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The popularity of location-based services leads to serious concerns |8
on user privacy. A common mechanism to protect users’ location =
and query privacy is spatial generalisation. As more user informa-

tion becomes available with the fast growth of Internet applications,

e.g., social networks, attackers have the ability to construct users’ Figure 1: A centralised framework of LBSs
personal profiles. This gives rise to new challenges and reconsider-
ation of the existing privacy metrics, such fasnonymity. In this
paper, we propose new metrics to measure users’ query privacy tak
ing into account user profiles. Furthermore, we design spatial gen-
eralisation algorithms to compute regions satisfying users’ privacy
requirements expressed in these metrics. By experimental results
our metrics and algorithms are shown to be effective and efficient
for practical usage.

LW candidate results candidate results

in cases when LBSPs are not trusted. Attackers can cooperate with
LBSPs and have access to users’ location-related queries. The
amount and risk of information leakage from LBS queries have
been discussed, for example, in [7, 13]. The analysis mainly fo-
cused on information leakage from locations. However, query con-
tent itself is also a source of users’ privacy leakage. For instance,
a query about casinos implies the issuer's gambling habit which

Categories and Subject Descriptors the issuer wants to keep secret. Thus besides location privacy, the
C.2.0 [Computer-Communication Networks]: General—Secu- anonymity of issuers with respect to queries is also important in
rity and protection K.4.1 [Computer and Society: Public Policy privacy preservation. Intuitivelyquery privacyis the ability to
Issues—Privacy prevent other parties to learn the issuers of queries. One way to
protect query privacy is to anonymise queries by removing users’
General Terms identities. However, this does not suffice when considering loca-
. tions which can help reveal users’ identities, since attackers can ac-
Security, measurement quire users’ locations through a number of ways, e.g., triangulating
mobile phones’ signals and localising users’ access points to In-
Keywords ternet. Sometimes, public information such as home addresses and

yellow pages can also help obtain users’ positions. Therefore, loca-
tions within queries are critical in protecting users’ query privacy as
well. Replacing locations with a generalised area is an alternative
1. INTRODUCTION to break the linkability between users and their locations, which is
The popularity of mobile devices with localisation chips and calledspatial cloaking16, 20].
ubiquitous access to Internet give rise to a large number of location-  |n the last few years;-anonymity [24] has been widely used and
based services (LBS). Consider a user who wants to know wherejnyestigated in the literature on releasing microdata, e.g., medical
the nearest gas station is. He sends a query to a location-baseglecords. A user ig-anonymous if he is indistinguishable from at
service provider (LBSP) using his smart-phone with his location least othek — 1 users. In the context of query pri\/acy in LBS,
attached. The LBSP then processes the query and responds withanonymity can be interpreted as: given a query, any attacker based
results. Location-based queries lead to privacy concerns especiallyon the query location cannot identify the issuer with probability
Yy . larger thani [15]. Most of existing works adopt the centralised
S‘Egl:ivovgrlég\;\%seilfpported by the FNR Luxembourg under project framework ]Edepicted in Fig. 1), where a trusted agaminymiser
is introduced. Users first send their queries to the anonymiser who
anonymises the queri@mdgeneralises the locatiortsefore send-
ing them to the LBSP. The responses from the LBSP are first sent

Location based services, query privacy, anonymity, measurement

Permission to make digital or hard copies of all or part of thirkafor to the anonyr_niser and then forwarded _tO_ the corresponding users.
personal or classroom use is granted without fee providatidbpies are In the centralised framework, normally it is assumed that the com-
not made or distributed for profit or commercial advantage aatidbpies munication channels between users and the anonymiser are secure

bear this notice and the full citation on the first page. Toyooiherwise, to while the ones between the anonymiser and the LBSP are public.

republish, to post on servers or to redistribute to listguiees prior specific A common assumption fd-anonymity is that all users have the
permission and/or a fee. . . . .
CODASPY'12February 7-9, 2012, San Antonio, Texas, USA. same probability to issue queries. In other words, a uniform proba-
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query, which is often not realistic especially when attackers gain based on entropy and a similar metric is given by Diaz et al. [11]

more information about the users. Given a specific query, certain which is normalised by the number of users. Zhu and Bettati [35]

users tend to be more likely to issue it when compared to others. propose a definition of anonymity based on mutual information.

For instance, users who love movies are more possible to searchThe notion relative entropy is used by Deng et al. [10] to measure

for nearing cinemas. For any user in a generalised area satisfyinganonymity. Different information-theoretic approaches based on

k-anonymity, the probability to be the issuer is no Iongdn such Kullback-Leider distance and min-entropy are proposed [5, 9, 31]

situations. The case can be worse especially for those users whdo define information leakage or the capacity of noisy channels.

are more likely than others. Supposé-anonymised region of a

query from a young person for searching clubs at midnight. If there

are only two young people in the generalised region, then they are 2 2 Query privacy metrics

more likely to be taken as the candidates for the issuer from attack- . .01\ cent of- it iqinall d by Sama-
pt ok-anonymity was originally proposed by Sama

ers’ view than other users in this region. Therefdr@nonymity rati and Sweeney in the field of database privacy [24]. The main

:Aslhr;c:]t tzlfiﬁm?é?gtar::;[:ﬁttgsiﬁsig%?e:S\?vrr;siclgr\l/\\llzgya:j%quejgggjeg:t idea ofk-anonymity is to guarantee that a database entry’s identifier
9 P ’ is indistinguishable from othér—1 entries. However, this method

by Shin et al. [26]. Nowadays, the popularity of social networks does not work in all cases. For instance, the fact that an HIV car-

and more exposure of people’s information on Internet provide at-' rier is hidden ink carriers does not help protecting his infection of

tackers sources to gather enough background knowledge to c)bta”}he virus. Further research has been done to fix this problem [18].

user profiles. Besidegassive attackin which attackers simply In the context of privacy in LBSs;-anonymity is first introduced

e e ey et by Grteser and Gruwl 1] 1 aims 1o protect o yes o
~€.9., by 9 privacy —location privacyand query privacy The former means

Z\r/aetﬁrlg ;ﬂfngrﬁyﬁfzgﬁ;?rflaégsxfrtlé [gggéir%uss:sél. rgmgsa[gg] that given a published query, attackers cannot learn the issuer’ ex-
y g P " act position while the latter enforces the unlinkability between the

Therefore, it is a new challenge to measure and protect users’ QUerY.ccer and the query. Because of its simplicitvanon mity has
privacy in LBSs with the assumption that attackers have the knowl- been studied agd rt;/fined in many ways pForfrllstar)llce Tan et al

edge of user profiles. defineinformation leakageo measure the amount of revealed lo-
Our contributions. In this paper, we extend-anonymity and pro- cation information in spatial cloaking, which quantifies the balance
pose new metrics to correctly measure users’ query privacy in the between privacy and performance [32]. Xue et al. [34] introduce
context of LBSs, which enable users to specify their query privacy the concept ofocation diversityto ensure generalised regions to
requirements in different ways. Furthermore, we design new gen- contain at least semantic locations (e.g., schools, hospitals).
eration algorithms to compute anonymising spatial regions accord- Deeper understanding é&fanonymity reveals its drawbacks in
ing to users’ privacy requirements. Through experiments, we show preserving users’ location privacy. Shokri et al. analyse the ef-
that our algorithms are efficient enough to meet users’ demands onfectiveness ok-anonymity in protecting location privacy in differ-
real-time responses and generate regions satisfying privacy require ent scenarios in terms of adversaries’ background information [30]
ments. We also show the different strengths of our metrics which i.e., real-time location informationstatistical informationandno
help users choose the correct requirements to achieve a balance banformation Based on the analysis, they conclude that cloaking
tween privacy and the quality of service delivered by the LBSP. (e.g.,k-anonymity) is effective for protecting query privacy but not
location privacy. They also show its flaws which the adversary can
exploit to infer users’ current locations. In this paper, we focus on
protecting query privacy using cloaking with the assumption that
the adversary learns users’ real-time locations.

Recently, Shokri et al. design a tobbcation-Privacy Meter
that measures location privacy of mobile users in different attack
scenarios [28, 29]. Their work assumes that attackers can utilise
Sser profiles (e.g., mobility patterns) extracted from uses’ sample
traces to infer the ownership of collected traces. It is in spirit close
to our work. They use the incorrectness of attackers’ conclusions

Structure of the paper. Sect. 2 gives a brief investigation of related
work on measuring anonymity, query privacy and area generalisa-
tion algorithms. In Sect. 3, we present our formal framework, the
threat model, and the derivation of user profiles. We formally define
a number of query privacy metrics in Sect. 4 and develop general-
isation algorithms in Sect. 5. In Sect. 6, through experiments we

generalisation algorithms. The paper is concluded in Sect. 7.

2. RELATED WORK on users’ positions drawn from observations as the privacy metric.
We give a brief literature study on measuring anonymity and on In this paper, we focus on users’ query privacy with regards to an
query privacy metrics with focus ok-anonymity. Then we sum-  individual query rather than query histories. Moreover, we make
marise existing region generalisation algorithms. use of users’ static and public personal information, such as pro-
. . fessions and jobs as user profiles. Considering information such as
2.1 Anonymlty metrics mobility patterns and query histories is part of our future work.

In the literature, various ways to measure anonymity have been The work by Shin et al. [26] is most closely related. They de-
proposed. Chaum [6] uses the size of an anonymity set to indicatescribe user profiles using a set of attributes whose domains are
the degree of anonymity provided by a network based on Dining discretised into disjoint values. User profiles are represented by
Cryptographers. An anonymity set is defined as the set of usersprofile vectorswith a bit for each value. Shin et al. propose three
who could have sent a particular message as observed by attacknew metrics based detanonymity by restricting different levels of
ers. Berthold et al. [3] define the degree of anonymitycasiV, similarity between profiles of users in generalised regions. This is
whereN is the number of users. Reiter and Rubin [22] define the analogous to our notion df-approximate beyond suspicievhich
degree of anonymity as the probability that an attacker can assignwill be discussed in Sect. 4. Compared to Shin et al.'s work [26],
to a user of being the original sender of a message. They introducewe define a more comprehensive set of metrics that can measure
metrics like beyond suspicion, probable innocence and possible in-query privacy from different perspectives and develop coordp
nocence. Serjantov and Danezis [25] define an anonymity metric ing generalisation algorithms.



2.3 Area generalisation algorithms Table 1: Notations

The first generalisation algorithm calléatervalCloaking is de- U | setof users
signed by Gruteser and Grunwald [15]. Their idea is to partition T | set of time instances
a region into quadrants with equal area. If the quadrant where the L | set of locations
issuer is located contains less tharsers, then the original re- R | set of possible generalised regions
gion is returned. Otherwise, the quadrant with the issuer is taken g € Q | aquery supported by the LBS
as input for the next iteration. The algorithtliqueCloak [14] is (u,£,t,q) € Q | aquery issued by at position/ at timet
proposed by Gedik and Liu in which regions are generalised based (¢ ¢) € Q' | a generalised query sent by the anonymiser
on the users who have issued queries rather than all potential is- dis(t) | spatial distribution of users i1 at timet
suers. The major improvement is that this algorithm enables users M(q) | probability distribution of user to issug
to specify their personal privacy requirements by choosing differ- ul(r,t) | setof users located in regiorat timet
ent values fok. Mokbel et al. [21, 8] design the algorith@asper req((u,¢,t,q)) | useru’s privacy requirement ofu, ¢, ¢, q)
which employs a quadtree to store the two-dimensional space. The p(u|q) | probability ofu to issueg among users it
root node represents the whole area and each of other nodes rep- (4| (r,t,¢)) | probability ofu to issue(r, ¢, ¢)
resents a quadrant region of its parent node. The generalisation  pereis(u,t) | position of usew at timet
algorithm starts from the leaf node which contains the issuer and  ¢((y, ¢,t,¢)) | an algorithm computing generalised queries

iteratively traverses backwards to the root until a region with more
thank users is found. Another algorithmASR [16] simply finds
the nearest users to the issuer and returns the region containing
these users as the anonymising spatial region.

The above algorithms suffer from a particular attack called “out-

Given a query(u, whereis(u,t),t,q) € @, the anonymising
server @nonymisey would remove the user’s identity and replace

i blerm” h kers h " lisati | his location with a larger area to protect his query privacy. We only
ier problem” [2], where attackers have the generalisation algo- .,nsiderspatial generalisatiorin this paper as in LBSs users re-

rithms and users’ spatial distribution as part of their knowledge. quire instant responses. L2f be the power set of and then we
Intuitively, this happens when some users in a generalised regionuseR C 2 to denote the set of all possible generalised regions.
do not have the same region returned by the algorithm as the issuer.-l-he corresponding output of the anonymising server can be repre-
Thus, these users can be removed from the anonymity set, resultingzataq agr,t,q), wherer € R andwhereis(u, t) € . SUpPpose

in a set with less thah users. Hence, an algorithm against this at- 0 et of g;e7neralised queriéd c R x T x 7Q. The generali-
tack needs to ensure that for each user in the anonymity setit alwaysqation algorithm of the aonymiser can be represented as a function

returns the same region. Kalnis et al. design the first algorithm ..~ "' Eorinstance. we hav herei Dt _
called hilbASR that does not have the outlier problem [16]. The {r'th>_ @ ' B((u, whereis(u, ).t q)

algorithm exploits the Hilbert space filling curve to store usersina = 4 generalisation algorithm used by the anonymiser to com-

total order based on their locations. The curve is then partitioned , o generalised queries makes use of current user spatial distri-
into blocks .W'thk USETS. The blc.’Ck with the issuer is retu_rngd 85 bution and might also take users’ privacy requirements as part of
the generalised region. Mascetti et al. propose two algorithiins, s innut In our framework, a privacy requirement is represented
chotomicPoints andgrid, which are also secure against the outlier by a pair — a chosen privacy metric by the issuer and the corre-
problem [20]. The former iteratively partitions the region into two sponding specified value (see more discussion in Sect. 4 and 5).
blocks until less thar2k users are located in the region while the We usereq((u, whereis(u, t), t, q)) to denoteu’s requirement on
latter draws a grid over the two-dimensional space so that each Ce”query<u, wher,eis(u, t),t, ;1).7 7

containsk users and returns the cell with the issuer. Because of the We usep(u; |¢:) to denote the conditional probability of usey

smphc@y of |mp_lementat|on and the relatively smaller area_of the_ to be the issuer when quegyis observed, an§’,, _,, p(u; | ¢:) =
generalised regions, we adopt and extend these two algorithms in . ) ) Lo _—
1. Variations of users’ profiles along with time and positions are

our algorithm design. . . . out of the scope of this paper, and considered as part of our future
The area of generalised regions is usually used to measure the

quality of service responded by LBSPs, as smaller regions lead towork. For the sake of simplicity, in the following discussion we

o use a probability matrix\, where elementn;; = p(u; | ¢;). We
more accurate query results and less communication overhead. useM (g:) to denote the-th row of M, the probability distribution

over users to issue the query
3. PRELIMINARIES Letul : R x T — 2“ be the function mapping a region to
the set of users located in it. In other wordd(r,t) = {u €
U | whereis(u,t) € r}. Given a generalised quety, ¢, g), user
u's probability to be the issuer among the users in regi@an be
computed as follows:

3.1 A formal framework p(ulq)

Leti/ denote a set of users,the set of locations (positions), and plufirt,a) = > owreut(ryy P 14)
T the set of time instances that can be recorded. The granularity of ’
time instances is determined by LBSs. Given a timee have a ~ We summarise the list of important notations in Tab. 1.
function to map a user to his locationtatwhereis : U x T — L.
The userspatial distributionat time ¢ can be defined as the set 3.2 The attacker model
{(u, whereis(u,t)) | w € U}, denoted bydis(t). Suppose the Through generalising locations, users’ query privacy is protected
set of queries supported by LBSs is representedbye.g., the by preventing attackers from re-identifying issuers with high prob-
nearest gas station. L& C U x £ x T x Q be the set of queries  abilities. Most approaches in the literature (e.g., see [20]) assume
from userd/{ at a specific time. An element i@ is a quadruple that attackers have a global view of users’ real-time spatial distri-
(u, whereis(u, t),t, q), whereu € U andg € Q. bution (Assumption )l This assumption is conservative but possi-

In this section, we present a formal framework, define the at-
tacker model subsequently, and discuss how to derive a priori prob-
abilities for users to issue a query based on their profiles.




ble in real scenarios. There are many ways to gather users’ real-that the user issues the given query when having the attribute value.
time locations. For instance, most people send queries from someFor instance, for the query asking for expensive hotels, the associ-
fixed positions, e.g., office and home. Referring to address books ated attributes should include salary, jobs and age while gender is
or other public database, the potential issuers can be identified. Weirrelevant. Among them, a salary is much more relevant than age
also adopt this assumption in this paper. Itis also natural to assumeand moreover, a salary of more than 5000 euros is much more im-
that the attacker controls the communication channel between theportant than one of less than 1000 euros. Therefore, we introduce a
anonymiser and the LBS server (see the second part of Figs1) (  relevance vector to express the relation between attributes’ values
sumption 2. This allows the attacker to acquire any generalised and queries. LetV (q) = (w1, ..., w,) be the relevance vector of
queries forwarded by the anonymiser. Meantime, we assume thequeryq wheren = 3", |a;|

anonymiser is trustworthy and users have a secure connection With o1 anyy, € ¢/ andq € Q, letV(u, q) = 3 Wi - Guli] be the

the anonymiser through SSL or other techniques (see the flrst p‘?‘”relevance of usew’s profile to queryg. Subsequently, we have:

of Fig. 1). The generalisation algorithm used by the anonymiser is
assumed to be publidésumption B This leads to an additional re- p(ulq) = V(u, q)
quirement. For each user in an anonymity set, a plausible algorithm Yoweu Y, q)
must compute the same area as the one computed for the issuer.

Different from attackers in the literature (e.g., [20, 32, 30]), the 4. QUERY PRIVACY METRICS

attacker in our model has access to an a priori distribution over e propose a number of new metrics (exceptifeanonymity)
users with regards to issuing queries (i.e., the probability matrix to measure query privacy taking into account user profiles and for-
M) (Assumption # Thus, instead of assuming a uniform distri-  majly define them using the framework discussed in Sect. 3.
bution among users for issuing a particular query, the attacker has
a precise probabilistic distribution by exploring user profiles ob-
tained, e.g., by available public information [17, 26].

k-anonymity. In k-anonymity, a natural numbdris taken as the
metric of users’ query privacy, which is the size of the anonymity
. . . . set of the issuer. This means, for a given query, there are at least
Users may have different privacy requirements for queries de- in th lised ion including the |

endent on time, positions and sensitivity of queries, which is usu- k users in the generalised region Inclu |ng.t € 1Ssuer. Moreover,
P ' ' in order to prevent attacks based on public generalisation algo-

ally a subjective de_msnon._ So we assume that attacke_rs have NOrithms [20], any user in the anonymity set must have the same gen-
knowledge about this requirement decision procéss@mption b . - S e ;
eralised region for the same query. Similar to the definitions in the

However, attackers_can 'ea”? users' privacy requirements after ob literature [27, 20]k-anonymity can be formally defined as follows:
serving the generalised queries by the anonymi&ssiimption

This is realistic as from the features of the generalised queries, at- DEFINITION 1. Let (u, whereis(u,t),t,q) € Q be a query
tackers can infer the corresponding privacy requirements. and (r,t,q) € Q' the corresponding generalised query. The is-
Last but not least, we assume that the attacker cannot link anysueru is k-anonymousf

two queries from the same usekssumption Y. All queries are
independent from the attacker’s perspectives. This assumption is
strong but still realistic as users tend to issue occasional queries and
an issuer’s identity is always removed by the anonymiser before Note that in Def. 1, as all users in the anonymity set takas
forwarding the query to the LBSP. the generalised region for the quegyat time ¢, they are allk-

33 Deriving probabilities from user profiles anonymous. The following proposed new anonymity metrics enjoy

) ] ) ) ‘ the same property.
b lé;grdp(rjqflltes can b? as,tso<:|a_1ted with sett OI agr_lgu:es Wh'Ch gan k-approximate beyond suspicion.As discussed in Sect. 1, when
€ divided Into several calegories, €.g., contact attributes (zip codes user profiles are considered as part of the attacker's knowledge, the
addresses), descriptive attributes (age, nationalities, jobs) and pref

] . i 'size of an anonymity sétcannot be a fair metric for query privacy.
erence attributes (hobbies, moving patterns) [26]. The values _Of Especially for users with high a priori probabilities, they can easily

these attributes can be discretised into a categorical form. For in- be chosen as candidates of issuers. Inspired by anonymity degrees
stance, the value of a home address can be represented by the cof g by Reiter and Rubin [22], we come up with the following
responding zone which it lies in. In this way, each attribute has a new privacy metrics ’

finite number of candidate values. Beyond suspiciomeans from the attacker’s viewpoint the issuer

" Let %b = <fa1t7t."b‘ ’ta"L>,\l|3et thtmr_oflle of usetua vk\)/here:@ IS ¢ cannot be more likely than other potential users in the anonymity
€ number ot attributes. Note IS represented by a string o set to send the query. In other words, users in the anonymity set

bits., each of which denotes a possible value ofAthe corresponding have the same probability to perform an action. In the context of
attribute. We usgu; [to denote the length of; and¢,, torepresent | s we need to find a set of users in which users are the same
the concatenation of the strings of all attributes. Moreoven /éf] likely to send a given query. This set is taken as the anonymity
be thej-th bit of ¢.,. As the values in the domain of any attribute  set whose size determines the degree of users’ privacy &s in
are disjoint, there is at most one bit to beor any a; (perhaps anonymity. LetAS : Q' — 2Y denote the anonymity set of a

all zeros because of lack of information). Consider a user profile generalised query. An issuer of quefy, whereis(u,t),t,q) is
consisting of two attributes — salary and gender. As the domain of beyond suspicious with respect to the corresponding generalised
gender consists of two valuesraleandfemalewe use two bits to query(r,t, g) if and only if Vo' € AS((r,t,q)),

represent them)1 and 10, respectively. We divide the numerical

| {v' €U | whereis(u',t) €T A
f(W whereis(u',1),t,q)) = (r,t,q)} | =k

_ I
values of salary into three intervals < ‘1000’, * 1000— 5000’ and p(ul(r,t,q)) = p(w|(r,t,q9))
‘> 5000'. Then user profiles, = (001, 01) means uset is male In practice, the number of users with the same probability to send a
and has a salary more than 5000, arRd= 00101. query is usually small, which leads to a large generalised area with

Each queryy € @ must have a subset of correlated attributes a fixedk. So we relax the requirement to compute an anonymity
that can be used to deduce the issuer. Furthermore, each value of aet consisting of users wisimilar probabilitiesinstead of the ex-
relevant attribute has a different weight measuring the probability act same probability. Letpi, p2|| denote the difference between



two probabilities and be the pre-defined parameter describing the An entropy based metric. Serjantov and Danezis [25] define an
largest difference allowed between similar probabilities. anonymity metric based on entropy and Diaz et al. [11] provide
a similar metric that is normalised by the number of users in the
anonymity set. The concephtropyof a random variable&X is de-
finedasH (X) = — > p(z)-logp(x) whereX' is the domain
(all possible values) akX. In our context, entropy can also be used
[ {v' € AS({r,t,q)) | |lp(u|{r.t,q)),p(u|{r,t,q))|] <€A to describe the attacker’s uncertainty to identify the issuer of a gen-
f(', whereis(u',t),t,q)) = {r,t,q)} | > k. eralised query. Let variablEg denote the issuer of quely, ¢, ¢).
Different fromk-anonymity, the set of users that ar@pproximate 1 hen the uncertainty of the attacker can be expressed as
beyond suspicious is computed based on the spatial distribution of . / ’
users with similar probabilities rather than the original distribution HU[(rt,q) = - , Z p(u|{r £, q)) logp(u [{r,t, q)).
involving all users. The users in an anonymity set have similar uCut(r,t)
probabilities and the size of the anonymity set is larger than Users can express their query privacy by specifying an entropy
Therefore k-approximate beyond suspicion can be seen as a gen-value. For a given generalised qudryt, ¢) and a given values,

DEFINITION 2. Let (u, whereis(u,t),t,q) € Q be a query
and (r,t,q) € Q' the corresponding generalised query. The is-
sueru is k-approximate beyond suspicioifis

eralised version ok-anonymity. If for a specific query € Q, we say the issuer is entropy based anonymous with respect to the
any two users have the same probability to issue it (i\é(q) is valueg if all users in region- can haver as the generalised region

a uniform distribution), therk-approximate beyond suspicion is  when issuing the same query and the entraldy/ | (r, t, ¢)) is not
equivalent tak-anonymity. smaller tharg.

THEOREM 1. For a given queryy € Q, if for any two users DEFINITION 4. Let3 > 0, (u, whereis(u,t),t,q) € Q be a
ui,uz € U we havep(u1 | ¢) = p(uz | ¢), thenk-anonymity is query and(r, ¢, q) € Q' the corresponding generalised query. The
k-approximate beyond suspicion with respecyto issueru is S-entropy based anonymoifgor all v’ € wf(r,t),

For short, we us&-ABS to denote:-approximate beyond suspi- HU|{r,t,q)) > B A f((u', whereis(u',t),t,q)) = (r,t,q).

cion in the following discussion.

User specified innocenceTwo weaker anonymity metricgroba- For short, we calB-entropy based anonymify-EBA.

ble innocencandpossible innocengare proposed by Reiter and A mutual information based metric. The notionmutual infor-
Rubin as well [22]. An issuer is probably innocent if from the at- mationin information theory quantifies the mutual dependence of
tacker’s view the issuer appears no more likely to be the originator two random variables. It is usually denotedds(; Y") and com-

of the query. In other words, the probability of each user in the puted as the differenc/ (X) — H(X | Y) where H(X | Y) is
anonymity set to be issuer should be less than 50%. Meantime,the conditional entropy of when knowingY". In the context
possible innocence requires the attacker not be able to identify theof query privacy, we can use mutual information to evaluate the
issuer with a non-trivial probability. We extend these two notions uncertainty reduced after revealing the generalised query. Before
into a metric with user-specified probabilities (instead of restrict- the generalised query is known to the attcker, he only knows that
ing to 50% or non-trivial probability which is not clearly defined). the queryg can be issued by a usér in ¢/ with the probability

We call the new anonymity metrigser specified innocenwehere p(U | ¢). So the uncertainty of the attacker can be described as
a € [0,1] is the specified probability given by the issuer. entropyH (U | q). After the attacker learns the generalised query,
the uncertainty on the issuer can be described as the conditional en-
tropy H(U | {(r, t, q)). Therefore, for a given quekythe amount of
information gained by the attacker after observing the correspond-
ing generalised query can be computed as

DEFINITION 3. Leta € [0, 1], (u, whereis(u, t),t,q) € Q be
a query and(r,t,q) € Q' the corresponding generalised query.
The issuen is a-user specified innoceiftfor all ' € ul(r,t),

p(u'[{r,t,q)) < a A f((u', whereis(u',t),t,q)) = (r,t,q). I(U|g; (rt,q) = H(U|q)— HU|{rt,q))
Recall that/(r, t) denotes the set of users in regioat timet. = =Y eup@|q) logp(u|q)
It is clear that the anonymity set consists of all users in the gener- + Z"/E A p( | {r,t,q))-

alised area. We abbreviateuser specified innocence asusl.
Intuitively, for a query, an issuer is-user specified innocent,
if the anonymiser generates the same region for any user in theSimilar to 3-EBA, the issuer of queryr,t, q) is v-mutual infor-
region with the same specified valae In other words, in the gen-  mation based anonymousiitU | ¢; (r, t, ¢)) is less thany and all
eralised region, the most probable user has a probability smallerusers in region have it as the generalised region when issying

log p(u'[(r,t, q))-

thana from the attacker’s point of view. With this property;USI DEFINITION 5. Lety > 0, (u, whereis(u, t),t,q) € Q be a
can also be captu_red login-entropy which is an ins@ance of Renyi query and(r, ¢, q) € Q' the corresponding generalised query. The
entropy [23] and is used to measure the uncertainty obtietry issueru is v-mutual information based anonymoiigor all u' €

adversary who has exactly one chance to guess the originator in oun,¢(r, t),

scenario. Obviously, the best strategy for the adversary is to choose

the one with the highest probability. Formally, th@n-entropy IUg;(r,t,q)) <v A f((u, whereis(u',t),t,q)) = (r,t,q)
of a variableX is defined asH(X) = —logmaxzex p(z)
where X' is the domain ofX. Let U be the variable that stands
for the issuer and its domainds. Then for queryr, ¢, ¢}, the min-

For short, we cally-mutual information based anonymiyMIA.

entropy of the attacker can be describedrag (U | (r,¢,q)) = 5. GENERALISATION ALGORITHMS

—logmax,cue(r,ty p(u] (r, t,q)). Itis maximised when the users In this section, we develop generalisation (or spatial cloaking)
in regionr at timet follow a uniform distribution with regards tois-  algorithms to compute regions satisfying users’ privacy require-
suing queryy. Itis easy to verify that if a generalised quéryt, q) ments in terms of the metrics presented in Sect. 4. As to find a

guarantees the issueruser specified innocent, then it also ensures region satisfyingk-ABS is similar to compute a region satisfying
that the corresponding min-entropy is bigger thatvg a. k-anonymity on a given spatial distribution, we design an algorithm



for k-ABS by combining the algorithrgrid [20] with the cluster-
ing algorithmK-Means [19]. For the other metrics, we design a
uniform algorithm based odichotomicPoints [20] with a newly
developed functiompdateAS to update the intermediate regions.

5.1 An algorithm for x-ABS

To find an area that satisfigsABS, we have two main steps. The
first is to obtain the spatial distribution of users who have similar
probabilities to the issuer. The second step is to rikraaonymity
generalisation algorithm to find a region with at lelstsers based
on the distribution computed at the first step.

the clustering algorithm once and returns the cluster containing the
issuer as output of functiok-Means directly.

In Alg. 1, K-Means can terminate in tim&@ (N %! log N) where
N is the number of users [1]. The complexitygrid algorithm is
O(VkN log VEN) [20]. Therefore, in general, the complexity of
Alg. 1is O(N¥*1og N + vkNlog vkN). The correctness of
Alg. 2 is stated as Thm. 2.

THEOREM 2. For any(u, ¢, t,q) € Q, Alg. 1 computes a gen-
eralised region in which the issueris k-approximate beyond sus-
picious.

The task of the first step can be transformed to the clustering 5.2  An algorithm for «-USI, s-EBA, -MIA

problem. Giveny € Q, we need to cluster the elementsir(q)

For privacy metricew-USI, 5-EBA, andy-MIA, we design a uni-

such that the users with similar probabilities are grouped together. {orm algorithm where users can specify which metric to use. Re-

K-Means is the simplest learning algorithm to solve the cluster-
ing problem [19]. The number of clusters is fixed a priori. The
main idea is to defind( centroids, one for each cluster. In our
algorithm, theK centroids are chosen uniformly {0, 1]. Then
the points (the elements it (g) in our case) are associated to the
nearest centroid, resulting iR clusters. The centers of thegé

call that ingrid, the number of cells is pre-determined bgand the
number of users. Thus it is not suitable to perform area generalisa-
tion for metrics without a predefined numberinstead we use the
algorithmdichotomicPoints to achieve our design goal.

The execution oflichotomicPoints involves multiple iterations
in each of which users are split into two subsets. Similagrid,

clusters are updated as the new centroids. Afterwards, all pOimSpositions are represented in two dimensierendy, and users are
need to be binded to the current centroids. This process continuesy|sg ordered based on their positions. However, different fydich
until the centroids remain unchanged between two consecutive it- the orders between axises are determined by the shape of interme-

erations. In our casdy is chosen and fixed by the anonymiser. In
fact, it defines ‘similarity’ in the definition of-ABS in Sect. 4, i.e.,
€. The largerK is, the smallee becomes.

For the second step, we use algoritgrid by Mascetti et al. [20]

diate regions rather than fixed beforehand. Specifically, if a region
has a longer projection on dimensionthenz is used as the first
order to sort the users. Otherwigds used as the first order. Users
are then ordered based on the values of their positions on the first

as it generates more regular regions with smaller area comparedyrger axis and then the second order. Subsequently, users are par-

to others. A two-dimensional space is partitioned into a grid with
| %] cells each of which contains at le@stisers, whereéV denotes
the number of users iX. A user’s position is represented by two
dimensions: andy. The algorithrgrid consists of two steps. First,
users are ordered based on dimensipand then ory. The ordered

users are divided intqg,/%J blocks of consecutive users. The

titioned into two blocks with the same or similar number of users
along the first order axis. The block containing the issuer is taken
into the next iteration. This process is repeated until any of the two
blocks contains less thak users. This termination criterion is to
ensure security against the outlier problem fsanonymity (see
Sect. 2).

block with the issuer enters the second step. The users in this block However, in our uniform algorithm, instead of checking the num-

are then ordered first based on dimengj@nd thenc. These users

are also partitioned intdg\/gj blocks. Then the block with the
issuer is returned as the anonymity set. Details oftigealgorithm
can be found in [20].

Alg. 1 describes our algorithm fde-ABS. In general, it takes
the user requiremetand the number of clustefs defined by the

ber of users, we takes the satisfaction of users’ privacy requiremen
as the termination criterion, e.g., if all users in the two blocks have a
probability smaller tham. When issuing a query € Q, the issuer

w’s privacy requirementeq({u, whereis(u, t),t, q)) consists of a
chosen metric (i.e., USI, EBA, MIA) and its corresponding value
(i.e.,«, B, 7). For instance, if a user wants to hide in a set of users
with a probability smaller than 20% for issuing a query, then his

anonymiser as inputs and gives the generalised region as outputprivacy requirement is specified as (US0%).

FunctionK-Means returns the cluster of users with similar proba-
bilities to that ofu with respect to query. Then the functiorgrid
outputs a subset afm_users with at least users who are located

In our uniform algorithm, after the determination of the first or-
der axis, we call functiompdateAS. It takes a set of users and
partitions them into two subsets along the first order axis, both

in the rectangular region. The generalised region is computed by of which should satisfy the issuer's privacy requirement aped

functionregion.

Algorithm 1 A generalisation algorithm fat-ABS.

. FUNCTION:KABS

© INPUT: (u, whereis(u, t), t, q), dis(t), M(q), K, k
: OUTPUT: A regionr that satisfiek-ABS

sim_users :=K-Means(u, ¢, K, M(q));
AS := grid(sim_users, dis(t), k);
r := region(AS)

NoaghwhkE

dateAS returns the one containing the issuer as the updated anonymity
set. When it is not possible to partition users along the first order
axis, i.e., one of the two blocks generatlised by any partition fails
the issuer’s requirement, the second order axis will be tried. If both
tries have failedupdateAS simply returns the original set, which
means no possible partition can be made with respect to the privacy
requirement. In this situation, the whole algorithm terminates. Oth-
erwise, the new set of users returnedupdate AS is taken into
the next iteration.

Our uniform algorithm is described in Alg. 2. The boolean vari-
able cont is used to decide whether the algorithm should continue.
It is set tofalse when the set of users iAS does not satisfy the

Note that the clustering algorithm does not have to run each time requirement (line 6) or wheA S cannot be partitioned furthermore
when there is a query coming to the anoymiser. As long as the spa-(line 26). In both cases, the algorithm terminates. The anonymity
tial distribution remains static or does not have big changes, for the set AS is represented as a two-dimensional array. After ordering
queries received during this period, the anonymiser just executesusers inAS, AS[i] consists of all users whose positions have the



Algorithm 2 The uniform generalisation algorithm farUSI, - Algorithm 3 The functionupdateAS.
EBA, and~v-MIA.

1: FUNCTION:updateAS
1: FUNCTION:uniformDP 2: INPUT: AS, req(qu), order, dis(t), M(q)
2: INPUT: qu= (u, whereis(u, t),t, q), req(qu), dis(t), M(q) 3: OUTPUT:AS’ C AS that contains: and satisfieseq(qu)
3: OUTPUT: Regiomr that satisfieseq(qu) 4:
4: 5. AS := reorder(AS, order);
5. AS = U, 6: i := mid(AS, order);
6: cont := check(AS, reg(u)); 7: if check(left(7), req(qu)) A check(right(2), req(qu)) then
7: while cont do 8. AS :=part(i,u);
8:  ming := minycag whereis(u’).z; 9: else
9:  miny := miny,cag whereis(u').y; 10:  found := false;
10:  maz, := maxyeas whereis(u’).x; 11:  5:=0;
11:  mazy := max,cas whereis(u').y; 12:  while j < len(order) A —~found do
12: if (maxy — ming) > (mazy, — ming) then 13: if check(left(j), req(qu)) A check(right(7), req(qu))
13: first .= x; then
14: second = y; 14: found = true;
15: else 15: AS := part(j,u);
16: first :==y; 16: else
17: second = x; 17: ji=j+1
18: endif 18: end if
19:  AS’ = updateAS(AS, req(qu), first, dis(t), M(q)); 19:  end while
20: if AS’ = ASthen 20: end if
21: AS’'=updateAS(AS, req(qu), second, dis(t), M(q)); 21: return AS;
22: endif
23. if AS’ # ASthen
24: cont := true; first order axis is then switched to axis FunctionupdateAS is
25 else called again to find a partition along axi{Fig. 2(d)).
26: cont := false; We can see Alg. 2 iterates for a number of times. In each it-
27 endif eration, some users are removed from the previous anonymity set.
28: end while Operations such as partition and requirement check are time-linear
29: return region(AS); in the size of the anonymity set. The number of iterations is loga-
rithmic in the number of the users. So in the worst case, the time
complexity of Alg. 2 isO(N log N), whereN denotes the number
of all users ir/. The correctness of Alg. 2 is stated as Thm. 3.
same value on the first order axis. We Us&(order) to denote THEOREM 3. For any query(u, £, ¢, q), Alg. 2 computes a gen-
the size ofAS in the dimension denoted byrder. For instance,  eralised region that satisfies the issuels privacy requirement

in Fig. 2(a), axise is the first order axis and S[3] has three users req({u, whereis(u, t),t, q)).
with the samer values. Moreovellen(first) is 6.

The functionupdateAS shown in Alg. 3 is critical for our al-
gorithm uniformDP. It takes as input a set of users and outputs
a subset that satisfies the issuer’s privacy requiremeriu). It 6. EXPERIMENTAL RESULTS
first orders the users and then divides them into two subsets with We have performed an extensive experimental evaluation of the
the same number of users along the first order axis (indicated by metrics presented in Sect. 4 using the algorithms in Sect. 5. The ex-
the variableorder). This operation is implemented by the function periments are based on a dataset with 10,000 users’ locations gen-
mid(AS, order) which returns the middle user’s index in the first  erated by the moving object generator developed by Brinkhoff [4].

Detailed proof of the theorem is given in the appendix.

dimension ofAS. If both of the two subsets satisfyq(qu), then Users’ locations are scattered in the city of Oldenburg (Germany).
the one containing the issuer is returned (implemented by func- As we focus on evaluating our generalisation algorithms, we ran-
tion part(i, u)). Otherwise, an iterative process is started.;jtim domly assign a priori probabilities to users although it is possible
iteration, the users are partitioned into two sets one of which con- to generate user profiles as in [26] and calculate the probabilities
tains the users iMS[1],..., AS[j] (denoted byleft(j)) and the using our methodology described in Sect. 3.

other contains the rest (denoted bight(j)). These two sets are We implemented the algorithms using Java and experiments are
checked against the privacy requiremeey(qu). If both left(5) run on a Linux laptop with 2.67Ghz Intel Core(TM) and 4GB mem-
andright(j) satisfyreq(qu), the one with issuet is returned by ory. The results discussed in this section are obtained by taking the
part(j,u). If there are no partitions feasible afen(order) itera- average of 100 simulations of the corresponding algorithms.

tions, the original set of users is returned. Through experiments, for all the proposed metrics we present

An example execution of Alg. 2 is shown in Fig. 2. The issueris the impact of the user specified parameters to the average area of
represented as a black dot. In Fig. 2(a) the users are first partitionedgeneralised regions, in order to help users determine the right trade-
into two parts from the middle. Assume both parts satisfyqu), off between privacy protection and the quality of services. More-
so the seb, is returned as the anonymity sé65 for the next itera- over, we illustrate the features of different metrics. In particular,
tion. Asb;’s projection on axig, is longer, the first order is setto  we show thak-ABS gives a better protection th@ranonymity to
axisy (Fig. 2(b)). If after dividing the users from the middle, the users, who are potentially more likely to issue a query that others.
setb, does not satisfyeq(qu). Thus, the users are partitioned from  The other metrics:-USI, 5-EBA, +-MIA are insensitive to users’
AS[1] to AS[4] (Fig. 2(c)). Suppose no partitions are feasible. The a priori probabilities. Last, we show our algorithms are efficient



¢ i © " k-anonymity - - -
A 0 035 b k-ABS (K=2) ------- .
A S A | k-ABS (K=5) --------
CAE R I T o 03| K-ABS (K=10) _
N A ) AS(2] o = . k-ABS (K=20) -——---
H H : : : o L 1k ——
, : : : : AS[3] [ < 0.25 &
N A I RO o o© = \
© i o i Astal = 02
I : : : H b =
AS[1] AS[2] AS[3] AS[4] AS[5] AS[6] T T = 0.15
a b
() (b) o
Y YA b
o Yol e v 0.05
o SN I
‘ : 0
AS[L] oo O @] o @ @ é
ASI2] o o o N e € k
AS[3] freeeeeen @ ] Y 1 H
o O o : ® 0o i . I iliti -
TR S 6 o Figure 3: Posterior probabilities (k-ABS)
3 I N N
xT AS[1] AS[2] AS[3] xT 025 . . — ; ; ; ;
(c) (d) k-anonymity ———
k-ABS (K=10) -----—--
@ oo L HKABS(K=10) —— |
g v k-ABS (K=15) -------- ;
. . . . Qo - —
Figure 2: An example execution of our algorithmuniformDP @ F-ABS (£=20) o ‘
S 015 .
B “» i N N . o o
enough for practical applications which require real-time response 2 o1k L i
by evaluating the average processing time. g [
©
6.1 %-ABS 2 o005t LT A
We first address the comparison betwdeanonymity andk- AN
ABS and discuss the impact of the paraméieused in the clus- 0 = T 1
tering algorithmK-Means (see Alg. 1). In Fig. 3 we show how 60 70 80
a user’s a posteriori probability(u | (r, t, ¢)) changes with with k
respect td: and K. We have selected a user with a relatively high a ) ) )
priori probability so as to compare the performance of both metrics Figure 4: Area of generalised regionsK-ABS)

in protecting users who are more likely to issue the query.

First, the user’s a posteriori probability decreasek mreases.
This is because largdr means more users are in the generalised  In Fig. 5, we show that the average a posteriori probabilities of is-
region. Second, for a givein the issuer’s a posteriori probability is  suers with different a priori probabilities (indicated by lines marked
normally larger thani whenk-anonymity is used, but closer fo ‘high’, ‘medium’ and ‘low’) and different specified values of.
whenk-ABS is adopted. This is because that in an anonymity set We use a reference line to indicate the difference between users’
of k-anonymity, uses have larger differences among their a priori requirement4) and the result of Alg. 2. First, we find that users'’

probabilities than the users in an anonymitykeABS. Third, in a posteriori probabilities are always smaller thanwhich shows
k-ABS, for a givenk, the issuer's a posteriori probability is much  the correctness of our algorithm. Second, for users with relatively
closer to; when more clusters are divided (i.e., biggé€). This high a priori probabilities, their a posteriori probabilities are closer

can be explained by the observation that more clusters make theto their requirements in terms of. Meanwhile, for the users with
users in a cluster containing the issuer become more probable to beow a priori probabilities, the value af does not have a big influ-
the same likely to issue the query. ence on users’ a posteriori probabilities. This can be explained by
Fig. 4 shows the average area of generalised regions by Alg. 1.the definition ofa-USI. A generalised region has to ensure that all
In general, the area becomes larger whkencreases. We can also  users within it have a posteriori probabilities smaller thafthis is
observe that compared feanonymity,k-ABS has larger regions  required to fix the outlier problem).
for a given value ofk. Moreover, wherk is fixed the area gets Fig. 6 shows changes of generalised regions’ area along with
larger whenk increases. These observations are all due to the fact o and the impact of users’ a priori probabilities. The generalised
that more clusters result in fewer users in each cluster, which in regions become smaller asincreases. As we can see in Alg. 2,
turn leads to larger regions to coveusers. issuers’ positions and determine the generalised regions. Users’ a
According to the above observations, the anonymiser can deter-priori probabilities have little impact on the generalisation process.
mine an appropriate value &f based on users’ a priori distribution  This is also confirmed by experiments. In Fig. 6 users with different
for aquery (i.e.M(q)) in order to balance users’ query privacy and  levels of a priori probabilities have regions with similar sizes.

quality of service (smaller area, better quality). Usually, for a given query users have an approximate estima-
tion of their a priori probabilities compared to others, e.g., high or
6.2 «-USI low. The above analysis enables users to estimate their a posteri-

An issuer satisfieg-USI if from the attacker’s view each userin  ori probabilities with regards to different values®f This in turn
the generalised region has a probability smaller than the specifiedhelps them to choose an appropirate valueddo balance their
valuea to be the issuer. query privacy and quality of service.
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6.3 5-EBA and ,-MIA ;

A generalised region that satisfi8sSEBA ensures that the en-
tropy over users in the region is larger thaywhile v-MIA ensures
that the amount of uncertainty reduced is less than

In Fig. 7 and Fig. 9, we show that the entropies and mutual infor-
mation corresponding to the generalised regions by our algorithm
satisfy the definitions of-EBA and~-MIA. We can observe that
users’ a priori probabilities do not have impact on the outputs — the
two lines for users with high and low a priori probabilities almost
coincide. Similar tax-USI, this is because a generalised region is

Mutual information

determined by the valugs or v and issuers’ positions rather than 16 1'8 1'9 2'0 2'1 .
their a priori probabilities. The values of entropy (resp. mutual v

information) change sharply wheh (resp. ) is getting close to . . .

integers, this is due to the nature of entropy. Similarly, we show Figure 9: Mutual information ( y-MIA)

how the average area of generalised regions changes along with
and~ in Fig. 8 and Fig. 10, respectively — the area usually gets

doubled wherg and-~ are increased by one. Fig. 11 shows the average computation time of Alg. 2 ¢er
. US| ands-EBA) andgrid (for k-anonymity). In this figure, we use
6.4 Performance anaIyS|s a normalised valueorm to compare the performance for differ-

We illustrate the performance of Alg. 1 through Fig. 12. Al- ent metrics:norm = k for k-anonymity, whilenorm = 1/« for
though the clustering algorithm needs to run only once for a spatial a-USI andnorm = 2° for 3-EBA, respectively. The computa-
distribution for a givenk, we execute it for each query instead tion time of 3-EBA (11 — 12ms) is a bit larger thas-USI (about
in order to test the performance in the worst case when there hap-10ms) because computing entropy is a bit more complex. Further-
pens to be only one query issued. As algoritkaMeans has a more, asnorm increases, more time is needed fBEBA. This is
complexity depending ot for a givenk the computation time also determined by Alg. 3, where largerleads to more time to
increases wherk’ becomes larger. WheK = 5, the average traverse the region in order to find a possible partition. The imple-
computation time is about 140ms while it is around 250ms when mentation fory-MIA is based on the calculation of entropies, so in
K = 20. general the computation time 9fMIA is almost same ag-EBA.
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We can observe that the computation time of algoritmd is lin-
ear withk (seek-anonymity in Fig. 11), which confirms the results
in [20]. However, due to the complexity of the clustering algorithm
K-Means used in Alg. 1, the impact of is not obvious in Fig. 12.
There exist a few ways to improve the efficiency of our imple-

mentations such as using a better data structure and reducing re

dundant computation. With powerful servers deployed in practice,
our roposed generalisation algorithms are efficient enough to han-
dle concurrent queries and give real-time responses.

14

T T . T T T T T
k-anonymity -
o-US| ---—---—-

12

Computation time (ms)

0 1 1 1 1 1 1 1
10 20 30 40 50 60 70

norm

80

Figure 11: Computation time of the algorithms.

300
280
260
240
220
200
180
160
140 |, 1

120 L ' ' ' ' ' '

Computation time (ms)

Figure 12: Computation time of the algorithms.

7. CONCLUSION

In this paper, we consider a powerful attacker who can obtain
user profiles and has access to users’ real-time positions in the con-
text of LBSs. Assuming this stronger attacker model, we propose
new metrics to correctly measure users’ query privacy in LBSs,
includingk-ABS, a-USI, 8-EBA and~-MIA. For information the-
ory based metrics, the determination of users’ specified values is
not intuitive. However, users can use other metrics as references.
For instancek-anonymity corresponds tog k-EBA when the dis-
tribution for users to issue a query is (close to) uniform. Spacial
generalisation algorithms are developed to compute regions satis-
fying user’s privacy requirements specified in the proposed metrics.
Extensive experiments show our metrics are effective in balancing
privacy and quality of service in LBSs and the algorithms are effi-
cient to meet the requirement of real-time responses.

Our metrics are not exhaustive, and there exist other ways to
express query privacy. For instance, we can use min-entropy to
express information leakage [31] in a way analogous to mutual in-
formation: Io(X;Y) = Hoo(X) — Hoo(X | Y). Intuitively, it
measure the amount of min-entropy reduced after the attacker has
observed a generalised query. It is very interesting to study differ-
ential privacy [12] to see how it can be adopted for LBS scenarios.

_ Infuture, we want to develop an application for an LBS, making
use of the proposed metrics to protect users’ query privacy. This
can lead us to a better understanding of privacy challenges in more
realistic situations. The implementation of our algorithms can also
be improved as well, e.g., using a better clustering algorithm for
kABS. Another interesting direction is to study a more stronger
attacker model, where the attacker, for instance, can have access to
mobility patterns of users.
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APPENDIX
A. PROOF OF THM. 3

PrRooOF By Def. 3, Def. 4 and Def. 5, Alg. 2 computes a re-
gionr for a query{u, whereis(u, t), t, ¢) that satisfies a constraint
related to the issuer’s a posteriori probability, entropy, or mutual
information. Furthermore, for any € w/(r), the algorithm com-
putes the same region. We takeJSI as an example to show the
correctness of our algorithm and the proofs of the other two are
analogous.

By Def. 3, we have to prove (1) the a posteriori probability of
useru is smaller thany, i.e., p(u | (r,t,q)) < «; (2) for any
u' € wl(r), f({u', whereis(u',t),t,q)) = {r,t, q).

(1) At the line 5 of Alg. 2, we setl S to the original user seé¥
and the algorithm continues onlyiif satisfies the issuer’s require-
mentreq((u, whereisu, t, q)). Otherwise, itis impossible to return
a region satisfying the requirement. The def is only reassigned
to another set when a partition is made (line 8 or line 15 in Alg. 3).
The two sets by the partition satisfy the requirement and the one
containing the issuer is assignedAd. Thus, it is guaranteed that
the final region ensure®(u| (r, ¢, q)) < «.

(2) Letw' be any user in the generalised regioaf Alg. 2. Let
AS; and AS’; be the values oftS in the jth iteration of Alg. 2 of
u andv’, respectively. We show thatS; = AS’ by induction on
the number of iterations, i.g.



INDUCTION BASIS: Initially, we supposé/ meets the require-
ment. Then we havd S; = AS].

INDUCTION STER Assume atjth iterationAS; = AS};. We
have to show that the algorithm either terminates witbi; and
AS’, or enter the next iteration wittlS; 41 = AS’,,. The
equality thatdS; = AS’; is followed by thatmid(AS;, order) =
mid(AS7, order). There are three possible executions.

Case 1: ifleft(i) andright (i) of AS; and AS’ satisfy the
requirements (line 7 of Alg. 3), the part containing the issuer is
returned. ThuslS ;4. containsu as well as all other usersird(r),
includingu’. Thus,AS; 41 = AS) ;.

Case 2: if the check at line 7 of Alg. 3 fails, then the algorithm
switches to find from the beginning the first feasible partition. Sup-
pose the partition is made at the positiofor AS;. Thenz is also
the right position forAS’; asAS; = AS’. Because of the similar
reason in the previous possible execution, the same subset is set to
ASj+1 andAS;-_H. ThUS,ASj+1 = AS;-_H.

Case 3: if there are no possible partitions, Alg. 3 returns
AS;11 andAS’,, in both cases. Then the first order is changed
and Alg. 3 is called again. If one of the first two execution is taken,
with the analysis above, we haweS;;1 = ASQH. Otherwise,
Alg. 2 terminates withregion(AS;) andregion(AS’) which are
equal.



