the 
I/O system performance, which is crucial for exascale 
systems. This study focuses on one critical I/O challenge for 
exascale systems, the contention issue, and addresses it with 
a dynamically coordinated I/O architecture. 

3. DYNAMICALLY COORDINATED I/O 
ARCHITECTURE 
This study proposes to design and develop a dynamically 
coordinated I/O architecture to address challenges 
presented by exascale systems. The design contains two 
major components: dynamic data coordinator (DDC) and 
dynamic request analyzer (DRA) as shown in Figure 1. The 
purpose of the DRA component is to obtain three types of 
information: the data distribution on storage servers, the 
network topology and I/O interconnect condition, and the 
I/O access pattern from the application. The data 
distribution on storage servers (including the data layout 
strategy, striping width, and striping factor) can be obtained 
via parallel file systems API. The obtaining of data 
distribution knowledge happens at the first time an I/O 
occurs. The data distribution information can then be cached 
in runtime system. Such a caching is safe as the data layout 
of a specific file is determined when it is created and will be 
static except deleted or explicitly changed. The network 
topology is static and can be revealed to the DRA 
component as well. The DRA obtains the I/O 
interconnection usage information to assist the coordination. 
Such information can be periodically sampled and provided. 
The DRA component obtains the application’s I/O requests 
and analyzes access pattern as well, which is used to direct 
the coordination. With the data distribution, I/O interconnect 
usage, and access pattern of applications provided by the 
DRA component, the DDC component coordinates the I/O 



accesses to manage the substantial amount of concurrency 
and to mitigate the contention issue on exascale systems. 
The DDC component orchestrates the I/O requests in both 
independent I/O and collective I/O operations, which have 
been observed with serious contention issue at a large scale 
[CSTS10, JiCS10]. The dynamic coordination for both 
independent and collective I/O is discussed in the following 
subsections. 
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Figure 1. Dynamically Coordinated I/O Architecture 

Independent I/O and collective I/O are two important forms 
of I/O, and both of them remain critical for exascale 
systems. The independent I/O can be performed by any 
individual process or any subset of processes of a parallel 
application. The advantage of the independent I/O is that 
users have the freedom to perform any I/O; however, the 
downside is that the I/O system has no idea of what other 
processes might do and therefore have to service the I/O 
requests of each process individually. Collective I/O 
addresses this limitation by having a group of processes 
participating together in I/O activities, merging the reads 
and writes with the knowledge of all participating 
processes’ requests, and carrying out them more efficiently. 
3.1 Dynamic Coordination for Independent 
I/O 
Due to the independent nature, the existing independent I/O 
strategy merely utilizes the underlying file system calls to 
realize it, without coordinating with other processes. Such 
an approach is fine if the amount of concurrency is not high 
and the simultaneous requests do not exceed the I/O server 
capability and the bandwidth. However, this approach is 
problematic when the concurrency level is high and the 
amount of simultaneous independent I/O requests exceeds 
the bandwidth and the I/O server capability. The ignorance 
of other processes can introduce contention, destroy the 
locality of requests due to the interference, and increase the 
latency drastically. The dynamic coordination can be critical 
for the independent I/O on exascale systems. Without a 
dynamically coordinated I/O, we not only lose the potential 
benefit of exploring the correlation among accesses as in the 
collective I/O, but also deteriorate the I/O performance 
because of the increased contention and diminishing 
locality. The dynamically coordinated I/O considers the 

amount of concurrency and orchestrates the substantial 
amount of simultaneous requests so that the request from a 
specific process is serviced continuously, instead of 
interrupted randomly by other processes, as shown in Figure 
2. The coordination takes the amount of concurrency, the 
amount of available bandwidth and the server capability into 
consideration. Even though the coordinated I/O does not 
combine and optimize accesses with other processes as in 
the collective I/O case, it avoids and reduces the 
performance loss due to the contention of other processes 
substantially. Thus it can improve the performance 
effectively and is more scalable as demonstrated through 
preliminary tests (Section 4.1). 
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Figure 2. Dynamically Coordinated I/O 

3.2 Dynamic Coordination for Collective I/O 
This study explores dynamically coordinated I/O for 
collective I/O to manage the concurrency and reduce the 
contention as well. The DDC component obtains the data 
layout, the network condition, and the I/O requests via the 
DRA component similar as in the case of handling 
independent I/O requests. The DDC leverages this 
information to orchestrate and rearrange these requests to 
reduce the contention. Figure 3 demonstrates such a 
coordinated I/O. Without dynamic coordination, the 
collective I/O strategy can cause extensive network traffic 
and contention when accessing data, as shown in Figure 3 
(a). The coordinated I/O rearranges the partitions of file 
domains (at the logical view) in collective I/O and the 
requests of aggregators such that: 1) the requests are 
grouped and need as few file servers as possible to reduce 
access contention and explore better parallelism; 2) the 
requests are reordered to be physically contiguous as much 
as possible to explore better locality. Figure 3 (b) 
demonstrates how file domain partitions and access requests 
are rearranged following the dynamic coordination with the 
example in Figure (a). Note that the coordination here is to 
change the requests that each aggregator carries out on 
behalf of the processes. In other words, the coordination 
changes the responsible portion of the aggregators and the 
way the aggregators access data. It is critical to note that the 



coordination does not exchange data themselves among 
aggregators. The dynamically coordinated I/O is also 
designed for both I/O reads and writes. Figure 3 (a) and (c) 
show the communication and I/O pattern of the collective 
I/O strategy without and with dynamic coordination. It can 

be observed that the dynamically coordinated I/O groups 
accesses with the consideration of concurrency and 
contention and results in the accesses in a matched and 
neater way.  
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Figure 3. Dynamically Coordinated I/O 

 
 

4. PRELIMINARY RESULTS 
A set of experimental tests was carried out on a 65-node 
Linux-based cluster test bed. Even though the current 
evaluation scale is far less than the exascale systems, the 
experiments conducted on the test bed demonstrated the 
issues of I/O contention, reduced locality, and increased 
latency well. The experiments have also verified the 
potential of the dynamically coordinated I/O. The 
experiments were conducted with MPICH2-1.0.5p3 release 
and PVFS 2.8.1 file system on Ubuntu 4.3.3-5 system with 
kernel 2.6.28.10. The IOR-2.10.2 benchmark and one user-
level checkpointing/restart application were used for tests.  

4.1 Results of Dynamic Coordination for 
Independent I/O 
Figure 4 reports the results of the dynamically coordinated 
I/O for a user-level checkpointing application. The 
application’s performance was nearly doubled with the 
dynamic coordination in the case of 128 concurrent 
processes conducting simultaneous I/O. In this application, 
all processes follow a coordinated checkpointing protocol 
by reaching a global consistent state first, then issue 

application-level checkpointing by writing the runtime data 
into persistent data storage. We varied the number of client 
processes to test the performance under different scenarios, 
but keep the same total image size of the whole application 
in all cases. For instance, the first set of bars in the figure 
represents the case with 8 processes and each process writes 
an image of 2000MB. Even though the total amount of I/O 
requests is the same for all cases, the execution time was 
increased when the number of processes increased. This 
time increase is primarily due to the contention from many 
processes and the degraded locality because of the 
contention. With the coordinated I/O, the execution time 
was decreased by 35.2% on average. Furthermore, it can be 
observed that dynamic coordination achieved stable 
performance under various cases, which demonstrates that it 
explores better locality and reduces contention. The 
coordinated I/O is scalable for increased system sizes. 

4.2 Results of Dynamic Coordination for 
Collective I/O 
The preliminary evaluation has confirmed the promising 
benefits of dynamic coordination for collective I/O as well. 
Figure 5 reports the average bandwidth improvement of the 
coordinated I/O with the IOR benchmark for a set of 
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Figure 5. Bandwidth Improvement of Dynamic Coordination 



random reads, random writes, interleaved reads, and 
interleaved writes patterns. The average bandwidth was 
considerably improved, and was up to 46% in the 
interleaved reads case. 

5. ONGOING WORK 
The coordinated I/O is an access-aware, topology-aware, 
and layout-aware I/O architecture. This awareness is 
achieved via the DRA and DDC components that analyze 
data accesses, network topology, and data layout to direct 
I/O. It can manage the growing amount of I/O concurrency 
that causes critical I/O contention and diminished locality 
issues and has demonstrated a potential through 
preliminary tests. While the coordinated I/O is under 
further development and exploration, we are also working 
on the integration with parallel programming models. The 
intention is to let users better represent the I/O activities 
and access patterns, which can assist to perform the 
dynamic coordination in an even better way. In addition, 
we are in the process of modeling the dynamic coordination 
and analyze the potential in theory. The theoretical analysis 
can help better understandings of I/O challenges and issues 
in the post-petascale era and in the coming exascale era. 
We are carrying out evaluations at a scale of O(10K-100K) 
processes as well. 

6. CONCLUSION 
With the exascale systems near the horizon, it is critical to 
design and develop a scalable I/O architecture for such 
ultra large scale systems. The exascale HPC systems 
present critical challenges to the I/O architecture in terms 
of substantial amount of concurrency and contention, and 
reduced locality and increased latency in I/O requests. The 
proposed coordinated I/O intends to address these issues, 
which will meet the need of exascale systems and the 
growing demand of data-intensive science and simulations 
that will be run on exascale HPC systems. The preliminary 
studies have shown a promise of the coordinated I/O. In the 
near future, we will continue the design and development 
of dynamically coordinated I/O and the research 
exploration along this direction. The long-term goal of this 
research is to provide a scalable I/O architecture for 
extreme scale systems with access-aware, topology-aware, 
and layout-aware solutions.  
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