
ar
X

iv
:0

90
9.

33
33

v1
  [

m
at

h.
PR

] 
 1

7 
Se

p 
20

09

September 11, 2009

ON IMPORTANCE SAMPLING WITH MIXTURES FOR

RANDOM WALKS WITH HEAVY TAILS

HENRIK HULT AND JENS SVENSSON

Abstract. Importance sampling algorithms for heavy-tailed random walks
are considered. Using a specification with algorithms based on mixtures of
the original distribution with some other distribution, sufficient conditions
for obtaining bounded relative error are presented. It is proved that mixture
algorithms of this kind can achieve asymptotically optimal relative error. Some
examples of mixture algorithms are presented, including mixture algorithms
using a scaling of the original distribution, and the bounds of the relative errors
are calculated. The algorithms are evaluated numerically in a simple setting.

1. Introduction

Tail probabilities appear naturally in many applications of probability theory,
and often analytical evaluation is not possible. For many applications, Monte Carlo
simulation can be an effective alternative. For rare events, however, standard Monte
Carlo simulation is very computationally inefficient, and some form of variance
reduction method is necessary. One such alternative that has been extensively
applied to both light- and heavy-tailed distributions is importance sampling. In this
paper we focus on importance sampling algorithms for computing the probability

pb = P (Sn > b),

of a high threshold b, for a random walk Sn = X1+ · · ·+Xn. The random variables
X1, . . . , Xn are independent and identically distributed with distribution function
F and density f . It is assumed that the right tail of f is regularly varying at ∞;
more precisely there exists an α > 0 such that, for each x > 0,

lim
u→∞

f(ux)

f(u)
= x−α−1.

Then it is well known that f has the representation f(x) = x−α−1L(x), x > 0,
where L is slowly varying. The joint distribution of (X1, . . . , Xn) is denoted µn.

Consider first a computation of pb using standard Monte Carlo. Then N inde-
pendent samples (X1

1 , . . . , X
1
n), . . . , (X

N
1 , . . . , XN

n ) are generated from µn and pb is
estimated using the sample frequency

p̂MC
b =

1

N

N
∑

i=1

I{Si
n > b},

where Si
n = X i

1 + · · · +X i
n. For large b, the event {Sn > b} is rare and few of the

indicator variables I{Si
n > b} will be 1. This leads to rather inefficient estimation.
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To see this, consider for instance the standard deviation of p̂MC
b . An elementary

calculation shows

Stdev(p̂b) =
1√
N

√

pb(1 − pb).

When pb is small this is roughly
√

pb/N . Hence, it would require N ≈ 1/pb sam-
ples to have the standard deviation of size comparable to the quantity pb we are
estimating. When pb is small this can be very large.

Importance sampling provides a way to possibly reduce the computational cost
without sacrificing precision, or equivalently to improve precision without increas-
ing the computational cost. The basic idea of importance sampling to generate
samples (X1

1 , . . . , X
1
n), . . . , (X

N
1 , . . . , XN

n ) independently from a sampling measure
νbn instead of µn. It is assumed that µn is absolutely continuous with respect to νbn,

written µn ≪ νbn so that the Radon-Nikodym derivative dµn

dνb
n

exists. An unbiased

estimate of pb is constructed as

p̂b =
1

N

N
∑

i=1

dµn

dνbn
(X1, . . . , Xn)I{Sn > b}.

The goal is to choose νbn so more samples are drawn from regions that are “impor-
tant” to the event {Sn > b}. Then the event becomes less rare under νbn, which
reduces variance. However, νbn must be chosen carefully so that the Radon-Nikodym

weights dµn

dνb
n
(X1, . . . , Xn) do not cause variance to increase. A relevant quantity for

deciding if a sampling measure νbn is appropriate or not is the relative error

RE(p̂b) =

√

Var(p̂b)

Ep̂b
=

1√
N

√

Ep̂2b − p2b
p2b

=
1√
N

√

Ep̂2b
p2b

− 1.

By Jensen’s inequality we always have Ep̂2b ≥ p2b .
To quantify the efficiency of the sampling measure it is convenient to study

the asymptotics of the relative error as b → ∞. This amounts to studying the
asymptotics of normalized second moment limb→∞ Ep̂2b/p

2
b . We say that a sampling

distribution νbn has logarithmically efficient relative error if, for some ε > 0,

lim sup
b→∞

Ep̂2b
p2−εb

< ∞,

it has bounded relative error if

lim sup
b→∞

Ep̂2b
p2b

< ∞,

and asymptotically optimal relative error if

lim sup
b→∞

Ep̂2b
p2b

= 1.

A number of different algorithms have been proposed to simulate tail probabil-
ities of heavy-tailed random walks. Asmussen and Binswanger (1997) study the
class of subexponential distributions, i.e. distributions for which

lim
b→∞

P (Sn > b)

nP (X1 > b)
= 1,
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and use that as b → ∞, all the variance of the sum comes from the largest summand.
By removing the largest term X(n) in each sample and calculating the probability
using the remaining n− 1 terms, they obtain a logarithmically efficient conditional
Monte Carlo estimator in the sub-class of distributions with regularly varying tails.
Here X(1) < X(2) < . . . < X(n) is the ordered sample. Specifically, with the sample
X1, . . . , Xn, the estimator is

P (Sn > b|X(1), . . . , X(n−1)) =
F (X(n−1) ∨ (b− S(n−1)))

F (X(n−1))
,

where S(n−1) = X(1) + . . . X(n−1) is the sum of the n− 1 largest of the n terms in
the sample and a ∨ b = max(a, b).

Asmussen and Kroese (2006) propose a similar idea, using the conditioning

nP (Sn > b,Mn = Xn|X1, . . . , Xn−1) = F (Mn−1 ∨ (b − S(n−1))),

where Mn = max(X1, . . . , Xn) to obtain an estimator with bounded relative error
for distributions with regularly varying tails.

Juneja and Shahabuddin (2002) introduce an importance sampling algorithm
with similar structure to exponential twisting in the light-tailed case. Their so-
called hazard rate twisting of the original distribution is given by

dFθ(x) =
eθΛ(x)dF (x)

∫∞
0

eθΛ(x)dF (x)
, (1.1)

where 0 < θ < 1 and Λ(x) = − logF (x) is the hazard rate. For distributions
with regularly varying tails, this is equivalent to changing the tail index of the
distribution.

In the case of importance sampling, Bassamboo et al. (2007) show that to obtain
efficient sampling distributions for heavy-tailed random walks, one must consider
state-dependent changes of measure. Simply changing the parameters in the original
distribution cannot lead to an estimator with bounded relative error.

The first algorithm of this type, for heavy-tailed random walks, was proposed by
Dupuis et al. (2007). There the large values are sampled from the conditional dis-
tribution where one has to condition on exceeding a level just below the remaining
distance to b. The authors prove that their proposed algorithm has close to asymp-
totically optimal relative error. Blanchet and Li (2008) present a state-dependent
algorithm that uses Markov chain description of the random walk under the sam-
pling measure to obtain bounded relative error for the class of subexponential dis-
tributions. Blanchet and Liu (2008) construct a mixture algorithm with bounded
relative error for the large deviation probability P (Sn > b) where b > b0n

1/2+ǫ.
In this paper we take a more general look at mixture algorithms of the same

type as Dupuis et al. (2007). The underlying idea is to construct a dynamic change
of measure such that the trajectories of X1, . . . , Xn leading to Sn > b is similar to
the most likely trajectories conditional on Sn > b. In the heavy-tailed case, the
most likely trajectories are such that one of the Xi’s is large and the others are
“average”. Mixtures arise quite naturally as sampling distributions for producing
such trajectories; with some probability pi sample from the original density f and
with probability qi = 1− pi sample from a density where it is likely to get a large
value. We provide sufficient conditions for bounded relative error and provide a
couple of new examples that are very easy to implement. We also show that, with
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some additional work, one can construct mixture algorithms with asymoptotically
optimal relative error.

The paper is organized as follows. In Section 2 we present a general importance
sampling algorithm based on mixtures and provide several examples. In Section 3
we provide sufficient condition for the mixture algorithm to have bounded relative
error. In Section 4 we provide detailed analysis of specific mixture algorithms. The
concluding Section 5 provides a proof that it is possible to obtain asymptotically
optimal relative error.

2. Dynamic mixture algorithms

In this section we describe a general importance sampling algorithm based on
mixtures, called the dynamic mixture algorithm, and provide several examples.

The dynamic mixture algorithm for computing pb = P (Sn > b) proceeds as
follows. Each replication of (X1, . . . , Xn) is generated dynamically and the distri-
bution for sampling Xi depend on the current state Si−1 = X1 + · · ·+Xi−1 of the
random walk. At the ith step it may be that Si−1 already exceeds the threshold b.
Then Xi is sampled from the original density f . Otherwise, if Si−1 ≤ b, a biased
coin is tossed with probability pi for “heads” and qi = 1−pi for “tails”. If it comes
up “heads” Xi is generated from the usual density f , but if it comes up “tails”, Xi

is generated from another density gi(x | Si−1). The density gi(x | Si−1) depends
on the current generation i of the algorithm and on the current position Si−1. The
idea is to choose gi(x | Si−1) s.t. sampling from gi(x | Si−1) is likely to result in
a large variable. However, gi(x | Si−1) must be chosen with some care to control

the Radon-Nikodym weights dµn

dνb
n
(X1, . . . , Xn) and thereby the relative error. In

the last generation, if Sn−1 ≤ b, Xn is sampled from a density gn(x | Sn−1) and
if Sn−1 > b it is sampled from the original f . In contrast to the previous steps gn
is not necessarily of mixture type. The reason is that it may be advantageous to
make sure Xn > b− Sn−1 in the last step to get Sn > b.

A precise description of the dynamic mixture algorithm is presented next.

Algorithm 1. Consider step i = 1, . . . , n, where Si−1 = si−1. Then Xi is sampled
as follows.

• If si−1 > b, Xi is sampled from the original density f ,
• if si−1 ≤ b, Xi is sampled from

pif(·) + qigi(· | si−1), for 1 ≤ i ≤ n− 1,

gn(· | sn−1), for i = n.

Here pi + qi = 1 and pi ∈ (0, 1).

Explicit examples of the dynamic mixture algorithm are obtained by specifying
gi and pi.

Example 2.1 (Conditional mixture, c.f. Dupuis et al. (2007)). The algorithm
proposed by Dupuis et al. (2007) takes gi to be a conditional distribution. For
i = 1, . . . , n− 1 the large values are sampled conditional on being at least a times
the remaining distance to b, where a ∈ (0, 1). It is important that a < 1. In the
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last step samples are generated conditional on exceeding b. More precisely,

gi(x | s) = f(x)I{x > a(b − s)}
F (a(b − s))

, 1 ≤ i ≤ n− 1,

gn(x | s) = f(x)I{x > b− s}
F (b− s)

.

In their paper the authors assume that f = 0 on (−∞, 0). That is, all the Xi’s are
non-negative. This is not an important restriction and we do not impose it here.

A practical limitation of the conditional mixture algorithm is that some dis-
tributions do not allow direct sampling from the conditional distribution. If the
distribution function F and its inverse F← are available, the inversion method sug-
gest sampling X conditional on X > c by taking U to be uniform on (0, 1) and
set X = F←(1 − UF (x)), see e.g. Asmussen and Glynn (2007). In other cases it
might be necessary to use an acceptance-rejection method, but this may be time
consuming.

A simple alternative to the conditional mixture is to sample the large variables
from a generalized Pareto distribution (GPD) instead. The intuition is that the
GPD approximates the conditional distribution well.

Example 2.2 (Generalized Pareto mixture). The GPD mixture algorithm takes
gi to be a generalized Pareto distribution. As in the previous algorithm, for i =
1, . . . , n− 1, the large values are sampled conditional on being at least a times the
remaining distance to b, where a ∈ (0, 1). The last step is slightly different. If the
remaining distance is large, the last step is taken from a GPD, otherwise it is taken
from the original density. This is because, if Sn−1 ≤ b, but close to b, the GPD is
not necessarily a good approximation of the conditional distribution. To be precise,

gi(x | s) = α[a(b − s)]αx−α−1I{x > a(b− s)}, 1 ≤ i ≤ n− 1.

gn(x | s) = α(b − s)αx−α−1I{x > b− s}I{s ≤ b− b(1− a)n−1}
+ f(x)I{s > b− b(1− a)n−1}.

A different way to sample the large variables is to sample from the original
density and then scale the outcome by simply multiplying with a large number λb.
We call this a scaling mixture algorithm.

Example 2.3 (Scaling mixtures). The scaling mixture algorithm has, with λ > 0,

gi(x | s) = (λb)−1f(x/λb)I{x > 0}+ f(x)I{x ≤ 0}, i = 1, . . . , n− 1,

gn(x | s) = (λb)−1f(x/λb)I{x > 0, s ≤ b− b(1− a)n−1}
+ f(x)I{x ≤ 0 or s > b− b(1− a)n−1}.

To simplify the analysis we will, in the context of scaling mixtures, always assume
that the orginal density f is strictly positive on (0,∞). If this is not satisfied the
situation is more involved because there may be large x > 0 such that f(x) > 0
but f(x/λb) = 0. Then such large x-value cannot be obtained by sampling a small
number from f and scale by λb. This may cause the Radon-Nikodym weights to
be relatively large, which increase the variance.

There are several variations of the scaling algorithm. For instance, one may scale
with something proportional to the remaining distance to b, instead of something
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proportional to b as described above. Some variations of the scaling algorithm will
be treated in more detail in Section 4.3.

3. Asymptotic analysis of the normalized second moment

The efficiency criteria presented in the introduction are all based on the asymp-
totic properties of the normalized second moment Ep̂2b/p

2
b . We are following the

weak convergence approach initiated by Dupuis et al. (2007) to study its asymp-
totics. By the subexponential property, p2b ∼ n2F (b)2, where ab ∼ cb denotes
limb→∞ ab/cb = 1, the normalized second moment can be written as

Ep̂2b
p2b

∼ 1

n2F (b)2

∫

sn>b

dµn

dνbn
(y)µn(dy) =

1

n2

∫

sn>1

1

F (b)

dµn

dνbn
(by)mb(dy), (3.1)

where the measure mb = µn(b( · ∩ {sn > 1}))/F (b). To calculate the limit of
this integral we will use the weak convergence of the measure mb to a measure m
and uniform convergence of an upper bound R∗b (y) ≥ 1

F (b)

dµn

dνb
n
(by) =: Rb(y) to a

bounded continuous function R(y). Then we (?) establish the convergence

lim sup
b→∞

∫

{sn>1}

Rbdmb ≤ lim
b→∞

∫

{sn>1}

R∗bdmb =

∫

{sn>1}

Rdm.

To do this it is convenient if the normalized Radon-Nikodym derivative Rb(y) is
bounded. This criteria is certainly stronger than necessary but appears to be de-
sirable. It implies the the normalized q-moment is asymptotically bounded for any
q ∈ (1,∞). Indeed, if R∗b is bounded and R∗ → R uniformly, then for any q ∈ (1,∞)

lim sup
b→∞

Ep̂qb
pqb

= lim sup
b→∞

1

nq

∫

sn>1

( 1

F (b)

dµn

dνbn
(by)

)q−1
mb(dy) ≤

1

nq

∫

Rq−1dm < ∞.

Next we provide sufficient conditions for Rb to be bounded.

Lemma 3.1. Consider Algorithm 1 with pi > 0 for 1 ≤ i ≤ n− 1. Suppose there

exists a ∈ (0, 1) such that

lim inf
b→∞

inf
s ≤ 1− (1− a)i−1

y > a(1− s)

gi(by | bs)
f(by)

F (b) > 0, 1 ≤ i ≤ n, (3.2)

lim sup
b→∞

sup
s ≤ 1
y > 1 − s

f(by)

gn(by | bs) < ∞. (3.3)

Then the scaled Radon-Nikodym derivative Rb(y) = 1
F (b)

dµ
dνb

n
(by) is bounded on

{y1 + · · ·+ yn > 1}.

Proof. Let sn = y1 + · · ·+ yn. On {sn > 1} it must hold that yi > a(1 − si−1) for
some i = 1, . . . , n. Otherwise si ≤ 1− (1− a)i < 1 for each i.

Take y ∈ {y ∈ R
n : sn > 1} and let i = min{j : yj > a(1− sj−1)}. Note that for

this i

yi > a(1− si−1) ≥ a(1− a)i−1 ≥ a(1 − a)n =: an > 0.
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For any yj , j /∈ {i, n},
f(byj)

pjf(byj) + qjgj(byj | bsj−1)
≤ 1

pj
.

It follows that, for 1 ≤ i ≤ n− 1,

1

F (b)

dµ

dνbn
(by) ≤ 1

F (b)

f(byi)I{yi > a(1 − si−1)}
pif(byi) + qigi(byi | bsi−1)

×
∏

j /∈{i,n}

1

pj

×
(f(byn)I{yn > 1− sn−1}

gn(byn | bsn−1)
I{sn−1 ≤ 1}+ I{sn−1 > 1}

)

. (3.4)

The first term can be written as

1

F (b)

f(byi)I{yi > a(1− si−1)}
pif(byi) + qigi(byi | bsi−1)

=
I{yi > a(1− si−1)}

piF (b) + qi
gi(byi|bsi−1)

f(byi)
F (b)

.

By (3.2) this term in (3.4) is bounded. The second term is bounded because pj > 0
by assumption. The last term is bounded by (3.3).

Similarly for i = n,

1

F (b)

dµ

dνbn
(by) ≤ f(byn)I{yn > a(1− sn−1)}

gn(byn | bsn−1)F (b)

n−1
∏

j=1

1

pj
,

which is bounded by (3.2). �

Next we present the main result. It provides sufficient conditions for the mixture
algorithms to have bounded relative error. This is obtained by showing that the
normalized second moment remains bounded.

Theorem 3.2. Suppose (3.2) and (3.3) hold for a ∈ (0, 1). Suppose in addition

that there exist continuous functions hi : R
n → [0,∞) such that

f(byi)

gi(byi | bsi−1)F (b)
→ hi(yi | si−1), (3.5)

uniformly on {y ∈ Rn : si−1 ≤ 1− (1− a)i−1, yi > a(1− s)}. Then,

lim
b→∞

Ep̂2b
p2b

≤ 1

n2

n
∑

i=1

i−1
∏

j=1

1

pj

1

qi

∫ ∞

1

hi(yi | 0)αy−α−1i dyi,

with the convention that qn = 1.

Proof. First rewrite the normalized second moment as in (3.1):

Ep̂2b
p2b

∼ 1

n2

∫

sn>1

1

F (b)

dµn

dνbn
(by)mb(dy) =

1

n2

∫

Rb(y)mb(dy).

By regular variation of f and independence of X1, . . . , Xn the joint distribution
µn is multivariate regularly varying. In particular the weak convergence mb

w→ m
holds, where m has the representation

m(A) =
n
∑

i=1

∫

A

I{y ∈ Rn : yi > 1, yj = 0, j 6= i}αy−α−1i dyi. (3.6)
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This is well known, see e.g. Resnick (1987), Section 5.5. A proof is also given by
Dupuis et al. (2007). We see that the measurem puts all its mass on the coordinate
axes. That is, on trajectories where one jump is large and the rest are zero.

The next step is to decompose the integral as
∫

Rbdmb =

∫

A

Rbdmb +

∫

Ac

Rbdmb, (3.7)

where A = ∪n
i=1Ai is a finite union and the Ai’s have disjoint closures. We will

find Ai such that the second integral converges to 0 and determine an upper bound
R∗b ≥ Rb on Ai.

Define the sets Ai to be

Ai = {y ∈ R
n : yj ≤ a(1− sj−1) for 1 ≤ j ≤ i− 1, yi > 1− si−1,

and sk > 1, k = i+ 1, . . . , n}.
Note that the Ai’s have disjoint closure and m(∂Ai) = 0. In particular mb(Ai) →
m(Ai) for each i = 1, . . . , n. Moreover, m(∩n

i=1A
c
i ) = 0. Indeed,

m(∩n
i=1A

c
i ) = m({sn > 1} \ ∪iAi) = m{sn > 1} −

n
∑

i=1

m(Ai)

=

n
∑

i=1

∫

{sn>1}
I{y ∈ Rn : yi > 1, yj = 0, j 6= i}αy−α−1i dyi

−
n
∑

i=1

∫

Ai

I{y ∈ Rn : yi > 1, yj = 0, j 6= i}αy−α−1i dyi = 0.

By Lemma 3.1, Rb is bounded and since mb(A
c) → m(Ac) = 0, the second integral

in (3.7) converges to 0. For the first integral we construct a function R∗b that
dominates Rb on A and a continuous function R such that R∗b → R uniformly on
A. Then it follows from weak convergence that

lim sup
b→∞

∫

A

Rbdmb ≤ lim
b→∞

∫

A

R∗bdmb =

∫

A

Rdm < ∞.

For y ∈ Ai,

Rb(y) ≤
1

F (b)

f(byi)I{yi > 1− si−1}
pif(byi) + qigi(byi | bsi−1)

i−1
∏

j=1

1

pj
=: R∗b (y).

To see this, construct a bound as in (3.4) and notice that on Ai, sk > 1 for each
k ≥ i. Then the contribution to the Radon-Nikodym weights from yk, k > i is
equal to 1. By assumption (3.5)

gi(byi | bsi−1)
f(byi)

F (b) → 1

hi(yi | si−1)
,

uniformly on Ai. For y ∈ Ai define R(y) = hi(yi | si−1)
∏i−1

j=1
1
pj

1
qi
. Then R∗b → R

uniformly on A. With the representation (3.6) of the limiting measurem, the upper
bound for the normalized second moment can now be calculated as

1

n2

∫

A

Rdm =
1

n2

n
∑

i=1

i−1
∏

j=1

1

pj

1

qi

∫ ∞

1

hi(yi | 0)αy−α−1i dyi.

�
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4. Examples

In this section we provide a detailed analysis of the algorithms presented in
Section 2. In particular we verify the conditions of Lemma 3.1 and Theorem 3.2
for these algorithms.

4.1. The conditional mixture algorithm. Recall from Example 2.1 that the
conditional mixture algorithm has, with a ∈ (0, 1),

gi(x | s) = f(x)I{x > a(b − s)}
F (a(b − s))

, 1 ≤ i ≤ n− 1,

gn(x | s) = f(x)I{x > b− s}
F (b− s)

.

Then, for i = 1, . . . , n − 1, the uniform convergence F (bx)/F (b) → x−α, for x >
x0 > 0, implies

gi(bx | bs)
f(bx)

F (b) =
F (b)

F (ba(1− s))
I{x > a(1 − s)} → aα(1− s)αI{x > a(1− s)},

uniformly for s ≤ 1− (1− a)i−1, x > a(1− s). Similarly,

gn(bx | bs)
f(bx)

F (b) =
F (b)

F (b(1− s))
I{x > 1− s} → (1− s)αI{x > 1− s},

uniformly on s ≤ 1− (1− a)n−1, x > 1− s, and

f(bx)

gn(bx | bs) = F (b(1− s)) ≤ 1,

on s ≤ 1. It follows that both (3.2) and (3.3) are satisified and hence the normalized
Radon-Nikodym derivative is bounded.

By the above calculation (3.5) holds with hi(y | s) = a−α(1−s)−α, 1 ≤ i ≤ n−1
and hn(y | s) = (1− s)−α. It follows from Theorem 3.2 that

lim
b→∞

Ep̂2b
p2b

≤ 1

n2

∫

R(y)dm =
1

n2

(

n−1
∑

i=1

a−α

qi

i−1
∏

j=1

1

pj
+

n−1
∏

j=1

1

pj

)

. (4.1)

The right hand side is minimized at

pi =
(n− i− 1)a−α/2 + 1

(n− i)a−α/2 + 1
, qi = 1− pi, (4.2)

with minimum n−2[(n− 1)a−α/2 + 1]2, and it is possible to show that the limit is
equal to the right hand side of (4.1), see Dupuis et al. (2007), Lemma 3.2.1. For
each n this can be made arbitrarily close to 1 by choosing a close to 1.

4.2. Generalized Pareto mixture. Recall from Example 2.2 that the GPD mix-
ture algorithm has, with a ∈ (0, 1),

gi(x | s) = α[a(b − s)]αx−α−1I{x > a(b− s)}, 1 ≤ i ≤ n− 1.

gn(x | s) = α(b − s)αx−α−1I{x > b− s}I{s ≤ b− b(1− a)n−1}
+ f(x)I{s > b− b(1− a)n−1}.
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First we check (3.2) and (3.3). Karamata’s theorem implies αF (b) ∼ bf(b). Then,
for any s < 1,

gi(bx | bs)
f(bx)

F (b) =
α(bx)−α−1(ba(1− s))αF (b)

f(bx)

=
αF (bx)

bxf(bx)

aα(1− s)αF (b)

xαF (bx)
→ aα(1− s)α. (4.3)

uniformly for x ≥ a(1− s). In particular (3.2) is satisfied. Since

f(by)

gn(by | bs) =
bf(bx)

α(1− s)αy−α−1
I{y > 1− s}I{s ≤ 1− (1− a)n−1}

+ I{s > 1− (1− a)n−1}

is bounded on s ≤ 1, y > 1 − s, (3.3) also holds. By Lemma 3.1 the normalized
Radon-Nikodym derivative is bounded. By the arguments above (3.5) holds with
hi(y | s) = a−α(1 − s)−α, 1 ≤ i ≤ n − 1 and hn(y | s) = (1 − s)−α. It follows by
Theorem 3.2 that

lim
b→∞

Ep̂2b
p2b

= n−2
(

n−1
∏

i=1

1

pi
+ a−α

n−1
∑

j=1

1

qj

j−1
∏

i=1

1

pi

)

.

This is identical to (4.1), so pi can be chosen according to (4.2) to minimize the
relative error.

4.3. Scaling mixtures. In the scaling mixture algorithm presented in Example
2.3 the large variables are generated by sampling from the original density and
multiplying with a large number. In this section we study some variations of this
algorithm. Recall that, in the context of scaling mixtures, always assume that the
orginal density f is strictly positive on (0,∞).

The first scaling mixture algorithm, called scaling mixture I, is constructed as
follows. Write f(x) = x−α−1L(x) with L slowly varying. Suppose infx>x0 L(x) =:
L∗ > 0 for some x0 > 0. The scaling mixture algorithm, with λ > 0, has

gi(x | s) = (λb)−1f(x/λb)I{x > 0}+ f(x)I{x ≤ 0}, i = 1, . . . , n− 1,

gn(x | s) = (λb)−1f(x/λb)I{x > 0, s ≤ b− b(1− a)n−1}
+ f(x)I{x ≤ 0 or s > b− b(1− a)n−1}.

To generate a sample X from gi proceed as follows. Generate a candidate X ′ from
f . If X ′ ≤ 0 put X = X ′ and if X ′ > 0, put X = λbX ′.

Take a ∈ (0, 1), using Karamata’s theorem, αF (b) ∼ bf(b), we have, for 1 ≤ i ≤
n, and s ≤ 1− (1− a)i−1,

gi(bx | bs)
f(bx)

F (b) =
f(xλ)

λbf(bx)
F (b)I{x > 0}+ F (b)I{x ≤ 0}

=
xf(xλ)

αλ

αF (bx)

bxf(bx)

F (b)

F (bx)
I{x > 0}+ F (b)I{x ≤ 0}

→ xα+1f(xλ )

αλ
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uniformly for x ≥ 1 − s. Since xα+1f(x/λ) ≥ λα+1L∗ > 0, the condition (3.2)
holds. Note, however, that (3.2) fails if L∗ = 0. Since

f(bx)

gn(bx | bs) =
λbf(bx)

f(xλ)
I{x > 0, s ≤ 1− (1 − a)n−1}+ I{x ≤ 0 + s > 1− (1− a)n−1}

is bounded on s ≤ 1, x > 1 − s condition (3.3) also holds. From the calculation
above we see that (3.5) is satisfied with h(x | s) = αλ[xα+1f(x/λ)]−1. In particular,
the asymptotic upper bound for the normalized second moment is

1

n2

∫

R(y)dm =
1

n2
λ−2α

∫ ∞

1/λ

α2

x2(α+1)f(x)
dx

n
∑

i=1

1

qi

i−1
∏

j=1

1

pj
,

with qn = 1. It is straightforward to check that 1
n2

∑n
i=1

1
qi

∏i−1
j=1

1
pj

is minimized

at

pi = 1− 1

n− i+ 1
, qi = 1− pi,

with minimum equal to 1. The parameter λ can be chosen to control the factor

λ−2α
∫ ∞

1/λ

α2

x2(α+1)f(x)
dx.

In some cases this can be minimized analytically.

Example 4.1. Consider a Pareto density of the form f(x) = α(1+x)−α−1, x > 0.
Then

λ−2α
∫ ∞

1/λ

α2

x2(α+1)f(x)
dx = λ−2α

∫ ∞

1/λ

α
(1 + x

x2

)α+1

dx.

If α = 1 this is minimized at λ =
√
3 with minimum 2+

√
3√

3
.

In the scaling mixture algorithm we assume L∗ > 0. This rules out distributions
whose slowly varying function tends to 0. However, this is not a severe problem.
One way to avoid it is to slightly modify the previous algorithm. The scaling

mixture II algorithm has, with λ > 0, u ∈ (0, 1), δ > 0, and a ∈ (0, 1),

gi(x | s) = g(x)

= (λb)−1f(x/λb)I{0 < x ≤ λbu}

+
1

(1 + δ)λb

( x

λb

)
1

1+δ
−1

f([x/λb]
1

1+δ )I{x ≥ λbu1+δ}+ f(x)I{x ≤ 0},

gn(x | s) = g(x)I{s ≤ b− b(1− a)n−1}+ f(x)I{s > b− b(1− a)n−1}.
The density gi is based on the following sampling procedure. To generate a sample
X from gi, first generate a candidate X ′ from f . If X ′ ≤ 0 put X = X ′, if
0 < X ′ ≤ u, put X = λbX ′, and if X ′ > u put X = λb(X ′)1+δ.

Similar to the scaling mixture I algorithm it follows that, for 1 ≤ i ≤ n,

gi(bx | bs)
f(bx)

F (b)

→ xα+1 f(
x
λ )

αλ
I{0 < x ≤ λu}+ x

1
1+δ

+αf([x/λ]
1

1+δ )

(1 + δ)αλ
1

1+δ

I{x ≥ λu1+δ}
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uniformly for x ≥ 1− s and s. Since

x
1

1+δ
+αf([x/λ]

1
1+δ ) = λ−

α+1
1+δ xα(1− 1

1+δ
)L(x/λ),

is bounded from below for x ≥ 1− s (3.2) holds. Just as for the scaling mixture I
algorithm (3.3) also holds. (3.5) hold with

hi(y | s) = α2λ

y2α+2f(y/λ)
+

(1 + δ)α2λ
1

1+δ

y2α+
1

1+δ
+1f([y/λ]

1
1+δ )

.

The asymptotic upper bound for the normalized second moment is hence

∫

R(y)dm =

n
∑

i=1

1

qi

i−1
∏

j=1

1

pj

×
(

∫ λu

1

α2λ

x2α+2f(x/λ)
dx+

∫ ∞

λu1+δ

(1 + δ)α2λ
1

1+δ

x2α+ 1
1+δ

+1f([x/λ]
1

1+δ )
dx

)

. (4.4)

with qn = 1. As above 1
n2

∑n
i=1

1
qi

∏i−1
j=1

1
pj

is minimized at

pi = 1− 1

n− i+ 1
, qi = 1− pi,

with minimum equal to 1. The remaining parameters λ and u can be chosen to
control the integrals in (4.4).

5. Achieving asymptotically optimal relative error

In the previous section we observed that the conditional mixture algorithm and
the GPD mixture algorithm can be designed to have almost asymptotically optimal
relative error. A small asymptotic relative error is obtained by choosing the param-
eter a close to 1. In this section we prove that these algorithms have asymptotically
optimal relative error. This is accomplished by letting the parameter a depend on
the threshold b in such a way that a → 1 slowly as b → ∞. For simplicity, we
assume that X1 > 0 throughout this section.

Theorem 5.1. Let νbn be the measure defined by the conditional mixture algorithm.

Let pi =
n−i

n−i+1 , qi = 1 − pi, and assume that 1 − a = 1 − ab ∼ O(b−
1

2(n−1)
+δ) for

some 0 < δ < 1
2(n−1) . Then, the conditional mixture algorithm has asymptotically

optimal relative error for computing pb. That is,

lim
b→∞

Ep̂2b
p2b

= 1.

Remark 5.2. In Theorem 5.1 the conditional mixture algorithm can be replaced by
the GPD mixture algorithm.

Proof. First rewrite the normalized second moment as in (3.1):

Ep̂2b
p2b

=
1

n2

∫

sn>1

1

F (b)

dµn

dνbn
(by)mb(dy) =

1

n2

∫

sn>1

Rb(y)mb(dy).
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Fix a0 ∈ (0, 1). Define the sets

Ai = {y ∈ Rn : yi > 1− si−1, yj ≤ 1− sj−1, j < i},
Bi = {y ∈ Rn : yi ≤ a0(1− si−1)},
Ci = {y ∈ Rn : a0(1− si−1) < yi ≤ a(1− si−1)},
Di = {y ∈ Rn : a(1− si−1) < yi ≤ 1− si−1}.

Then {sn > 1} ⊂ ∪n
i=1Ai and each Ai can be written as the disjoint union of the

3i−1 sets of the form

I1 ∩ I2 ∩ · · · ∩ Ii−1 ∩ Ai, (5.1)

where each Ij is either Bj , Cj , or Dj . Each intersection (5.1) is of one of the types
below.

(i) Ij = Bj for each j = 1, . . . , i− 1.
(ii) among the sets I1, . . . , Ii−1 there is at least one j for which Ij = Cj and no

j with Ij = Dj .
(iii) among the sets I1, . . . , Ii−1 there is at least one j for which Ij = Dj .

Next we treat the integrals

1

n2

∫

I1∩···∩Ii−1∩Ai

Rb(y)mb(dy),

separately. The intersection belongs to one of the three types.
Type (i): Consider y ∈ B1 ∩ · · · ∩Bi−1 ∩Ai. Then si−1 ≤ 1− (1 − a0)

i−1 and

Rb(y) ≤
i−1
∏

j=1

1

pj
× 1

piF (b) + qi
F (b)

F (ba(1−si−1))

≤
i−1
∏

j=1

1

pj

1

qi

F (ba(1− si−1))

F (b)
.

Fix arbitrary ε > 0. Then, for b sufficiently large, ab > 1− ε and the expression in
the last display is bounded above by

i−1
∏

j=1

1

pj

1

qi

F (b(1− ε)(1 − si−1))

F (b)
=: R∗b(y).

It follows that R∗b (y) →
∏i−1

j=1
1
pj

1
qi
(1 − ε)−α(1 − si−1)−α uniformly on B1 ∩ · · · ∩

Bi−1 ∩Ai and then it follows by the arguments in the proof of Theorem 3.2 that

lim sup
b→∞

1

n2

∫

B1∩···∩Bi−1∩Ai

Rb(y)mb(dy) ≤
1

n2

i−1
∏

j=1

1

pj

1

qi
(1− ε)−α.

Since ε > 0 was arbitrary we can let ε → 0 to get

lim sup
b→∞

1

n2

∫

B1∩···∩Bi−1∩Ai

Rb(y)mb(dy) ≤
1

n2

i−1
∏

j=1

1

pj

1

qi
.
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Type (ii): For y ∈ I1 ∩ I2 ∩ · · · ∩ Ii−1 ∩ Ai it holds that si−1 ≤ 1 − (1 − a)i−1.
Proceeding as in the Type (i) case, for ε > 0 and b sufficiently large,

Rb(y) ≤
i−1
∏

j=1

1

pj
× 1

piF (b) + qi
F (b)

F (ba(1−si−1))

≤
i−1
∏

j=1

1

pj

1

qi

F (ba(1− si−1))

F (b)

≤
i−1
∏

j=1

1

pj

1

qi

F (b(1− ε)(1− a)i−1)

F (b)
.

It follows that

1

n2

∫

I1∩···∩Ii−1∩Ai

Rb(y)mb(dy)

≤ 1

n2

i−1
∏

j=1

1

pj

1

qi

F (b(1− ε)(1− a)i−1)

F (b)
mb(I1 ∩ · · · ∩ Ii−1 ∩ Ai). (5.2)

Let k be the first index between 1 and i − 1 such that Ik = Ck. Then Il = Bl for
each 1 ≤ l ≤ k − 1, and sk−1 ≤ 1− (1− a0)

k−1, whereas si−1 ≤ 1− (1− a)i−1,

mb(I1 ∩ · · · ∩ Ii−1 ∩Ai) ≤
P (Yk > ba0(1− sk−1), Yi > b(1− si−1))

F (b)

≤ P (Yk > ba0(1− a0)
k−1, Yi > b(1− a)i−1)

F (b)

=
F (ba0(1− a0)

k−1)F (b(1− a)i−1)

F (b)

≤ F (ba0(1− a0)
i−1)F (b(1− a)i−1)

F (b)
. (5.3)

Putting this into (5.2) yields the upper bound

1

n2

∫

I1∩···∩Ii−1∩Ai

Rb(y)mb(dy)

≤ 1

n2

i−1
∏

j=1

1

pj

1

qi

[F (b(1− ε)(1− a)i−1)

F (b)

]2

F (ba0(1− a0)
i−1)

≤ 1

n2

i−1
∏

j=1

1

pj

1

qi

[F (b(1− ε)(1− a)n−1)

F (b)

]2

F (ba0(1 − a0)
n−1).

This converges to 0 as b → ∞ by the choice of a = ab.
Type (iii): For I1 ∩ I2 ∩ · · · ∩ Ii−1 ∩Ai of type (iii) we let j denote the first index

for which Ij = Dj . Suppose first that Ik = Bk for each k = 1, . . . , j − 1. Then,
sj−1 ≤ 1− (1− a0)

j−1 and, for arbitrary ε > 0 and b sufficiently large,

Rb(y) ≤
j−1
∏

k=1

1

pk

1

qj

F (b(1− ε)(1− a0)
j−1)

F (b)
, (5.4)
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which is bounded in b. In addition,

mb(B1 ∩ · · · ∩Bj−1 ∩Dj) ≤
P (Yj ∈ Dj , Sj−1 ≤ 1− (1− a0)

j−1)

F (b)

≤
∫

B1∩···∩Bj−1

F (ba(1− sj−1))− F (b(1− sj−1))

F (b)
µn(dy) → 0, (5.5)

as b → ∞, by the bounded convergence theorem. Combining (5.4) and (5.5) we see
that

lim sup
b→∞

∫

B1∩···∩Bj−1

Rbdmb = 0.

Finally, suppose Ik = Ck for some k = 1, . . . , j − 1. Then, sj−1 ≤ 1 − (1 − a)j−1

and, for arbitrary ε > 0 and b sufficiently large,

Rb(y) ≤
j−1
∏

k=1

1

pk

1

qj

F (b(1− ε)(1 − a)j−1)

F (b)
. (5.6)

In addition, just as in (5.3),

mb(I1 ∩ · · · ∩ Ij−1 ∩Dj) ≤
F (ba0(1− a0)

j−1)F (b(1− ε)(1− a)j−1)

F (b)
. (5.7)

Combining (5.6) and (5.7) we see that

lim sup
b→∞

∫

B1∩···∩Bj−1

Rbdmb

≤ lim sup
b→∞

j−1
∏

k=1

1

pk

1

qj

[F (b(1− ε)(1 − a)j−1)

F (b)

]2

F (ba0(1 − a0)
j−1) = 0,

by the choice of a = ab. �

6. Numerical illustrations

In this section we examine the performance of the scaling mixture algorithm,
referred to as the SM algorithm. We perform a preliminary test using Pareto-
distributed positive random variables and compare the algorithm with the condi-
tional mixture algorithm in Dupuis et al. (2007), which we refer to as the DLW
algorithm, and the conditional Monte Carlo algorithm in Asmussen and Kroese
(2006). For comparision, we first consider the same setting as in Dupuis et al.
(2007), Table IV, pp. 18. The so-called true value in Table 1 was obtained from
the same table. Each estimate was calculated using N = 104 samples of Sn. This
estimation was repeated 100 times and the mean estimate, the mean standard er-
ror and the mean calculation time were calculated. The parameter a in the DLW
algorithm was chosen equal to 0.999 and the parameter λ in the scaling mixture
algorithm was chosen equal to 1 in Table 1 and equal to

√
3, the optimal value, in

Table 2.
The standard Monte Carlo estimation is inferior to both importance sampling

algorithms. The conditional Monte Carlo algorithm performs best for most proba-
bilites in this study.



16 H. HULT AND J. SVENSSON

Table 1. Simulations of P (Sn > b), where Sn =
∑n

i=1 Xi and

P (X1 > x) = (1 + x)−1/2, a = 0.999 and λ = 1. N = 104 samples
were used for each estimation, repeated 100 times..

n b True value MIS DLW CMC MC
5 5e+05 0.007071 0.0070744 0.0070714 0.00707034 0.0069960 Avg. est.

(7.26e-05) (6.10e-06) (4.89e-06) (4.88e-05) (A. std. err.)
[0.816] [0.799] [0.731] [0.685] [A. time (s)]

5e+11 7.0711e-06 7.0776e-06 7.0710e-06 7.0711e-06 1.8000e-05
(7.53e-08) (1.86e-09) (2.71e-11) (1.56e-05)
[1.005] [0.990] [0.908] [0.840]

15 5e+05 0.02121 0.021188 0.021215 0.021210 0.021724
(2.07e-04) (4.15e-05) (2.72e-05) (2.05e-03)
[1.224] [1.219 ] [1.092] [1.006]

5e+11 2.1213e-05 2.1224e-05 2.1214e-05 2.1213e-05 1.800e-05
(2.25e-07) (5.82e-09) (3.09e-10) (1.80e-05)
[1.450] [1.456] [1.283] [1.179]

25 5e+05 0.035339 0.035330 0.035348 0.035347 0.035462
(3.32e-04) (9.06e-05) (5.89e-05) (2.61e-03)
[1.712] [1.729] [1.478] [1.366]

5e+11 3.5355e-05 3.5338e-05 3.5355e-05 3.5355e-05 3.8000e-05
(3.77e-07) (1.04e-09) (1.32e-09) (3.68e-05)
[1.993] [2.016] [1.689] [1.559]

Table 2. Simulations of P (Sn > b), where Sn =
∑n

i=1 Xi,

P (X1 > x) = (1 + x)−1, a = 0.999 and λ =
√
3. N = 104

samples were used for each estimation, repeated 100 times.

n b True value MIS DLW CMC MC
5 5e+05 1.0001e-05 1.0020e-05 1.0001e-05 1.0001e-05 6.000e-06 Avg. est.

(1.07e-07) (2.78e-09) (2.58e-10) (6.00e-6) (std. err.)
[0.429] [0.415] [0.433] [0.346] [time (s)]

5e+11 1.0000e-13 9.9996e-12 9.9999e-12 1.0000e-13 0
(1.07e-13) (2.79e-15) (8.59e-22) (0)
[0.433] [0.418] [0.430] [0.352]

15 5e+05 3.0010e-05 3.0004e-05 3.0011e-05 3.0010e-05 3.0000e-05
(3.21e-07) (1.12e-08) (1.74e-09) (2.71e-05)
[0.491] [0.445] [0.437] [0.375]

5e+11 3.0000e-11 2.9990e-11 3.0000e-11 3.0000e-11 0
(3.22e-13) (9.06e-15) (1.75e-20) (0)
[0.490] [0.445] [0.431] [0.365]

25 5e+05 5.0029e-05 5.0098e-05 5.00274e-05 5.00290e-05 3.7000e-05
(5.37e-07) (1.90e-08) (4.10e-09) (3.34e-05)
[0.561] [0.485] [0.432] [0.386]

5e+11 5.0000e-11 4.9970e-11 4.9998e-11 5.0000e-11 0
(5.38e-13) (1.65e-14) (1.54e-20) (0)
[0.556] [0.479] [0.439] [0.382]
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