
Engineering Highway Hierarchies

PETER SANDERS, Karlsruher Institut für Technologie
DOMINIK SCHULTES, Technische Hochschule Mittelhessen

Highway hierarchies exploit hierarchical properties inherent in real-world road networks to allow fast and
exact point-to-point shortest-path queries. A fast preprocessing routine iteratively performs two steps: First,
it removes edges that only appear on shortest paths close to source or target; second, it identifies low-degree
nodes and bypasses them by introducing shortcut edges. The resulting hierarchy of highway networks is then
used in a Dijkstra-like bidirectional query algorithm to considerably reduce the search space size without
losing exactness. The crucial fact is that ‘far away’ from source and target it is sufficient to consider only
high-level edges.

Experiments with road networks for a continent show that using a preprocessing time of around 15 min,
one can achieve a query time of around 1ms on a 2.0GHz AMD Opteron.

Highway hierarchies can be combined with goal-directed search, they can be extended to answer many-
to-many queries, and they can be used as a basis for other speed-up techniques (e.g., for transit-node routing
and highway-node routing).
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1. INTRODUCTION

Computing fastest routes in road networks from a given source to a given target loca-
tion is one of the showpieces of real-world applications of algorithmics. Many people
frequently use this functionality when planning trips with their cars. There are also
many applications like logistic planning or traffic simulation that need to solve a
huge number of shortest-path queries. In principle, we could use Dijkstra’s algorithm
[Dijkstra 1959], but for large road networks this would be far too slow. Therefore, there
is considerable interest in speed-up techniques for route planning. Most approaches,
including ours, assume that the road network is static (i.e., it does not change).1 Then,
we can allow some preprocessing that generates auxiliary data that can be used to

1More precisely, it changes so slowly that we can afford to rerun preprocessing from time to time.



accelerate subsequent queries from specific source nodes to specific target nodes. The
preprocessing should be sufficiently fast to deal even with very large road networks,
the auxiliary data should occupy only a moderate amount of space, and the queries
should be as fast as possible.

1.1. Related Work

A detailed overview on shortest-path speed-up techniques can be found in Delling
et al. [2009]. This article is an extension of the conference papers Sanders and Schultes
[2005, 2006]. Its main role is to provide proofs and to give additional experiments that
help understanding how the method works. Much of the material found here can also
be found Schultes [2008].

Bidirectional Search. A classical speed-up technique is bidirectional search, which
simultaneously searches forward from the source and backward from the target until
the search frontiers meet. Many more advanced speed-up techniques use bidirectional
search as an ingredient.

Goal Direction. Road networks allow effective goal-directed search using A∗ search
[Hart et al. 1968]: Lower bounds on the remaining distance to the target define a vertex
potential that directs search toward the target. This approach was recently shown to be
very effective if lower bounds are computed using precomputed shortest-path distances
to a carefully selected set of about 20 Landmark nodes [Goldberg and Harrelson 2005;
Goldberg and Werneck 2005] using the Triangle inequality (ALT).

The precomputed cluster distances (PCD) technique [Maue et al. 2006, 2009] also
uses precomputed distances for goal-directed search, yielding speed-ups comparable
to ALT but using less space. The network is partitioned into clusters and the shortest
connection between any pair of clusters is precomputed. Then, during a query, upper
and lower bounds can be derived that can be used to prune the search.

Another goal-directed approach is to precompute for each edge “signposts” that sup-
port the decision whether the target can possibly be reached on a shortest path via this
edge. During a query, only promising edges have to be considered. Various instantia-
tions of this general idea have been presented [Schulz et al. 1999; Wagner and Willhalm
2003; Lauther 2004, 2006; Köhler et al. 2005, 2006; Möhring et al. 2005, 2007]. While
these methods exhibit good query performance, preprocessing times are quite large.

Separators. Perhaps the most well-known property of road networks is that they are
almost planar (i.e, techniques developed for planar graphs will often also work for road
networks). Queries accurate within a factor (1 + ε) can be answered in near-constant
time using O((n log n)/ε) space and preprocessing time [Thorup 2001]. Recently, this
approach has been efficiently implemented and experimentally evaluated on a road
network with 1 million nodes [Muller and Zachariasen 2007]. While the query times
are very good (less than 20μs for ε = 0.01), the preprocessing time and space con-
sumption are quite high (2.5 hours and 2GB, respectively). Using O(n log3 n) space and
preprocessing time, query time O(

√
n log n) can be achieved [Fakcharoenphol and Rao

2001] for directed planar graphs without negative cycles.
Another previous approach is the separator-based multilevel method [Schulz et al.

1999, 2002]. The idea is to use a set of nodes V1 whose removal partitions the graph
G = G0 into small components. Then, consider the overlay graph G1 = (V1, E1) where
edges in E1 are shortcuts corresponding to shortest paths in G that do not have inner
nodes that belong to V1. Routing can now be restricted to G1 and the components
containing s and t, respectively. This process can be iterated yielding a multilevel
method. A limitation of this approach is that the graphs at higher levels become



much more dense than the input graphs, thus limiting the benefits gained from the
hierarchy. Also, computing small separators can become quite costly for large graphs.

Reach-Based Routing/REAL. Let R(v) := maxs,t∈V Rst(v) denote the reach of node
v, where Rst(v) := min(d(s, v), d(v, t)). Gutman [2004] observed that a shortest-path
search can be stopped at nodes with a reach too small to get to source or target
from there. Goldberg et al. [2006, 2007] have considerably strengthened this approach
by introducing various improvements, in particular a combination with ALT, yield-
ing the REAL algorithm. Its query performance is similar to our highway hierar-
chies, while the preprocessing times are usually worse; a comparison can be found in
Section 6.7.

Heuristics. In the last decades, commercial navigation systems were developed that
had to handle ever more detailed descriptions of road networks on rather low-powered
processors. Vendors resolved to heuristics still used today that do not give any perfor-
mance guarantees: A∗ search with estimates on the distance to the target rather than
lower bounds or heuristic hierarchical approaches [Ishikawa et al. 1991; Jagadeesh
et al. 2002].

1.2. Our Contributions

Our exact highway hierarchies (first published in Sanders and Schultes [2005, 2006])
are inspired by heuristic hierarchical approaches. It is a bidirectional speed-up tech-
nique. While the search is inside some local area around source or target, all roads of the
network are considered. Outside these areas, however, the search is restricted to “im-
portant” roads. This general idea can be iterated and applied to a hierarchy consisting
of several levels. The crucial point is the definition of “important streets.” In previous
heuristic variants, this definition is based on a classification of the streets according to
their type (motorway, national road, regional road, etc.). Such a classification requires
manual tuning of the data and a delicate trade-off between speed and suboptimality
of the computed routes. In our exact variant, however, nodes and edges are classified
fully automatically in a preprocessing step in such a way that all shortest paths are
preserved. By this means, we gain not only exactness, but also greater speed, since
we can build high-performance hierarchies consisting of many levels without worrying
about the quality of the results.

In the preprocessing phase, we alternate between two procedures: edge reduction
and node reduction. Edge reduction removes nonhighway edges, that is, edges that
only appear on shortest paths close to source or target. More specifically, every node v
has a neighborhood radius r(v) we are free to choose. An edge (u, v) is a highway edge if
it belongs to some shortest path from a node s to a node t such that (u, v) is neither fully
contained in the neighborhood of s nor in the neighborhood of t, that is, d(s, v) > r(s)
and d(u, t) > r(t). In all our experiments, neighborhood radii are chosen such that each
neighborhood contains a certain number H of nodes. H is a tuning parameter that can
be used to control the rate at which the network shrinks.

Node reduction (also called contraction) removes low-degree nodes by bypassing them
with newly introduced shortcut edges. In particular, all nodes of degree 1 and 2 are
removed by this process.

The query algorithm is very similar to bidirectional Dijkstra search with the dif-
ference that certain edges need not be expanded when the search is sufficiently far
from source or target. Highway hierarchies are the first speed-up technique that was
able handle the largest available road networks giving query times measured in mil-
liseconds. There are two main reasons for this success: Under the previously described
reduction routines, the road network shrinks in a geometric fashion from level to level
and remains sparse and near planar, that is, levels of the highway hierarchy are in



some sense self-similar. The other key property is that preprocessing can be done
using limited local searches starting from each node. Preprocessing is also the most
nontrivial aspect of highway hierarchies. In particular, long edges (e.g., long-distance
ferry connections) make simple-minded approaches far too slow. Instead, we use fast
heuristics that compute a superset of the set of highway edges.

Some further optimisations allow to drop the average query times below 1ms on a
2.0GHz machine—even for a road network with more than 30 million nodes. One of
these optimizations is an all-pairs distance table that we precompute for the topmost
level L so that forward and backward search can be stopped as soon as all entrance
points to level Lhave been found. Then, the remaining gap can be bridged by performing
a moderate number of simple table look-ups.

We cannot give a general worst-case bound better than Dijkstra’s. So far, this draw-
back applies to all other exact speed-up techniques, where an implementation is avail-
able, as well. However, in contrast to most of them, we can provide per-instance worst-
case guarantees, that is, for a given graph, we can determine an upper bound for the
search space size of any possible point-to-point query performing only a linear number
of unidirectional highway queries. These upper bounds are only a factor around three
away from the average search space sizes.

1.3. Subsequent Work

Various other speed-up techniques in some way build on highway hierarchies. Goldberg
et al. adopted the introduction of shortcuts in order to improve both preprocessing and
query times of the REAL algorithm. There is a many-to-many variant [Knopp et al.
2007] and a combination with ALT [Delling et al. 2006]. The same applies to highway-
node routing [Schultes and Sanders 2007], a more recent approach that can be used to
handle dynamic scenarios (e.g., traffic jams). Contraction hierarchies [Geisberger et al.
2008, 2012] can alternatively be viewed as an extreme variant of highway-node routing
with one level for each node or as an extreme variant of highway hierarchies where
we use only (a sophisticated form of) contraction. An even faster routing technique,
transit-node routing [Bast et al. 2007] can be viewed as a further development of the
distance table optimization described in Section 5.3. Furthermore, its most efficient
implementations rely on a hierarchical routing technique such as highway hierarchies
for fast preprocessing. The currently fastest method [Abraham et al. 2010] can be
viewed as an application of the many-to-many technique [Knopp et al. 2007] to all
nodes of the network: Preprocessing stores forward and backward search spaces of all
nodes. A query then intersects the search spaces of source and destination and selects
the best of the candidates defined by the nodes in the intersection.

An alternative, heuristic approach to dealing with dynamic scenarios, which is based
on highway hierarchies as well, has been developed by Nannicini et al. [2010]. Several
recent techniques for combining hierarchical techniques with goal directed techniques
[Bauer et al. 2008; Bauer and Delling 2008] use contraction as a crucial ingredient.
The same holds for recent techniques that also work for time-dependent travel times
[Delling 2008; Batz et al. 2009].

Several of the experimental techniques first used for highway hierarchies are now
routinely used in many works on route planning: the road networks used, the technique
for evaluating local queries used in Section 6.4, and the worst-case upper bounds
described in Section 6.6.

1.4. Outline

After beginning with some preliminaries in Section 2, we formally define the highway
hierarchy of a given graph in Section 3. Then, Section 4 deals with both procedures
of the preprocessing phase, the edge reduction (i.e., the construction of a highway



network) and the node reduction (i.e., the contraction of a highway network). The basic
query algorithm is introduced in Section 5. Furthermore, several optimizations are
presented and some advanced topics, such as outputting complete path descriptions and
dealing with turning restrictions, are discussed. In Section 6, we present a wide range
of experimental results, dealing with various real-world road networks, parameter
settings, and scenarios of application. We do not only give average query times, but
also a detailed analysis of queries with different degrees of difficulty, per-instance
worst-case upper bounds, and comparisons to other speed-up techniques.

2. PRELIMINARIES

Graphs and Paths. We expect a directed graph G = (V, E) with n nodes and m
edges (u, v) with nonnegative weights w(u, v) as input. The length w(P) of a path P
is the sum of the weights of the edges that belong to P. P∗ = 〈s, . . . , t〉 is a shortest
path if there is no path P ′ from s to t such that w(P ′) < w(P∗). The distance d(s, t)
between s and t is the length of a shortest path from s to t or ∞ if there is no path
from s to t. If P = 〈s, . . . , s′, u1, u2, . . . , uk, t′, . . . , t〉 is a path from s to t, then P|s′→t′ =
〈s′, u1, u2, . . . , uk, t′〉 denotes the subpath of P from s′ to t′. We use u ≺P v to denote that
a node u precedes2 a node v on a path P = 〈. . . , u, . . . , v, . . .〉; we just write u ≺ v if the
path P that is referred to is clear from the context.

Dijkstra’s Algorithm. Dijkstra’s algorithm [Dijkstra 1959] can be used to solve the
single-source shortest-path (SSSP) problem, that is, to compute the shortest paths from
a single source node s to all other nodes in a given graph. It is covered by virtually
any textbook on algorithms (e.g. Cormen et al. [2001] and Skiena [1998]), so that we
confine ourselves to introducing our terminology: Starting with the source node s as
root, Dijkstra’s algorithm grows a shortest-path tree that contains shortest paths from
s to all other nodes. During this process, each node of the graph is unreached, reached,
or settled. A node that already belongs to the tree is settled. If a node u is settled, a
shortest path P∗ from s to u has been found and the distance d(s, u) = w(P∗) is known.
A node that is adjacent to a settled node is reached. Note that a settled node is also
reached. If a node u is reached, a path P from s to u, which might not be the shortest
one, has been found and a tentative distance δ(u) = w(P) is known. A node u that is not
reached is unreached; for such a node, we have δ(u) = ∞.

In case the shortest paths in a graph are not unique, Dijkstra’s algorithm can be easily
modified to determine all shortest paths between s and any node u ∈ V . This means
that not a shortest-path tree is grown, but a shortest-path directed acyclic graph (DAG).

A bidirectional version of Dijkstra’s algorithm can be used to find a shortest path
from a given node s to a given node t. Two Dijkstra searches are executed in parallel:
One searches from the source node s in the original graph G = (V, E), also called
forward graph and denoted as

→
G = (V,

→
E ); another searches from the target node t

backward (i.e., it searches in the reverse graph
←−
G = (V,

←−
E ),

←−
E := {(v, u) | (u, v) ∈ E}).

The reverse graph
←−
G is also called backward graph. When for the first time a node

becomes settled for both searches, a shortest path from s to t has been found.

3. HIGHWAY HIERARCHY

A highway hierarchy of a graph G consists of several levels G0, G1, G2, . . . , GL, where the
number of levels L+1 is given. We will now provide an inductive definition of the levels.

—Base case (G′
0, G0). Level 0 (G0 = (V0, E0)) corresponds to the original graph G;

furthermore, we define G′
0 := G0.

2This does not necessarily mean that u is the direct predecessor of v.



N←(t)N→(s)
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Highway

Fig. 1. A shortest path from a node s to a node t. Edges that leave the neighborhood of s or t and edges that
are completely outside the neighborhoods of s and t are highway edges.

contracted network ("core")
= nonbypassed nodes
+ shortcuts

bypassed
nodes

Fig. 2. The core of a highway network consists of the subgraph induced by the set of nonbypassed nodes
and additional shortcut edges.

—First step (G′
� → G�+1, 0 ≤ � < L). For given neighborhood radii, we will define the

highway network G�+1 of a graph G′
�.

—Second step (G� → G′
�, 1 ≤ � ≤ L). For a given set B� ⊆ V� of bypassable nodes, we

will define the core G′
� of level �.

First Step (Highway Network). For each node u, we choose nonnegative neighborhood
radii r→

� (u) and r←
� (u) for the forward and backward graph, respectively. To avoid some

case distinctions, we set r→
� (u) and r←

� (u) to infinity for u �∈ V ′
� (Radius Property R1)

and for � = L (R2). In all other cases, neighborhood radii have to be �= ∞ (R3).
The level-� neighbourhood of a node u ∈ V ′

� isN→
� (u) := {v ∈ V ′

� | d�(u, v) ≤ r→
� (u)} with

respect to the forward graph and, analogously, N←
� (u) := {v ∈ V ′

� | d←
� (u, v) ≤ r←

� (u)}
with respect to the backward graph, where d�(u, v) denotes the distance from u to v in
the forward graph G� and d←

� (u, v) := d�(v, u) in the backward graph
←−
G�.

The highway network G�+1 = (V�+1, E�+1) of a graph G′
� is defined by the set E�+1 of

highway edges: An edge (u, v) ∈ E′
� belongs to E�+1 if and only if there are nodes s, t ∈ V ′

�

such that the edge (u, v) appears in some shortest path 〈s, . . . , u, v, . . . , t〉 from s to t in
G′

� with the property that v �∈ N→
� (s) and u �∈ N←

� (t). Figure 1 gives an example. The
set V�+1 is the set of nodes in V ′

� , which are adjacent to some edge in E�+1.

Second Step (Core). For a given set B� ⊆ V� of bypassable nodes, we define the set
S� of shortcut edges that bypass the nodes in B�: For each path P = 〈u, b1, b2, . . . , bk, v〉
with u, v ∈ V� \ B� and bi ∈ B�, 1 ≤ i ≤ k, the set S� contains an edge (u, v) with
w(u, v) = w(P). The core G′

� = (V ′
�, E′

�) of level � is defined in the following way: V ′
� :=

V�\B� and E′
� := (E�∩(V ′

� ×V ′
�))∪S�. This definition is illustrated in Figure 2. Removing

all core nodes from G� yields connected components of bypassed nodes.3

3Note that we do not check whether shortcuts are actually shortest paths. This is a simple solution, it
speeds up individual contraction steps, and suboptimal shortcuts will not be promoted to the subsequent



The level �(e) of an edge e is max{� | e ∈ E� ∪ S�}. For an edge (u, v), we usually write
just �(u, v) instead of �((u, v)). The highway hierarchy can be interpreted as a single
graph G := (V, E∪⋃L

i=1 Si), where each node and each edge has additional information
on its membership in the various sets V�, V ′

�, B�, E�, E′
�, and S�.

4. CONSTRUCTION

4.1. Computing the Highway Network

Neighborhood Radii. Let us fix any deterministic rule that decides which element
Dijkstra’s algorithm removes from the priority queue in the case that there is more
than one queued element with the smallest key. Then, during a Dijkstra search from a
given node u, all nodes are settled in a fixed order. The Dijkstra rank rku(v) of a node
v is the rank of v with regard to this order. u has Dijkstra rank rku(u) = 0, the closest
neighbor v1 of u has Dijkstra rank rku(v1) = 1, and so on.

We suggest the following strategy to set the neighbourhood radii. For this paragraph,
we interpret the graph G′

� as an undirected graph, that is, a directed edge (u, v) is
interpreted as an undirected edge {u, v} even if the edge (v, u) does not exist in the
directed graph. Let d↔

� (u, v) denote the distance between two nodes u and v in the
undirected graph. For a given parameter H�, for any node u ∈ V ′

� , we set r→
� (u) :=

r←
� (u) := d↔

� (u, v), where v is the node whose Dijkstra rank rku(v) (with regard to the
undirected graph) is H�. For any node u �∈ V ′

� , we set r→
� (u) := r←

� (u) := ∞ (to fulfill R1).
Originally, we wanted to apply the aforementioned strategy to the forward and back-

ward graph seperately in order to define the forward and backward radii, respectively.
However, it turned out that using the same value for both forward and backward radii
yields a similarly good performance, but needs only half the memory.

Fast Construction: Outline. Given a graph G′
�, we want to construct a highway net-

work G�+1. We start with an empty set of highway edges E�+1. For each node s0 ∈ V ′
� ,

two phases are performed: the forward construction of a partial shortest-path DAG B
(containing all shortest paths from s0 to any node u ∈ B) and the backward evaluation
of B. The construction is done by an SSSP search from s0; during the evaluation phase,
paths from the leaves of B to the root s0 are traversed and for each edge on these paths,
it is decided whether to add it to E�+1. The crucial part is the specification of an abort
criterion for the SSSP search in order to restrict it to a “local search.”

Phase 1: Construction of a Partial Shortest-Path DAG. A Dijkstra search from s0
is executed. In order to keep track of all shortest paths, for each node in the partial
shortest-path DAG B, we manage a list of (tentative) parents: When an edge (u, v)
is relaxed such that d�(s0, u) + w(u, v) = δ(v), then u is added to the list of tentative
parents of v. During the search, a reached node is either in the state active or passive.
The source node s0 is active; each node that is reached for the first time (insert) and
each reached node that is updated (decreaseKey) is set to active if and only if any of its
tentative parents is active. When a node p is settled, we consider all shortest paths P ′
from s0 to p, as depicted in Figure 3. The state of p is set to passive if

∀ shortest paths P ′ = 〈s0, . . . , p〉 :

s1 ≺ p ∧ p �∈ N→
� (s1) ∧ s0 �∈ N←

� (p) ∧ |P ′ ∩ N→
� (s1) ∩ N←

� (p)| ≤ 1. (1)

When no active unsettled node is left, the search is aborted and the growth of B stops.
An example for Phase 1 of the construction is given in Figure 4. The intuitive reason

for s1 (which is the first successor of s0 on the path P ′) to appear in the abort criterion

levels anyway. However, contraction hierarchies [Geisberger et al. 2008] demonstrated that removing non–
shortest path edges is surprisingly powerful, so in retrospect, this decision was a mistake.



N→(s1)

N←(p)
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Fig. 3. Abort criterion.

s1

s0s1

p

s1

p

p

N→(s1)
N→(s1)

N→(s1)

N←(p )

N←(p)

N←(p )

Fig. 4. An example of Phase 1 of the construction. The weight of an edge is the length of the line segment that
represents the edge in this figure. The neighborhood size H� is 3. An SSSP search is performed from s0. The
abort criterion applies three times, at nodes p, p′, and p′′. All edges that belong to s0’s partial shortest-path
tree are drawn as thick lines.

is the following: When we deactivate a node p during the search from s0, we decide to
ignore everything that lies behind p. We are free to do this because the abort criterion
ensures that s1 can take “responsibility” for the things that lie behind p, that is, further
important edges will be added during the search from s1. (Of course, s1 will refer a part
of its “responsibility” to its successor, and so on.)

Phase 2: Selection of the Highway Edges. During Phase 2, exactly all edges (u, v) are
added to E�+1 that lie on paths 〈s0, . . . , u, v, . . . , p〉 in the partial shortest-path DAG
B with the property that v �∈ N→

� (s0) and u �∈ N←
� (p). The example from Figure 4 is

continued in Figure 5.

THEOREM 4.1. An edge (u, v) ∈ E′
� is added to E�+1 by the construction algorithm iff

it belongs to some shortest path P = 〈s, . . . , u, v, . . . , t〉 and v �∈ N→
� (s) and u �∈ N←

� (t).

PROOF. In this proof, we will refer to the following Neighborhood Property N1 that fol-
lows directly from the neighborhood definition: Consider a shortest path 〈s, . . . , u, . . . , t〉
in G′

�. Then, t ∈ N→
� (s) implies u ∈ N→

� (s) and s ∈ N←
� (t) implies u ∈ N←

� (t).



s0

t̂0

t0

ẗ0

t0

t0

N→(s0)
N←(t0)

N←(t0)

N←(t0)

N←(t̂0)

N←(ẗ0)

Fig. 5. An example of Phase 2 of the construction. s0’s partial shortest-path tree (thick lines) has five leaves
t0, t′0, t′′0 , t̂0, and ẗ0. The edges that are added to E�+1 are represented as solid thick lines.

⇐) Consider the node s0 on P|s→u such that v �∈ N→
� (s0) and d�(s0, v) is minimal. Such

a node s0 exists because the condition v �∈ N→
� (s0) is always fulfilled for s0 = s. The

direct successor of s0 on P is denoted by s1. Note that v ∈ N→
� (s1) [*]. We show that

the edge (u, v) is added to E�+1 when Phases 1 and 2 are executed from s0. Due to the
specification of Phase 2, it is sufficient to prove that after Phase 1 has been completed,
the partial shortest-path DAG4 B contains a node p ∈ P|s0→t such that v � p and
u �∈ N←

� (p).
If t ∈ B, this statement is obviously fulfilled for p := t, since v � t and u �∈ N←

� (t).
Otherwise (t �∈ B), the search is not continued from some node t0 ≺ t on P|s0→t. We
can conclude that t0 is passive because, otherwise, its successor on P|s0→t would adopt
its active state and the search would not be aborted at that time. Since s0 is active
and t0 is passive, either t0 or one of its ancestors must have been switched from active
to passive. Let p denote the first passive node on P|s0→t = 〈s0, s1, . . . , p, . . . , t0, . . . , t〉.
Due to the definition of the abort condition, we have s1 ≺ p ∧ p �∈ N→

� (s1) ∧ s0 �∈
N←

� (p) ∧ |P ′ ∩ N→
� (s1) ∩ N←

� (p)| ≤ 1 [**], where P ′ = P|s0→p. The fact that v ∈ N→
� (s1)

[see *] and p �∈ N→
� (s1) [see **] imply v ≺ p due to N1. In order to obtain a contradiction,

we assume u ∈ N←
� (p). Since s0 �∈ N←

� (p) [see **], this implies s0 ≺ u by N1. Hence,
s1 � u. Because v ∈ N→

� (s1) [see *], we obtain u ∈ N→
� (s1) due to N1. Similarly, we get

v ∈ N←
� (p), since v ≺ p and u ∈ N←

� (p). Thus, {u, v} ⊆ P ′ ∩ N→
� (s1) ∩ N←

� (p). Therefore,
|P ′ ∩ N→

� (s1) ∩ N←
� (p)| ≥ 2, which is a contradiction to [**]. We can conclude that

u �∈ N←
� (p).

⇒) Since each path 〈s0, . . . , u, v, . . . , p〉 in B is a shortest path, the claim follows
directly from the specification of Phase 2.

4For the shortest-path DAG we keep the terminology that is usually applied to shortest-path trees: A parent
of a node in a shortest-path DAG is an adjacent node closer to the source node. Terms like children and
descendants are used consistently.



Algorithmic Details: Phase 1. For an efficient implementation, we keep track of a
border distance b(x) and a reference distance a(x) for each node x in B. Along a path
P ′, as depicted in Figure 3, we assign b(x) the distance from the root to the border of
the neighborhood of s1 as soon as s1 is settled. This value is passed to all successors on
the path, which allows to determine the first node w outside N→

� (s1), that is, its direct
predecessor v is the last node inside N→

� (s1). In order to fulfill the abort condition, we
have to make sure that v is the only node on P ′ within N→

� (s1) ∩ N←
� (p). Therefore,

we want to check whether v’s direct predecessor u belongs to N←
� (p). To allow an easy

check, we determine, store, and propagate the reference distance from s0 to u as soon as
w is settled. Knowing the reference distance d�(s0, u), the current distance d�(s0, p) and
p’s neighborhood radius r←

� (p), checking u �∈ N←
� (p) is then straightforward. If there

are several shortest paths from s0 to some node x, we determine appropriate maxima
of the involved border and reference distances.

More formally, for any node x in B, π (x) denotes the set of parent nodes in B. To
avoid some case distinctions, we set π (s0) := {s0}, that is, the root is its own parent.
For the root s0, we set b(s0) := 0 and a(s0) := ∞. For any other node x �= s0, we define
b′(x) := d�(s0, x) + r→

� (x) if s0 ∈ π (x), and 0, otherwise; b(x) := max({b′(x)} ∪ {b(y) | y ∈
π (x)}); a′(x) := max{a(y) | y ∈ π (x)}; and a(x) := max{d�(s0, u) | y ∈ π (x) ∧ u ∈ π (y)} if
a′(x) = ∞ ∧ d�(s0, x) > b(x), and a′(x), otherwise.

Then, we can easily check the following abort criterion at a settled node p:

a(p) + r←
� (p) < d�(s0, p). (2)

LEMMA 4.2. (2) implies (1).

PROOF. We prove the contraposition “¬ (1) implies ¬ (2)”, that is, we assume that
there is some shortest path P ′ from s0 to p such that p � s1 ∨ p ∈ N→

� (s1) ∨ s0 ∈
N←

� (p) ∨ |P ′ ∩ N→
� (s1) ∩ N←

� (p)| ≥ 2 and show that a(p) + r←
� (p) ≥ d�(s0, p).

Case 1. p � s1. If p = s0, then a(p) = ∞, which yields ¬ (2). Otherwise (p = s1),
b(p) ≥ d�(s0, p)+r→

� (p), a′(p) = ∞, and a(p) = a′(p), since d�(s0, p) ≤ b(p), which implies
¬ (2).
Case 2. s1 ≺ p∧ p ∈ N→

� (s1). Due to N1 (see proof of Theorem 4.1), we have ∀x, s1 � x �
p : x ∈ N→

� (s1). Hence, ∀x : d�(s0, x) ≤ d�(s0, s1) + r→
� (s1) ≤ b(x). By an inductive proof,

we can show that a(p) = ∞, which yields ¬ (2).
Case 3. s1 ≺ p ∧ p �∈ N→

� (s1) ∧ s0 ∈ N←
� (p). We have d�(s0, p) ≤ r←

� (p), which directly
implies ¬ (2).
Case 4. s1 ≺ p∧ p �∈ N→

� (s1) ∧ s0 �∈ N←
� (p) ∧ |P ′ ∩N→

� (s1) ∩N←
� (p)| ≥ 2. The assumption

of Case 4 implies that there are two nodes u and v, s1 � u ≺ v � p, that belong to
P ′ ∩ N→

� (s1) ∩ N←
� (p). If a(p) = ∞, we directly have ¬ (2). Otherwise, there has to be

some node w on P ′ such that a′(w) = ∞ ∧ d�(s0, w) > b(w). Obviously, w �= s0. Consider
such a node w that maximizes d�(s0, w), that is, for all nodes x � w the aforementioned
condition does not hold, which implies a(x) = a′(x) ≥ a(w). In particular, a(p) ≥ a(w).
We have b(w) ≥ d�(s0, s1)+r→

� (s1). We can conclude that d�(s0, w) > d�(s0, s1)+r→
� (s1) and,

thus, w �∈ N→
� (s1). We obtain, by N1, u ≺ v ≺ w. Hence, a(w) ≥ d�(s0, u), which implies

a(p) ≥ d�(s0, u). Furthermore, since u ∈ N←
� (p), we have r←

� (p) ≥ d�(u, p). Adding up
the last two inequalities yields a(p) + r←

� (p) ≥ d�(s0, p), which corresponds to ¬ (2).

Algorithmic Details: Phase 2. For a node u ∈ B, we define B(u) := {u} ∪ {v | v is a
descendant of u in B} and the slack �(u) := minw∈B(u)

(
r←
� (w) − d�(u, w)

)
. For a leaf b,

we have B(b) = {b} and �(b) = r←
� (b). The slack of an inner node u can be computed

using only the slacks of its children C(u): �(u) = min
(
r←
� (u), minc∈C(u) �c(u)

)
, where

�c(u) := �(c) − d�(u, c). This leads to an equivalent, recursive definition.
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Fig. 6. An example of the slack-based method that realizes Phase 2 of the construction. The process is shown
only for a part of the tree. As before, the weight of an edge is the length of the line that represents the edge
in this figure. For the sake of transparency, the (rounded) weights are given explicitly for the relevant edges.
Furthermore, the slacks of the involved nodes are given. Edges that are added to E�+1 are solid edges that
are not added dotted.

The tentative slacks �̂(u) of all nodes u in B are set to r←
� (u). We process all nodes

in the reverse order as they were settled. This guarantees that all descendants of
some node u have been processed before u is processed. We can stop as soon as a node
u ∈ N→

� (s0) is encountered. We maintain the invariant that the tentative slack �̂(u)
of an element u that is processed is equal to the actual slack �(u). When a node u
is processed, for each parent p of u in B, we perform the following steps: compute
�u(p) = �(u) − d�(p, u); if �u(p) < 0, the edge (p, u) is added to E�+1; if �u(p) < �̂(p),
the tentative slack �̂(p) is set to �u(p). Figure 6 gives an example.

THEOREM 4.3. An edge (u, v) is added to E�+1 by the previously described slack-based
method if and only if it lies on a path 〈s0, . . . , u, v, . . . , p〉 in the partial shortest-path
DAG B with the property that v �∈ N→

� (s0) and u �∈ N←
� (p).

PROOF. ⇐) From the definition of the slack of a node, it follows that

�v(u) = �(v) − d�(u, v) ≤ r←
� (p) − d�(v, p) − d�(u, v) = r←

� (p) − d�(u, p) < 0

because u �∈ N←
� (p). Since v �∈ N→

� (s0), v is processed at some point. Then, �v(u) is
computed and, since it is negative, the edge (u, v) is added to E�+1.

⇒) Only edges that belong to a path in B from s0 to a node p are considered. The
condition v �∈ N→

� (s0) is never violated because the traversal from the leaves to the
root, and consequently, the addition of edges to E�+1, is not continued when a node
v ∈ N→

� (s0) is encountered. If an edge (u, v) is added, the condition �v(u) < 0 is fulfilled.
Hence, �(u) = minw∈B(u)

(
r←
� (w) − d�(u, w)

) ≤ �v(u) < 0. Therefore, there is a node p
such that d�(u, p) > r←

� (p), i.e., u �∈ N←
� (p).

THEOREM 4.4. Let VB denote the set of nodes of s0’s partial shortest-path DAG B. Let
GB = (VB, EB) denote the subgraph of G′

� that is vertex induced by VB. The complexity
of Phases 1 and 2 started from s0 is TDijkstra(|GB|).



PROOF. The number of nodes of GB is denoted by n′, the number of edges by m′. The
complexity of Phase 1 corresponds to the complexity of an SSSP search in GB started
from s0, that is, O(n′ + m′) outside the priority queue plus n′ insert and n′ deleteMin
operations plus at most m′ decreaseKey operations. During Phase 2, each node and each
edge is processed at most once, that is, Phase 2 runs in O(n′ + m′).

Speeding Up the Highway Network Construction. Even a single active endpoint of a
long edge can cause a large search space during construction, although most nodes of
the search space might already be passive.5 To face this undesirable effect, we declare
an active node v to be a maverick if d�(s0, v) > f ·r→

� (s0), where f is a parameter. When all
active nodes are mavericks, the search from passive nodes is no longer continued. This
way, the construction process is accelerated and E�+1 becomes a superset of the highway
network. Hence, queries will be slower, but they will still compute exact shortest paths.
The maverick factor f enables us to adjust the trade-off between construction and
query time.

4.2. Computing the Core

In order to obtain the core of a highway network, we contract it, which yields several
advantages. The search space during the queries gets smaller because bypassed nodes
are not touched, and the construction process gets faster because the next iteration
only deals with the nodes that have not been bypassed. Furthermore, a more effec-
tive contraction allows us to use smaller neighborhood sizes without compromising
the shrinking of the highway networks. This improves both construction and query
times. However, bypassing nodes involves the creation of shortcuts, that is, edges that
represent the bypasses. Due to these shortcuts, the average degree of the graph is
increased and the memory consumption grows. In particular, more edges have to be
relaxed during the queries. Therefore, we have to carefully select nodes so that the
benefits of bypassing them outweigh the drawbacks.

We give an iterative algorithm that combines the selection of the bypassable nodes
B� with the creation of the corresponding shortcuts. We manage a stack that contains
all nodes that have to be considered, initially all nodes from V�. As long as the stack
is not empty, we deal with the topmost node u. We check the bypassability criterion
#shortcuts ≤ c · (

degin(u) + degout(u)
)
, which compares the number of shortcuts that

would be created when u was bypassed with the sum of the in- and outdegree of u.
The magnitude of the contraction is determined by the parameter c. If the criterion is
fulfilled, the node is bypassed, that is, it is added to B� and the appropriate shortcuts
are created. Note that the creation of the shortcuts alters the degree of the correspond-
ing endpoints so that bypassing one node can influence the bypassability criterion of
another node. Therefore, all adjacent nodes that have been removed from the stack
earlier, that have been bypassed yet, and that are bypassable now are pushed on the
stack once again.

THEOREM 4.5. If c < 2, |E′
�| = O(|V�| + |E�|).

PROOF. If a node u is bypassed, the number of edges in the (tentative) core is increased
by Du := #shortcuts−degin(u)−degout(u). (We have to subtract degin(u) and degout(u),
since the edges incident to u no longer belong to the core.) Note that #shortcuts =
degin(u) · degout(u) − deg↔(u), where deg↔(u) denotes the number of adjacent nodes v
that are connected to u by both an edge (u, v) and an edge (v, u). (We have to subtract

5A real-world example is a search that starts in Italy, at Genoa Harbor. We relax the long-distance ferry edge
Genoa-Palermo so that, instead of a local area, we would search almost the entire country, since we cannot
abort until the arrival point of the ferry has been settled and deactivated.



deg↔(u) to account for the fact that a “shortcut” that would be a self-loop is not created.)
We can conclude that Du ≤ degin(u) · degout(u) − degin(u) − degout(u). If degin(u) ≤ 1
or degout(u) ≤ 1, we obtain Du ≤ 0. Now, we deal with the case that degin(u) ≥ 2
and degout(u) ≥ 2. Since deg↔(u) ≤ min(degin(u), degout(u)), a node that fulfills the
bypassability criterion also fulfills degin(u) · degout(u) ≤ c · (

degin(u) + degout(u)
) +

min(degin(u), degout(u)). The inequality x · y ≤ c_(x + y) + min(x, y) has only finitely
many solutions (x, y) for x, y ∈ N, x, y ≥ 2 if c ∈ R is a constant less than 2. Consider
the solution (x, y) that maximizes k := x · y. If there is no solution, take k := 0. Note
that k is a constant that only depends on the constant c. We can conclude that Du ≤ k.

Each node from V� is bypassed at most once. For each bypassed node, the number of
edges in the (tentative) core is increased by at most k. Therefore, |E′

�| ≤ k· |V�|+|E�|.

If we used #shortcuts ≤ max
(
degin(u), degout(u)

)
as bypassability criterion, we

would get a contraction that would be very similar to our earlier trees-and-lines method
[Sanders and Schultes 2005]. The more general version presented earlier allows a more
aggressive contraction by setting c appropriately.

Limiting Component Sizes. To reduce the observed maximum query time, we imple-
ment a limit on the number of hops a shortcut may represent. By this means, the sizes
of the components of bypassed nodes are reduced—in particular, the first contraction
step tended to create quite large components of bypassed nodes so that it took a long
time to leave such a component when the search was started from within it.

5. QUERY

Our highway query algorithm is a modification of the bidirectional version of Dijkstra’s
algorithm. We will see that in contrast to the construction, during the query we need
not keep track of ambiguous shortest paths. Let us first assume that the search is not
aborted when both search scopes meet. This matter is dealt with in Section 5.3. We only
describe the modifications of the forward search, since forward and backward search
are symmetric. In addition to the distance from the source, each node is associated with
the search level and the gap to the “next applicable neighborhood border.” The search
starts at the source node s in level 0. First, a local search in the neighborhood of s is
performed, that is, the gap to the next border is set to the neighborhood radius of s in
level 0. When a node v is settled, it adopts the gap of its parent u minus the length of
the edge (u, v). As long as we stay inside the current neighborhood, everything works
as usual. However, if an edge (u, v) crosses the neighborhood border (i.e., the length
of the edge is greater than the gap), we switch to a higher search level �. The node u
becomes an entrance point to the higher level. If the level of the edge (u, v) is less than
the new search level �, the edge is not relaxed—this is one of the two restrictions that
cause the speed-up in comparison to Dijkstra’s algorithm (Restriction 1). Otherwise,
the edge is relaxed: v adopts the new search level � and the gap to the border of the
neighborhood of u in level �, since u is the corresponding entrance point to level �.

We have to deal with the special case that an entrance point to level � does not
belong to the core of level �. In this case, the search is continued inside a component of
bypassed nodes until the level-� core is entered, that is, a node u ∈ V ′

� is settled. At this
point, u is assigned the gap to the border of the level-� neighborhood of u. Note that
before the core is entered (i.e., inside a component of bypassed nodes), the gap has been
infinity (according to R1). To increase the speed-up, we introduce another restriction
(Restriction 2): When a node u ∈ V ′

� is settled, all edges (u, v) that lead to a bypassed
node v ∈ B� in search level � are not relaxed, that is, once entered the core, we will
never leave it again.
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Fig. 7. A detailed example of a highway query. Only the forward search is depicted. Nodes in levels 0, 1, and
2 are vertically striped, solid, and horizontally striped, respectively. In level 1, dark shades represent core
nodes, light shades bypassed nodes. Edges in level 0, 1, and 2 are dashed, solid, and dotted, respectively.

Figure 7 gives a detailed example of the forward search of a highway query. The
search starts at node s. The gap of s is initialized to the distance from s to the border
of the neighborhood of s in level 0. Within the neighborhood of s, the search process
corresponds to a standard Dijkstra search. The edge that leads to u leaves the neigh-
borhood. It is not relaxed due to Restriction 1 because the edge belongs only to level
0. In contrast, the edge that leaves s1 is relaxed because its level allows to switch to
level 1 in the search process. s1 and its direct successor are bypassed nodes in level
1. Their neighborhoods are unbounded, that is, their neighborhood radii are infinity
so that the gap is set to infinity as well. At s′

1, we leave the component of bypassed
nodes and enter the core of level 1. Now, the search is continued in the core of level 1
within the neighborhood of s′

1. The gap is set appropriately. Note that the edge to v is
not relaxed due to Restriction 2, since v is a bypassed node. Instead, the direct shortcut
to s2 is used. Here, we switch to level 2. In this case, we do not enter the next level
through a component of bypassed nodes, but we get directly into the core. The search
is continued in the core of level 2 within the neighborhood of s′

2, and so on.
Despite Restriction 1, we always find the optimal path, since the construction of the

highway hierarchy guarantees that the levels of the edges that belong to the optimal
path are sufficiently high so that these edges are not skipped. Restriction 2 does not
invalidate the correctness of the algorithm, since we have introduced shortcuts that
bypass the nodes that do not belong to the core. Hence, we can use these shortcuts
instead of the original paths.

5.1. The Basic Algorithm

We use two priority queues
→
Q and

←−
Q , one for the forward search and one for the

backward search. For each search direction, a node u is associated with a triple
(δ(u), �(u), gap(u)), which we often call key. It consists of the (tentative) distance δ(u)
from s (or t) to u, the search level �(u), and the gap gap(u) to the next applicable neigh-
borhood border. Only the first component δ(u) is used to decide the priority within the
queue.6 We use the remaining two components for a tie-breaking rule in the case that
the same node is reached with two different keys k := (δ, �, gap) and k′ := (δ′, �′, gap′)
such that δ = δ′. Then, we prefer k to k′ if and only if � > �′ or � = �′ ∧ gap < gap′. Note
that any other tie-breaking rule (or even omitting an explicit rule) will yield a correct

6If the search direction is not clear from the context, we will explicitly write →
δ (u) and ←−

δ (u) to distinguish
between u’s priority in →Q and ←−Q .



Fig. 8. The highway query algorithm. Differences to the bidirectional version of Dijkstra’s algorithm are
marked: Additional and modified lines have a framed line number; in modified lines, the modifications are
underlined.

algorithm. However, the chosen rule is most aggressive and has a positive effect on the
performance. Figure 8 contains the pseudocode of the highway query algorithm.

Remarks.

—Line 4. The correctness of the algorithm does not depend on the strategy that de-
termines the order in which the forward and the backward searches are processed.
However, the choice of the strategy can affect the running time in the case that an
abort-on-success criterion is applied (see Section 5.3).

—Line 7. This line deals with the special case that the entrance point did not belong
to the core when the current search level � was entered, that is, the gap was set to
infinity. In this case, the gap is set to r�

�(u)(u). This is correct even if u does not belong
to the core, either, because in this case the gap stays at infinity.

—Line 9. It might be necessary to go upward more than one level in a single step.
—Line 13. In the decreaseKey operation, the old key of v is only replaced by k if the

above mentioned condition is fulfilled, that is, if (i) the tentative distance is improved
or (ii) stays unchanged while the tie-breaking rule succeeds. In the latter case (ii),
no priority queue operation is invoked, since the priority (the tentative distance) has
not changed.7

Algorithmic Details. If we group the outgoing edges (u, v) of each node u by level, we
can avoid looking at edges (u, v) in levels �(u, v) < �(u) since Restriction 1 would always

7That way, we also avoid problems that otherwise could arise when an already settled node is reached once
again via a zero weight edge.
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Fig. 9. Example for a forward labeling of a path P. The labels s0 and s′
0 are set to s (base case). The node s1

is the last neighbour of s′
0 (denoted by →ω P

0 (s′
0)), the node s′

1 is the first level-1 core node (denoted by →α P
1 (s1)),

s2 is the last neighbour of s′
1, and so on.

apply to them. We can do without explicitly testing Restriction 2 if all edges (u, v) with
k := �(u, v), u ∈ V ′

k, and v ∈ Bk have been downgraded to level k − 1. Then, the test of
Restriction 1 also covers Restriction 2.

5.2. Proof of Correctness

Difficulties. Although the basic concepts (e.g., the definition of the highway network)
and the algorithm are quite simple, the proof of correctness gets surprisingly compli-
cated. The main reason for that is the fact that we cannot prove that the shortest path
is found, since there might be several shortest paths of the same length. We could
assume that the shortest paths in the input are unique or that the uniqueness can be
guaranteed by adding small fractions to the edge weights, as it is done by other authors
who face similar problems. However, the former would be too restrictive, since usually,
in real-world road networks, there are at least a few ambiguous instances, and a reli-
able realization of the latter would be rather difficult. Furthermore, the introduction
of shortcuts adds a lot of ambiguity even if it was not present in the input.

Therefore, if we pick any shortest path P to show that it is found by the query
algorithm, it can happen that a node u on P is settled from another node than its
predecessor on P. Of course, in this case, u will still be assigned the optimal distance
from the source, but the search level and the distance to the next neighborhood border
may be different than expected so that we have to adapt to the new situation.

Outline. We face the above-mentioned difficulties in the following way: First, we
show that the algorithm terminates and deal with the special case that no path from
the source to the target exists (Section A.1). Then, we introduce some definitions and
concepts that will be useful in the main part of the correctness proof. In Section A.2, we
define for a given path, a corresponding contracted path and an expanded path, where
subpaths in the original graph are replaced by shortcuts or vice versa, respectively.
In Section A.3, we first define the concepts of last neighbor and first core node, which,
iteratively applied, lead to an unidirectional labeling of a given path. Figure 9 gives an
example. Applying a forward and a backward labeling to the same path then allows the
definition of a meeting level and a meeting point (Figure 10). The latter requires a case
distinction, since the forward and backward labeling may either meet in some core or
in some component of bypassed nodes. Finally, we introduce the term highway path, a
path whose properties exactly comply with the two restrictions of the query algorithm.
Figure 11 gives an example.

In Section A.4, we deal with the reachability along a highway path. Basically, we
show that if the query has settled some node u on a highway path with the appropriate
key, then u’s successor on that path can be reached from u with the appropriate key as
well (Lemmas A.12 and A.13, which are proved using the auxiliary Lemma A.11). In
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Fig. 10. Example for a forward and backward labeling (depicted below and above the nodes, respectively).
The meeting level is 2, the meeting point is p.
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Fig. 11. Example for a highway path. Each edge belongs at least to the given level, each node at least to the
given core level.

other words, if there is a highway path, the query can follow the path (at least if there
was no ambiguity).

In Section A.5, we use all concepts and lemmas introduced in the preceding sections
to conduct the actual correctness proof, where we also deal with ambiguous paths.
The general idea is to say that at any point the query algorithm has some valid state
consisting of a shortest s-t-path P and two nodes u � u that split P into three parts such
that the first and the third part are paths in the forward and backward search tree,
respectively, and the second part is a contracted path. For such a valid state, we can
prove that any node on the first and third part has been settled with the appropriate
key (Lemma A.16). Furthermore, we can show that P is a highway path (Lemma A.17).

When the algorithm is started, the nodes s and t are settled and some shortest s-t-
path P in the original graph exists. (The special case that no s-t-path exists has already
been dealt with.) Consequently, our initial state is composed of the contracted version
of P and the nodes s and t, which makes it a valid state. A final state is a valid state
where forward and backward search have met, that is, they have settled a common
node u = u. Originally, we wanted to show that a shortest path is found. Now, we see
(in Lemma A.19) that it is sufficient to prove that a final state is reached.

We have already defined the meeting point p on a path. We fall back on this definition
and intend to prove that forward and backward search meet at p. When we look at
any valid nonfinal state, it is obvious that at least one search direction can proceed to
get closer to p, that is, we have u ≺ p or p ≺ u (Lemma A.21). We pick such a non-
blocked search direction. Let us assume without loss of generality. that we picked the
forward direction. We know that u has been settled with the appropriate key and that
P is an optimal highway path (Lemmas A.16 and A.17). Due to the “reachability along
a highway path” (Lemmas A.12 and A.13), we can conclude that u’s successor v can
be reached with the appropriate key as well, in particular with the optimal distance
from s. A node that can be reached with the optimal distance will also be settled at
some point with the optimal distance. However, we cannot be sure that v is settled
with u as its parent, since the shortest path from s to v might be ambiguous. At this
point, the state concept gets handy: We just replace the subpath of P from s to v with
the path in the search tree that actually has been taken yielding a path P+; we obtain
a new state that consists of P+ and the nodes v and u. We prove that the new state is
valid (Lemma A.23).



Thus, we can show that from any valid nonfinal state another valid state is reached
at some point. We also show in Lemma A.23 that we cannot get into some cycle of
states, since in each step, the length of the middle part of the path is decreased. Hence,
starting from the initial state, eventually a final state is reached so that a shortest
path is found (Theorem A.24).

The actual proof can be found in Appendix A.

5.3. Optimisations

Rearranging Nodes. Similar to Goldberg et al. [2007], after the construction has been
completed, we rearrange the nodes by core level, which improves locality for the search
in higher levels and, thus, reduces the number of cache misses. In our experiments,
this results in 14% to 22% smaller query time.

Speeding Up the Search in the Topmost Level. Let us assume that we have a distance
table that contains, for any node pair s, t ∈ V ′

L, the optimal distance dL(s, t). Such a
table can be precomputed during the preprocessing phase by |V ′

L| SSSP searches in
G′

L. Using the distance table, we do not have to search in level L. Instead, when we
arrive at a node u ∈ V ′

L that leads to level L, we add u to the initially empty set
→
I or←−

I depending on the search direction; we do not relax the edge that leads to level L.
After all entrance points have been encountered, we consider all pairs (u, v) ∈ →

I × ←−
I

and compute the minimum path length D := →
δ (u) + dL(u, v) + ←−

δ (v). Then, the length
of the shortest s-t-path is the minimum of D and the length d′ of the tentative shortest
path found so far (in case that the search scopes have already met in a level < L).

For the sake of a simple incorporation of this optimization into the highway query
algorithm, we slightly revise the properties R1 and R2: we use two distinguishable
values ∞1 and ∞2 that are larger than any real number and set r�

� (u) := ∞1 for any �
and any node u �∈ V ′

� (R1) and r�
L (u) := ∞2 for any node u ∈ V ′

L (R2). Then, we just add
two lines to Figure 8 and modify Line 16:

between Lines 7 and 8:
7a if gap′ �= ∞1 ∧ �(u) = L then {

�
I :=�

I ∪ {u}; continue;}
between Lines 11 and 12:
11a if gap �= ∞1 ∧ � = L ∧ � > �(u) then {

�
I :=�

I ∪ {u}; continue;}

16 return min({d′} ∪ {→δ (u) + dL(u, v) + ←−
δ (v) | u ∈ →

I , v ∈ ←−
I });

In Section A.6, we show that our proof of correctness still holds when the distance table
optimisation is applied.

Abort on Success. In the bidirectional version of Dijkstra’s algorithm, we can abort
the search as soon as both search scopes meet. Unfortunately, this would be incorrect
for our highway query algorithm. Therefore, we use a more conservative criterion:
After a tentative shortest path P ′ has been encountered (i.e., after both search scopes
have met), the forward (backward) search is not continued if the minimum element
u of the forward (backward) queue has a key δ(u) ≥ w(P ′). Obviously, the correctness
of the algorithm is not invalidated by this abort criterion. In Sanders and Schultes
[2005], we tried using more sophisticated criteria in order to reduce the search space.
However, it turned out that this simple criterion, since it can be evaluated so efficiently,
yields better query times despite a somewhat larger search space. Note that when the
distance table optimization is used and random queries are performed, Our simple
abort criterion is very close to an optimal criterion even with respect to the search



space size: Our experiments indicate that less than 1% of the search space is visited
after the first meeting of forward and backward search.

5.4. Outputting Complete Path Descriptions

The highway query algorithm in Figure 8 only computes the distance from s to t.
In order to determine the actual shortest path, we need to store pointers from each
node to its parent in the search tree. Note that the algorithm could be easily modified to
compute all shortest paths between s and t by just storing more than one parent pointer
in case of ambiguities. However, subsequently, we only deal with a single shortest path.

We face two problems in order to determine a complete description of the shortest
path: (i) We have to bridge the gap between the forward and backward topmost core
entrance points (in case that the distance table optimisation is used), and (ii) we have
to expand the shortcuts on the computed path to obtain the corresponding subpaths in
the original graph.

Problem (i) can be solved using a simple algorithm: We start with the forward core
entrance point u. As long as the backward entrance point v has not been reached, we
consider all outgoing edges (u, w) in the topmost core and check whether dL(u, w) +
dL(w, v) = dL(u, v); we pick an edge (u, w) that fulfils the equation, and we set u := w.
The check can be performed using the distance table. It allows us to greedily determine
the next hop that leads to the backward entrance point.

Problem (ii) can be solved without using any extra data (Variant 1). For each shortcut
(u, v) ∈ S� on the shortest path, we perform a search from u to v in order to determine
the represented path in G�. This search can be accelerated by using the knowledge that
the first edge of the path enters a component C of bypassed nodes, the last edge leads
to v, and all other edges are situated within the component C. The represented path in
G� may contain shortcuts from sets Sk, k < �, which are expanded recursively. In the
end, we obtain the represented path from u to v in the original graph.

However, if a fast output routine is required, it is necessary to spend some addi-
tional space to accelerate the unpacking process. We use a rather sophisticated data
structure to represent unpacking information for the shortcuts in a space-efficient way
(Variant 2). In particular, we do not store a sequence of node IDs that describe a path
that corresponds to a shortcut, but we store only hop indices: For each edge (u, v) on the
path that should be represented, we store its rank within the ordered group of edges
that leave u. Since in most cases the degree of a node is very small, these hop indices
can be stored using only a few bits. The unpacked shortcuts are stored in a recursive
way (e.g., the description of a level-2 shortcut may contain several level-1 shortcuts).
Accordingly, the unpacking procedure works recursively.

To obtain a further speed-up, we have a variant of the unpacking data structures
(Variant 3) that caches the complete descriptions—without recursions—of all short-
cuts that belong to the topmost level, that is, for these important shortcuts that are
frequently used, we do not have to use a recursive unpacking procedure, but we can
just append the corresponding subpath to the resulting path.

5.5. Turning Restrictions

A turning restriction (in its simplest and most common form) is expressed as an edge
pair ((u, v), (v,w)): The edge (v,w) must not be traversed if the node v has been reached
via the edge (u, v). Dealing with turning restrictions is a well-studied problem [Schmid
2000; Müller 2005]. In principle, there are two basic approaches: modifying the query
algorithm or modeling the restrictions into the graph, which introduces additional
artificial nodes and edges at affected road junctions. The latter technique can be applied
irrespective of the used query algorithm.



In case of highway hierarchies, we expect that modeling turning restrictions into
the graph only slightly deteriorates the performance, since the artificial nodes usually
have a very small degree so that most of them get bypassed in the very first contraction
step. Furthermore, turning restrictions are often encountered at local streets that are
not promoted to high levels of the hierarchy so that the negative impact is bounded
to the lower levels. With respect to memory consumption, it is important to note that
after the preprocessing has been completed, artificial nodes and edges at road junctions
that only belong to level 0 can be abandoned provided that the query algorithm (which
in level 0 just corresponds to Dijkstra’s algorithm) is modified appropriately to handle
turning restrictions.

6. EXPERIMENTS

Apart from Section 6.8, all experimental results refer to the scenario where we only
want to compute the shortest-path length between two nodes without outputting the
actual route. Turning restrictions are exclusively handled in Section 6.9.

6.1. Implementation

We implemented highway hierarchies in C++, using the C++ Standard Template Li-
brary and making extensive use of generic programming techniques using C++’s tem-
plate class mechanism. As graph data structure, we use our own implementation of
an adjacency array extended by an additional layer that contains level-specific data
for each node and level that the node belongs to. We use 32 bits to store edge weights
and path lengths. Binary heaps are used as priority queues. Note that in case of road
networks, only a comparatively small number of decreaseKey-operations is performed.
Furthermore, the number of nodes that are in the priority queue at the same time
is very small in case of highway hierarchies (usually less than 100 nodes). Therefore,
using a more sophisticated priority queue implementation is not likely to increase the
performance significantly. For more details on the implementation, see Appendix B.

6.2. Environment and Instances

The experiments were done on one core of a single AMD Opteron Processor 270 clocked
at 2.0GHz with 8GB main memory and 2 × 1MB L2 cache, running SuSE Linux
10.0 (kernel 2.6.13). The program was compiled by the GNU C++ compiler 4.0.2 using
optimization level 3.

We deal with the road networks of Western Europe8 and of the Uinited States (with-
out Hawaii) and Canada. Both networks have been made available for scientific use
by the company PTV AG. The original graphs contain for each edge a length and a
road category (e.g., motorway, national road, regional road, urban street). We assign
average speeds to the road categories9 compute for each edge the average travel time,
and use it as weight. In addition, we perform experiments on a publicly available ver-
sion of the U.S. road network (without Alaska and Hawaii) that was obtained from the
TIGER/Line Files [U.S. Census Bureau, Washington, DC 2002]. However, in contrast
to the PTV data, the TIGER graph is undirected, planarized, and distinguishes only
between four road categories (40, 60, 80, 100km/h). In fact 91% of all roads belong to
the slowest category so that they cannot be discriminated.

Table I summarizes important properties of the used road networks and the key
results of the experiments.

8Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and the UK.
9For Europe: 10, 20, . . ., 130km/h; for US/CAN: 16, 24, 32, 40, 56, 64, 72, 80, 88, 96, 96, 104 and 112km/h.



Table I. Overview of the Used Road Networks and Key Results

Europe US/CAN US (Tiger)

INPUT

#nodes 18,029,721 18,741,705 24,278,285
#directed edges 42,199,587 47,244,849 58,213,192
#road categories 13 13 4

PARAM. average speeds [km/h] 10–130 16–112 40–100
H 30 40 40

PREPROC. CPU time [min] 13 17 15
∅overhead/node [byte] 48 46 34

QUERY

CPU time [ms] 0.61 0.83 0.67
#settled nodes 709 871 925
#relaxed edges 2,531 3,376 3,823
speed-up (CPU time) 9,935 7,259 9,303
speed-up (#settled nodes) 12,715 10,750 12,889
worst case (#settled nodes) 2,388 2,428 2,505

Note: “∅overhead/node” accounts for the additional memory that is needed by our highway
hierarchy approach (divided by the number of nodes) compared to a space-efficient bidirectional
implementation of Dijkstra’s algorithm. Query times are average values based on 10,000 random
s-t-queries. “Speed-up” refers to a comparison with Dijkstra’s algorithm (unidirectional). Worst
case is an upper bound for any possible query in the respective graph.

6.3. Parameters

Default Settings. Unless otherwise stated, the following default settings apply. We
use the maverick factor f = 2(i − 1) for the i-th iteration of the construction procedure,
the contraction rate c = 2, the shortcut hops limit 10, and the neighborhood sizes H as
stated in Table I—the same neighborhood size is used for all levels of a hierarchy. First,
we contract the original graph.10 Then, we perform five iterations of our construction
procedure, which determines a highway network and its core. Finally, we compute the
distance table between all level-5 core nodes.

Self-Similarity. For two levels � and � + 1 of a highway hierarchy, the shrinking
factor is the ratio between |E′

�| and |E′
�+1|. In our experiments, we observed that the

highway hierarchies of Europe and the US were almost self-similar in the sense that
the shrinking factor remained nearly unchanged from level to level when we used the
same neighborhood size H for all levels—provided that H was not too small.

Figure 12 demonstrates the shrinking process for Europe. Note that the first con-
traction step is not shown. In contrast to our default settings, we do not stop after
five iterations. For most levels and H ≥ 70, we observe an almost constant shrinking
factor (which appears as a straight line due to the logarithmic scale of the y-axis). The
greater the neighborhood size, the greater the shrinking factor. The last iteration is an
exception the highway network collapses, that is, it shrinks very fast because nodes
that are close to the border of the network usually do not belong to the next level of the
highway hierarchy, and when the network gets small, almost all nodes are close to the
border. In case of the smallest neighborhood size (H = 30), the shrinking factor gets so
small that the network does not collapse even after 14 levels have been constructed.

Varying the Neighborhood Size. Note that in order to simplify the experimental set-
up all results in the remainder of Section 6.3 have been obtained without rearranging
nodes by level. However, since we want to demonstrate the effects of choosing different
parameter settings, the relative performance is already very meaningful.

10In Section 3, we gave the definition of the highway hierarchies where we first construct a highway network
and then contract it. We decided to change this order in the experiments, that is, to start with an initial
contraction phase, since we observed a better performance in this case.



107

106

105

104

1,000

100

10

1
 0  2  4  6  8  10  12  14

#e
dg

es

level

H = 30
H = 50
H = 70
H = 90

Fig. 12. Shrinking of the highway networks of Europe. For different neighbourhood sizes H and for each
level �, we plot |E′

� |, that is, the number of edges that belong to the core of level �.

 10

 12

 14

 16

 18

 20

 22

 20 30 40 50 60 70 80 90

P
re

pr
oc

es
si

ng
 T

im
e 

(m
in

)

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90

M
em

or
y 

O
ve

rh
ea

d 
pe

r 
N

od
e 

(b
yt

e)

Europe
USA/CAN

USA

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

 20 30 40 50 60 70 80 90

Q
ue

ry
 T

im
e 

(m
s)

Fig. 13. Preprocessing and query performance depending on the neighborhood size H.

In one test series (Figure 13), we used all the default settings except for the neigh-
borhood size H, which we varied in steps of 5. On the one hand, if H is too small, the
shrinking of the highway networks is less effective so that the level-5 core is still quite
big. Hence, we need much time and space to precompute and store the distance table.
On the other hand, if H gets bigger, the time needed to preprocess the lower levels
increases because the area covered by the local searches depends on the neighborhood
size. Furthermore, during a query, it takes longer to leave the lower levels in order to
get to the topmost level where the distance table can be used. Thus, the query time
increases as well. We observe that the preprocessing time is minimized for neighbor-
hood sizes around 40. In particular, the optimal neighborhood size does not vary very
much from graph to graph. In other words, if we used the same parameter H, say
40, for all road networks, the resulting performance would be very close to the opti-
mum. Obviously, choosing different neighborhood sizes leads to different space-time
trade-offs.

Varying the Contraction Rate. In another test series (Table II), we did not use a
distance table, but repeated the construction process until the topmost level was empty
or the hierarchy consisted of 15 levels. We varied the contraction rate c from 0.5 to 2.5.
In case of c = 0.5 (and H = 30), the shrinking of the highway networks does not



Table II. Preprocessing and Query Performance for the European Road
Network Depending on the Contraction Rate c

PREPROCESSING QUERY

contr. time over-
∅deg. time #settled #relaxed

rate c (min) head (ms) nodes edges
0.5 83 30 3.2 391.73 472,326 1,023,944
1.0 15 28 3.7 5.48 6,396 23,612
1.5 11 28 3.8 1.93 1,830 9,281
2.0 11 29 4.0 1.85 1,542 8,913
2.5 11 30 4.1 1.96 1,489 9,175

Note: “Overhead” denotes the average memory overhead per node in
bytes.

Table III. Preprocessing and Query
Performance for the European Road

Network Depending on the Number of
Levels

PREPROC. QUERY

# time over- time #settled
levels (min) head (ms) nodes
6 12 48 0.75 709
7 10 34 0.93 852
8 10 30 1.14 991
9 10 30 1.35 1,123
10 10 29 1.54 1,241
11 10 29 1.67 1,326

Note: “Overhead” denotes the average
memory overhead per node in bytes.

work properly so that the topmost level is still very big. This yields huge query times.
Choosing larger contraction rates reduces the preprocessing and query times, since
the cores and search spaces get smaller. However, the memory usage and the average
degree are slightly increased since more shortcuts are introduced. Adding too many
shortcuts (c = 2.5) further reduces the search space, but the number of relaxed edges
increases so that the query times get worse.

Varying the Number of Levels. In a third test series (Table III), we used the default
settings except for the number of levels, which we varied from 6 to 11. Note that the
original graph and its core (i.e., the result of the first contraction step) counts as one
level so that, for example, “6 levels” means that only five levels are constructed. In each
test case, a distance table was used in the topmost level. The construction of the higher
levels of the hierarchy is very fast and has no significant effect on the preprocessing
times. In contrast, using only six levels yields a rather large distance table, which
somewhat slows down the preprocessing and increases the memory usage. However, in
terms of query times, “6 levels” is the optimal choice, since using the distance table is
faster than continuing the search in higher levels. We omitted experiments with less
levels, since this would yield very large distance tables consuming very much memory.

Results for further combinations of neighborhood size, contraction rate, and number
of levels can be found in Tables V and VI in Appendix C.

6.4. Local Queries

For use in applications, it is unrealistic to assume a uniform distribution of queries
in large graphs such as Europe or the USA. On the other hand, it would hardly be
more realistic to arbitrarily cut the graph into smaller pieces. Therefore, we decided to
measure local queries within the big graphs: For each power of two r = 2k, we choose
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random sample points s and then use Dijkstra’s algorithm to find the node t with
Dijkstra rank rks(t) = r. We then use our algorithm to make an s-t-query. By plotting
the resulting statistics for each value r = 2k, we can see how the performance scales
with a natural measure of difficulty of the query. Figure 14 shows the query times.
Note that for ranks up to 218 the median query times are scaling quite smoothly and
the growth is much slower than the exponential increase we would expect in a plot
with logarithmic x-axis, linear y-axis, and any growth rate of the form rρ for Dijkstra
rank r and some constant power ρ; the curve is also not the straight line one would
expect from a query time logarithmic in r. For ranks r ≥ 219, the query times hardly
rise due to the fact that the all-pairs distance table can bridge the gap between the
forward and backward search of these queries irrespective of dealing with a small or
a large gap. In case of Europe and USA/CAN, the query times drop for r = 224, since
r is only slightly smaller than the number of nodes so that the target lies close to the
border of the respective road network, which implies some kind of trivial sense of goal
direction for the backward search (because, in the beginning, we practically cannot go
into the wrong direction).

6.5. Space Saving

If we omit the first contraction step and use a smaller contraction rate (⇒ less short-
cuts), use a bigger neighborhood size (⇒ higher levels get smaller), and construct more
levels before the distance table is used (⇒ smaller distance table), the memory usage
can be reduced considerably. In case of Europe, using seven levels, H = 100, and c =
1 yields an average overhead per node of 17 bytes. The construction and query times
increase to 55min and 1.1ms, respectively.

6.6. Worst-Case Upper Bounds

By executing a query from each node of a given graph to an added isolated dummy node
and a query from the dummy node to each actual node in the backward graph, we obtain
a distribution of the search space sizes of the forward and backward search, respectively.
We can combine both distributions to get an upper bound for the distribution of the
search space sizes of bidirectional queries: Denoting by F→(x) (F←(x)) the number of
source (target) nodes whose search space consists of x nodes in a forward (backward)
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search, we define F↔(z) := ∑
x+y=z F→(x) · F←(y), i.e., F↔(z) is the number of s-t-pairs

such that the upper bound of the search space size of a query from s to t is z. In
particular, we obtain the upper bound max{z | F↔(z) > 0} for the worst case without
performing all n2 possible queries.

Figure 15 visualizes the distribution F↔(z) as a histogram.
In a similar way, we obtained a distribution of the number of entries in the distance

table that have to be accessed during an s-t-query. While the average values are rea-
sonably small (4,066 in case of Europe), the worst case can get quite large (62,379). For
example, accessing 62,379 entries in a table of size 9,351 × 9,351 takes about 1.1ms,
where 9,351 is the number of nodes of the level-5 core of the European highway hi-
erarchy. Hence, in some cases, the time needed to determine the optimal entry in the
distance table might dominate the query time. We could try to improve the worst case
by introducing a case distinction that checks whether the number of entries that have
to be considered exceeds a certain threshold. If so, we would not use the distance table,
but would continue with the normal search process. However, this measures would
have only little effect on the average performance.

6.7. Comparisons

In Delling et al. [2009] there is a comparison of 27 variants of route planning algo-
rithms. It turns out that highway hierarchies outperform all methods developed before
2006 with respect to query times on continental sized networks. Even with the ad-
vent of faster techniques like transit-node routing [Bast et al. 2007] or techniques
easier to dynamize like highway-node routing [Schultes and Sanders 2007], highway
hierarchies remained very important as a preprocessing tool. In 2008, contraction hi-
erarchies [Geisberger et al. 2008] and sophisticated combinations of hierarchical and
goal directed techniques [Bauer et al. 2008; Bauer and Delling 2008] became available
that outperform highway hierarchies for road networks with a travel time objective.
They also use contraction in a similar way as highway hierarchies, but it seems that for
road networks, the sparsification possible by finding highway edges is not necessary.

In Bauer et al. [2008], a similar comparison is also made for optimizing the travelled
distance. Here, highway hierarchies are one of several techniques that are Pareto
optimal in the sense that none of the other techniques is better with respect to all three
criteria of query time, preprocessing time, and space overhead. This is an indication
that highway hierarchies remain an interesting candidate for networks that have a
less pronounced hierarchy than road networks with the travel time metric.



Table IV. Outputting Complete Path Descriptions
Additional preprocessing time, additional disk space and query time that is needed to determine a
complete description of the shortest path and to traverse it summing up the weights of all edges—
assuming that the query to determine its lengths has already been performed. Moreover, the average
number of hops, that is, the average path length in terms of number of nodes, is given. The three
algorithmic variants are described in Section 5.4.

Europe USA (Tiger)
preproc. space query # hops preproc. space query # hops

Var. (s) (MB) (ms) (avg.) (s) (MB) (ms) (avg.)
1 0 0 17.22 1,366 0 0 39.69 4,410
2 69 126 0.49 1,366 68 127 1.16 4,410
3 74 225 0.19 1,366 70 190 0.25 4,410

In Bauer et al. [2007], there is a comparison of highway hierarchies with 10 other
techniques, including SHARC [Bauer and Delling 2008] and several older techniques.
No attempt is made to adapt parameter settings to the input. For road networks
with various distance measures, railway networks with and without time information,
sparse random unit-disk graphs and two-dimensional grids with random edge weights,
highway hierarchies are consistently Pareto optimal because they have a very good
compromise between preprocessing time and query time. For graphs with a small world
property (the internet at the router level, DPLP citation, and coauthor networks), plain
bidirectional Dijkstra wins over all speed-up techniques tried. For higher-dimensional
random grid graphs, methods with a better sense of goal direction win over highway
hierarchies.

6.8. Outputting Complete Path Descriptions

So far, we have reported only the times needed to compute the shortest-path length
between two nodes. Now, we determine a complete description of the shortest path. In
Table IV, we give the additional preprocessing time and the additional disk space for the
unpacking data structures. Furthermore, we report the additional time that is needed
to determine a complete description of the shortest path and to sum up the weights of all
edges11—assuming that the query to determine the shortest-path length has already
been performed. That means that the total average time to determine a shortest path
is the time given in Table IV plus the query time given in previous tables.12 Note that
Variant 1 is no longer supported by the current version of our implementation so that
the numbers in the first data row of Table IV have been obtained with an older version
and different settings.

We can conclude that even Variant 3 requires little additional preprocessing time
and only a moderate amount of space. With Variant 3, the time for outputting the path
remains considerably smaller than the time to determine the path length and a factor
3 to 5 smaller than using Variant 2. The U.S. graph profits more than the European
graph, since it has paths with considerably larger hop counts, perhaps due to a larger
number of degree 2 nodes in the input. Note that due to cache effects, the time for
outputting the path using preprocessed shortcuts is likely to be considerably smaller
than the time for traversing the shortest path in the original graph.

11Note that we do not traverse the path in the original graph, but we directly scan the assembled description
of the path. We sum up edges because otherwise the unpacked data would not really be accessed, possibly
leading to unrealistically small running time.
12Note that in the current implementation outputting path descriptions and the feature to rearrange nodes
by level are mutually exclusive. However, this is not a limitation in principle.



6.9. Turning Restrictions

We did a simple experiment with the German road network (a subgraph of our Euro-
pean network) with 4,380,384 nodes and 10,668,470 directed edges. The HH for this
graph has 15,267,563 edges. After adding 206,213 real-world turning restrictions (4.4%
more nodes and 1.1% more edges for the input), we get a HH with 0.8% more edges
then before (i.e., a smaller increase than for the input). The query time increases by 3%.
Overall, we can conclude that turn restrictions have a negligible effect on the outcome.

6.10. Distance Metric

When we apply a distance metric instead of the usual (and for most practical appli-
cations more relevant) travel time metric, the hierarchy that is inherent in the road
network is less distinct, since the difference between fast and slow roads fades. We
no longer observe the self-similarity in the sense that a fixed neighborhood size yields
an almost constant shrinking factor. Instead, we have to use an increasing sequence
of neighborhood sizes to ensure a proper shrinking. For Europe, we use H =100, 200,
300, 400 and 500 to construct five levels before an all-pairs distance table is built.
Constructing the hierarchy takes 34 minutes and entails a memory overhead of 36
bytes per node. On average, a random query then takes 4.8ms, settling 4,810 nodes
and relaxing 33,481 edges. Further experiments on different metrics can be found in
Delling et al. [2006].

6.11. An Even Larger Road Network

We recently obtained a new version of the European road network that is larger than
the old one and covers more countries.13 It has been provided for scientific use by the
company ORTEC and consists of 33,726,989 nodes and 75,108,089 directed edges. We
use the same parameters as for the old version (in particular, H = 30) and observe
a very good shrinking behavior: We have 1.87 times as many nodes in the beginning,
but after the construction of the same number of levels, only 1.04 times as many nodes
remain. Thus, the same number of levels is sufficient, only the distance table gets
slightly bigger. We arrive at a preprocessing time of 18 minutes, a memory overhead of
37 bytes per node, and query times of 0.6ms for random queries; on average, 685 nodes
are settled and 2,457 edges are relaxed.

7. DISCUSSION

Highway hierarchies are a simple, robust, and space-efficient concept that allows very
efficient exact fastest-path queries even in huge real-world road Networks. These at-
tributes have been confirmed in an extensive experimental study. The ideas developed
for highway hierarchies like shortcuts, contraction, preprocessing by local search, and
distance tables are an important ingredient of subsequent techniques like advanced
reach-based routing [Goldberg et al. 2006, 2007], highway-node routing [Schultes and
Sanders 2007], and combinations of techniques [Bauer and Delling 2008; Bauer et al.
2008]. As of now, it looks like highway hierarchies on static road networks are no
longer competetive with the best subsequent techniques like contraction hierarchies
[Geisberger et al. 2008]. However, highway hierarchies have an interesting feature that
currently is not used by any of its competitors and that might turn out to be useful for
networks where techniques like contraction hierarchies produce too many shortcuts:
Networks are more sparse at the higher levels because edges that are only needed near
source and target need not be present. Therefore, only with highway hierarchies do
we observe the strong self-similarity from Figure 12. Probably, to become competetive,

13In addition to the old version, the Czech Republic, Finland, Hungary, Ireland, Poland, and Slovakia.



new versions of highway hierarchies would have to incorporate subsequently devel-
oped ideas, particularly, the more sophisticated contraction routines from contraction
hierarchies [Geisberger et al. 2008] and advanced combinations with goal directed
techniques [Bauer et al. 2008].

APPENDIXES

A. QUERY—PROOF OF CORRECTNESS

Additional Notation. “◦” denotes path concatenation. succ(u, P) and pred(u, P) denote
the direct successor and predecessor of u on P, respectively. We just write succ(u)
and pred(u) if the path is clear from the context. For two nodes u and v on some
path, min(u, v) denotes u if u � v and v otherwise. max(u, v) is defined analogously.
dP(u, v) := w(P|u→v) denotes the distance from u to v along the path P. Note that for
any edge (u, v) on P, we have w(u, v) = dP(u, v).

A.1. Termination and Special Cases

Since we have set the neighborhood radius in the topmost level to infinity (R2), we are
never tempted to go upwards beyond the topmost level. This observation is formalized
in the following lemma.

LEMMA A.1. The for-loop in Line 9 of the highway query algorithm always terminates
with � ≤ L and (� = L → gap = ∞).

PROOF. We only consider iterations where the forward search direction is selected;
analogous arguments apply to the backward direction. By an inductive proof, we show
that at the beginning of any iteration of the main while-loop, we have �(u) ≤ L and
(�(u) = L → gap(u) = ∞) for any node u in

→
Q .

Base Case. True for the first iteration, where only s belongs to
→
Q : we have �(s) = 0 ≤ L

and gap(s) = r→
0 (s) (Line 2), which is equal to infinity if L = 0 (due to R2).

Induction Step. We assume that our claim is true for iteration i and show that it
also holds for iteration i + 1. Due to the induction hypothesis, we have �(u) ≤ L and
(�(u) = L → gap(u) = ∞) in Line 5. If �(u) = L, we have gap = gap′ = r→

�(u)(u) = ∞
(Line 7 and 9, R2); thus, the for-loop in Line 9 terminates immediately with � = �(u) = L.
Otherwise (�(u) < L), the for-loop either terminates with � < L or reaches � = L; in the
latter case, we have gap = r→

� (u) = ∞ (Line 9, R2); hence, the loop terminates.
Thus, in any case, the loop terminates with � ≤ L and (� = L → gap = ∞). Therefore,

if the node v adopts the key k in Line 13 (either by a decreaseKey or an insert operation),
the new key fulfills the required condition.

This concludes our inductive proof, which also shows that the claim of this lemma
holds during any iteration of the main while-loop.

It is easy to the see that the following property of Dijkstra’s algorithm also holds for
the highway query algorithm.

PROPOSITION A.2. For each search direction, the sequence of distances δ(u) of settled
nodes u is monotonically increasing.

Now, we can prove that

LEMMA A.3. The highway query algorithm terminates.

PROOF. The for-loop in Line 9 always terminates due to Lemma A.1. The for-loop in
Line 8 terminates, since the edge set is finite. The main while-loop in Line 3 terminates,
since each node v is inserted into each priority queue at most once, namely if it is
unreached (Line 13); if it is reached, it either already belongs to the priority queue or



it has already been settled; in the latter case, we know that δ(v) ≤ δ(u) ≤ δ(u) + w(e)
(Proposition A.2; edge weights are nonnegative) so that no priority queue operation is
performed due to the specification of the decreaseKey operation.

The special case that there is no path from s to t is trivial. The algorithm terminates due
to Lemma A.3 and returns ∞ since no node can be settled from both search directions
(otherwise, there would be, some path from s to t). For the remaining proof, we assume
that a shortest path from s to t exists in the original graph G.

A.2. Contracted and Expanded Paths

LEMMA A.4. Shortcuts do not overlap, that is, if there are four nodes u ≺ u′ ≺ v ≺ v′
on a path P in G, then there cannot exist both a shortcut (u, v) and a shortcut (u′, v′) at
the same time.

PROOF. Let us assume that there is a shortcut (u, v) ∈ S� for some level �. All inner
nodes, in particular u′, belong to B�. Since u′ does not belong to V ′

� , a shortcut that
starts from u′ can belong only to some level k < �. If there was a shortcut (u′, v′) ∈
Sk, the inner node v would have to belong to Bk, which is a contradiction, since v ∈
V ′

� .

Definition A.5. For a given path P in a given highway hierarchy G, the contracted
path ctr(P) is defined in the following way: While there is a subpath 〈u, b1, b2, . . . , bk, v〉
with u, v ∈ V ′

� and bi ∈ B�, 1 ≤ i ≤ k, k ≥ 1, for some level �, replace it by the shortcut
edge (u, v) ∈ S�.

Note that this definition terminates, since the number of nodes in the path is reduced
by at least one in each step and the definition is unambiguous due to Lemma A.4.

Definition A.6. For a given path P in a given highway hierarchy G, the level-�
expanded path exp(P, �) is defined in the following way: While the path contains a
shortcut edge (u, v) ∈ Sk for some k > �, replace it by the represented path in Gk.

Note that this definition terminates, since an expanded subpath can only contain
shortcuts of a smaller level.

A.3. Highway Path

Consider a given highway hierarchy G and an arbitrary path P = 〈s, . . . , t〉. In the
following, we will bring out the structure of P with regard to G.

Last Neighbor and First Core Node. For any level � and any node uon P, we define the
last succeeding level-� neighbor →ω P

� (u) and the first succeeding level-� core node →α P
� (u):

→ω P
� (u) is the node v ∈ {x ∈ P | u � x ∧ dP(u, x) ≤ r→

� (u)} that maximizes dP(u, v), and
→α P

� (u) is the node v ∈ {t}∪{x ∈ P∩V ′
� | u � x} that minimizes dP(u, v). The last preceding

neighbor ←−ω P
� (u) and the first preceding core node ←−α P

� (u) are defined analogously.

Unidirectional Labeling. Now, we inductively define a forward labelling of the path
P. The labels s0 and s′

0 are set to s and for �, 0 ≤ � < L, we set s�+1 := →ω P
� (s′

�) and
s′
�+1 := →α P

�+1(s�+1). Furthermore, in order to avoid some case distinctions, sL+1 := t. For
an example, we refer to Figure 9.

PROPOSITION A.7. The following properties apply to the (Unidirectional) forward la-
beling of P:
—U1: s = s0 = s′

0 � s1 � s′
1 � . . . � sL � s′

L � sL+1 = t
—U2a: ∀�, 0 ≤ � ≤ L : ∀u, s′

� � u � s�+1 : dP(s′
�, u) ≤ r→

� (s′
�)

—U2b: ∀�, 0 ≤ � ≤ L : ∀u � s�+1 : dP(s′
�, u) > r→

� (s′
�)



—U3: ∀�, 0 ≤ � ≤ L : ∀u, s� � u ≺ s′
� : u �∈ V ′

�

—U4: ∀�, 0 ≤ � ≤ L : s′
� = t ∨ s′

� ∈ V ′
�

A backward labelling (specifying nodes t� and t′
�) is defined analogously.

Meeting Level and Point. The meeting level λ of P is 0 if s = t and max{� | s� � t�} if
s �= t. Note that λ ≤ L (in any case) and tλ+1 ≺ sλ+1 (in case that s �= t). The meeting point
p of P is either tλ (if tλ � s′

λ) or min(sλ+1, t′
λ) (otherwise). Figure 10 gives an example.

PROPOSITION A.8. The following properties apply to the Meeting point p of P:
—M1: sλ � p � tλ
—M2: tλ+1 � p � sλ+1
—M3: ∀�, 0 ≤ � ≤ L : (s′

� ≺ p → p � t′
�) ∧ (p ≺ t′

� → s′
� � p)

PROOF. The case s = t is trivial. Subsequently, we assume s �= t. In order to prove
M1, M2, and (M3 for � = λ), we distinguish between two cases.
Case 1. tλ � s′

λ. Then, p = tλ. M1 is fulfilled due to the definition of the meeting level,
which implies sλ � tλ. Furthermore, due to U1, we have tλ+1 � t′

λ � tλ = p � s′
λ � sλ+1 so

that M2 and (M3 for � = λ) are fulfilled.
Case 2. s′

λ ≺ tλ. Then, p = min(sλ+1, t′
λ).

Subcase 2.1. sλ+1 � t′
λ. Then, p = sλ+1. We have sλ � s′

λ � sλ+1 = p � t′
λ � tλ so that M1

and (M3 for � = λ) are fulfilled. Furthermore, M2 holds due to tλ+1 ≺ sλ+1.
Subcase 2.2. t′

λ ≺ sλ+1. Then, p = t′
λ. Since s′

λ ≺ tλ � t, we know that s′
λ ∈ V ′

λ (due to U4).
Thus, we have s′

λ � t′
λ � tλ (otherwise (t′

λ ≺ s′
λ � tλ), we would have a contradiction with

U3). Hence, sλ � s′
λ � t′

λ = p � tλ so that M1 and (M3 for � = λ) are fulfilled. M2 holds
as well, since tλ+1 � t′

λ = p ≺ sλ+1.
It remains to show M3 for � < λ and for � > λ. In the former case, M3 holds due to

M1, which implies s′
� � sλ � p � tλ � t′

� (U1). In the latter case, M3 holds due to M2,
which implies t′

� � tλ+1 � p � sλ+1 � s′
� (U1).

Highway Path. P = 〈s, . . . , t〉 is a highway path (Figure 11) if and only if the following
two Highway properties are fulfilled:

—H1: ∀�, 0 ≤ � ≤ L : H1(�)
—H2: ∀�, 0 ≤ � ≤ L : H2(�)

where

—H1(�): ∀(u, v), s′
� � u ≺ v � t′

� : u, v ∈ V ′
�

—H2(�): ∀(u, v), s� � u ≺ v � t� : �(u, v) ≥ �

A.4. Reachability Along a Highway Path

We consider a path P = 〈s, . . . , t〉. For a node u on P, we define the reference level
� (u) := max({0} ∪ {i | si ≺ u}).

PROPOSITION A.9. For any two nodes u and v with u � v, the following reference Level
properties apply:
—L1: 0 ≤ � (u) ≤ L
—L2: s� (u) � u
—L3: u � s� (u)+1

—L4: � (u) ≤ � (v)

Definition A.10. A node u is said to be Appropriately reached/settled with the key
k = (δ(u), �(u), gap(u)) on the path P if and only if all of the following conditions are
fulfilled:
—A1(k, u): δ(u) = d0(s, u)



—A2(k, u): �(u) = � (u)

—A3(k, u): gap(u) =
{ ∞ if u � s′

�(u)
r→
�(u)(s

′
�(u)) − dP(s′

�(u), u) otherwise
—A4(u): ∀i : t �= s′

i � u → u ∈ V ′
i

The following (somewhat technical) lemma will be used to prove Lemmas A.12 and
A.13. Basically, it states that in the highway query algorithm the search level and the
gap to the next applicable neighborhood border are set correctly.

LEMMA A.11. Consider a path P = 〈s, . . . , t〉 and an edge (u, v) on P. Assume that u is
settled by the highway query algorithm appropriately with some key k. We consider the
attempt to relax the edge (u, v). After Line 9 has been executed, the following Invariants
apply with regard to the variables � and gap:
—I1: (a) s� � u ∧ (b) v � s�+1
—I2: � = � (v)

—I3: gap =
{ ∞ if v � s′

�,
r→
� (s′

�) − dP(s′
�, u) otherwise.

PROOF. We distinguish between two cases in order to prove I1 and I3.
Case 1. Zero iterations of the for-loop in Line 9 take place (� = �(u)).
In this case, we have � = �(u) and w(u, v) ≤ gap′. Hence, s� � u due to A2(k, u) and L2
(⇒ I1a). In order to show I1b and I3, we distinguish between three subcases.

—Subcase 1.1. u ≺ s′
� ⇒ v � s′

� � s�+1 (U1) (⇒ I1b). Furthermore, because of gap(u) = ∞
(A3(u, k)), we have gap = gap′ = r→

�(u)(u) = ∞ due to U3 and R1 (⇒ I3, since v � s′
�).

—Subcase 1.2. u = s′
� ⇒ gap(u) = ∞ (A3(u, k)) ⇒ w(u, v) ≤ gap′ = r→

� (u) (Line 7)
⇒ dP(s′

�, v) ≤ r→
� (s′

�) (since u = s′
�) ⇒ v � s�+1 (U2b) (⇒ I1b). Furthermore, gap =

gap′ = r→
� (u) = r→

� (s′
�) − dP(s′

�, u) (since u = s′
�) implies I3, since s′

� ≺ v.
—Subcase 1.3. u � s′

� ⇒ gap(u) = r→
� (s′

�) − dP(s′
�, u) (A3(u, k)). By Lemma A.1, � ≤ L

and (� = L → gap = ∞). If � = L, we have v � t = sL+1 = s�+1 (⇒ I1b) and
gap = ∞ = r→

� (s′
�) − dP(s′

�, u) (R2) (⇒ I3, since s′
� ≺ v). Subsequently, we deal with

the remaining case � < L. The facts that u � t and s′
� ≺ u imply s′

� �= t, which
yields s′

� ∈ V ′
� due to U4. Hence, due to R3, gap(u) �= ∞ ⇒ w(u, v) ≤ gap′ = gap(u)

(Line 7) ⇒ dP(u, v) ≤ r→
� (s′

�) − dP(s′
�, u) ⇒ dP(s′

�, v) ≤ r→
� (s′

�) ⇒ v � s�+1 (U2b) (⇒ I1b).
Furthermore, gap = gap′ = gap(u) = r→

� (s′
�) − dP(s′

�, u) implies I3, since s′
� ≺ v.

Case 2. At least one iteration of the for-loop takes place (� > �(u)).
We claim that after any iteration of the for-loop, we have u = s�. Proof by induction:
Base Case. We consider the first iteration of the for-loop. Line 9 and the fact that an
iteration takes place imply w(u, v) > gap′, which means that gap′ �= ∞. We distinguish
between two subcases to show that dP(s′

�(u), v) > r→
�(u)(s

′
�(u)).

—Subcase 2.1. u � s′
�(u) ⇒ gap(u) = ∞ (A3(u, k)) ⇒ w(u, v) > gap′ = r→

�(u)(u) (Line 7)
⇒ r→

�(u)(u) �= ∞. We have s�(u) � u � s′
�(u) due to L2, A2(u, k), and the assumption of

Subcase 2.1. However, we can exclude that s�(u) � u ≺ s′
�(u): This would imply u �∈ V ′

�(u)
(U3) and, thus, r→

�(u)(u) = ∞ (R1). Therefore, u = s′
�(u) ⇒ dP(s′

�(u), v) > r→
�(u)(s

′
�(u))

—Subcase 2.2. u � s′
�(u) ⇒ s′

�(u) �= t ⇒ s′
�(u) ∈ V ′

�(u) (U4). Furthermore, gap(u) = r→
�(u)(s

′
�(u))−

dP(s′
�(u), u) (A3(u, k)) ⇒ gap(u) �= ∞ (due to R3, since �(u) < L (Lemma A.1) and

s′
�(u) ∈ V ′

�(u)) ⇒ dP(u, v) = w(u, v) > gap′ = gap(u) = r→
�(u)(s

′
�(u)) − dP(s′

�(u), u) (Line 7)
⇒ dP(s′

�(u), v) > r→
�(u)(s

′
�(u))

From dP(s′
�(u), v) > r→

�(u)(s
′
�(u)), it follows that s�(u)+1 ≺ v (U2a), which implies s�(u)+1 � u.

Hence, u = s�(u)+1 (since u � s�(u)+1 due to L3 and A2(k, u)).



Induction Step. Let us now deal with the iteration from level i to level i + 1 for i ≥
�(u) + 1. We have w(u, v) > gap = r→

i (u), which implies r→
i (u) �= ∞. Starting with

u = si � s′
i � si+1 (induction hypothesis, U1), we can conclude that u = s′

i (U3, R1)
⇒ dP(s′

i, v) > r→
i (s′

i) ⇒ si+1 ≺ v (U2a) ⇒ si+1 � u ⇒ u = si+1 (since u � si+1). This
completes our inductive proof.

After the last iteration, we have u = s� � s′
� (⇒ I1a). Furthermore, w(u, v) ≤ r→

� (u).
If u ≺ s′

�, we obtain v � s′
� � s�+1 (⇒ I1b) and gap = r→

� (u) = ∞ due to U3 and R1 (⇒
I3, since v � s′

�). Otherwise (u = s′
�), we get dP(s′

�, v) ≤ r→
� (s′

�), which implies v � s�+1 as
well (U2b) (⇒ I1b); furthermore, gap = r→

� (u) = r→
� (s′

�) − dP(s′
�, u) (since u = s′

�) implies
I3 since s′

� ≺ v. This completes the proof of I1 and I3.
I2 (� (v) = �) directly follows from s� ≺ v � s�+1 (I1).

LEMMA A.12. Consider a highway path P = 〈s, . . . , t〉 and an edge (u, v) on P such
that u precedes the meeting point p. Assume that u has been appropriately settled. Then,
the edge (u, v) is not skipped, but relaxed.

PROOF. We consider the relaxation of the edge (u, v). Due to Lemma A.11, the In-
variants I1–I3 apply after Line 9 has been executed. Now, we consider Line 10 of the
highway query algorithm.

I1 and M2 imply s� � u ≺ p � sλ+1. Hence, � ≤ λ. Thus, u ≺ p � tλ � t� (M1). By H2,
we obtain �(u, v) ≥ �. Therefore, the edge (u, v) is not skipped at this point.

Moreover, we prove that the condition in Line 11 is not fulfilled, since (u, v) belongs
to a highway path. This means that the edge (u, v) is not skipped at this point either.
We have to show that u �∈ V ′

� ∨ v �∈ B�. We have s� � u (I1). If u ≺ s′
�, we get u �∈ V ′

� (U3).
Otherwise, we have s′

� � u ≺ v � p � t′
� (M3), which yields v �∈ B� (H1).

Therefore, (u, v) is not skipped, but relaxed.

LEMMA A.13. Consider a shortest path P = 〈s, . . . , t〉 and an edge (u, v) on P. Assume
that u has been appropriately settled with some key k. Furthermore, assume that the
edge (u, v) is not skipped, but relaxed. Then, v can be appropriately reached from u with
key k′.

PROOF. We consider the relaxation of the edge (u, v). Due to Lemma A.11, the Invari-
ants I1–I3 apply after Line 9 has been executed. Therefore, since (u, v) is not skipped
but relaxed, the node v can be reached with the key

k′ = (δ′(v), �′(v), gap′(v)) := (δ(u) + w(u, v), �, gap − w(u, v)).

Thus, A1(k′, v), A2(k′, v), and A3(k′, v) hold, since P is a shortest path and due to A1(k, u),
I2, and I3.

Consider an arbitrary i such that t �= s′
i � v. To prove A4(v), we have to show that

v ∈ V ′
i . Due to U4, this is true for s′

i = v. Now, we deal with the remaining case
s′
i � u ≺ v. Since v � s�+1 � s′

�+1 (I1, U1), we have i ≤ �. The case � = 0 is trivial; hence,
we assume � > 0. Since the edge (u, v) is not skipped, we know that Restriction 1 does
not apply. Therefore, we have �(u, v) ≥ �, which implies v ∈ V� ⊆ V ′

�−1. For i < �, we
have V ′

�−1 ⊆ V ′
i and are done. For i = �, we have u ∈ V ′

� due to A4(u). This implies
v �∈ B�, since Restriction 2 does not apply as well. v ∈ V� and v �∈ B� yield v ∈ V ′

� .

Analogous considerations hold for the backward search.

A.5. Finding an Optimal Path

Source and target nodes s and t are given such that a shortest path from s to t exists.14

14The special case that there is no path from s to t is treated in Section A.1.



Definition A.14. A state z is a triple (P, u, u), where P is a s-t-path, u, u ∈ V ∩ P, and
u � u.

Definition A.15. A state z = (P, u, u) is valid if and only if all of the following valid
State properties are fulfilled:
—S1: w(P) = d0(s, t)
—S2: P|u→u is contracted, i.e., P|u→u = ctr(P|u→u)
—S3: P|s→u and P|u→t are paths in the forward and backward search tree, respectively.

LEMMA A.16. Consider a valid state z = (P, u, u) and an arbitrary node x, s � x � u,
on P. Then, x has been appropriately settled. Analogously for backward search.

PROOF.
Base Case: True for s.
Induction Step: We assume that y, s � y ≺ u, has been appropriately settled and

show that x = succ(y) is appropriately settled as well. Since (y, x) belongs to the
forward search tree (S3), we know that (y, x) is not skipped, but relaxed. The other
prerequisites of Lemma A.13 are fulfilled as well (due to the induction hypothesis and
S1). Thus, we can conclude that x can be appropriately reached from y. Since (y, x)
belongs to the forward search tree, we know that x is also settled from y.

LEMMA A.17. If z = (P, u, u) is a valid state, then P is a highway path.

PROOF. All labels (e.g., s′
�) in this proof refer to P. We show that the highway proper-

ties H1 and H2 are fulfilled by induction over the level �.
Base Case: H2(0) trivially holds, since �(u, v) ≥ 0 for any edge (u, v).
Induction Step (a): H2(�) → H1(�). We assume s′

� ≺ t′
�. (Otherwise, H1(�) is trivially

fulfilled.) This implies s′
� �= t. Consider an arbitrary node x on P|s′

�→t′
�
. We distinguish

between three cases.
Case 1. x � u. According to Lemma A.16, A4(x) holds. Hence, x ∈ V ′

� since s′
� � x.

Case 2. u � x � u. We have y := max(u, s′
�) ∈ V ′

� (either by Lemma A.16: A4(u) or by U4).
Analogously, y := min(u, t′

�) ∈ V ′
� . Since u � y � x � y � u and P|u→u = ctr(P|u→u) (S2),

we can conclude that x �∈ B�. Furthermore, we have x ∈ V� (due to H2(�)). Thus, x ∈ V ′
� .

Case 3. u � x. Analogous to Case 1.
Induction Step (b): H1(�) ∧ H2(�) → H2(� + 1). Let P denote exp(P|s′

�→t′
�
, �) and

consider an arbitrary edge (x, y) on P. If (x, y) is part of an expanded shortcut, we
have �(x, y) ≥ � + 1 and x, y ∈ V�+1 ⊆ V ′

� . Otherwise, (x, y) belongs to P|s′
�→t′

�
, which is a

subpath of P|s�→t� , which implies x, y ∈ V ′
� and �(x, y) ≥ � by H1(�) and H2(�). Thus, in

any case, �(x, y) ≥ �, x, y ∈ V ′
� , and (x, y) is not a shortcut of some level > �. Hence, P

is a path in G′
�. Now, consider an arbitrary edge (u, v), s�+1 � u ≺ v � t�+1, on P. If (u, v)

is a shortcut of some level > �, we directly have �(u, v) ≥ � + 1. Otherwise, (u, v) is on
P as well. Since s�+1 ≺ v, we have dP(s′

�, v) > r→
� (s′

�) (U2b). Moreover, S1 implies that
P is a shortest path in G′

� and, in particular, dP(s′
�, v) = w(P|s′

�→v) = d�(s′
�, v). Using the

fact that dP(s′
�, v) = dP(s′

�, v), we obtain d�(s′
�, v) > r→

� (s′
�) and, thus, v �∈ N→

� (s′
�).

Analogously, we have u �∈ N←
� (t′

�). Hence, the definition of the highway network G�+1
implies (u, v) ∈ E�+1. Thus, �(u, v) ≥ � + 1.

Definition A.18. A valid state is either a final state (if u = u) or a non-final state
(otherwise).

We pick any shortest s-t-path P. The state (ctr(P), s, t) is the initial state. Since forward
and backward search run completely independently of each other, any serialization of
both search processes will yield exactly the same result. Therefore, in our proof, we
are free to pick—without loss of generality—any order of forward and backward steps.



We assume that at first one forward and one backward iteration is performed, which
implies that s and t are settled. At this point, the highway query algorithm is in the
initial state. It is easy to see that the initial state is a valid state. Due to the following
lemma, it is sufficient to prove that a final state is eventually reached.

LEMMA A.19. Getting to a final state is equivalent to finding a shortest s-t-path.

PROOF. u = u means that forward and backward search meet. Due to Lemma A.16,
we can conclude that both u and u are settled with the optimal distance (A1), that is,→
δ (u) = d0(s, u) and ←−

δ (u) = d0(u, t). Since u = u lies on a shortest path (due to S1), we
have d(s, t) = d0(s, u) + d0(u, t). Line 6 implies d′ ≤ →

δ (u) + ←−
δ (u) = d(s, t). In fact, this

means that the algorithm returns d′ = d(s, t), since this is already optimal.

Definition A.20. For a valid state z = (P, u, u), the forward direction is said to be
blocked if p � u. Analogously, the backward direction is blocked if u � p.

LEMMA A.21. For a nonfinal state z = (P, u, u), at most one direction is blocked.

PROOF. Since z is a nonfinal state, we have u ≺ u, which implies u ≺ p or p ≺ u.

Definition A.22. The rank ρ(z) of a state z = (P, u, u) is |{x ∈ P | u � x � u}|.
LEMMA A.23. From any nonfinal state z = (P, u, u), another valid state z+ is reached

at some point such that ρ(z+) < ρ(z).

PROOF. We pick any nonblocked direction—due to Lemma A.21, we know that there
is at least one such direction. Subsequently, we assume that the forward direction was
picked; the backward direction can be dealt with analogously.

We have u ≺ p and observe that all prerequisites of Lemma A.12 are fulfilled due
to Lemmas A.17 and A.16. Hence, we can conclude that the edge (u, v := succ(u)) is
not skipped, but relaxed. Thus, since P is a shortest path (S1), v can be reached with
the optimal distance due to Lemma A.13 (A1). The fact that the algorithm terminates
(Lemma A.3) implies that the queue

→
Q gets empty at some point, that is, every element

has been deleted from
→
Q . In particular, we can conclude that v is deleted at some

point. Since v has been reached with the optimal distance, it will also be settled with
the optimal distance (due to the specification of the decreaseKey operation, which
guarantees that tentative distances are never increased). Let P ′ denote the path from
s to v in the forward search tree. We set z+ := (P+ := P ′ ◦ P|v→t, v, u). We have
w(P+) = w(P ′) + w(P|v→t) = d0(s, v) + d0(v, t) = d0(s, t) (⇒ S1). S2 is fulfilled, since
P+|v→u is a subpath of P|u→u. S3 holds due to the construction of P+. Hence, z+ is valid.
Furthermore, ρ(z+) = ρ(z) − 1.

THEOREM A.24. The highway query algorithm finds a shortest s-t-path.

PROOF. From Lemma A.23 and the fact that the codomain of the rank function is
finite, it follows that eventually a final state is reached, which is equivalent to finding
a shortest s-t-path due to Lemma A.19.

A.6. Distance Table Optimisation

To prove the correctness of the distance table optimization, we introduce the following
new lemma and adapt a few definitions and proofs from Section A.5 to the new situation.

LEMMA A.25. Consider a valid state z = (P, u, u) with u ≺ s′
L. When u’s edges are

relaxed, neither the condition in Line 7a nor the condition in Line 11a is fulfilled.

PROOF. Due to Lemma A.16, u has been appropriately settled with some key k. We
distinguish between two cases.



Case 1. u ≺ sL. From s�(u) = s� (u) � u ≺ sL (A2(k, u), L2), it follows that �(u) < L (U1).
Hence, the condition in Line 7a is not fulfilled. Furthermore, we have s� � u ≺ sL
after Line 9 has been executed (Lemma A.11: I1). Thus, � < L, which implies that the
condition in Line 11a is not fulfilled as well.
Case 2. sL � u ≺ s′

L. First, we show that the condition in Line 7a is not fulfilled. We
assume �(u) = L. (Otherwise, the condition cannot be fulfilled.) Due to A3(k, u), we have
gap(u) = ∞. Hence, gap′ = r→

�(u)(u) = r→
L (u) = ∞1 by R1 since u �∈ V ′

L (U3). Now, we prove
that the condition in Line 11a is not fulfilled. We assume � = L ∧ � > �(u). (Otherwise,
the condition cannot be fulfilled.) Due to Line 9, we get gap = r→

� (u) = r→
L (u) = ∞1 (as

above).

Definition A.18’. A valid state is either a final state (if u = u or s′
L � u ∧ u � t′

L) or a
nonfinal state (otherwise).

LEMMA A.19. Getting to a final state is equivalent to finding a shortest s-t-path.

PROOF. In the proof of this lemma in Section A.5, we have already dealt with the
case u = u. Now, consider the new case u ≺ u ∧ s′

L � u ∧ u � t′
L. We show that s′

L is
added to the set

→
I . Since s′

L � u, s′
L has been appropriately settled with some key k

(due to Lemma A.16). We consider the attempt to relax the edge (s′
L, v := succ(s′

L)) and
distinguish between two cases.
Case 1. sL = s′

L. � = � (v) (I2), sL = s′
L ≺ v, and � (v) ≤ L (L1) imply � = � (v) = L.

Furthermore, A2(k, s′
L) and the assumption of Case 1 yield �(s′

L) = � (s′
L) < L = �. In

addition, gap = ∞2 �= ∞1 by I3 (since s′
� ≺ v), the fact that s′

L ∈ V ′
L (U4), and R2. Hence,

the condition in Line 11a is fulfilled so that s′
L is added to

→
I .

Case 2. sL ≺ s′
L. By A2(k, s′

L), A3(k, s′
L), the assumption of Case 2, and � (s′

L) ≤ L (L1), we
get �(s′

L) = � (s′
L) = L and gap(s′

L) = ∞. Thus, gap′ = r→
L (s′

L) = ∞2 �= ∞1 (R2). Hence,
the condition in Line 7a is fulfilled so that s′

L is added to
→
I .

Analogously, we can prove that t′
L is added to the set

←−
I . Since P is a highway path

(due to Lemma A.17), the subpath P|s′
L→t′

L
is a path in G′

L and, thus, d0(s′
L, t′

L) = dL(s′
L, t′

L).
Hence, w(P) = d0(s, s′

L) + dL(s′
L, t′

L) + d0(t′
L, t) is the length of a shortest s-t-path and,

since the algorithm finds a path with a length ≤ →
δ (s′

L) + dL(s′
L, t′

L) + ←−
δ (t′

L) and since→
δ (s′

L) = d0(s, s′
L) and ←−

δ (t′
L) = d0(t′

L, t) (due to Lemma A.16: A1), we can conclude that a
shortest s-t-path is found.

Definition A.20’. For a valid state z = (P, u, u), the forward direction is said to be
blocked if p � u or s′

L � u. Analogously, the backward direction is blocked if u � p or
u � t′

L.

LEMMA A.21. For a nonfinal state z = (P, u, u), at most one direction is blocked.

PROOF. Since z is a nonfinal state, we have u ≺ u and (u ≺ s′
L ∨ t′

L ≺ u). To obtain a
contradiction, let us assume that both directions are blocked, that is, (p � u or s′

L � u)
and (u � p or u � t′

L). Consider the case p � u and u � t′
L. Hence, p � u ≺ u � t′

L. Due to
M3, we can conclude that s′

L � p � u. Since s′
L � u and u � t′

L, we have a contradiction.
The remaining three cases are analogous or straightforward.

LEMMA A.23. From any nonfinal state z = (P, u, u), another valid state z+ is reached at
some point such that ρ(z+) < ρ(z).

PROOF. The proof of this lemma in Section A.5 still works, since the added two lines
(7a and 11a) have no effect due to Definition A.20’ and Lemma A.25.
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Fig. 16. An adjacency array, extended by a level-node layer.

Table V. Preprocessing and Query Performance for the European Road Network Depending
on the Contraction Rate c and the Neighbourhood Size H

contr. nbh. PREPROCESSING QUERY

rate c size H time ∅overhead/
∅deg. time #settled #relaxed

(min) node (byte) (ms) nodes edges

0.5

30 83 30 3.2 391.73 472,326 1,023,944
40 83 28 3.2 267.57 334,287 711,082
50 87 27 3.2 188.55 242,787 506,543
60 86 27 3.2 135.27 177,558 362,748
70 87 26 3.2 101.36 135,560 271,324
80 89 26 3.1 73.40 99,857 196,150
90 87 25 3.1 55.02 75,969 146,247

1.0

30 15 28 3.7 5.48 6,396 23,612
40 15 28 3.7 2.62 3,033 11,315
50 17 27 3.6 2.13 2,406 8,902
60 18 27 3.6 1.93 2,201 8,001
70 19 26 3.6 1.80 2,151 7,474
80 20 26 3.6 1.79 2,193 7,392
90 22 26 3.6 1.78 2,221 7,268

1.5

30 11 28 3.8 1.93 1,830 9,281
40 12 28 3.8 1.72 1,628 7,672
50 13 27 3.7 1.56 1,593 6,975
60 14 27 3.7 1.53 1,645 6,697
70 15 27 3.7 1.51 1,673 6,590
80 17 27 3.7 1.51 1,726 6,719
90 18 27 3.7 1.54 1,782 6,655

2.0

30 11 29 4.0 1.85 1,542 8,913
40 11 29 3.9 1.64 1,475 7,646
50 12 28 3.9 1.48 1,470 6,785
60 14 28 3.8 1.46 1,506 6,650
70 15 28 3.8 1.45 1,547 6,649
80 16 27 3.8 1.49 1,611 6,935
90 17 27 3.8 1.53 1,675 6,988

2.5

30 11 30 4.1 1.96 1,489 9,175
40 11 29 4.0 1.70 1,453 7,822
50 12 29 4.0 1.58 1,467 7,119
60 14 29 3.9 1.57 1,493 7,035
70 15 28 3.9 1.54 1,536 6,905
80 16 28 3.9 1.55 1,583 7,094
90 18 28 3.9 1.58 1,645 7,204

Note: We do not use a distance table, but repeat the construction process until the topmost
level is empty or the hierarchy consists of 15 levels.



Table VI. Preprocessing and Query Performance for the European Road Network
Depending on the Number of Levels and the Neighborhood Size H

#levels nbh. PREPROCESSING QUERY

size H time ∅overhead/
∅deg. time #settled #relaxed

(min) node (byte) (ms) nodes edges

5

40 14 60 3.9 0.67 691 2,398
50 13 40 3.9 0.77 818 2,892
60 14 32 3.8 0.87 938 3,361
70 15 30 3.8 0.96 1,058 3,837
80 16 28 3.8 1.05 1,165 4,278
90 17 28 3.8 1.13 1,269 4,697

6

30 12 48 4.0 0.75 709 2,531
40 11 33 3.9 0.87 867 3,171
50 12 29 3.9 0.99 1,015 3,759
60 13 28 3.8 1.10 1,157 4,299
70 15 28 3.8 1.21 1,292 4,837
80 16 28 3.8 1.30 1,414 5,311
90 17 27 3.8 1.40 1,521 5,817

7

30 10 34 4.0 0.93 852 3,195
40 11 29 3.9 1.07 1,025 3,894
50 12 28 3.9 1.20 1,187 4,538
60 13 28 3.8 1.32 1,344 5,166
70 15 28 3.8 1.39 1,462 5,689
80 16 27 3.8 1.47 1,578 6,179
90 18 27 3.8 1.53 1,668 6,661

8

30 10 30 4.0 1.14 991 3,853
40 11 29 3.9 1.27 1,171 4,624
50 12 28 3.9 1.36 1,321 5,283
60 14 28 3.8 1.43 1,455 5,887
70 15 28 3.8 1.46 1,546 6,338
80 16 27 3.8 1.48 1,611 6,935
90 18 27 3.8 1.53 1,675 6,988

9

30 10 30 4.0 1.35 1,123 4,532
40 11 29 3.9 1.45 1,289 5,338
50 12 28 3.9 1.48 1,417 5,931
60 14 28 3.8 1.47 1,506 6,429
70 15 28 3.8 1.46 1,547 6,649

10

30 10 29 4.0 1.54 1,241 5,214
40 11 29 3.9 1.57 1,380 6,012
50 12 28 3.9 1.51 1,468 6,470
60 14 28 3.8 1.46 1,506 6,650

11
30 10 29 4.0 1.67 1,326 5,847
40 11 29 3.9 1.65 1,445 6,627
50 13 28 3.9 1.49 1,470 6,785

Note: In the topmost level, a distance table is used.

B. IMPLEMENTATION

The graph is represented as adjacency array, which is a very space-efficient data
structure that allows fast traversal of the graph. There are two arrays, one for the
nodes and one for the edges. The edges (u, v) are grouped by the source node u and
store only the ID of the target node v and the weight w(u, v). Each node u stores
the index of its first outgoing edge in the edge array. In order to allow a search in
the backward graph, we have to store an edge (u, v) also as backward edge (v, u) in the
edge group of node v. In order to distinguish between forward and backward edges, each
edge has a forward and a backward flag. By this means, we can also store two-way edges
{u, v} (which make up the large majority of all edges in a real-world road network) in a
space-efficient way: We keep only one copy of (u, v) and one copy of (v, u), in each case
setting both direction flags.



The basic adjacency array has to be extended in order to incorporate the level data
that is specific to highway hierarchies. In addition to the index of the first outgoing
edge, each node u stores its level-0 neighborhood radius r0(u). Moreover, for each node
u, all outgoing edges (u, v) are grouped by their level �(u, v). Between the node and the
edge array, we insert another layer: for each node u and each level � > 0 that u belongs
to, there is a level node u� that stores the radius r�(u) and the index of the first outgoing
edge (u, v) in level �. All level nodes are stored in a single array. Each node u keeps the
index of the level node u1. Figure 16 illustrates the graph representation.

To obtain a robust implementation, we include extensive consistency checks in asser-
tions and perform experiments that are checked against reference implementations,
that is, queries are checked against Dijkstra’s algorithm and the fast preprocessing
algorithm is checked against a naive implementation.

C. EXPERIMENTS

In addition to the experiments presented in Section 6.3, we have considered many more
combinations of neighborhood size, contraction rate, and number of levels. The results
are given in Tables V and VI.
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KÖHLER, E., MÖHRING, R. H., AND SCHILLING, H. 2006. Fast point-to-point shortest path computations with
arc-flags. In Proceedings of the 9th DIMACS Implementation Challenge.

LAUTHER, U. 2004. An extremely fast, exact algorithm for finding shortest paths in static networks with
geographical background. In Proceedings of the Geoinformation und Mobilität – von der Forschung zur
praktischen Anwendung. Vol. 22. IfGI prints, Institut für Geoinformatik, Münster, 219–230.

LAUTHER, U. 2006. An experimental evaluation of point-to-point shortest path calculation on roadnetworks
with precalculated edge-flags. In Proceedings of the 9th DIMACS Implementation Challenge.

MAUE, J., SANDERS, P., AND MATIJEVIC, D. 2006. Goal directed shortest path queries using Precomputed Cluster
Distances. In Proceedings of the 5th Workshop on Experimental Algorithms (WEA’06). Lecture Notes in
Computer Science, vol. 4007, Springer, 316–328.

MAUE, J., SANDERS, P., AND MATIJEVIC, D. 2009. Goal directed shortest path queries using Precomputed Cluster
Distances. ACM J. Exp. Algor. (submitted for special issue on WEA’06).
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