
Towards Scalable I/O Architecture for Exascale Systems
Yong Chen

Department of Computer Science
Texas Tech University

yong.chen@ttu.edu

ABSTRACT
High performance computing (HPC) has crossed the
Petaflop mark and is reaching the Exaflop range quickly.
The exascale system is projected to have millions of nodes,
with thousands of cores for each node. At such an extreme
scale, the substantial amount of concurrency can cause a
critical contention issue for I/O system. The contention can
destroy the request locality, increase the access latency, and
waste the precious I/O interconnection bandwidth. This
study proposes a dynamically coordinated I/O architecture
for exascale systems. The fundamental idea is to coordinate
I/O accesses according to access pattern, network topology,
interconnection condition, and data distribution on storage
devices to reduce the contention and regain the locality.
The preliminary results have shown the promise of a
dynamically coordinated I/O architecture. It has a potential
to manage the substantial amount of I/O concurrency and
provides a scalable I/O architecture for exascale systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies. D.4.3 [File
Systems Management]: Access methods.

General Terms
Performance

Keywords
Exascale systems; parallel I/O; parallel file systems;
scalable I/O architecture; storage; many-task computing;
high performance computing

1. INTRODUCTION
Many scientific and engineering simulations in critical areas
of research, such as nanotechnology, astrophysics, climate,
bioinformatics, and high-energy physics, are highly data
intensive [DBMA11, IBCL11, DOSW09, SACC09,
RaFZ08, Brya07, DICI]. These applications contain a large
number of I/O accesses, where large amounts of data are

stored to and retrieved from storage. The application teams
are beginning to process terabytes or tens of terabytes of
data in a single simulation. For example, a turbulence
simulation code GTC (Gyrokinetic Toroidal Code) running
on 29K cores of the Jaguar machine at the Oak Ridge
Leadership Computing Facility (OLCF) of Oak Ridge
National Laboratory (ORNL) generated over 54 terabytes of
data in a 24-hour period [GTC, Jaguar]. As discussed in
[RLUW09], 12 out of 20 INCITE applications run at the
Argonne Leadership Computing Facility (ALCF) of
Argonne National Laboratory (ANL) generated datasets in
the terabyte range and store them on-line [INCITE]. The
volume of the data and the pressure on the I/O system
capability substantially increases over the time.

The exascale system is projected to appear around the year
of 2018. By that time, application teams are predicted to
process hundreds of terabytes or even petabytes of data in a
single simulation run [DBMA11]. Such an extreme-scale
system is projected to have millions of nodes, with
thousands of cores for each node [DBMA11, ShDM10].
Table 1 shows a potential exascale HPC system design and
a comparison with current HPC systems in terms of factor
changes for the peak performance, system size, etc.
[VTYR08]. It should be noted that the most significant
change is the total concurrency with a factor change of
4,444. This change of the total concurrency is anticipated
as the most challenging issue for HPC systems to achieve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MTAGS’11, November 14th, 2011, Seattle, WA, USA.
Copyright 2011 ACM 1-58113-000-0/00/0010…$10.00.

Table 1 Potential Exascale Computer Design and
Its Relationship to Current HPC designs [VTYR08]

 2010 2018 Factor
Change

System Peak 2 Pf/s 1 Ef/s 500

Power 6 MW 20 MW 3

System Memory 0.3 PB 10 PB 33

Node Performance 0.125 Tf/s 10 Tf/s 80

Node Memory BW 25 GB/s 400 GB/s 16

Node Concurrency 12 CPUs 1000 CPUs 83

Interconnect BW 1.5 GB/s 50 GB/s 33

System Size (nodes) 20 K nodes 1 M nodes 50

Total Concurrency 225 K 1 B 4444

Storage 15 PB 300 PB 20

Input/Output
Bandwidth

0.2 TB/s 20 TB/s 100

an exascale. Such a factor change means that an exascale
system will have billions of processes running on millions
of nodes in order to achieve the anticipated exaflop
performance. The exascale system brings critical
challenges than ever for the I/O system to be able to meet
billions of processes’ demand of processing hundreds of
terabytes of data simultaneously. The I/O system
performance is predicted as one of the most critical
challenges presented by the exascale HPC systems
[DBMA11, LPGK11, ABBD10, SACC09, BBFG09,
RaFZ08]. The limited I/O system capability could
considerably lower the sustained performance of exascale
systems. There is a great research need in visiting the I/O
system challenges, and designing and developing an I/O
architecture that is able to achieve such an extreme scale
and to meet the applications’ demand on exascale systems.

Various methods have been developed to improve HPC I/O
system performance. These methods have been focused on
two directions in general, exploring parallelism and
exploring locality. Both parallelism and locality are not
easily achieved for exascale systems. At an exascale, the
substantial amount of concurrency can cause a critical
contention issue, at multiple levels including node level,
card level, plane level, and storage level. The contention at
various levels can destroy the locality that generations of
researchers have been striving to achieve, because the
contention causes I/O requests compete and interfere with
each other. Many critical challenges presented by exascale
systems have to be investigated and well addressed for us
to enter an exaflop era. The current HPC I/O architecture
has been designed as one-set-for-all and has been static.
Such a one-set-for-all and static I/O architecture does not
manage the concurrency intelligently and limits the
scalability and the potential of I/O systems at an extreme
scale.
This study proposes a dynamically coordinated I/O
architecture (or coordinated I/O in short) for exascale
systems. We argue that coordinating I/O accesses according
to access pattern, network topology, and data distribution
on storage devices to reduce the contention and regain the
locality is critical and fundamental to exascale systems.
The goal of the dynamically coordinated I/O architecture is
to manage the substantial amount of concurrency with
coordination among I/O requests on the fly to achieve
parallelism but avoid the critical contention issue at an
extreme scale. It should be an important component for
many-task computing paradigm [RaFZ08], where many
tasks and processes can cause serious contention in I/O
accesses without a proper coordination. The preliminary
tests conducted for both independent I/O and collective I/O
have shown the promise of a dynamically coordinated I/O
architecture. It has a real potential to manage the enormous
amount of I/O concurrency and provide a scalable I/O
architecture for exascale systems.

2. RELATED WORK
There has been significant amount of research efforts in
improving I/O performance and providing scalable I/O
solutions at various levels. At the library level, notable
solutions include collective I/O [MayJ01, ThGL99], two-
phase and extended two-phase I/O [BoRC93, ThCh96],
server-direct I/O [SCJJ95], disk-directed I/O [Kotz97],
partitioned collective I/O [YuVe08], and resonance I/O
[ZhJD09]. Parallel file systems (PFS), such as Lustre
[Cfsi00], GPFS [ScHa02], PanFS [WUAG08],
PVFS/PVFS2 [CLRR00], and PPFS2 [TrRe04], enable
concurrent I/O accesses from multiple clients to files. All
these file systems provide high bandwidth for large, well-
formed parallel I/O requests. Recent studies that improve
the I/O system performance for petascale/exascale machines
include data staging services [IBCL11, AWEK10,
AEWS11], I/O forwarding (either a hardware or software
solution) that ships the I/O calls to dedicated I/O nodes to
improve the performance [VHIK10, ACIK09, IRYB08],
latent I/O asynchrony approach [WPBW09, WWAM11],
interference removal with a data replication approach
[ZhJi10], and caching and prefetching optimizations
[NiLC08, EHHN10, BCST08, CBST08a, ZLMZ08]. These
existing studies have shown the great need of improving the
I/O system performance, which is crucial for exascale
systems. This study focuses on one critical I/O challenge for
exascale systems, the contention issue, and addresses it with
a dynamically coordinated I/O architecture.

3. DYNAMICALLY COORDINATED I/O
ARCHITECTURE
This study proposes to design and develop a dynamically
coordinated I/O architecture to address challenges
presented by exascale systems. The design contains two
major components: dynamic data coordinator (DDC) and
dynamic request analyzer (DRA) as shown in Figure 1. The
purpose of the DRA component is to obtain three types of
information: the data distribution on storage servers, the
network topology and I/O interconnect condition, and the
I/O access pattern from the application. The data
distribution on storage servers (including the data layout
strategy, striping width, and striping factor) can be obtained
via parallel file systems API. The obtaining of data
distribution knowledge happens at the first time an I/O
occurs. The data distribution information can then be cached
in runtime system. Such a caching is safe as the data layout
of a specific file is determined when it is created and will be
static except deleted or explicitly changed. The network
topology is static and can be revealed to the DRA
component as well. The DRA obtains the I/O
interconnection usage information to assist the coordination.
Such information can be periodically sampled and provided.
The DRA component obtains the application’s I/O requests
and analyzes access pattern as well, which is used to direct
the coordination. With the data distribution, I/O interconnect
usage, and access pattern of applications provided by the
DRA component, the DDC component coordinates the I/O

accesses to manage the substantial amount of concurrency
and to mitigate the contention issue on exascale systems.
The DDC component orchestrates the I/O requests in both
independent I/O and collective I/O operations, which have
been observed with serious contention issue at a large scale
[CSTS10, JiCS10]. The dynamic coordination for both
independent and collective I/O is discussed in the following
subsections.

!""#$%&'()*+

,-$"+#./.#+ 0(1.+#./.#+ ,&21+#./.#+ 3#&).+#./.#+ 456+7.2/.2*+ 78(2&9.+

!"# !$# %&# !'#

!(#

!)#

!"#$%&'()*+,*-.(

/#$0"1*2(3!)/4(

!"#$%&'(!$.$(

56627&#$.62(

3!!54(

Figure 1. Dynamically Coordinated I/O Architecture

Independent I/O and collective I/O are two important forms
of I/O, and both of them remain critical for exascale
systems. The independent I/O can be performed by any
individual process or any subset of processes of a parallel
application. The advantage of the independent I/O is that
users have the freedom to perform any I/O; however, the
downside is that the I/O system has no idea of what other
processes might do and therefore have to service the I/O
requests of each process individually. Collective I/O
addresses this limitation by having a group of processes
participating together in I/O activities, merging the reads
and writes with the knowledge of all participating
processes’ requests, and carrying out them more efficiently.
3.1 Dynamic Coordination for Independent
I/O
Due to the independent nature, the existing independent I/O
strategy merely utilizes the underlying file system calls to
realize it, without coordinating with other processes. Such
an approach is fine if the amount of concurrency is not high
and the simultaneous requests do not exceed the I/O server
capability and the bandwidth. However, this approach is
problematic when the concurrency level is high and the
amount of simultaneous independent I/O requests exceeds
the bandwidth and the I/O server capability. The ignorance
of other processes can introduce contention, destroy the
locality of requests due to the interference, and increase the
latency drastically. The dynamic coordination can be critical
for the independent I/O on exascale systems. Without a
dynamically coordinated I/O, we not only lose the potential
benefit of exploring the correlation among accesses as in the
collective I/O, but also deteriorate the I/O performance
because of the increased contention and diminishing
locality. The dynamically coordinated I/O considers the

amount of concurrency and orchestrates the substantial
amount of simultaneous requests so that the request from a
specific process is serviced continuously, instead of
interrupted randomly by other processes, as shown in Figure
2. The coordination takes the amount of concurrency, the
amount of available bandwidth and the server capability into
consideration. Even though the coordinated I/O does not
combine and optimize accesses with other processes as in
the collective I/O case, it avoids and reduces the
performance loss due to the contention of other processes
substantially. Thus it can improve the performance
effectively and is more scalable as demonstrated through
preliminary tests (Section 4.1).

!" !"

#$%" &" !"

'()"*+,-".(""

,+(/0)"12'",)34)3"

5&" 56" 5+" 56&78"

!" !"

#$%" &" !"

'()"*+,-".(""

,+(/0)"12'",)34)3"

5&" 56" 5+" 56&78"

Figure 2. Dynamically Coordinated I/O

3.2 Dynamic Coordination for Collective I/O
This study explores dynamically coordinated I/O for
collective I/O to manage the concurrency and reduce the
contention as well. The DDC component obtains the data
layout, the network condition, and the I/O requests via the
DRA component similar as in the case of handling
independent I/O requests. The DDC leverages this
information to orchestrate and rearrange these requests to
reduce the contention. Figure 3 demonstrates such a
coordinated I/O. Without dynamic coordination, the
collective I/O strategy can cause extensive network traffic
and contention when accessing data, as shown in Figure 3
(a). The coordinated I/O rearranges the partitions of file
domains (at the logical view) in collective I/O and the
requests of aggregators such that: 1) the requests are
grouped and need as few file servers as possible to reduce
access contention and explore better parallelism; 2) the
requests are reordered to be physically contiguous as much
as possible to explore better locality. Figure 3 (b)
demonstrates how file domain partitions and access requests
are rearranged following the dynamic coordination with the
example in Figure (a). Note that the coordination here is to
change the requests that each aggregator carries out on
behalf of the processes. In other words, the coordination
changes the responsible portion of the aggregators and the
way the aggregators access data. It is critical to note that the

coordination does not exchange data themselves among
aggregators. The dynamically coordinated I/O is also
designed for both I/O reads and writes. Figure 3 (a) and (c)
show the communication and I/O pattern of the collective
I/O strategy without and with dynamic coordination. It can

be observed that the dynamically coordinated I/O groups
accesses with the consideration of concurrency and
contention and results in the accesses in a matched and
neater way.

!"#$%&'""$&#(

)(*(+(,()(*(+(,()(*(+(,(

)(*(+(,(

-.)(

-./(

-.0(

-.*(

-.1(

-.2(

-.+(

-.3(

*)(

-.,(

-.4(

**(

567$(8$%9$%8(

:;<=86&>7?(

;%'&$88(+(;%'&$88(*(;%'&$88()(;%'&$88(,(

-'@6&>7(96$A(

)(*(+(,()(*(+(,()(*(+(,(

-.B()(*(+(,(/(1(3(4(0(2(*)(**(

CB(

!"#$%&'""$&#(

)(*(+(,(

-.)(

-./(

-.0(

-.*(

-.1(

-.2(

-.+(

-.3(

*)(

-.,(

-.4(

**(

;%'&$88$8(;%'&$88$8(;%'&$88$8(;%'&$88$8(;%'&$88$8(

567$(8$%9$%8(

:;<=86&>7?(

-'@6&>7(96$A(

)()()(*(*(*(+(+(+(,(,(,(CB(

!"#$%&'""$&#(

)(*(+(,(

-.)(

-./(

-.0(

-.*(

-.1(

-.2(

-.+(

-.3(

*)(

-.,(

-.4(

**(

567$(8$%9$%8(

:;<=86&>7?(

;%'&$88(+(;%'&$88(*(;%'&$88()(;%'&$88(,(

-'@6&>7(96$A(

Figure 3. Dynamically Coordinated I/O

4. PRELIMINARY RESULTS
A set of experimental tests was carried out on a 65-node
Linux-based cluster test bed. Even though the current
evaluation scale is far less than the exascale systems, the
experiments conducted on the test bed demonstrated the
issues of I/O contention, reduced locality, and increased
latency well. The experiments have also verified the
potential of the dynamically coordinated I/O. The
experiments were conducted with MPICH2-1.0.5p3 release
and PVFS 2.8.1 file system on Ubuntu 4.3.3-5 system with
kernel 2.6.28.10. The IOR-2.10.2 benchmark and one user-
level checkpointing/restart application were used for tests.

4.1 Results of Dynamic Coordination for
Independent I/O
Figure 4 reports the results of the dynamically coordinated
I/O for a user-level checkpointing application. The
application’s performance was nearly doubled with the
dynamic coordination in the case of 128 concurrent
processes conducting simultaneous I/O. In this application,
all processes follow a coordinated checkpointing protocol
by reaching a global consistent state first, then issue

application-level checkpointing by writing the runtime data
into persistent data storage. We varied the number of client
processes to test the performance under different scenarios,
but keep the same total image size of the whole application
in all cases. For instance, the first set of bars in the figure
represents the case with 8 processes and each process writes
an image of 2000MB. Even though the total amount of I/O
requests is the same for all cases, the execution time was
increased when the number of processes increased. This
time increase is primarily due to the contention from many
processes and the degraded locality because of the
contention. With the coordinated I/O, the execution time
was decreased by 35.2% on average. Furthermore, it can be
observed that dynamic coordination achieved stable
performance under various cases, which demonstrates that it
explores better locality and reduces contention. The
coordinated I/O is scalable for increased system sizes.

4.2 Results of Dynamic Coordination for
Collective I/O
The preliminary evaluation has confirmed the promising
benefits of dynamic coordination for collective I/O as well.
Figure 5 reports the average bandwidth improvement of the
coordinated I/O with the IOR benchmark for a set of

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

(")"%!!!*+" $,")"$!!!"*+" &%")"#!!*+" ,'")"%#!*+" $%(")"$%#*+"

!
"
#
$
%
&$
'(
)*
+
!
,-
.)

-./012" 3451067"8../9651:.5"

Figure 4. Bandwidth Comparison with and without Dynamic
Coordination

Figure 5. Bandwidth Improvement of Dynamic Coordination

random reads, random writes, interleaved reads, and
interleaved writes patterns. The average bandwidth was
considerably improved, and was up to 46% in the
interleaved reads case.

5. ONGOING WORK
The coordinated I/O is an access-aware, topology-aware,
and layout-aware I/O architecture. This awareness is
achieved via the DRA and DDC components that analyze
data accesses, network topology, and data layout to direct
I/O. It can manage the growing amount of I/O concurrency
that causes critical I/O contention and diminished locality
issues and has demonstrated a potential through
preliminary tests. While the coordinated I/O is under
further development and exploration, we are also working
on the integration with parallel programming models. The
intention is to let users better represent the I/O activities
and access patterns, which can assist to perform the
dynamic coordination in an even better way. In addition,
we are in the process of modeling the dynamic coordination
and analyze the potential in theory. The theoretical analysis
can help better understandings of I/O challenges and issues
in the post-petascale era and in the coming exascale era.
We are carrying out evaluations at a scale of O(10K-100K)
processes as well.

6. CONCLUSION
With the exascale systems near the horizon, it is critical to
design and develop a scalable I/O architecture for such
ultra large scale systems. The exascale HPC systems
present critical challenges to the I/O architecture in terms
of substantial amount of concurrency and contention, and
reduced locality and increased latency in I/O requests. The
proposed coordinated I/O intends to address these issues,
which will meet the need of exascale systems and the
growing demand of data-intensive science and simulations
that will be run on exascale HPC systems. The preliminary
studies have shown a promise of the coordinated I/O. In the
near future, we will continue the design and development
of dynamically coordinated I/O and the research
exploration along this direction. The long-term goal of this
research is to provide a scalable I/O architecture for
extreme scale systems with access-aware, topology-aware,
and layout-aware solutions.

7. REFERENCES
[RaFZ08] I. Raicu, I. Foster, Y. Zhao. Many-Task
Computing for Grids and Supercomputers. IEEE Workshop on
Many-Task Computing on Grids and Supercomputers
(MTAGS08), 2008.

[ABBD10] K. Alvin, B. Barrett, R. Brightwell, S. S.
Dosanjh, A. Geist, K. S. Hemmert, M. A. Heroux, D. Kothe, R. C.
Murphy, J. Nichols, R. Oldfield, A. Rodrigues and J. S. Vetter. On
the Path to Exascale. IJDST 1(2): 1-22 (2010)

[ACIK09] N. Ali, P. H. Carns, K. Iskra, D. Kimpe, S.
Lang, R. Latham, R. B. Ross, L. Ward, P. Sadayappan. Scalable

I/O Forwarding Framework for High-performance Computing
Systems. Proceedings of the 2009 IEEE International Conference
on Cluster Computing, 2009.

[AEWS11] H. Abbasi, G. Eisenhauer, M. Wolf, K.
Schwan and S.Klasky. Just in time: adding value to the IO
pipelines of high performance applications with JITStaging.
HPDC 2011: 27-36

[AWEK10] H. Abbasi, M. Wolf, G. Eisenhauer, S.
Klasky, K. Schwan and F. Zheng. DataStager: scalable data
staging services for petascale applications. Cluster Computing
13(3): 277-290 (2010)

[BBFG09] M. Bancroft, J. Bent, E. Felix, G. Grider, J.
Nunez, S. Poole, R. Ross, E. Salmon, L. Ward. HEC FSIO 2008
Workshop Report. High End Computing Interagency Working
Group (HECIWG) Sponsored File Systems and I/O Workshop
HEC FSIO 2009

[BCST08] S. Byna, Y. Chen, X.-H. Sun, R. Thakur and
W. Gropp. Parallel I/O Prefetching Using MPI File Caching and
I/O Signatures. In Proc. of the ACM/IEEE SuperComputing
Conference (SC'08), Nov. 2008.

[BoRC93] R. Bordawekar, J. M. d. Rosario, A. N.
Choudhary: Design and Evaluation of primitives for Parallel I/O.
SC 1993: 452-461

[Brya07] R. E. Bryant. Data-intensive supercomputing:
The case for DISC. In Tech Report CMU-CS-07-128, Carnegie
Mellon University School of Computer Science, 2007.

[CBST08a] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, W.
Gropp. "Exploring Parallel I/O Concurrency with Speculative
Prefetching,” in Proc. 37th International Conference on Parallel
Processing (ICPP'08), Sept. 2008.

[Cfsi00] Cluster File Systems Inc. Lustre: A scalable,
high performance file system. Whitepaper,
http://www.lustre.org/docs/whitepaper.pdf

[CLRR00] P. H. Carns, W. B. Ligon III, R. B. Ross, and
R. Thakur. PVFS: A Parallel File System For Linux Clusters'.
Proceedings of the 4th Annual Linux Showcase and Conference,
Atlanta, GA, October 2000, pp. 317-327.

[CSTS10] Y. Chen, X.-H. Sun, R. Thakur, H. Song and
H. Jin. Improving Parallel I/O Performance with Data Layout
Awareness. In the Proc. of the IEEE International Conference on
Cluster Computing 2010 (Cluster'10), 2010.

[DBMA11] J.Dongarra, P. H. Beckman, et. al. The
International Exascale Software Project roadmap. IJHPCA 25(1):
3-60 (2011)

[DOSW09] D. Donofrio, L. Oliker, J. Shalf, M. F.
Wehner, C. Rowen, J. Krueger, S. Kamil and M. Mohiyuddin.
Energy-Efficient Computing for Extreme-Scale Science. IEEE
Computer 42(11): 62-71 (2009)

[DICI] Data-Intensive Computing Initiative.
http://dicomputing.pnl.gov/.

[EHHN10] M. Eshel, R. L. Haskin, D. Hildebrand, M.
Naik, F. B.Schmuck and R. Tewari. Panache: A Parallel File
System Cache for Global File Access. In Proc. of the 8th USENIX
Conference on File and Storage Technologies, 2010.

[GTC] Gyrokinetic Particle Simulations Gyrokinetic
Toroidal Code (GTC) http://w3.pppl.gov/theory/proj_gksim.html

[INCITE] DOE Innovative and Novel Computational
Impact on Theory and Experiment program,
http://hpc.science.doe.gov/

[IRYB08] K. Iskra, J. W. Romein, K. Yoshii, and P.
Beckman. ZOID: I/O Forwarding Infrastructure for Petascale
Architectures. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
pp. 153 -162, 2008.

[IBCL11] F. Isaila, J. G. Blas, J. Carretero, R. Latham,
R. B. Ross. Design and Evaluation of Multiple-Level Data
Staging for Blue Gene Systems. IEEE Trans. Parallel Distrib.
Syst. 22(6): 946-959, 2011.

[Jaguar] Jaguar supercomputer at the Oak Ridge
Leadership Computing Facility of Oak Ridge National
Laboratory, http://www.olcf.ornl.gov/computing-resources/jaguar/

[JiCS10] H. Jin, Y. Chen and X.-H. Sun. Optimizing
HPC Fault-Tolerant Environment: An Analytical Approach. In the
Proc. of the 39th International Conference on Parallel Processing
(ICPP'10), 2010.

[Kotz97] D. Kotz: Disk-Directed I/O for MIMD
Multiprocessors. ACM Trans. Comput. Syst. 15(1): 41-74 (1997)

[LPGK11] J. F. Lofstead, M.Polte, G. A. Gibson, S.
Klasky, K. Schwan, R. Oldfield, M. Wolf and Q.Liu. Six degrees
of scientific data: reading patterns for extreme scale science IO.
HPDC 2011: 49-60

[MayJ01] J. May. Parallel I/O For High Performance
Computing. Morgan Kaufmann Publishing, 2001.

[NiLC08] A. Nisar, W.-K. Liao, A. Choudhary. Scaling
Parallel I/O Performance through I/O Delegate and Caching
System. SC 2008.

[SACC09] V. Sarkar, S. Amarasinghe, et. al. ExaScale
Software Study: Software Challenges in Extreme Scale Systems.
ExaScale Computing Study, DARPA IPTO, 2009

[ScHa02] F. Schmuck and R. Haskin. GPFS: A Shared-
Disk File System for Large Computing Clusters. In First USENIX
Conference on File and Storage Technologies, pages 231--244.
USENIX, Jan. 2002.

[SCJJ95] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak
and M. Winslett. Server-Directed Collective I/O in Panda. SC’95.

[ShDM10] John Shalf, Sudip S. Dosanjh and John
Morrison. Exascale Computing Technology Challenges.
VECPAR 2010: 1-25

[ThGL99] R. Thakur, W. Gropp, and E. Lusk. Data
Sieving and Collective I/O in ROMIO. In Proc. of the 7th
Symposium on the Frontiers of Massively Parallel Computation,
February 1999, pp. 182-189.

[ThCh96] R. Thakur, and A. Choudhary. An Extended
Two-Phase Method for Accessing S ections of Out-of-Core
Arrays. Scientific Programming, (5)4:301-317, 1996.

[TrRe04] N. Tran and D. A. Reed. Automatic ARIMA
Time Series Modeling for Adaptive I/O Prefetching. IEEE Trans.
Parallel Distrib. Syst. 15(4): 362-377 (2004).

[VHIK10] V.Vishwanath, M.Hereld, K.Iskra, D. Kimpe,
V. Morozov, M.E. Papka, R. B. Ross and K. Yoshii. Accelerating
I/O Forwarding in IBM Blue Gene/P Systems. SC 2010: 1-10

[VTYR08] J. S. Vetter, V. Tipparaju, W. Yu and P. C.
Roth. HPC Interconnection Networks: The Key to Exascale
Computing. High Performance Computing Workshop 2008: 95-
106

[WPBW09] P. M. Widener, M. Payne, P. G. Bridges, M.
Wolf, H. Abbasi, S.McManus and K. Schwan. Exploiting Latent
I/O Asynchrony in Petascale Science Applications. ICPP
Workshops 2009: 105-112

[WUAG08] B. Welch, M. Unangst, Z. Abbasi, G. Gibson,
B.Mueller, J.Small, J. Zelenka, and B. Zhou. Scalable
Performance of the Panasas Parallel File System. In Proc. of the
6th USENIX Conference on File and Storage Technologies, 2008.

[WWAM11] P. Widener, M.Wolf, H. Abbasi, S. McManus,
M. Payne, M. J. Barrick, J. Pulikottil, P. G. Bridges and K.
Schwan. Exploiting Latent I/O Asynchrony in Petascale Science
Applications. IJHPCA 25(2): 161-179 (2011)

[YuVe08] W. Yu and J. S. Vetter. ParColl: Partitioned
Collective I/O on the Cray XT. ICPP 2008: 562-569

[ZhJD09] X. Zhang, S. Jiang, and K. Davis. Making
Resonance a Common Case: A High-performance Implementation
of Collective I/O on Parallel File Systems. In Proc. of the 23rd
IEEE International Symposium on Parallel and Distributed
Processing, 2009.

[ZhJi10] X. Zhang and S. Jiang. Iternterference
Removal: Removing Interference of Disk Access for MPI
Programs through Data Replication. In Proceedings of the 24th
International Conference on Supercomputing, 2010, pp. 223–232.

[ZLMZ08] Z. Zhang, K. Lee, X. Ma and Y. Zhou. PFC:
Transparent Optimization of Existing Prefetching Strategies for
Multi-Level Storage Systems. ICDCS 2008: 740-751

