Online Appendix to:
Return-Oriented Programming: Systems, Languages,
and Applications

RYAN ROEMER, ERIK BUCHANAN, HOVAV SHACHAM, and STEFAN SAVAGE,

University of California, San Diego

A. X86 IMPLEMENTATION DETAILS

A.1. Our Instruction-Sequence Finding Algorithm

Figure 33 presents, in pseudocode, our algorithm for finding useful sequences on
the x86.

A.2. Additional x86 Gadgets

A.2.1. Bit Shifts and Rotation. A gadget for rotating a memory word by a constant
amount is given in Figure 34. With an appropriate masking operation, this would
give a bit-shift gadget. Writing to the memory location from which %ecx is loaded
would give a rotation by a variable amount.

A.2.2. Exclusive Ors. Figure 35 gives the details for a (one-time) xor operation. To
make this operation repeatable, we would need to restore the values modified by the
push instructions, as we do for the repeatable add gadget given in Figure 11 on page 16
of the article.

A.2.3. Perturbing the Stack Pointer for Conditional Jumps. Figure 36 shows a gadget to
perturb %esp, depending on a value in memory. This completes the description of
conditional branch begun in Section 5.3.2.

B. SPARC IMPLEMENTATION DETAILS
B.1. Additional SPARC Gadgets

B.1.1. Increment, Decrement. The increment gadget (vi++) uses a single instruction
sequence for a straightforward load-increment-store, as shown in Figure 37. The decre-
ment gadget (vi--) consists of a single, analogous load-decrement-store instruction
sequence.

B.1.2. Logical And. The bitwise-and gadget (v1 = v2 & v3)is described in Figure 38.

The first two instruction sequences write the values of gadget variables v2 and v3 to
the third instruction sequence frame. The third sequence restores these source values,
performs the bitwise-and, then writes the results to the memory location of gadget
variable v1.

B.2. Gadget API

Our SPARC gadget application programming interface allows a C programmer to
develop an exploit consisting of fake exploit stack frames for gadgets, gadget
variables, gadget branch labels, and assemble the entire exploit payload using a well-
defined (and fully documented) interface. With the API, an attacker only need define
four setup parameters, call an initialization function, then insert as many gadget

© 2012 ACM 1094-9224/2012/03-ART2 $10.00
DOI 10.1145/2133375.2133377 http://doi.acm.org/10.1145/2133375.2133377

ACM Transactions on Information and System Security, Vol. 15, No. 1, Article 2, Publication date: March 2012.

2:App—2 R. Roemer et al.

Algorithm GALILEO:
create a node, root, representing the ret instruction;
place root in the trie;
for pos from 1 to textseg_len do:
if the byte at pos is c3, i.e., a ret instruction, then:
call BUILDFROM(pos, root).

Procedure BUILDFROM (index pos, instruction parent_insn):
for step from 1 to max_insn_len do:
if bytes [(pos — step) ... (pos — 1)] decode as a valid instruction insn then:
ensure insn is in the trie as a child of parent_insn;
if insn isn’t boring then:
call BUILDFROM(pos — step, insn).

Fig. 33. The GALILEO algorithm.

%esp
——+——»pop %ebx
ret
— 1 pop %ecx
pop %edx
0x00000004 et
(arbitrary)
— roll %cl, 0x017383f8(%ebx)
ret
!
+ 0x017383f8
(arbitrary)

Fig. 34. Rotate 4 bits leftward of memory word.

variables, labels, and operations as desired (using our gadget functions), call an epi-
logue exploit payload packing function, and exec() the vulnerable application to run
a custom return-oriented exploit. The API takes care of all other details, including
verifying and adjusting the final exploit payload to guarantee that no zero bytes are
present in the string buffer overflow.

For example, an attacker wishing to invoke a direct system call to execve looking
something like “execve("/bin/sh", {"/bin/sh", NULL}, NULL),” could use 13 gadget
API functions to create an exploit as shown in Figure 39.

The API functions create an array of two pointers to “/bin/sh” and NULL and call
execve with the necessary arguments. Note that the NULLs in g_syscall function mean
optional gadget variable arguments are unused. The “prog” data structure is an inter-
nal abstraction of the exploit program passed to all API functions. The standard API
packing prologue and epilogue functions (not shown) translate the prog data struc-
ture into a string buffer-overflow payload and invoke a vulnerable application with the
exploit payload.

ACM Transactions on Information and System Security, Vol. 15, No. 1, Article 2, Publication date: March 2012.

Return-Oriented Programming: Systems, Languages, and Applications 2:App-3

Y%esp

» pop %ebp
ret

» ret

— 1 »pop %ebx
ret

+ 0x48908c0 a—

» xorb %al, 0x48908c0(%ebx)
and $0xff, %al

1 »ror $0x08, %eax push %ebp

ret or $0xc9, %al
» pop %ebx ret x °

ret

+ 0x48908c0 a—

» xorb %al, 0x48908c0(%ebx)
and $0xff, %al
o> ror $0x08, %eax push Y%ebp

ret or $0xc9, %al
- 0 '
pop %ebx ret

ret

+ 0x48908c0 =

» xorb %al, 0x48908c0(%ebx)
and $0xff, %al
e————————>ror $0x08, %eax push Y%ebp

ret o or $0xc9, %al
— 1 = pop %ebx et

ret

+ 0x48908c0 —

BN

» xorb %al, 0x48908c0(%ebx)
and $0xff, %al
——————=ror $0x08, %eax push %ebp
ret or $0xc9, %al
ret
- - -(arbitrary)- -~

Fig. 35. Exclusive or from %eax.

This return-oriented program uses seven SPARC gadgets with 20 total instruction
sequences, comprising 1,280 bytes for the buffer exploit frame payload (plus 336 bytes
for the initial overflow control hijack).

B.3. Instruction Sequence Address Lookup

Return-oriented exploits require specific instruction sequences to be present at specific
addresses. If libc changes or is loaded at a different offset, then the exploit will fail.
(See Section 2.2 for more details.) Our initial system hard-coded the addresses of the
instruction sequences it relied on. Our deployed system generalizes this somewhat, by
searching the libc binary for each sequence as part of exploit compilation. This makes
our system robust against a limited class of changes to libc, for example, those that

ACM Transactions on Information and System Security, Vol. 15, No. 1, Article 2, Publication date: March 2012.

2:App—4 R. Roemer et al.

%esp

= pop %eax
ret

= addl (%eax), Y%esp
addb %al, (%eax)
addb %cl, 0(%eax)
addb %al, (%eax)
ret

(perturbation here)

Fig. 36. Conditional jumps, task three, part two: Apply the perturbation in the word labeled “perturbation
here” to the stack pointer. The perturbation is relative to the end of the gadget.

Inst. Seq. | Preset Assembly

%il = &v1 | 1d [%i1l, %io0
add %i0, 0x1, %o7
vi++ st %o7, [hil]
ret

restore

Fig. 37. Increment (vi++).

Inst. Seq. Preset Assembly
%17 = &4h13 1d [%i0], %16
. (+2 Frames) st %16, [%17]
mlELIS] = V2 00 = g ret
restore
L7 = &hl4 1d [%i0]l, %16
Y (+1 Frame) st %16, [%17]
ml&n14] = v3 %i0 = &v3 ret
restore
%13 = v2 (stored) | and %13,%14,%12
vl = v2 & v3 %14 = v3 (stored) | st %12, [%11+%i0]
%11 = &vl + 1 ret
%i0 = -1 restore

Fig. 38. And (vi = v2 & v3).

add or remove strings without changing the code itself. This search is implemented by
running instruction sequence address lookups as part of the make process.

Our make rules take byte sequences that uniquely identify instruction sequences,
disassemble a live target Solaris libe, match symbols to instruction sequences, and
look up libc runtime addresses for each instruction sequence symbol. Thus, even if
instruction sequence addresses vary in a target libc from our original version, our
dynamic address lookup rules can find suitable replacements (with a single make com-
mand), provided the actual instruction bytes are available anywhere in a given target
library at runtime.

Note that this system still requires that the exact instruction sequence be found
somewhere in the target libc. In subsequent work [Roemer 2009], we generalized
this to allow gadgets to be constructed from any instruction sequence that matches

ACM Transactions on Information and System Security, Vol. 15, No. 1, Article 2, Publication date: March 2012.

Return-Oriented Programming: Systems, Languages, and Applications

/* Gadget variable
g_var_t *num =
g_var_t *argOa
g_var_t *argOb =
g_var_t *argOPtr =
g_var_t *arglPtr =
g_var_t *argvPtr =

/* Gadget variable

declarations */
g_create_var (&prog, "num");

= g_create_var(&prog, "argOa");

g_create_var (&prog, "argOb");

g_create_var(&prog, "argOPtr");
g_create_var (&prog, "argiPtr");
g_create_var(&prog, "argvPtr");

assignments (SYS_execve = 59)*/

g_assign_const (&prog, num, 59);

g_assign_const (&prog, argla, strToBytes("/bin"));
g_assign_const(&prog, argdb, strToBytes("/sh"));
g_assign_addr(&prog, argOPtr, argla);
g_assign_const(&prog, arglPtr, 0x0); /* Null */
g_assign_addr(&prog, argvPtr, argOPtr);

/* Trap to execve */
g_syscall(&prog, num, argOPtr, argvPtr, arglPtr,
NULL, NULL, NULL);

Fig

.39. API Exploit.

Overflowed Stack libe

Call Frame

Exploit Frames

Gadget Variables

1

Exploit Frame

NN A |WIN

10 11 12 13 14 15 16 17
i0 il i2 i3 i4 i5 i6 i7

Fig. 40. Function call gadget stack layout.

2:App-5

a certain pattern. Later work by others has provided for even more general gadget
search [Dullien et al. 2010; Hund et al. 2009].

B.4. Exploit Memory Layout

The memory layout of the safe call stack frame, gadget variable area, and exploit frame
collection, as set up by our compiler, is shown in Figure 40.

B.5. Example Exploit: Matrix Addition

Figure 41 shows an exploit language program (MatrixAddition.rc) that allocates two
4 x 4 matrices, fills them with random values 0-511, and performs matrix addition.
Our compiler produces a C language file (MatrixAddition.c), that when compiled (to

ACM Transactions on Information and System Security, Vol. 15, No. 1, Article 2, Publication date: March 2012.

2:App—6 R. Roemer et al.

var n = 4; // 4x4 matrices
var* mem, pl, p2; // Pointers
var matrix, row, col;

srandom (time(0)); // Seed random()
mem = malloc(128); // 2 4x4 matrices
pl = mem;

for (matrix = 1; matrix <= 2; ++matrix) {
printf (&("\nMatrix %d:\n\t"), matrix);
for (row = 0; row < n; ++row) {
for (col = 0; col < n; ++col) {
// Init. to small random values
*pl = random() & 511;
printf (&("%4d "), *pl);

pl = pl + 4; // pl++
}
N printf (&("\n\t")); sparc@sparc # ./MatrixAddition
} Matrix 1:
493 98 299 94
// Print the sum of the matrices 31 481 502 427
printf (&("\nMatrix 1 + Matrix 2:\n\t")); 95 238 299 219
pl = mem; 369 16 447 47
p2 = mem + 64;
for (row = 0; row < n; ++row) { Matrix 2:
for (col = 0; col < nj; ++col) { 27 202 136 38
// Print the sum 312 129 162 420
printf (&("%4d "), *pl + *p2); 223 201 345 107
pl = pl + 4; // pl++ 6 27 76 499
p2 = p2 + 4; // p2++
¥ Matrix 1 + Matrix 2:
printf (&("\n\t")); 520 300 435 132
} 343 610 664 847
318 439 644 326
free(mem) ; // Free memory 375 43 523 546
Fig. 41. Matrix addition exploit code. Fig. 42. Matrix addition output.

MatrixAddition), exec ()’s the vulnerable application from Figure 29 with the program
exploit payload. The exploit program prints out the two matrices and their sum, as
shown in Figure 42. The exploit payload for the matrix program is 24 kilobytes, using
31 gadget variables, 145 gadgets, and 376 instruction sequences (including compiler-
added variables and gadgets).

ACM Transactions on Information and System Security, Vol. 15, No. 1, Article 2, Publication date: March 2012.

