
An Experimental Evaluation of the Scalability of Real-Time
Scheduling Algorithms on Large-Scale Multicore Platforms

Matthew A. Dellinger

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Binoy Ravindran, Chair
Paul E. Plassmann

Cameron D. Patterson

May 28, 2011
Blacksburg, Virginia

Keywords: Multiprocessors, Real-Time, Scheduling, Utility Accrual, Linux
Copyright 2011, Matthew A. Dellinger

An Experimental Evaluation of the Scalability of Real-Time Scheduling
Algorithms on Large-Scale Multicore Platforms

Matthew A. Dellinger

(ABSTRACT)

This thesis studies the problem of experimentally evaluating the scaling behaviors of existing
multicore real-time task scheduling algorithms on large-scale multicore platforms. As chip
manufacturers rapidly increase the core count of processors, it becomes imperative that
multicore real-time scheduling algorithms keep pace. Thus, it must be determined if existing
algorithms can scale to these new high core-count platforms. Significant research exists
on the theoretical performance of multicore real-time scheduling algorithms, but the vast
majority of this research ignores the effects of scalability. It has been demonstrated that
multicore real-time scheduling algorithms are feasible for small core-count systems (e.g. 8-
core or less), but thus far the majority of the algorithmic research has never been tested on
high core-count systems (e.g. 48-core or more).

We present an experimental analysis of the scalability of 16 multicore real-time scheduling
algorithms. These algorithms include global, clustered, and partitioned algorithms. We
cover a broad range of algorithms, including deadline-based and utility accrual scheduling
algorithms. These algorithms are compared under metrics including schedulability, tardi-
ness, deadline satisfaction ratio, and utility accrual ratio. We consider multicore platforms
ranging from 8 to 48 cores. The algorithms are implemented in a real-time Linux kernel we
create called ChronOS. ChronOS is based on the Linux kernel’s PREEMPT RT patch, which
provides the underlying operating system kernel with real-time capabilities such as full kernel
preemptibility and priority inheritance for kernel locking primitives. ChronOS extends these
capabilities with a flexible, scalable real-time scheduling framework.

Our study shows that it is possible to implement global fixed and dynamic priority and simple
global utility accrual real-time scheduling algorithms which will scale to large-scale multicore
platforms. Interestingly, and in contrast to the conclusion of prior research, our results reveal
that some global scheduling algorithms (e.g. G-NP-EDF) is actually scalable on large core
counts (e.g. 48). In our implementation, scalability is restricted by lock contention over the
global schedule and the cost of inter-processor communication, rather than the global task
queue implementation. We also demonstrate that certain classes of utility accrual algorithms
such as the GUA class are inherently not scalable. We show that algorithms implemented
with scalability as a first-order implementation goal are able to provide real-time guarantees
on our 48-core platform.

This work is supported by US National Science Foundation under Grant 0915895, and NSWC
under Grant N00178-09-D-3017-0011.

Dedication

I dedicate this thesis to my wife, Sarah.

Sine subsidio tuo, haec non fuisset.

iii

Acknowledgments

This work would not have been possible without the assistance, support, and collaboration
of a great many people. First, I would like to thank my advisor, Dr. Binoy Ravindran, for
his support and motivation and for providing me with an opportunity to work on something
I enjoy.

I would also like to thank Dr. Paul Plassmann and Dr. Cameron Patterson for serving on
my committee.

In addition, I would like to thank my friends at the real-time systems lab, particularly Piyush
Garyali and Aaron Lindsay. You have motivated me to learning and excellence.

Finally, I am grateful to my family and friends for all the support they have provided.
Without your help, this thesis would not have been possible.

iv

Contents

List of Figures x

List of Tables xviii

List of Acronyms xxi

1 Introduction 1

1.1 Limitations of Current Research . 4

1.2 Research Contributions . 5

1.3 Thesis Outline . 6

1.4 Scope of Thesis . 6

2 Background 8

2.1 Multicore Real-Time Scheduling . 8

2.2 Real-Time Linux . 10

2.3 Multiprocessor Real-Time Scheduling Platforms 11

2.4 Multiprocessor Real-Time Scheduling Scalability 12

3 Models 13

3.1 Hardware Model . 13

3.2 Task Model . 14

3.3 Threading Model . 15

3.4 Timeliness Model . 16

v

3.5 Abort Model . 17

3.6 Resource Model . 19

4 PREEMPT RT Patch 21

4.1 Preemptible Critical Sections . 22

4.2 Preemptible Interrupt Handlers . 22

4.3 Priority Inheritance . 23

4.4 Experimental Results . 23

5 ChronOS Real-Time Linux 26

5.1 Objective . 26

5.2 Linux Scheduling . 26

5.3 Data Structures and Operations . 28

5.3.1 Data Structures . 28

5.3.2 Operations . 30

5.4 Scheduler Modules . 32

5.5 Uniprocessor Scheduling . 34

5.5.1 Priorities . 34

5.5.2 Partitioned Scheduling . 35

5.6 Global Scheduling . 35

5.6.1 Priorities . 37

5.6.2 Prescheduling . 37

5.6.3 Inter-Processor Communication . 37

5.6.4 Scheduling Architectures . 38

5.6.5 Mapping Tasks . 40

5.6.6 Clustered Scheduling . 43

5.7 Aborting Tasks . 45

6 Scheduling Algorithms 46

6.1 Linux SCHED FIFO . 46

vi

6.2 Global FIFO . 47

6.3 Global RMS . 47

6.4 Global EDF . 48

6.5 Global Non-Preemptible EDF . 50

6.6 Global HVDF . 51

6.7 Global Non-Preemptible HVDF . 52

6.8 gMUA . 53

6.9 NG-GUA . 54

6.10 G-GUA . 54

6.11 Partitioned RMS . 55

6.12 Partitioned EDF . 57

6.13 Partitioned HVDF . 58

6.14 Partitioned LBESA . 58

6.15 Partitioned DASA-ND . 59

6.16 Clustered EDF . 60

6.17 Summary . 61

7 Scalability 62

8 Experimental Scheduling Results 67

8.1 Hardware Platform . 67

8.2 Software Platform . 68

8.3 Methodology . 68

8.4 Baker Tasksets . 70

8.5 Partitioning and Clustering . 71

8.6 Performance Measurements . 72

8.7 Schedulability Results . 73

8.7.1 8-Core Schedulability Results . 75

8.7.2 16-Core Schedulability Results . 75

vii

8.7.3 48-Core Schedulability Results . 76

8.8 DSR Results . 77

8.8.1 8-Core DSR Results . 77

8.8.2 16-Core DSR Results . 78

8.8.3 48-Core DSR Results . 79

8.9 AUR Results . 80

8.9.1 8-Core AUR Results . 80

8.9.2 16-Core AUR Results . 80

8.9.3 48-Core AUR Results . 81

8.10 Tardiness Results . 81

8.10.1 8-Core Tardiness Results . 82

8.10.2 16-Core Tardiness Results . 83

8.10.3 48-Core Tardiness Results . 84

8.11 Migrations and Abortion . 85

8.11.1 8-Core Migration Results . 85

8.11.2 16-Core Migration Results . 85

8.11.3 48-Core Migration Results . 86

8.11.4 8-Core Abortion Results . 86

8.11.5 16-Core Abortion Results . 87

8.11.6 48-Core Abortion Results . 87

9 System Measurements 88

9.1 Scheduling Overheads . 88

9.2 Preemption and Migration Overheads . 94

9.3 System Call and Mutex Overhead . 97

9.4 Timing Accuracy . 100

10 Conclusions 103

11 Future Work 106

viii

11.1 Distributed Scheduling . 106

11.2 Parallel Scheduling . 106

11.3 Simpler Heuristics . 107

11.4 Reducing Contention and Improving Performance 107

11.5 Additional Workloads . 107

11.6 Improved interrupt Handling . 108

Bibliography 109

A Complete Schedulability Results 118

B Complete Deadline Satisfaction Results 138

C Complete Utility Accrual Results 158

D Complete Tardiness Results 178

E Complete Migration and Abortion Results 198

F Complete Scheduling Statistics 203

ix

List of Figures

1.1 Sample schedules for global algorithms on a two processor system. Upward
arrows indicate the arrival of a task and downward arrows indicate a deadline
of a job and the release of the subsequent job. 2

1.2 Sample schedules for partitioned algorithms on a two processor system. Up-
ward arrows indicate the arrival of a task and downward arrows indicate a
deadline of a job and the release of the subsequent job. 3

3.1 AMD Magny-Cours 12-core processor architecture 14

3.2 AMD Magny-Cours 2-Chip Interconnect Topology 14

3.3 AMD Magny-Cours 4-Chip Interconnect Topology 15

3.4 Soft timing constraints specified using Jensen’s Time-Utility Functions [78] . 17

3.5 Sample code for (a) the single abort handler model and (b) our model 18

5.1 Linux priority bitmap and task queues . 27

5.2 ChronOS task queues . 28

5.3 Data structure appended to the task descriptor in ChronOS 29

5.4 Data structure for holding timing constraints in ChronOS 30

5.5 Global domain structure in ChronOS . 33

5.6 Uniprocessor scheduling in ChronOS . 34

5.7 Global scheduling in ChronOS . 36

5.8 The application concurrent scheduling architecture 38

5.9 The stop-the-world global scheduling architecture 40

5.10 Default task mapping algorithm in ChronOS 43

x

7.1 Number of waiters for the scheduling and task list locks 64

7.2 Locking times for ticket and MCS locks on a 48-core system 65

7.3 ChronOS scheduling performance with various improvements 66

8.1 Simplified test application task loop . 69

8.2 Slope accuracy . 69

8.3 Average tasks in a taskset for various per-task weight distributions 70

9.1 Scheduling cost of the traditional global scheduling algorithms on the 8-core
platform . 89

9.2 Scheduling cost of the global utility accrual scheduling algorithms on the 8-
core platform . 90

9.3 Scheduling cost of the partitioned scheduling algorithms on the 8-core platform 90

9.4 Scheduling cost of the traditional global scheduling algorithms on the 16-core
platform . 91

9.5 Scheduling cost of the global utility accrual scheduling algorithms on the 16-
core platform . 91

9.6 Scheduling cost of the partitioned scheduling algorithms on the 16-core platform 92

9.7 Scheduling cost of the traditional global scheduling algorithms on the 48-core
platform . 92

9.8 Scheduling cost of the global utility accrual scheduling algorithms on the 48-
core platform . 93

9.9 Scheduling cost of the partitioned scheduling algorithms on the 48-core platform 93

9.10 Migration costs of two migration paths on the 8-core 95

9.11 Migration costs of three migration paths on the 16-core 95

9.12 Migration costs of four migration paths on the 48-core 96

9.13 Context switch costs on our three platforms 98

9.14 System call overheads for (a) 8-core (c) 16-core and (e) 48-core platforms
and mutex locking and unlocking overheads for (b) 8-core (d)-16-core and (f)
48-core platforms . 99

9.15 “Thread-per-task” accuracy on a variety of platforms 101

9.16 “Thread-per-job” accuracy on a variety of platforms 101

xi

9.17 “Thread-per-task” accuracy under various conditions 102

9.18 “Thread-per-job” accuracy under various conditions 102

A.1 8-Core Schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under heavy bimodal per-task weight
distributions . 120

A.2 8-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under heavy uniform per-task weight
distributions . 121

A.3 8-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under medium bimodal per-task weight
distributions . 122

A.4 8-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under medium uniform per-task weight
distributions . 123

A.5 8-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under light bimodal per-task weight
distributions . 124

A.6 8-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under light uniform per-task weight dis-
tributions . 125

A.7 16-Core Schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under heavy bimodal per-task weight
distributions . 126

A.8 16-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under heavy uniform per-task weight
distributions . 127

A.9 16-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under medium bimodal per-task weight
distributions . 128

A.10 16-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under medium uniform per-task weight
distributions . 129

A.11 16-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under light bimodal per-task weight
distributions . 130

xii

A.12 16-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under light uniform per-task weight dis-
tributions . 131

A.13 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under heavy bimodal per-task weight
distributions . 132

A.14 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under heavy uniform per-task weight
distributions . 133

A.15 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under medium bimodal per-task weight
distributions . 134

A.16 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under medium uniform per-task weight
distributions . 135

A.17 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under light bimodal per-task weight
distributions . 136

A.18 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under light uniform per-task weight dis-
tributions . 137

B.1 8-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy bimodal per-task weight distributions 140

B.2 8-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy uniform per-task weight distributions 141

B.3 8-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium bimodal per-task weight distributions142

B.4 8-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium uniform per-task weight distributions143

B.5 8-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions . 144

B.6 8-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions . 145

B.7 16-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy bimodal per-task weight distributions 146

xiii

B.8 16-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy uniform per-task weight distributions 147

B.9 16-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium bimodal per-task weight distributions148

B.10 16-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium uniform per-task weight distributions149

B.11 16-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions . 150

B.12 16-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions . 151

B.13 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy bimodal per-task weight distributions 152

B.14 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy uniform per-task weight distributions 153

B.15 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium bimodal per-task weight distributions154

B.16 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium per-task weight distributions . . . 155

B.17 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions . 156

B.18 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions . 157

C.1 8-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy bimodal per-task weight distributions 160

C.2 8-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy uniform per-task weight distributions 161

C.3 8-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium bimodal per-task weight distributions162

C.4 8-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium uniform per-task weight distributions163

C.5 8-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions . 164

xiv

C.6 8-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions . 165

C.7 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy bimodal per-task weight distributions 166

C.8 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy uniform per-task weight distributions 167

C.9 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium bimodal per-task weight distributions168

C.10 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium uniform per-task weight distributions169

C.11 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions . 170

C.12 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions . 171

C.13 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy bimodal per-task weight distributions 172

C.14 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy uniform per-task weight distributions 173

C.15 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium bimodal per-task weight distributions174

C.16 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium uniform per-task weight distributions175

C.17 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions . 176

C.18 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions . 177

D.1 8-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy bimodal per-task weight distribu-
tions . 180

D.2 8-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy uniform per-task weight distribu-
tions . 181

xv

D.3 8-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium bimodal per-task weight distri-
butions . 182

D.4 8-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium uniform per-task weight distri-
butions . 183

D.5 8-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light bimodal per-task weight distributions184

D.6 8-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light uniform per-task weight distributions185

D.7 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy bimodal per-task weight distribu-
tions . 186

D.8 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy uniform per-task weight distribu-
tions . 187

D.9 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium bimodal per-task weight distri-
butions . 188

D.10 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium uniform per-task weight distri-
butions . 189

D.11 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light bimodal per-task weight distributions190

D.12 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light uniform per-task weight distributions191

D.13 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy bimodal per-task weight distribu-
tions . 192

D.14 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy uniform per-task weight distribu-
tions . 193

D.15 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium bimodal per-task weight distri-
butions . 194

xvi

D.16 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium uniform per-task weight distri-
butions . 195

D.17 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light bimodal per-task weight distributions196

D.18 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light uniform per-task weight distributions197

E.1 8-Core migration results for (a) heavy (c) medium and (e) light distributions
under traditional algorithms and (b) heavy (d) medium and (f) light distri-
butions under utility accrual algorithms . 199

E.2 16-Core migration results for (a) heavy (c) medium and (e) light distribu-
tions under traditional algorithms and (b) heavy (d) medium and (f) light
distributions under utility accrual algorithms 200

E.3 48-Core migration results for (a) heavy (c) medium and (e) light distribu-
tions under traditional algorithms and (b) heavy (d) medium and (f) light
distributions under utility accrual algorithms 201

E.4 Abortion results for various uniform per-task weight distributions on (a) 8
cores (c) 16 cores and (e) 48 cores and results for various bimodal per-task
weight distributions on (b) 8 cores (d) 16 cores and (f) 48 cores 202

xvii

List of Tables

1.1 A sample periodic taskset with periods equal to deadlines 2

4.1 Cyclictest results for 5 threads, 100000 loops, µs 24

4.2 Cyclictest results for 10 threads, 100000 loops, µs 24

4.3 Signaltest results for 5 threads, 100000 loops, µs 24

4.4 Signaltest results for 10 threads, 100000 loops, µs 24

6.1 A periodic taskset for a four-core system that demonstrates the Dhall effect . 49

6.2 A periodic taskset for a four-core system which is unschedulable under G-NP-
EDF but schedulable under G-EDF . 50

6.3 Summary of algorithm properties . 61

8.1 Specifications of hardware platforms . 67

8.2 Schedulable utilization bounds for G-RMS, P-RMS, G-EDF, and P-EDF on
the 8-core platform . 74

8.3 Schedulable utilization bounds for G-RMS, P-RMS, G-EDF, and P-EDF on
the 16-core platform . 74

8.4 Schedulable utilization bounds for G-RMS, P-RMS, G-EDF, and P-EDF on
the 48-core platform . 74

8.5 Tardiness bounds for G-EDF and G-NP-EDF (microseconds) 82

8.6 Last underload point for tardiness-bounding algorithms on our 8-core platform 83

8.7 Last underload point for tardiness-bounding algorithms on our 16-core platform 84

8.8 Last underload point for tardiness-bounding algorithms on our 48-core platform 84

9.1 Migration cost for various architectures and platforms (ticks) 97

xviii

9.2 Taskset load values at which the system is fully loaded based on system call
overhead . 98

10.1 Summarized results for all algorithms . 104

F.1 G-FIFO scheduling statistics on the 8-core platform 206

F.2 G-NP-EDF scheduling statistics on the 8-core platform 206

F.3 G-RMS scheduling statistics on the 8-core platform 207

F.4 G-EDF scheduling statistics on the 8-core platform 207

F.5 G-NP-HVDF scheduling statistics on the 8-core platform 207

F.6 G-HVDF scheduling statistics on the 8-core platform 208

F.7 gMUA scheduling statistics on the 8-core platform 208

F.8 NG-GUA scheduling statistics on the 8-core platform 208

F.9 G-GUA scheduling statistics on the 8-core platform 209

F.10 P-RMS scheduling statistics on the 8-core platform 209

F.11 P-EDF scheduling statistics on the 8-core platform 209

F.12 P-HVDF scheduling statistics on the 8-core platform 210

F.13 P-LBESA scheduling statistics on the 8-core platform 210

F.14 P-DASA scheduling statistics on the 8-core platform 210

F.15 C-EDF scheduling statistics on the 8-core platform 211

F.16 G-FIFO scheduling statistics on the 16-core platform 212

F.17 G-NP-EDF scheduling statistics on the 16-core platform 212

F.18 G-RMS scheduling statistics on the 16-core platform 212

F.19 G-EDF scheduling statistics on the 16-core platform 213

F.20 G-NP-HVDF scheduling statistics on the 16-core platform 213

F.21 G-HVDF scheduling statistics on the 16-core platform 213

F.22 gMUA scheduling statistics on the 16-core platform 214

F.23 NG-GUA scheduling statistics on the 16-core platform 214

F.24 G-GUA scheduling statistics on the 16-core platform 214

F.25 P-RMS scheduling statistics on the 16-core platform 215

xix

F.26 P-EDF scheduling statistics on the 16-core platform 215

F.27 P-HVDF scheduling statistics on the 16-core platform 215

F.28 P-LBESA scheduling statistics on the 16-core platform 216

F.29 P-DASA-ND scheduling statistics on the 16-core platform 216

F.30 C-EDF scheduling statistics on the 16-core platform 216

F.31 G-FIFO scheduling statistics on the 48-core platform 217

F.32 G-NP-EDF scheduling statistics on the 48-core platform 217

F.33 G-RMS scheduling statistics on the 48-core platform 217

F.34 G-EDF scheduling statistics on the 48-core platform 218

F.35 G-NP-HVDF scheduling statistics on the 48-core platform 218

F.36 G-HVDF scheduling statistics on the 48-core platform 218

F.37 gMUA scheduling statistics on the 48-core platform 219

F.38 NG-GUA scheduling statistics on the 48-core platform 219

F.39 G-GUA scheduling statistics on the 48-core platform 219

F.40 P-RMS scheduling statistics on the 48-core platform 220

F.41 P-EDF scheduling statistics on the 48-core platform 220

F.42 P-HVDF scheduling statistics on the 48-core platform 220

F.43 P-LBESA scheduling statistics on the 48-core platform 221

F.44 P-DASA-ND scheduling statistics on the 48-core platform 221

F.45 C-EDF scheduling statistics on the 48-core platform 221

xx

List of Acronyms

API Application Programming Interface

ATC Asynchronous Transfer of Control

AUR Accrued Utility Ratio

ccNUMA Cache-Coherent Non-Uniform Memory Architecture

C-EDF Clustered Earliest Deadline First scheduling algorithm

CPU Central Processing Unit

DASA Dependent Activity Scheduling Algorithm

DSR Deadline Satisfaction Ratio

EDF Earliest Deadline First

G-EDF Global Earliest Deadline First scheduling algorithm

G-FIFO Global First In First Out scheduling algorithm

G-GUA Greedy Global Utility Accrual scheduling algorithm

G-NP-EDF Global Non-Preemptive Earliest Deadline First scheduling algorithm

gMUA Global Multiprocessor Utility Accrual scheduling algorithm

G-HVDF Global Highest Value Density First scheduling algorithm

G-NP-HVDF Global Non-Preemptive Highest Value Density First scheduling algorithm

G-RMS Global Rate Monotonic Scheduling algorithm

HVDF Highest Value Density First scheduling algorithm

IPI Inter-Processor Interrupt

xxi

LBESA Locke’s Best Effort Scheduling Algorithm

LLREF Largest Local Remaining Execution time First scheduling algorithm

LVD Local Value Density

MMT Mean Maximum Tardiness

NG-GUA Non-Greedy Global Utility Accrual scheduling algorithm

P-DASA-ND Partitioned Dependent Activity Scheduling Algorithm, No Dependencies

P-EDF Partitioned Earliest Deadline First

P-HVDF Partitioned Highest Value Density First

P-LBESA Partitioned Locke’s Best Effort Scheduling Algorithm

P-RMS Partitioned Rate-Monotonic Scheduling algorithm

PFair Proportionate Fair scheduling algorithm

POSIX Portable Operating System Interface [for Unix]

RMS Rate Monotonic Scheduling algorithm

RTAI Real-Time Application Interface

RTSJ Real-Time Standard Java

TUF Time/Utility Functions

UA Utility Accrual

WCET Worst-Case Execution Time

xxii

Chapter 1

Introduction

The current trend among chip manufacturers is to improve performance by increasing the
core count of processors, rather than increasing clock rates [7]. This is largely motivated by
heat and power constraints [89]. Currently, dual and quad-core chips are the standard. AMD
is already producing a 12-core processor, which we use in a four-chip configuration in this
study, while Intel has demonstrated working 48 and 80-core chips [84]. This trend toward
parallelism has even reached the embedded and mobile markets [23]; Qualcomm recently
released a new dual-core Snapdragon processor which is already available in a variety of cell
phones [54].

The increased presence of multicore and multiprocessor architectures has generated an in-
creased interest in multiprocessor real-time task scheduling. While a significant amount of
effort has been devoted to this field by the academic research community, the focus of this
research has largely been on theoretical issues [34]. More specifically, existing research has
largely concentrated on determining efficient schedulability tests for scheduling algorithms
(i.e., task utilization conditions under which all task deadlines can be met), or on the devel-
opment of new algorithms which can provide tighter schedulable utilization upper bounds
or simpler tests. Schedulability tests often require knowledge of the worst-case behaviors of
tasks, including those on execution times, arrival times, and resource access behaviors.

The most widely researched class of multiprocessor real-time scheduling algorithms are global
scheduling algorithms. In global scheduling algorithms, all tasks are placed in a single
globally accessible queue, and scheduling decisions are made for the entire system based on
the contents of this queue. Tasks are allowed to migrate freely between all processors in the
system. One advantage of this approach is that it is capable of providing optimal schedules
on a multiprocessor. Another advantage is that tasks can be added to the system at run-time
without difficulty. However, since tasks can migrate freely, the system incurs overhead due
to migration costs and cache misses [25]. Example such scheduling algorithms include Global
Earliest Deadline First (G-EDF) [24], Global Rate Monotonic Scheduling (G-RMS) [5], and
the PFair class [17]. Table 1.1 shows a periodic taskset with deadlines equal to periods, and

1

Matthew A. Dellinger Chapter 1. Introduction 2

Table 1.1: A sample periodic taskset with periods equal to deadlines

Task Period WCET
0 6 3
1 9 5
2 17 7
3 4 2

(a) G-EDF schedule on a two processor system

(b) G-RMS schedule on a two processor system

Figure 1.1: Sample schedules for global algorithms on a two processor system. Upward
arrows indicate the arrival of a task and downward arrows indicate a deadline of a job and
the release of the subsequent job.

Figure 1.1 shows its G-EDF and G-RMS schedules.

Tasks can also be assigned to processors offline, and then uniprocessor scheduling can be
performed on each processor. This approach is known as partitioning. Partitioning has
several advantages over global scheduling; first, since all tasks are allocated to processors,
the scheduling problem becomes a set of uniprocessor problems. Uniprocessor scheduling
has been extensively studied and optimal and efficient algorithms are well known (e.g. EDF,
RMS). Second, since the tasks are not allowed to migrate, the system incurs no overhead due

Matthew A. Dellinger Chapter 1. Introduction 3

(a) P-EDF schedule on a two processor system

(b) P-RMS schedule on a two processor system

Figure 1.2: Sample schedules for partitioned algorithms on a two processor system. Upward
arrows indicate the arrival of a task and downward arrows indicate a deadline of a job and
the release of the subsequent job.

to task migration and cache misses. However, because taskset partitioning is analogous to
the bin-packing problem, it is NP-hard in the strong sense [15]. Because of this, partitioning
cannot provide optimal scheduling on multiprocessors. Additionally, if tasks are added to the
system at run-time, it may be necessary to re-partition the entire system. Some examples
of algorithms in this class are Partitioned Earliest Deadline First (P-EDF) and Partitioned
Rate Monotonic Scheduling (P-RMS). Figure 1.2 shows P-EDF and P-RMS schedules for
the taskset shown in Table 1.1 for these scheduling algorithms.

A variety of schemes have been studied which utilize elements of both partitioning and
global scheduling. The most common of these is known as clustered or semi-partitioned
scheduling [21]. In this scheme, tasks are first partitioned onto sets of processors, and global
scheduling is then run within each cluster. This allows for some of the benefits of global
scheduling, while minimizing the penalties for task migrations.

Matthew A. Dellinger Chapter 1. Introduction 4

1.1 Limitations of Current Research

While algorithmic research is both necessary for and beneficial to the advancement of mul-
tiprocessor real-time scheduling, the existing body of research is limited in three regards.
First, previous research has mainly focused on systems in which it is possible to know or
deterministically bound application behaviors such as those on execution times and task
arrivals. Although such applications comprise a large and important subset of the real-time
problem space [67], applications also exist outside this space. Such applications may have
unpredictable task arrivals or non-deterministic execution times, which can cause permanent
or transient overloads. Clark [40] and Welch [108] describe two distributed radar tracking
systems which often must operate in overload, and suffer from non-deterministic execution
times due to data-dependent processing and communication latencies incurred by their dis-
tributed structure. Both of their applications desire graceful performance degradation, and
so require utility accrual scheduling [52], [39]. Tan and Hsu [103] also present a class of mul-
timedia applications which may require guarantees on deadlines missed while this system is
in overload. Extensive research has been performed on scheduling under such conditions on
uniprocessors, but only a small amount is known about scheduling such systems on multi-
processors. No existing research has ever explored such a system on a platform with more
than 8 cores.

Second, it is not clear how system overheads (and other second order effects) affect the scal-
ability of existing schedulers on large core count platforms. This is difficult to understand
analytically and is therefore, correctly, scoped out of research that focus on devising schedu-
lability tests or research that focus on devising algorithms with improved schedulability.
Since task scheduling is generally implemented in the operating system kernel, and a variety
of other kernel-level components have previously been shown to scale poorly to large-scale
multiprocessor systems, it is doubtful that task scheduling will be immune to the detrimental
effects of scaling [28]. Before such algorithms can be deployed in a production environment
on large-scale multicore platforms, these effects must be understood. So far, only two studies
have approached this issue, and only one of them has specifically focused on it. Calandrino
and Anderson performed analysis of the performance of G-EDF and P-EDF on a simulated
64-core platform and concluded that a hybrid solution was needed [32]. Brandenburg et.
al. theoretically analyzed the schedulability of a large number of tasksets on a 32-core Sun
Niagara platform based on experimental overheads collected [31]. However, neither of these
efforts actually scheduled a large number of tasksets on a running kernel scheduler, and
neither explored any classes of algorithm other than deadline-based and PFair.

Much of the dearth of experimental research on multicore real-time task scheduling, especially
on utility accrual scheduling, is due to the lack of experimental platforms for testing real-
time scheduling. In fact, aside from our work, there is only one publicly available platform
which provides a framework for advanced multicore real-time scheduling: LITMUSRT [29].
LITMUSRT provides support for many of the classes of scheduling mentioned above, such as
G-EDF, P-EDF, and PFair. However, aside from adding real-time scheduling capabilities,

Matthew A. Dellinger Chapter 1. Introduction 5

it makes no modifications to the Linux kernel to improve determinism or reduce latencies,
and thus cannot be considered a real-time operating system. Furthermore, it provides no
support for utility accrual scheduling of any kind [52].

1.2 Research Contributions

Based on these lacunae in the contemporary research, we aim to experimentally analyze the
scalability of a broad range of global real-time scheduling algorithms, including algorithms
that allow execution overruns and runtime uncertainties in a real-time operating system
kernel.

To this end, we have created the ChronOS real-time Linux kernel. ChronOS builds upon the
existing PREEMPT RT Linux patch, which enhances the real-time capabilities of the standard
Linux kernel [106]. ChronOS provides a flexible framework for event-driven multiprocessor
real-time scheduling. This allows us to implement a wide range of scheduling algorithms and
perform extensive experimentation on them.

To understand the scalability issues encountered, we perform experimentation on ChronOS,
focusing on finding and resolving scaling bottlenecks, such as locks. We describe and exper-
imentally demonstrate the bottlenecks discovered and resolve them.

Once ChronOS has been demonstrated to provide scalable event-driven multicore real-time
scheduling, we implement 15 multiprocessor real-time scheduling algorithms. Extensive ex-
perimentation is performed on these 15 algorithms and the default Linux scheduler to deter-
mine the relationship between algorithm design and scalable scheduling.

Our experimentation reveals that it is possible to design global fixed and dynamic priority
and simple utility accrual heuristic real-time scheduling algorithms which will scale to large-
scale multicore platforms, but also demonstrate that certain classes of algorithms such as
the GUA class are inherently not scalable. Additionally, our results reveal that, prior work’s
conclusion that global scheduling is appropriate only for small core counts (e.g., 8) [31], is only
applicable to certain classes of algorithms. In particular, in our implementation, scalability
is restricted by lock contention over the creation and distribution of the global schedule and
the cost of inter-processor communication, rather than the global queue implementation. We
conclude that G-NP-EDF is able to provide high levels of scalability on our 48-core system.
We show that algorithms implemented with scalability as a first-order implementation goal
are able to provide real-time guarantees on our 48-core platform.

Matthew A. Dellinger Chapter 1. Introduction 6

1.3 Thesis Outline

The remainder of this thesis is organized as follows; Chapter 2 provides an overview of pre-
vious work related to our goal. Chapter 3 describes the theoretical models we assume as
our foundation. Chapter 4 discusses the PREEMPT RT patch, which provides the underlying
real-time operating system capabilities to the ChronOS Linux kernel. Chapter 5 presents
the architecture and implementation of ChronOS. Chapter 6 describes the scheduling algo-
rithms we implement and measure. In Chapter 7, we analyze the scalability of stop-the-world
scheduling architecture within ChronOS. This analysis is used to guide our efforts to increase
its scalability. Our experimental results are summarized and analyzed in Chapter 8, and pre-
sented in full in Appendices A-F. System overheads are measured in Chapter 9. Chapters 10
and 11 present our conclusions and suggestions for further research in this area.

1.4 Scope of Thesis

It is inevitable given the breadth of the field that this thesis will not comprehensively cover
all possible aspects of the problem space. To limit the scope of material covered, we do not
address several relevant questions.

The first limitation in scope is an exclusive focus on CPU-intensive application workloads.
This is a commonly made assumption when evaluating real-time systems, such as in [13], [52],
[31]. However memory-intensive workloads are likely to scale differently than CPU-intensive
workloads on large-scale core-count platforms because of the difference in migration and
preemption overheads. Both of these actions incur a higher cost for memory-intensive work-
loads due to cache-miss overheads, meaning their performance will likely suffer more than
CPU-intensive workloads on large core counts. We do attempt to provide at least mini-
mal indication of the amount of overhead this type of workload would incur by measuring
migration overheads for various working set sizes.

We further limit the scope of our research to consider only independent tasksets—i.e. those
without any inter-task precedence constraints or dependencies, such as due to synchroniza-
tion. As with our workloads, this is an assumption commonly made when analyzing real-time
scheduling algorithms ([3], [9], [10]). However in real-world applications, especially those de-
signed to run on multicore applications, inter-task dependencies often arise [27], [39], [76]. In
our study, the focus is placed on independent tasks for two reasons. First, our primary focus
is on the difference in scalability between various types of scheduling algorithms. Since many
locking protocols are agnostic of the scheduling algorithm [27], this can be comprehensively
studied without addressing task dependencies. Second, given the large number of algorithms
and tasksets used in our experimentation, providing a thorough evaluation of dependent
tasksets would require testing a wide range of dependency patterns and scheduling proto-
cols. Given the bulk of the work and its limited relevance to our primary goal, we chose to

Matthew A. Dellinger Chapter 1. Introduction 7

omit it. To our knowledge, no study has ever looked at multicore real-time locking protocols
from the perspective of scalability, so it is difficult to say what effect their inclusion would
have on our conclusions.

Third, Brandenburg et. al. have experimentally demonstrated how interrupt handling can
effect the performance of global scheduling algorithms [30]. In their experiments, they found
that the best real-time performance was achieved by allowing only one processor core to
handle interrupts, and excluding this core from executing tasks. However, to simplify our
implementation, we allowed all cores to both execute tasks and handle interrupts. We believe
that their results for global handling of interrupts, which show limited scalability, are likely
due to the use of a vanilla kernel, and that on our system, the use of the Linux kernel’s
PREEMPT RT patch should offset this.

One method that has been proposed to improve scalability in multicore systems is the use of
message passing to convey changes in state, rather than data structures residing in shared
memory. This approach has been pioneered at the operating system level by the Barrelfish
research operating system [22]. While this approach has been shown to increase the scal-
ability of multicore systems in some cases, it requires a complete redesign of the low-level
operating system functionality. For this reason, we limit our scope to traditional monolithic
operating system kernels which use locks and shared data structures.

Last, while we cover 16 multicore real-time scheduling algorithms, these are only a small
sample of the algorithms developed. In particular, there are a wide range of EDF and RMS
variants which have been devised for multicore platforms. We cover six of the most common
of these (i.e. G-EDF, G-NP-EDF, P-EDF, C-EDF, G-RMS, and P-RMS) but neglect a
several well known variants. Chief among these are EDF-fm, which is a restricted-migration
variant of G-EDF for soft real-time systems [3], and the modified EDF algorithm proposed by
Srinivasan and Baruah which priorities high-utilization tasks to avoid the Dhall effect [98].
Neither of these algorithms has received as much focus from the academic community as
the six we study, but both are capable of outperforming the six we have studied under
certain conditions. Another variant is Partitioned Deadline Monotonic Scheduling (PDMS),
which is a static priority partitioned algorithm which uses task splitting to increase the lower
schedulability utilization bound beyond the 50% typical of partitioned algorithms [71].

Chapter 2

Background

This chapter presents previous work that relates to our objectives. This work is divided up
into four sections. First, we examine previous real-time scheduling algorithms classifications
and research. Second, we look at various approach to real-time Linux. Third, we present
previous multicore real-time scheduling platforms. Fourth, we focus on the two previous
studies which relate closely to our work.

2.1 Multicore Real-Time Scheduling

Multicore real-time scheduling algorithms can be grouped in three ways. First, algorithms
may be classified based on the extent to which tasks are allowed to migrate between pro-
cessors. Carpenter has divided the algorithms into three groups: no migration, limited
migration, and full migration [34]. No migration implies that once a task has begun execut-
ing on a processor, it will not leave that processor. The assignment of tasks to processors
is done offline before the taskset is executed by a partitioning algorithm, such as a first-fit
or a best-fit algorithm. Any uniprocessor scheduling algorithm can be used in a parti-
tioned manner, although it is necessary to use the correct partitioning algorithm with a
given uniprocessor scheduling algorithm to achieve the best performance. In this thesis, we
use five uniprocessor algorithms: Rate-Monotonic Scheduling (RMS) [72], Earliest Deadline
First (EDF) [35], Locke’s Best Effort Scheduling Algorithm (LBESA) [81], Dependent Activ-
ity Scheduling Algorithm (DASA) [39], and a simple heuristic algorithm of our own devising,
which is discussed later.

The second class is limited migration algorithms. In these algorithms, tasks are allowed
to migrate between the system’s processors, but only at specific times, most commonly job
boundaries. Therefore, at the arrival of each section of a task, the task is placed on a
processor, and executed there. Once it has finished a section, it may be moved to a different
processor. Anderson et. al. discuss this model in [3]. The Global Non-Preemptible EDF

8

Matthew A. Dellinger Chapter 2. Background 9

(G-NP-EDF) algorithm described in [45] is an algorithm which follows this model.

Third, algorithms may allow full migration. In this model, any task is allowed to migrate to
any processor at any time. This is the most common model employed. Scheduling algorithms
which use it include Global EDF (G-EDF) [24], LLREF [37], PFair [58], and the GUA class
of algorithms [52].

There is also a fourth class of algorithms which Carpenter does not address. These might
also be termed restricted migration, but are restricted in a different respect than Carpenter’s
limited migration class. Rather than only being allowed to migrate at certain points, tasks
are allowed to migrate at any time, but only between certain processors. As with partitioned
scheduling, the tasks are separated offline, but rather than being assigned to a single proces-
sor, they are assigned to a set of processors. A multiprocessor scheduling algorithm is then
run on these processors. Two examples of such a scheduler are Clustered EDF (C-EDF) [20]
and MOCA [69].

Algorithms can also be classified based on the complexity of the priority mechanism they
use [3]. These have been divided up into three classes: fixed priority, task-dynamic, and
job-dynamic. Fixed priority scheduling assigns each task in the system a single priority for
all of its jobs. The most common fixed priority scheduling algorithms is Rate Monotonic
Scheduling, or RMS. This has been shown to be an optimal static priority scheduling algo-
rithms on uniprocessors. RMS has been directly extended to multiprocessor scheduling with
Global RMS and Partitioned RMS. Unfortunately, unlike the uniprocessor case, no simple
utilization bound exists for multiprocessor fixed priority scheduling.

Task-dynamic priority algorithms are those in which different jobs of the same task may
have different priorities, but the priority of each job never changes. The most common task-
dynamic priority algorithm is Earliest Deadline First (EDF). EDF is an optimal algorithm
for uniprocessors, and like RMS has been directly extended to multiprocessors by global
scheduling and partitioning, resulting in G-EDF and P-EDF.

Job-dynamic priority algorithms are those in which the priority of a job may change during
its execution. There is no single scheduling algorithm which is commonly associated with
the job-dynamic approach, but a wide variety of algorithms utilize it. The PFair and LLREF
classes of algorithms both utilize this approach, as do all algorithms which rely on the value-
density concept defined in Chapter 3, such as the GUA class.

Last, algorithms may be classified by their performance goals. This allows us to broadly
group algorithms into three classes. First, there are traditional algorithms, such as EDF and
RMS variants. These algorithms attempt to meet all deadlines in underloads, but cannot
always do so. They assume that the system will never be in overload, and their performance
significantly degrades if such a condition occurs [19]. This is the largest class of algorithms,
and a wide range of algorithms have been designed to meet specific cases.

A class of algorithms also exists which is able to meet all deadlines for all tasksets on an
m processor system, as long as the total utilization U is less than m. These algorithms can

Matthew A. Dellinger Chapter 2. Background 10

be divided into two subclasses — the PFair class, which is based on scheduling at specific
intervals, called quanta, and the LLREF class, which works in an event driven fashion. While
both of these are theoretically optimal, both require significant computation to generate the
schedule [45], [37].

Finally, a third class of algorithms exists which is designed to schedule in overload. When
a system is in overload, the scheduling algorithm must discard tasks. This should be done
in such a way that “good” task are kept, and “poor” tasks are allowed to fail. LBESA and
DASA [39] provide this kind of performance by heuristically discarding tasks. The GUA
class of algorithms and gMUA [36] are extensions of LBESA and DASA for multiproces-
sors. There are also non-heuristic solutions to this problem; Dover [68] and MOCA [69] are
schedulers which provide the optimal competitive ratio for uniprocessor and multiprocessors
respectively.

2.2 Real-Time Linux

Since one of our main contributions is a real-time Linux kernel based on the PREEMPT RT

patch, attention must be paid to the field of real-time Linux. Given the maturity and
widespread use of Linux, it is not surprising that it has received substantial interest from
both the academic and industrial communities. To date, there have been a wide range of
real-time Linux distributions. These may be divided into two groups.

The first group is those based on the nano-kernel approach. This approach is based on the
idea that the Linux kernel, as a large complex piece of software, is inherently incapable of
providing hard real-time guarantees. To this end, the distributions which follow this approach
run the Linux kernel itself as a task on a nano-kernel. Applications needing hard real-time
performance can then be run as tasks on this nano-kernel, and therefore are immune from the
performance issues of the Linux kernel. Alternately, a separate real-time kernel can be run as
a task like Linux, and the real-time applications can then be executed in this environment.
When tasks need to communicate with Linux tasks, they do so through lock-free buffers. The
most popular distributions in this model are the descendants of the RTLinux distribution,
RTAI and Xenomai [14]. Both of these distributions use the Adeos nano-kernel.

However, this model has a large disadvantage; real-time applications must be written to the
APIs of the nano-kernel or the real-time kernel, rather than for Linux itself. While both
RTAI and Xenomai attempt to provide similar APIs within the nano-kernel environment,
they cannot provide the full set of Linux APIs.

This motivates the second model, which is the modification of the Linux kernel itself to
tighten the performance provided. This is the approach taken by the PREEMPT RT patch [85],
as well as several commercial real-time Linux distributions such as RedHawk Linux [92].
This allows the application to make use of the full range of Linux APIs inside a standard
Linux environment, but has the disadvantage of not providing as high a level of hard real-

Matthew A. Dellinger Chapter 2. Background 11

time performance [88]. Despite this drawback, there are a large number of commercial and
academic systems based on the PREEMPT RT patch, such as Kansas University Real-Time
Linux (KURT) [90] and the Fujitsu Limited and Tokyo stock exchange [105].

2.3 Multiprocessor Real-Time Scheduling Platforms

Given the extensive algorithmic research on real-time scheduling algorithms, it would be
logical to assume that there are a wide range of platforms which can be used as experimental
frameworks for the implementation and testing of such algorithms. Unfortunately, that is
not the case. None of the previously mentioned real-time Linux platforms provide any kind
of advanced scheduling. The majority of those authors which present implementations of
their work such as [97] and [6] implement their schedulers directly into an operating system
kernel or middleware, implement only a single algorithm, and do not provide full source code
for their implementations. While this is sufficient to publish a paper, it provides no benefit
to future authors who wish to perform implementation-based studies.

There several exceptions to this; both the Alpha [38] and Spring [99] kernels were both
extensively documented and continue to influence the design of real-time operating system
design. Both existed before the Internet and open-source community and therefore the
source-code is not publicly available, and both were designed for highly proprietary hardware,
but the detailed implementation descriptions and discussion of the logic behind it allow them
to remain relevant.

More recently, Wang and Lin described their RED-Linux platform, which allows time-driven
scheduling in a modified Linux kernel [107]. However, it only supports uniprocessor schedul-
ing, and the source-code is not publicly available. Similarly, Li and Ravindran demonstrated
a Java-based real-time scheduling middleware, which they formally verify [77]. They im-
plement a variety of algorithms, including EDF, LBESA, and DASA. However, as with
RED-Linux, it only supports uniprocessor scheduling and the source code is not publicly
available.

Aside from the ChronOS kernel we have developed, there is in fact only one mature plat-
form which provides advanced multiprocessor task scheduling and has freely available source
code. This is the Linux Testbed for Multiprocessor Scheduling in Real-Time systems, or
LitmusRT [29], [33]. LitmusRT was developed to fill exactly this void. It provides for ad-
vanced multiprocessor real-time scheduling algorithms such as G-EDF, C-EDF, P-EDF, and
PFair. Having been in development for nearly five years, it is quite mature, and has received
significant interest from both the Linux kernel and academic research communities. Unfor-
tunately, it does not utilize the PREEMPT RT patch or make any other changes to Linux itself
aside from scheduling. Because of this, it cannot be called a real-time Linux kernel.

Matthew A. Dellinger Chapter 2. Background 12

2.4 Multiprocessor Real-Time Scheduling Scalability

It is therefore not surprising that the only studies of the performance of multiprocessor real-
time scheduling algorithms occurred on LitmusRT . First, Calandrino et. al. used LitmusRT

as a test platform for C-EDF, which they propose as a viable middle ground between G-EDF
and P-EDF [32]. They demonstrate that on a 64-core platform, the scheduling overheads
associated with G-EDF are prohibitive, and the bin-packing problems associated with par-
titioning limit the performance of P-EDF. They then generate a large number of tasksets,
inflate task execution times with the overheads generated, and perform schedulability tests
to determine the required number of processors to schedule each taskset under each algo-
rithm. They conclude that, while G-EDF and P-EDF are able to outperform C-EDF by
small margins in specific cases, both are also significantly outperformed by C-EDF in others.
They therefore conclude that C-EDF provides the most consistent performance across a wide
range of tasksets on high core-count multiprocessor systems. However, this study is limited
in several regards; first, the overheads used were empirically generated based on a small
number of measurements taken from a MIPS architecture simulator, rather than measured
on a running platform. Second, only average-case overheads were considered when inflating
the task execution times. While both of these approaches are reasonable, they do not nec-
essarily provide an accurate picture of a running hardware system, and cannot be directly
compared to other architectures, such as x86. Additionally, only soft real-time schedulability
tests were performed.

In the second study, Brandenburg et. al. analyzed the scalability of five multiprocessor
real-time scheduling algorithms in LITMUSRT on a 32-core Sun UltraSPARC T1 Niagara
platform [31]. The algorithms measured are P-EDF, G-EDF, C-EDF, G-NP-EDF, and two
variants of PFair, PD2 and S-PD2. Like Calandrino, rather than actual scheduling the tasks
in a running kernel, they use overhead measurements to inflate task execution times, and
then perform offline schedulability tests. However, unlike Calandrino, they use overheads
measured from a running platform and measure both average and worst-case overheads.
They demonstrate that on this platform, G-EDF and PD2 perform poorly for hard real-
time loads. They further conclude that C-EDF consistently outperforms G-EDF, and S-PD2

and P-EDF are consistently the best performers. For soft real-time loads, they conclude
that S-PD2 and C-EDF perform well. Finally, they conclude that the largest hindrance to
scalability is the implementation of the global queue.

Chapter 3

Models

3.1 Hardware Model

We consider a homogeneous multicore, multiprocessor system with N cores and M proces-
sors. We assume that each of the N cores are identical and uniformly distributed across
the M identical processors. In this thesis, the term core will be used to refer to a single
computational unit and its associated unshared components, such as low-level cache, while
the term processor will be used to refer to one or more computational units residing on the
same physical die and potentially sharing on-die components such as high-level cache and
memory controllers [66]. A diagram of one such multicore processor (the AMD Magny-Cours
12-core chip used in our study) is shown in Figure 3.1 [1]. This particular chip contains two
separate 6-core processor dies on the same physical chip. The two dies are connected to-
gether via a cache-coherent high-speed interconnect. Figure 3.2 shows the same chip in a
two-chip configuration, and Figure 3.3 shows a four-chip configuration [2]. Like the two dies
on each chip, the neighboring dies are connected via a cache-coherent high-speed intercon-
nect. This kind of multiprocessor architecture is known as a cache-coherent non-uniform
memory architecture (ccNUMA) platform [100].

Each core is assumed to have a local cache to which only it has access. Each processor may
also have a shared cache to which all of its cores have access. Local cache access takes some
constant time µlc, and shared cache access takes µsc, where µsc > µlc.

All processors are assumed to have equal amounts of local memory, which they can access
directly in some time µlm. Each processor is also able to access every other processor’s
memory. This interprocessor memory access has a constant time cost of µrm, where µrm >
µlm. Therefore, we say that µrm > µlm > µsc > µlc. The system’s memory is presented to
the applications in a single address space.

While ChronOS is designed around such a system, it will function on any x86 platform

13

Matthew A. Dellinger Chapter 3. Models 14

Figure 3.1: AMD Magny-Cours 12-core processor architecture

Figure 3.2: AMD Magny-Cours 2-Chip Interconnect Topology

supported by the standard Linux kernel. However, if these assumptions are violated, var-
ious subsystems of ChronOS will likely perform in a less than ideal manner, and overall
performance may seriously decrease.

3.2 Task Model

We consider a programming model in which the work is divided up into a set of tasks. Each
of these tasks Ti has an arrival pattern which may be described as periodic, sporadic, or
aperiodic. If a task is periodic, it is said to have a period Pi. Sporadic tasks, like aperiodic
tasks, have no consistent arrival pattern. However sporadic task have a guaranteed minimum
inter-arrival time [63]. Each individual execution of a task Ti is referred to as a phase or
job [39]. The J th job of task Ti is written T j

i . Each job of a task may also have a worst-case
or good-faith execution time ej

i , a deadline dj
i , and a release time Rj

i , identifying the time at

Matthew A. Dellinger Chapter 3. Models 15

Figure 3.3: AMD Magny-Cours 4-Chip Interconnect Topology

which the job becomes eligible for execution. Each job also has a utilization U j
i , which may

be computed by ej
i/(d

j
i − Rj

i). No arrival pattern is assumed, and in the case of periodic
tasks, we do not assume that Pi = dj

i − Rj
i . ChronOS supports the full range of arrival

patterns, including fully aperiodic, sporadic, and periodic, and also both event-triggered and
time-triggered.

Each job of a task contains one or more scheduling segments, which define a part of the
thread which must be executed with real-time constraints. Real-time segments have a
single start and end point, which are communicated to the underlying operating system
through the begin scheduling segment and end scheduling segment operations, based
on the Real-Time CORBA APIs [94]. In ChronOS, these operations are named begin rt seg

and end rt seg. These operations are used to communicate time constraints (e.g. periods,
deadlines, TUFs) to the operating system. While some systems such as Alpha and Real-
Time CORBA 2.0 allow nested segments (which they refer to as deadline/mark pairs), we
only allowing sequential segments [91], [94]. Unlike any of the previously mentioned systems,
we do allow the direct continuation of one segment into another. Therefore, if two segments
are adjacent to each other, we follow a begin rt seg call with a second call, rather than
calling end rt seg followed by begin rt seg.

The details of begin rt seg and end rt seg are further discussed in Chapter 5.

3.3 Threading Model

Each task is represented to the underlying operating system as a thread. For this, there are
two common models. Either each job T j

i of Ti can be executed on the same thread ti, or
a new operating system thread can be created for job. If the first approach is used, at the
end of T j

i , the thread sleeps until the beginning of T j+1
i . If the thread finishes execution

of T j
i after the time at which T j+1

i should begin, T j+1
i becomes available for execution

Matthew A. Dellinger Chapter 3. Models 16

immediately. We call this the “thread-per-task” model. This model is advantageous because,
as it uses the same thread for the entire duration of the task, there is no overhead for thread
creation/destruction. Also, since the same thread is being used, it is possible to save state
information from one job to the next in thread-local variables. This is the most common
threading model, being used in systems such as LitmusRT , RTAI, and RTSJ [26], [62], [47].

Alternatively, a new operating system thread can be created at the arrival time of each job
T j

i . In this model, the thread ti is created, immediately executes T j
i , and then terminates.

We call this model “thread-per-job”. This model is often used for aperiodic tasks because it
fits well with event-based job arrival. It is generally disadvantageous for periodic tasks, since
it requires the creation and destruction of a thread for each job. This model is available in
Linux, where the timer create() function will create a new thread for the function to be
run if the SIGEV THREAD option is specified.

Additional models are possible, such as a thread-pool model. In this model, a variety of
jobs are presented to an interface such as a virtual machine. The jobs are then assigned to
a predetermined set of threads by this intermediate layer. Different jobs of the same task
may therefore be assigned to different threads. Two examples of such a threading service
are Java’s ThreadPool class and Mac OS X’s Grand Central Dispatch [59], [61].

We assume no particular model, except that each job is associated with a single operating
system thread for the duration of a scheduling segment. We likewise provide no specific APIs
for threading, preferring to rely on the existing APIs provided in Linux.

3.4 Timeliness Model

We measure the timeliness of each job through the use of a time-utility function (TUF) [65].
This allows us to separately represent the importance and urgency of a job. While this
separation is of little interest in a hard real-time system in which all deadlines must be met
and therefore the urgency is of prime importance, in a soft real-time system this separation
allows the execution of jobs based on the value that will be accrued for the system.

We represent the time/utility function of a job T j
i as V j

i (t). Each job has a release time Rj
i

and a termination time TM j
i . The TUF V j

i (t) is therefore defined on the interval [Rj
i , TM j

i].

As Figure 3.4 shows, TUFs can take a wide variety of forms. It is even possible to have a
TUF defined and positive on the interval [Rj

i ,∞], implying that the job may be completed
at any time after its release and still provide some benefit to the system [78].

The concept of a hard deadline is not implicit in TUFs, but can easily be expressed as a
downward step function (see Figure 3.4(b)) [52]. Like Clark, Garyali, and others, in this
thesis we consider only a downward step TUF in which a utility Vi may be accrued if
the job T j

i is completed before its deadline dj
i , and no utility is accrued if it is completed

afterward [39], [52]. This is in contrast with systems like the Alpha and scheduling algorithms

Matthew A. Dellinger Chapter 3. Models 17

-
Time

6
Utility

(a)

-
Time

6
Utility

(b)

-
Time

6
Utility

(c)

-
Time

6
Utility

(d)

Figure 3.4: Soft timing constraints specified using Jensen’s Time-Utility Functions [78]

like GUS and LBESA, which allow a broad range of TUFs [38], [74], [81]. The downward
step TUF is a generalized form of the classic deadline scheduling, in which all tasks are
considered to accrue a constant utility if finished before their deadline, and no utility if
finished afterwards. One extension of this concept is the local value density of the test.
The local value density LV Dj

i of a job T j
i is equal to the utility V j

i to the job’s remaining
execution time [52].

If a job fails to finish by its deadline, it is said to be tardy. Therefore, the tardiness θj
i of a

job T j
i may be expressed as TM j

i − dj
i .

In ChronOS, TUFs are specified by passing a utility, execution time, and deadline to the
scheduler via begin rt seg.

3.5 Abort Model

We consider the model in which some tasks, designated abortable tasks, may have their
execution aborted. Any job of an abortable task my be aborted at any time. There are a
variety of reasons why it may be desirable to abort a job. In this thesis, we primarily consider
aborting jobs that are either deadlocked with another job over a resource or have passed their
deadline. When the decision to abort a job is made, the job is sent an abort signal by the
scheduler, which upon the resumption of execution, will invoke an abort handler. The
invocation of the abort handler will not necessarily occur immediately upon the resumption
of execution, but will occur within a finite, bounded amount of time la. The invoked abort
handler will place the task and any other objects it was interacting with into a known good
state, including freeing any resources the job acquired.

This abort model differs from previous authors in two points [39], [42], [75]. First, we do not
assume immediate invocation of the abort handler upon resumption of execution. Second, we
do not assume a single abort handler for the entire segment [52]. Instead, the thread checks
if it has been aborted at specific points, and if it has been, executes the correct abort handler
for that point. Therefore, rather than requiring an abort handler that is capable of undoing
all of the actions of the segment, regardless of the point of preemption, our segment can be

Matthew A. Dellinger Chapter 3. Models 18

void abort() {

...

if(b->list.next == a)

b->list.next = a->list.next;

if(b->list.next->list.prev == a)

b->list.next->list.prev = b;

if(a->list.next == b->list.next)

a->list.next = h->list.next;

if(a->list.prev == b)

a->list.prev = h;

if(a->list.next->list.prev == h)

a->list.next->list.prev = h;

if(h->list.next == a->list.next)

h->list.next = a;

...

exit();

}

void task() {

...

register_abort_handler(&abort);

...

h->list.next = a->list.next;

a->list.next->list.prev = h;

a->list.next = b->list.next;

a->list.prev = b;

b->list.next->list.prev = a;

b->list.next = a;

...

}

(a)

void abort_list_1(...) {

h->list.next->list.prev = a;

h->list.next = a;

exit();

}

void abort_list_2(...) {

b->list.next = a->next;

a->next->prev = b;

a->next = h->next;

a->prev = h;

abort_list_1(h, a);

}

void task() {

...

h->list.next = a->list.next;

a->list.next->list.prev = h;

if(task_aborted())

abort_list_1(h, a);

a->list.next = b->list.next;

a->list.prev = b;

b->list.next->list.prev = a;

b->list.next = a;

if(task_aborted())

abort_list_2(h, a, b);

...

}

(b)

Figure 3.5: Sample code for (a) the single abort handler model and (b) our model

divided up into a series of operations, each of which has its own abort handler. Consider the
following example: an object A is being removed from the head of a circular doubly linked-
list and inserted into a second circular doubly linked list after some item B. Assume we
have exclusive access to both lists, and therefore no locks or other forms of data protection
are necessary. If the task is aborted, we want to unroll the activities of the task, and then
exit. Code for this example is shown in Figure 3.5 for each abort model.

Matthew A. Dellinger Chapter 3. Models 19

If this operation was aborted and an abort handler of the type considered by previous authors
was invoked, the handler would be required to unroll the operations. However, unrolling the
operation without any knowledge of where the sequence was interrupted is difficult, because
one of the lists may be in any of seven states, two of which are invalid. However, the
sequence of operations can clearly be broken up into two separate operations, each of which,
if executed uninterrupted, can easily be unrolled.

The evolution of modern programming languages also forces this change in past abort mod-
els. Previous authors relied on mechanisms like POSIX signals and cancel that provide an
asynchronous transfer of control (ATC) [49]. However, in many modern managed runtime en-
vironments such as RTSJ, ATC is strictly forbidden except through specific mechanisms [79].
RTSJ allows tasks to be aborted via the Interruptible interface. However, this interface is
only available from inside the JVM, which runs counter to our assertion that the OS sched-
uler should signal the abort. The Java language provides no standard mechanism to receive
POSIX signals [104]. It should be noted that in addition to asynchronous cancellation,
POSIX does specify PTHREAD CANCEL DEFERRED, which defers cancellation until a designated
cancellation point, similar to our model [60].

Furthermore, unlike previous authors, we do not assume the expression of real-time con-
straints for the abort handler [39], [95]. This is done because each real-time segment may
have many different abort handlers, and it is assumed that the cost of expressing time con-
straints for each of these to the underlying operating system is inordinately large, compared
to the execution cost of the abort handler. There are a number of cases in which this as-
sumption may be invalid, such as a job which has manipulated an actuator in a physical
system and must reset the actuator when aborted. For these cases, ChronOS does provide an
add abort handler operation that sets the deadline, execution time, and utility for a job’s
abort handler. However, the request and release of resources do not automatically modify
the parameters of the job’s abort handler, as Clark does [39]. In this thesis, we assume all
abort handlers are ”short”, and therefore we do not use this operation.

Our abort model is not without precedent, as it is similar to the model used by Li et. al [78].
They allow threads to provide execution times for abort handlers, but do not allow the
abort handler to arbitrarily preempt job execution and allow the job to specify allowable
abort points.

The implementation of our abort mechanism and the APIs needed are discussed in Chapter 5.

3.6 Resource Model

While this thesis gives little focus to resources, many of the algorithms described and mea-
sured provide resource-aware scheduling. From a general standpoint, a resource can be
anything that the programmer must explicitly request and release which can only have a
finite number of users at a time. Like Clark, we restrict our consideration to single-user

Matthew A. Dellinger Chapter 3. Models 20

resources [39]. This implicitly means that what constitutes a resource depends on the lan-
guage being used; in C and C++, memory is a multi-user resource since the programmer
must explicitly both allocate and deallocate it. In Java however, the use of thread-local
allocation buffers and garbage collection often allows the programmer to ignore allocation
and deallocation, and therefore memory is not a resource [87]. The prototypical resource is
a mutex, which must be requested with a lock operation, must be released with an unlock

operation, and can only have one owner at a time. Interfaces to many physical systems, such
as disks and networks, can be represented as resources in this model.

We assume that a resource Mk may be requested by any job T j
i via a request resource

operation, and may be released by a release resource operation. T j
i is blocked on Mk

until its request is granted. Once the request is granted, T j
i is said to be the owner of Mk,

and all other jobs requesting Mk will block. Each job may be the owner of an unlimited
number of resources, but may only be blocked on one resource at a time. This is called
the single-unit resource model [52]. Jobs are allowed to hold resources in both a nested and
overlapped pattern.

Chapter 4

PREEMPT RT Patch

The standard Linux kernel provides some real-time capabilities, but these are only suitable
for soft real-time systems. These features include the SCHED FIFO and SCHED RR real-time
scheduling policies, high resolution timers, and POSIX-defined specifications such as priorities.
Both SCHED FIFO and SCHED RR work within the priority system — a task of a higher priority
always preempts a task of a lower priority. SCHED FIFO allows the user to grant a thread the
processor and guarantee it freedom from preemption by any lower priority task. SCHED RR

equally divides the processor between all tasks at a given priority, and similarly provides
freedom from preemption by lower-priority tasks. The Linux kernel provides a priority
range from 0 to 99.

However, this is insufficient for a hard real-time system. Since interrupts run in a special
interrupt context, all tasks, even those running under a real-time scheduling policy, are
subject to preemption by interrupts. Furthermore, large sections of the kernel are non-
preemptible, meaning that it is impossible to place tight bounds on the latency a task my
experience. Both of these factors make it impossible to provide the necessary guarantees for
a hard real-time platform.

The PREEMPT RT patch was designed by the authors of the Linux kernel to solve this prob-
lem [106]. It enacts several changes to the underlying structure of the Linux kernel designed
to reduce the latencies experienced by real-time tasks. It accomplishes this by reducing the
amount of kernel code which is non-preemptible. In the following sections, we review the
three major changes. The are a large number of other small changes which are left un-
mentioned here because they do not pertain directly to our work. Additionally, there are a
variety of features which began as part of the PREEMPT RT patch, but have now moved into
the mainline kernel, such has the hrtimer high-resolution timer interface [96].

21

Matthew A. Dellinger Chapter 4. PREEMPT RT Patch 22

4.1 Preemptible Critical Sections

The most expansive change made by the PREEMPT RT patch is the use of preemptible critical
sections. In the standard Linux kernel, a locking call on a spinlock t or rwlock t spins
until it acquires the lock. In this state, preemption and sometimes hardware interrupts
are disabled. The PREEMPT RT patch replaced many of these spinlocks with a new type of
lock called an rt mutex. Rather than spinning, this new type of lock can block and sleep,
allowing preemption and migration of the calling thread. This allows critical sections to be
preempted [85].

This new lock is not used throughout the entire kernel. In some cases, such as the sched-
uler, it is still necessary to provide a non-preemptible critical section. For this reason, the
original spinlock t has been preserved. However, its use is limited to only such areas as
are absolutely necessary.

4.2 Preemptible Interrupt Handlers

A second area of non-preemptible code that the PREEMPT RT patch resolves is that of interrupt
handlers. Traditionally, these are run in an interrupt context above the process context,
which means all running processes suffer interference from them. The PREEMPT RT patch
moves almost all interrupts into process context by handling them in kernel threads. This
means that, like other threads, they have a priority and can be preempted by higher priority
threads. By default, all threaded interrupts run at a priority of 50.

A few select interrupts such as the per-CPU timer interrupt and the floating-point co-
processor interrupt are left in interrupt context.

Because interrupt handlers now run in process context, the idea of disabling interrupts no
longer makes sense. In the stock kernel, if a section of code desired to access data sometimes
modified by an interrupt handler, it would have to disable interrupts to prevent preemption
and provide data protection. However, if an interrupt runs in process context, a spinlock t

is sufficient, since the interrupt will block while acquiring the lock, and control will return
back to the holder of the lock [85].

This is both useful and dangerous. It means that interrupts are preemptible and have prior-
ities, which means that it is possible to design an application which receives no interference
from them. However, executing an application above the interrupt handler priority will cause
the interrupt handlers to receive interference from the application. For some interrupts, such
as disk events, this may not be a problem. However for others, such as timer events, this
behavior may not be desirable.

Matthew A. Dellinger Chapter 4. PREEMPT RT Patch 23

4.3 Priority Inheritance

Before the introduction of preemptible critical sections, priority inversion was never a pos-
sibility. If a low-priority task acquired a lock, preemption was disabled, which prevents a
higher priority task from causing priority inversion by attempting to take the lock. However,
once preemptible critical sections are introduced, it is easy to see how priority inversion
can occur. To prevent this, priority inheritance has been implemented for spinlock t and
rwlock t. This prevents priority inversion from occurring. Additionally, for code sections
which hold locks for extended periods of time, preemption points have been added in which
the thread will release the lock to a higher-priority waiter and then reacquire it when the
higher-priority thread has finished [85].

4.4 Experimental Results

In order to demonstrate the improvement in latency experienced by user space applications,
we performed experiments using two commonly used real-time benchmarking applications.
Cyclictest and Signaltest are both widely used and provided through repositories for many
Linux distributions. Our test platform was based on a quad-core AMD Phenom 9650 and
ran Ubuntu 10.04. Ubuntu provides both applications through the rt-tests package.

Both applications measure the average and worst case latencies experienced. Cyclictest
creates a set of periodic tasks which wake, work and sleep. Signaltest creates a set of tasks
which send and receive signals. In each program, latencies are recorded each loop, and
statistics are collected [43].

In order to properly test our system under various load conditions, we need a deterministic
disturbance generator. A commonly used method is a parallel compile of the Linux kernel
using the -j flag of make [43]. This generates a significant memory, processor, and disk load.
Added to this, we use four instances of the ping command with the -f flag set to ping the
localhost. One instance was tied to each of the four cores in our machine using the taskset

command. This creates a significant and consistent interrupt load.

For each test, we test twelve possible conditions. First, we use two different kernels: the
vanilla 2.6.31.12 kernel and the same kernel with the PREEMPT RT patch applied. Additionally,
since interrupts are threaded in the PREEMPT RT kernel, we test that kernel at two different
priorities — one above the interrupt level and one below. The standard kernel is only tested
at one priority. Each test was run with the system under no load and under full load, and
for two different numbers of threads (5 and 10). The results are shown in Tables 4.1-4.4.

From these results it is clear that the PREEMPT RT patch is acting as intended. In no case does
the minimum, maximum, or average latency increase on the PREEMPT RT kernel. Also, as
expected, latencies are significantly lower when the tasks are run at a priority of 80, placing

Matthew A. Dellinger Chapter 4. PREEMPT RT Patch 24

Table 4.1: Cyclictest results for 5 threads, 100000 loops, µs

No load Full load
Kernel Priority Avg. Min. Max. Avg. Min. Max

2.6.31.12 20 10 2 4882 8 2 10988
2.6.31.12-rt21 20 9 1 723 5 2 256
2.6.31.12-rt21 80 8 1 659 4 1 25

Table 4.2: Cyclictest results for 10 threads, 100000 loops, µs

No load Full load
Kernel Priority Avg. Min. Max. Avg. Min. Max

2.6.31.12 20 11 1 7957 10 1 11130
2.6.31.12-rt21 20 8 1 24 5 1 1492
2.6.31.12-rt21 80 9 1 147 4 1 29

Table 4.3: Signaltest results for 5 threads, 100000 loops, µs

No load Full load
Kernel Priority Avg. Min. Max. Avg. Min. Max

2.6.31.12 20 46 43 239 43 29 1258
2.6.31.12-rt21 30 20 33 66 40 14 149
2.6.31.12-rt21 80 32 30 55 38 29 77

Table 4.4: Signaltest results for 10 threads, 100000 loops, µs

No load Full load
Kernel Priority Avg. Min. Max. Avg. Min. Max

2.6.31.12 20 95 88 297 85 60 3725
2.6.31.12-rt21 20 74 62 112 85 27 190
2.6.31.12-rt21 80 74 65 95 83 65 135

Matthew A. Dellinger Chapter 4. PREEMPT RT Patch 25

them over the interrupt threads. The most important change is the maximum latency; for a
hard real-time system, this value must be bounded. Under the standard kernel, latencies in
the millisecond range appear common. However, in the PREEMPT RT kernel, latencies never
exceed 1.5 milliseconds, and rarely exceed 100 microseconds. It is also interesting to note
that while running at priority 80 the latency only once exceeded 147 microseconds. Further
experimentation showed that this peak was not due to the task being blocked by some low-
level activity, but rather due to the fact that tasks in Cyclictest were sleeping. This caused
cores to move in and out of idle states, which caused the latency shown. This is shown in
our results by the fact that maximum latencies for Cyclictest were consistently lower at full
load than at no load.

Chapter 5

ChronOS Real-Time Linux

5.1 Objective

The objective of ChronOS is to provide a real-time operating system with a flexible, mod-
ular, extensible framework for multicore real-time task scheduling. To accomplish this, we
augment the 2.6.31.14 Linux kernel with the PREEMPT RT patch, and then extend it with our
own scheduling framework and APIs. The PREEMPT RT patch provides the necessary real-
time operating system capabilities. Our scheduling framework, called ChronOS, builds on
this to provide a wide range of advanced real-time task scheduling and resource management
policies. The resulting platform is suitable for academic research as both the PREEMPT RT

patch and all ChronOS code are released under the GNU general public license version 2 [50].

This chapter describes the changes ChronOS makes to the Linux kernel to provide the
framework, the capabilities of the framework, and the user space APIs used to interact with
it.

5.2 Linux Scheduling

Linux scheduling is divided up into two classes — real-time scheduling and time-sharing
scheduling. There are 140 priorities spanning both classes. Priorities [0, 99] are real-time
priorities while [100, 140] are time-sharing priorities, generally referred to as “nice” values.
The real-time priorities are reversed in user space to make higher priorities higher. Nice
values are also adjusted so that instead of specifying a value in [100, 140], a user specifies a
value in [-20, 20]. Time-sharing scheduling, referred to as SCHED NORMAL or SCHED OTHER is
the default policy, and is implemented in Linux by the Completely Fair Scheduler, or CFS.
Since ChronOS effects no changes in CFS, we henceforth ignore it.

26

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 27

Figure 5.1: Linux priority bitmap and task queues

Linux supports two real-time scheduling policies — SCHED FIFO and SCHED RR. These have
briefly been described in Chapter 4, and the behavior of SCHED FIFO in a multicore envi-
ronment is described in Chapter 6, but a implementation-level description of the workings
of SCHED FIFO on a single core is given here, since the implementation of ChronOS builds
directly on SCHED FIFO.

Each CPU in Linux has a runqueue, which is the scheduling abstraction for that entire
CPU. On each runqueue, SCHED FIFO is implemented as a bitmap and an associated array
of queues. This is shown in Figure 5.1. The bit corresponding to the priority of the task is
marked whenever a new task is added to the runqueue. SCHED FIFO can then schedule in
O(1) time by finding the first marked bit in the bitmap, and executing the first task in the
queue associated with that bit.

ChronOS directly extends SCHED FIFO. In order to do this, we add several data structures,
which are here described. In order to facilitate scheduling of ChronOS tasks without inter-
fering with the existing priority system, we implement a second task queue for each priority,
called the chronos queue. It is sometimes abbreviated in figures as the CRT-RQ. This queue
contains a possibly empty subset of the tasks in the standard task queue. This is shown
as in Figure 5.2. The chronos queue operates in parallel with the Linux queue. When a
task enters the system, changes priority, or changes runqueue, it is placed on the FIFO or-
dered Linux task queue for its runqueue and priority. If, at some time during its execution,
this task performs a begin rt seg operation, it is also placed on the chronos queue for its
priority and its scheduling policy is changed from SCHED FIFO to SCHED CHRONOS. Depend-
ing on the scheduling algorithm, tasks may be stored on the chronos queue in a variety of
orders, including FIFO and deadline-ordered. Once a thread is inside a real-time segment,
it cannot change its priority. If the task is migrated and therefore changes runqueue, it is
removed from the chronos queue of the first runqueue and inserted on the chronos queue

of the second. When the thread executes an end rt seg operation, it is removed from the
chronos queue. ChronOS scheduling is performed within these chronos queues.

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 28

Figure 5.2: ChronOS task queues

5.3 Data Structures and Operations

5.3.1 Data Structures

We also need to store timing constraints for each task, as well as other objects needed
for scheduling, such as the pointers for the chronos queue. To do this, we add an object
containing this data to the task descriptor of each task in Linux. This object is shown in
Figure 5.3. The four timespec structures represent the deadline, deadline adjusted for depen-
dencies, period, and remaining execution time of the task. exec time is the task’s WCET
which, together with max util describes the task’s downward-step TUF. The local ivd and
global ivd represent the local and global value densities of the task. These are inverted
when stored because the utility will almost always be a smaller value than the remaining
execution time (in microseconds), and therefore the fraction could not be accurately rep-
resented as an integer. seg start us stores the thread’s total execution time at the time
of the begin rt seg operation. This is necessary for accurately computing the remaining
execution time of a thread with multiple segments. The task list objects are used to store
the thread on the local and global task queues, while the list objects are provided to allow
scheduling algorithms to build their own lists. requested resource holds the address of any
resource requested, while dep stores the owner of that resource, if any. If timing constraints
are provided for the segment, these are stored in abortinfo. The flags fields stores state
information about the task, such as whether there are any pending operations on it, whether
it has been aborted, or if it has deadlocked with another task over a resource. The cpu field
stores the last processor core the segment was executed on. While Linux provides a similar
value, it does not differentiate between normal thread execution and real-time segment exe-
cution. Therefore, by setting this value to an invalid number at the creation of a segment,
we can tell whether a segment has begun execution, and thereby gauge its eligibility for
migration. The details of the rt graph structure are described by Garyali and are therefore

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 29

omitted here [52].

struct rt_info {

/* Timing Constraints */

struct timespec deadline; /* Monotonic time */

struct timespec temp_deadline; /* Monotonic time */

struct timespec period; /* Relative time */

struct timespec left; /* Relative time */

unsigned long exec_time; /* WCET, us */

int max_util;

long local_ivd;

long global_ivd;

unsigned int seg_start_us;

/* List objects for various queues */

struct list_head task_list[2];

struct list_head list[SCHED_LISTS];

/* DAG used by x-GUA class of algorithms */

struct rt_graph graph;

/* Lock information */

struct mutex_head *requested_resource;

struct rt_info *dep;

/* Abort information */

struct abort_info abortinfo;

/* Task state information */

unsigned char flags;

int cpu;

};

Figure 5.3: Data structure appended to the task descriptor in ChronOS

ChronOS also creates an rt data structure, which is used any time it is necessary to pass
timing constraints between functions. This data structure is available in both the user space
and kernel space, and is used to pass timing constraints to the kernel in begin rt seg. This
structure is shown below.

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 30

struct rt_data {

int tid;

int prio;

unsigned long exec_time;

int max_util;

struct timespec *deadline;

struct timespec *period;

};

Figure 5.4: Data structure for holding timing constraints in ChronOS

5.3.2 Operations

ChronOS provides eight operations to the user space in the form of a dynamically linked
shared object library. These operations are listed below with the associated function argu-
ments listed for each.

begin rt seg()

This function is used to begin a real-time segment and provide timing constraints
for a task. Several variants of this operation are provided. If tid is 0, the operation
is performed on the calling thread. The real-time segment will have a priority of
prio.

long begin_rt_seg_basic(int tid, int prio, struct timespec* deadline,

struct timespec* period);

long begin_rt_seg(int tid, int prio, struct timespec* deadline,

struct timespec* period, unsigned long exec_time,

int max_util);

end rt seg()

This function is used to end a real-time segment. If tid is 0, the operation will be
performed on the calling thread. The thread will have a priority of prio after the
end of the real-time segment.

long end_rt_seg(int tid, int prio);

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 31

add abort handler()

This function is used to provide timing constraints for an abort handler used by
a real-time segment. If tid is 0, the operation will be performed on the calling
thread.

long add_abort_handler(int tid, struct timespec *deadline,

unsigned long exec_time, int max_util);

chronos mutex init()

This function is used to declare a new scheduler-managed mutex.

long chronos_mutex_init(chronos_mutex_t *m);

chronos mutex lock()

This function is used to lock a scheduler-managed mutex to the system. If the
calling thread is already the owner of the lock, the call returns success.

long chronos_mutex_lock(chronos_mutex_t *m);

chronos mutex unlock()

This function is used to unlock a scheduler-managed mutex. If the calling thread
is not the owner of the lock, the call returns failure.

long chronos_mutex_unlock(chronos_mutex_t *m);

chronos mutex destroy()

This function is used to remove an existing scheduler-managed mutex from the
system.

long chronos_mutex_destroy(chronos_mutex_t *m);

setscheduler()

This function is used to set the scheduling algorithm for a specified set of cores.
cpus is a bitmask of the cores to be set. If the scheduler specified is a global
scheduling algorithm, the scheduling domain is created at prio priority, otherwise
it is ignored.

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 32

long set_scheduler(int scheduler, int prio, unsigned long cpus)

The first seven operations are presented to the user space in the form of two multiplexed
Linux system calls, named do rt seg and do chronos mutex. The last is its own system call
with the same name as the function. Of these operations, setscheduler, init chronos mutex,
and destroy chronos mutex should never be called while any tasks are in scheduling seg-
ments.

Since ChronOS is an event-based platform, the real-time scheduler is invoked in after certain
events. Four of these events correspond with operations mentioned above:

• The beginning of a real-time segment (begin rt seg)

• The end of a real-time segment (end rt seg)

• The request of a scheduler-managed resource (lock chronos mutex)

• The release of a scheduler managed resource (unlock chronos mutex)

However, because we are running in Linux and therefore subject to its priority scheme, there
is another event that which we qualify as a scheduling event. This event is when higher
priority Linux real-time task leaves the system, making ChronOS tasks the highest priority
tasks in the system.

5.4 Scheduler Modules

All scheduling algorithms in ChronOS are implemented as Linux kernel modules for flexi-
bility. Each module has several attributes, including a name, an ID number, a sorting key
specifying its queue ordering method, and a scheduling algorithm. Modules are divided up
into two classes: local or uniprocessor scheduling algorithm and global scheduling algorithms.
All scheduling algorithms are added to the algorithm list when their module is loaded.

Local scheduling algorithm have only the information listed above. When a setscheduler

call is made that requests a local scheduler, the system call searches through the list and
finds the algorithm, and then sets it as the scheduler on each runqueue. This means that
all ChronOS tasks on that runqueue will be scheduled with this algorithm, regardless of
their priority, and all tasks in real-time segments will be inserted at the correct position on
the chronos queue based on the algorithm’s sorting key. It is possible to set different local
schedulers for different cores.

A global scheduling algorithm contains two additional pieces of information. First, it contains
the ID of a local scheduling algorithm. This is because all global schedulers in ChronOS are
implemented as hierarchical schedulers. Second, it contains a pointer to a global scheduling

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 33

struct global_sched_domain {

/* The global scheduler */

struct rt_sched_global *scheduler;

/* The global task list */

struct list_head global_task_list;

/* The CPUs in this domain */

cpumask_t global_sched_mask;

/* Global scheduling priority in this domain */

int prio;

/* Task list lock */

raw_spinlock_t global_task_list_lock;

/* Scheduling lock */

mcs_lock_t global_sched_lock;

/* Current task count */

atomic_t tasks;

};

Figure 5.5: Global domain structure in ChronOS

architecture. Each architecture is a set of functions and data structures used to provide a
correctly sorted global queue to the scheduler and implement the scheduling decisions made.
There are two scheduling architectures available in ChronOS, which will be described later.

Global scheduling operates in domains. A domain is a set of cores grouped together under
the same instance of a global scheduler. As such, each domain must have its own copy of
all data objects necessary to perform global scheduling. Figure 5.5 shows the global domain
data structure.

Each domain contains a pointer to the scheduler used in that domain, a global task list for
the tasks in that domain and an associated lock, a mask of the cores in the domain, a lock
for the scheduler, and count of the tasks currently in the domain. Additionally, each domain
exists only at a single priority. This is necessary to prevent the existing Linux priority system
from interfering with global scheduling.

Since each domain may contain any non-empty subset of the system’s cores, it is possible to
have a variety of domains coexisting on a system. It is assumed that the application creating
these domains has already specified the affinities of the tasks correctly using existing Linux
operations such as sched setaffinity.

When a setscheduler call is made that requests a global scheduler, the call first searches
through the scheduler list and finds both the global and local scheduler specified. It then
creates an empty domain and sets the global scheduler as the scheduler for that domain.
Each core specified for the new domain is then removed from its current domain, if any, and

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 34

placed in the new domain. The local scheduler is then set as such for each runqueue.

5.5 Uniprocessor Scheduling

The simplest form of scheduling available in ChronOS is uniprocessor scheduling. Unipro-
cessor scheduling on ChronOS is illustrated in Figure 5.6 using EDF. The application first
calls sched setscheduler, to set EDF as the scheduler for this processor. ChronOS checks
through the list of schedulers and finds EDF and makes it as the scheduler for the processor.
As tasks begin segments, they are placed in their priority’s chronos queue at their deadline
position. They are also inserted at the tail of their priority’s Linux task queue. When a
scheduling event occurs, EDF selects the first (earliest deadline) task in the chronos queue.
This task is then moved to the head of the Linux task queue. SCHED FIFO is then called,
and selects the first task in the Linux task queue for execution.

Figure 5.6: Uniprocessor scheduling in ChronOS

This has an important ramification. The execution order of normal SCHED FIFO tasks is
unaltered, since their relative ordering is unchanged. While SCHED CHRONOS tasks may be
moved in front of SCHED FIFO tasks, these tasks are never moved in relation to each other.
Therefore, we can say that SCHED CHRONOS tasks effectively reside between their own priority
and the priority above them; if a SCHED CHRONOS tasks is placed at priority 50, it will execute
only after all SCHED FIFO tasks at priority 51, but before all SCHED FIFO tasks at priority
50. We can therefore claim that we do not alter the existing POSIX-specified scheduling
behavior in Linux.

5.5.1 Priorities

Since scheduling is still performed within fixed priority bands, is it necessary to place any set
of tasks which should be scheduled together under a specific scheduling policy at the same

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 35

priority. However, it is possible to place multiple sets of SCHED CHRONOS tasks at multiple
priority levels on the same processor when using uniprocessor scheduling. The sets will be
scheduled in priority order, and each set will be scheduled under the same policy. However,
it is not possible to place different sets of tasks at different priorities on the same processor
and schedule them with different algorithms.

Both begin rt seg and end rt seg take priorities as input variables, and the priority of the
thread is switched to this value during the call. This allows the following three execution
patterns; first, a task can end a segment and increase its priority. This allows it to execute
some action that requires freedom from preemption by other tasks in the set of tasks at the
previous segment’s priority level. A simple example is a periodic task waiting for its next
period. If the task does not increase its priority and other SCHED CHRONOS tasks exist at the
priority, it will be preempted immediately upon completion of the end rt seg call, and will
not begin sleeping for a potentially unbounded amount of time. Furthermore, even if it is
allowed to begin sleeping immediately, it will still be a SCHED FIFO task when it awakes, and
therefore will not be able to begin its next segment at the correct time. This task would
then reduce its priority in the begin rt seg for its next segment.

Second, a task can finish a real-time segment and reduce its priority. This is used when a
task needs to perform some action which should not interfere with any of the other tasks at
the segment’s priority level.

Third, a segment could, instead of calling end rt seg, call begin rt seg, thereby starting
a new segment. This is useful when two segments are directly adjacent to each other.
While the same effect could be achieved by calling end rt seg with a priority higher than
the segment’s priority, and then begin rt seg at the original segment’s priority, calling
begin rt seg directly incurs significantly lower overhead.

5.5.2 Partitioned Scheduling

Partitioned scheduling is a straightforward extension of uniprocessor scheduling. Under
uniprocessor scheduling, we rely on OS-supplied functionality to assign all tasks to the core
specified. Partitioned scheduling can be performed on ChronOS by partitioned the tasks
offline, assigning them to their cores using the same OS-supplied functionality, and then
setting a uniprocessor scheduling algorithm as the algorithm for each core.

5.6 Global Scheduling

Almost all non-partitioned multicore scheduling algorithms are global scheduling algorithms.
In a global scheduling approach, rather than placing tasks in per-core queues, tasks are
placed in a single global queue and scheduling decisions are made based on this queue. Some

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 36

Figure 5.7: Global scheduling in ChronOS

global scheduling algorithms such as G-EDF, PFair, G-GUA, NG-GUA, and LLREF make
scheduling decisions for each core at each scheduling event. Others, such as G-NP-EDF,
can be implemented in such a way that each core makes a scheduling decision only for itself
based on the global queue. The global scheduling approach used in ChronOS is shown in
Figure 5.7 and described below.

First, a call to setscheduler is made by the application. This call specifies a global schedul-
ing algorithm and a set of cores, in this case two. ChronOS searches through the scheduler
list, finds the global scheduling algorithm and its associated local algorithm, and then creates
a new scheduling domain covering the two cores. The global algorithm is set as the scheduler
for the domain, and the local scheduling algorithms are set as the uniprocessor schedulers
for each individual core. As tasks enter the system, they are placed both in a core’s local

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 37

queue and in the global queue. When a scheduling event occurs, the scheduler selects a set
of tasks from the global queue for execution. These tasks are then assigned to tasks by a
mapping algorithm. The task assigned to each core is placed in the “globally assigned task”
field. The execution is then passed to the individual cores. On each cores, if the selected task
does not already reside on the core, it is migrated there by the task puller. The uniprocessor
scheduling algorithm is then called on each core, and execution continues as described in the
previous section.

5.6.1 Priorities

Unlike uniprocessor scheduling, global scheduling places all tasks in a single queue. Since
all tasks are scheduled together, in order to maintain fixed priority scheduling all the tasks
being scheduled must be at the same priority. Therefore, each scheduling domain is given a
priority, and all segments started on the domain are executed at this priority. This means
that at any point, a core can check if it should schedule globally by checking if if the current
highest priority task on its runqueue is equal to or less than the domain’s priority and if
there are any tasks in the global queue.

5.6.2 Prescheduling

Under some scheduling algorithms, it is possible under some conditions for the correct task
for a core to be selected without looking at the global queue. The simplest example of this
under non-preemptible scheduling. If segments are not allowed to be preempted by other
segments at the same or lesser priorities, then before looking at the global queue, the local
queue can first be checked for segments which have begun their execution. If such a segment
is found, it should be scheduled, regardless of the state of the global queue. Such as selection
process is called prescheduling.

5.6.3 Inter-Processor Communication

At some points during global scheduling, it becomes necessary to communicate between cores
to make sure scheduling decisions are enacted. For this, we use Inter-Processor Interrupts
(IPI). In Linux, the scheduler is called at the end of every interrupt. The scheduling IPIs we
send between cores are dummy interrupts, which do nothing but force an scheduling event
to occur on the remote core.

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 38

Figure 5.8: The application concurrent scheduling architecture

5.6.4 Scheduling Architectures

Rather than forcing the user to specify the details of managing the global queue, mapping
tasks to cores, and invoking the global scheduler, ChronOS provides the ability to define a
scheduling architecture which takes care of these details. ChronOS provides two scheduling
architectures by default. These are described in the following two sections.

Application Concurrent Architecture

The simplest scheduling architecture available in ChronOS is the application concurrent
scheduling architecture. The application concurrent scheduling model assumes that each
core is scheduling only for itself and therefore that only one task will be selected at each
scheduling event. This task should therefore be mapped to calling core. The name “applica-
tion concurrent” is derived from the fact that global scheduling occurs without interrupting
the application on remote cores. This architecture is illustrated in Figure 5.8. For the sake of
demonstration, we will say that the scheduling algorithm being used is global first-in first-out
(G-FIFO). G-FIFO executes the task at the head of the queue.

At the beginning of the sample trace, T6 and T8 are executing on processors P0 and P1

respectively. When T8 finishes, P1 schedules and picks the next task in the global queue,

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 39

T3. Since this task is on P0, it is migrated with a pull operation. This scheduling decision
does not affect the execution of T6 on P0. Similarly, when T6 finishes on P0, it selects T1 as
the next task and migrates it without affecting P1. This is repeated when T1 finishes and
T2 is selected. When T3 finishes execution, P1 selects T4 as the next task to execute. Since
T4 is already on P1, no migration is necessary. T2 and T4 finish their execution at almost
the same instant. In the concurrent architecture, each processor wanting to add a task from
the global queue, remove a task from the global queue, or schedule must lock the task list
lock. Since P0 finishes T2 slightly before P1 finishes T4, it acquires the lock first. P1 therefore
blocks waiting for the lock. P0 selects T5. P1 then acquires the lock, selects T7, and migrates
it from P0. Once T5 and T7 have finished, there are no real-time tasks in the system. At
some time later, a second job of T4 arrives in the system, and is scheduled on T1, the last
processor it executed on. A short time after that, a second job of T7 arrives on P1. Since
P0 is unoccupied, it should execute T7. However, since T7 arrives on P1, no scheduling will
occur on P0. We solve this by forcing a scheduling event on P0 by sending it a scheduling
IPI. P0 receives the IPI, schedules, selects T7, migrates it from P1, and executes it.

In this example, we have ignored any additional scheduling events that occur during the
execution of a task, such as events due to the presence of interrupt tasks. In such an event,
the prescheduling function would select the previously executing task after the higher priority
task leaves the system.

Stop-The-World Architecture

While the application concurrent provides a simple framework for global scheduling, there are
a large number of schedulers which cannot be implemented under it. These include G-EDF,
G-GUA, and NG-GUA. In these algorithms, the schedule for the entire domain is computed
at each scheduling event. Furthermore, some algorithms like G-GUA and NG-GUA provide
global scheduling for resource-dependent tasks. For these schedulers, we need a new schedul-
ing architecture. To accomplish this, we implement the stop-the-world architecture. This
architecture is illustrated in Figure 5.9.

In this two processor example, we will assume that the scheduling algorithm selects the task
with the highest number of dependencies, and breaks ties based on some undefined criteria.
The figure shows the dependency relationship between tasks, the state of the global queue,
and the current processor localities of tasks. Task T4 is waiting for a resource held by T2,
which is waiting on T1. Similarly, T6 is blocked on T5. No tasks are dependent on T3. Tasks
T6, T1, and T4 are currently on processor P0, and T2, T3, and T5 are on P1.

At the beginning of our trace, P0 is executing T1 and P1 is executing T5. When P1 finishes
executing T5, it sends an IPI to P0 to inform it that a scheduling decision is being made. In
the stop-the-world architecture, there is a global scheduling lock used to guard the schedule.
If a processor attempts to schedule and finds that the lock is already held, it blocks until
the lock is free and then instead of scheduling, looks for the task the scheduling processor

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 40

Figure 5.9: The stop-the-world global scheduling architecture

has selected for it. In this case, P0 blocks until P1 has computed the new schedule for the
system. In this case, the only change is that P1 has selected T6 for execution. P1 migrates
T6 from P0 and begins executing it. Similarly, when P0 finishes executing T1, it sends an IPI
to P1, schedules for both processors, sends a task assignment to the waiting P1, migrates T2,
and begins execution. A similar sequence of events occurs when P1 finishes executing T6.
When P0 finishes executing T2, a similar process again occurs. This time, the task selected
for P0 is T4, which is already on the processor, so no migration occurs. Finally, during the
execution of T3 on P1, a second instance of T5 arrives. This causes a scheduling event on
P1, which causes a IPI to be sent to P0. The tie-breaking rule selects T3 and T5 as the best
tasks for execution. Since T3 is already executing on P1, it is left there. P1 receives T5 as its
task assignment and stops executing T4, instead migrating and executing T5.

Under schemes like G-EDF, no task is ever exempt from preemption, and so there is little
use for a prescheduling algorithm. We do however use prescheduling in conjunction with
abortive stop-the-world algorithms such as G-GUA and NG-GUA to remove aborted tasks
from the system.

5.6.5 Mapping Tasks

All of the scheduler we consider are mapping-agnostic. This means that they select at most
m tasks to execute, but do not actually care which task executes on which processor or core.
For example, G-EDF simply select the m lowest deadline tasks to execute. It makes no
statements about which task should execute on which core, but all cores are assumed to be

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 41

identical.

While this drastically simplifies scheduling, it creates a new problem, referred to as task
mapping. The mapping problem is the problem of assigning m tasks to m cores in an
optimal way. We define an optimal mapping algorithm as an algorithm which can make
an assignment that minimizes the overhead incurred by the system from factors such as
task migrations and cache misses. Optimal can therefore describe a wide range of things,
depending on the hardware platform. For example, on a simple dual-core processor with a
shared cache, an optimal mapping algorithm might guarantee that no tasks are migrated
unnecessarily. However, on a complex NUMA system, an optimal mapping algorithm would
have to not only minimize migrations, but when forced to migrate a task, consider various
possible migration patterns based on distance between cores and the specific architecture
of the system. For example, in a multicore, multiprocessor system in which all cores on a
processor share cache, it is better to migrate a task between cores in the same processor than
between processors.

We define three different levels of optimality which a mapping algorithm may provide. These
are migration-optimal, execution-optimal, and distance-optimal.

Definition 1 Consider a scheduling algorithm which returns a k task schedule for an m
core system, where 0 < k ≤ m. To assign these k tasks to m cores, some j minimum
number of migrations must be made, where 0 ≤ j < k. We say that a mapping algorithm is
migration-optimal if it maps all schedules with exactly j migrations.

Definition 2 Consider a scheduling algorithm which returns a k task schedule for an m core
system, where 0 < k ≤ m. Of these k tasks, j of them will already be executing on a core in
the system which they are eligible for mapping to, where 0 ≤ j ≤ k. We say that a mapping
algorithm is execution-optimal if none of these j tasks are migrated.

Definition 3 Consider a scheduling algorithm which returns a k task schedule for an m
core system, where 0 < k ≤ m. By Definition 1, there are some j migrations which must
be performed. We say a mapping algorithm is distance-optimal if the set of migration paths
with the least total cost is chosen out of all available migration paths, even if the minimum
cost set of migration paths includes more than j paths.

A distance-optimal mapping algorithm will guarantee a minimum possible total migration
distance, based on some weighting of inter-processor edges derived from cache structure and
inter-processor memory access times. This can be constructed as a variant of the shortest-
path problem; in this variant, there are k start and end nodes, and a path must be computed
from each start node to an end node in such a way that the total distance of all paths is
minimized. Paths are allowed to have a 0 length, implying no migration. Up to k start nodes
may coincide, but no end nodes will coincide.

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 42

None of these three definitions imply either of the other two. It is possible to have a
migration-optimal which migrates running tasks, or migrates tasks across longer than nec-
essary paths. Similarly, it is possible to have an algorithm that migrates no running tasks
but performs unnecessary migrations or migrates across longer than necessary paths. On
many systems, it is likely that distance optimal would imply both migration- and execution-
optimality, but it is possible to construct systems in which this is not the case. Consider a
system with four cores and exponential migration costs — i.e. the cost of migrating from
any processor to its neighbor is 1, while the cost to migrate to a processor two away is 3
and the cost to migrate to a processor 3 away is 9. The cost to migrate a running task is
one more than the cost to migrate a non-running task, i.e. 2, 4, and 10. Assume four tasks
have been selected for scheduling. Two of these tasks reside on processor 0, while one resides
on processor 1 and one resides on processor two. Of these, one of the tasks on processor 0
and the tasks on cores 1 and 2 are currently executing. Therefore, the minimum number of
migrations is one, and three of the four tasks are already migrating. This means that in a
migration- and execution-optimal algorithm, the extra task on processor 0 would be moved
to processor 3. However, this is a distance of 3, and so has a cost of 9. By migrating the
non-running task from processor 0 to processor 1, the task from processor 1 to processor 2,
and the task from processor 2 to processor 3, it is possible to map the schedule with a total
cost of 1 + 2 + 2 = 5.

We apply a mapping algorithm which is migration- and execution-optimal, but not distance-
optimal. The algorithm we use is a modified variant of the three-pass algorithm described by
Garyali [52]. Our algorithm makes two passes over the list of tasks returned by the scheduler.
In the first pass, for each core, the mapper loops through the task list. If it finds a task that
is the currently running task on the core, that task is mapped to the core, removed from the
task list, the core is marked as mapped, and the mapper continues to the next core. This
guarantees execution optimality. If the mapper finds a task that currently resides on a core,
but is not currently executing, this task is marked as the “backup” task. If all tasks have
been consider and a backup task was found, it is mapped to the core, removed from the list,
and the core is marked as mapped. This guarantees migration optimality.

Once this first pass has been completed for all cores, we are left with a list of cores without
a mapping and a list of tasks which have not been mapped. These remaining tasks are
then assigned to cores in FIFO manner. Pseudocode for the mapping algorithm is shown in
Algorithm 1

An example mapping is shown in Figure 5.10. Here, we have a quad-core system with nine
tasks in it. The scheduler has returned four tasks — RT5, RT8, RT1, and RT4, in that order.
The mapper first looks for a task for rq0, and finds RT1, its current running task. It then
looks for a task for rq1, and finds RT5, its current task. When looking for a task for rq2,
no task is found to be the current running task, but RT8 currently resides on rq2, so it is
selected. Finally, no task is found for rq3, since RT4 is the only remaining task in the system,
and it is on rq0. In the second, pass RT4 is mapped to rq3.

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 43

Figure 5.10: Default task mapping algorithm in ChronOS

The asymptotic cost of this mapping algorithm is O(m2). However, under fixed or task-
dynamic priority schedulers, this can be reduced significantly, since we know that at any
scheduling event, at most one task will have entered or left the system. If only one task
entered or left the system, and the priority relationships of all remaining tasks in the system
have not changed, at most one task in the schedule may have changed, and therefore at
most one core will not be mapped in the first pass. If we assume the worst case, namely
that it is the first core that was not mapped, this implies that we will have to consider m
tasks for both the first and second cores, m − 1 tasks for the thirds, and so on down to
2 tasks for core m. Therefore, for a fixed or job-fixed priority algorithm, we will have to
consider at most m2+m

2
+(m−1) tasks on the first pass, and 1 task on the second pass. Since

m2+m
2

+(m−1)+1 = m2+3m
2

≤ m2 for all m, this is the asymptotic bound for mapping fixed
and job-fixed priority schedulers. Based on this, we can also say that for fixed and job-fixed
priority schedulers, we will never migrate more than one task at each scheduling event. For
task-dynamic priority scheduling algorithms, we can only say that since all tasks must be on
a core in the system, we will migrate at most m− 1 tasks.

5.6.6 Clustered Scheduling

Clustered scheduling is an approach devised to strike a balance between partitioned and
global scheduling. In clustered scheduling, the system is broken up into multiple different

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 44

Input: TaskList; //An unordered list of tasks

Data: Task1...Taskm; //Task mapped to each core

Data: CpuMask; //A mask containing all cores

foreach Core P do
Backup = NULL;
foreach Task i in TaskList do

if CurrentTask(P) = i then
TaskP = i;
break;

end
if TaskCpu(i) = P then

Backup = i;
end

end
if TaskP = NULL then

TaskP = Backup;
end
if TaskP 6= NULL then

RemoveTask(TaskP , TaskList);
UnsetCpu(P, CpuMask);

end

end
foreach Core P in CpuMask do

TaskP = HeadOf(TaskList);
if TaskP = NULL then

return;
end
RemoveTask(TaskP , TaskList);

end
Algorithm 1: A execution-optimal task mapping algorithm

clusters, tasks are partitioned offline into clusters, and global scheduling is performed within
each cluster. In ChronOS, clustered scheduling is performed by creating different scheduling
domains with the same global scheduling algorithm. The methods for doing this have been
described earlier in this chapter. As with partitioned scheduling, we rely on the user space
application to set the core affinity through OS-supplied functions. However, rather than
assigning the tasks to a specific core, the tasks are assigned to the same group of cores as
the cluster.

Typically, it is desirable to build clusters along hardware-defined lines, such as memory
access paths or shared cache [32]. This approach is taken by LITMUSRT , which at the time
of writing provides two levels of clustering: L2 cache and L3 cache. While this simplifies

Matthew A. Dellinger Chapter 5. ChronOS Real-Time Linux 45

scheduler selection from the user space, it does limit the possibilities. In ChronOS, since
clustered scheduling is performed by the same system as global scheduling domains, it is
possible to use clusters of any size, and even use disjoint clusters. For example, on an 8-core
system it is possible to place cores 1, 2, 5, and 8 in a cluster and cores 3, 4, 6, and 7 in
another cluster. This places the decision of selecting a “good” clusters on the user, but also
allows more flexibility.

5.7 Aborting Tasks

In previous versions of ChronOS, tasks were aborted using POSIX signals [52]. However,
since the Linux kernel is not designed to send signals from within the scheduler, this method
was never intended as a permanent solution, and has since been replaced.

Tasks are now aborted via shared memory. We create a character device housing a large
memory buffer, which can be mmapped by user space applications. This buffer has as many
bytes as there are allowed threads. When a thread with a thread id of k is aborted, the kth
byte in the buffer is set to one. The user space application must therefore check this byte at
some frequency to determine if it has been aborted. This provides a fast, lock-free method
for aborting tasks.

Chapter 6

Scheduling Algorithms

In this thesis, we compare the scalability and performance of 16 algorithms which have been
implemented in ChronOS. For simplicity, we break these algorithms down into three cat-
egories: traditional global real-time scheduling algorithms, utility-accrual global real-time
scheduling algorithms, and partitioned real-time scheduling algorithms. We compare the
algorithms based on their theoretical performance, implemented asymptotic cost of schedul-
ing, queue insertion and task mapping, and other characteristics. In our analysis, we shall
always consider an m core system with n tasks in it. Table 6.3 summarizes various costs
and grouping of each algorithm. The algorithms used for partitioning and clustering are
described in Chapter 8.

6.1 Linux SCHED FIFO

The default real-time scheduling policy in Linux is SCHED FIFO. Under SCHED FIFO, a sched-
uled task continues to run until it either voluntarily yields the processor or is preempted
by a real-time task with a higher priority. Rather than using a single queue, SCHED FIFO

provides system-wide strict real-time priority scheduling (SWSRTPS) through a push-pull
system. To accomplish this, it must manage three specific cases:

• A task waking on the same runqueue as a higher priority task

• A task being preempted by an awakening higher priority task

• A task lowering its own priority below the priority of another task on the runqueue

Each of these three cases can, in some situations, require the migration of tasks to guarantee
SWSRTPS. In the first two cases, this is done by pushing the lower priority task onto another
runqueue, if there exists a runqueue executing a lower priority task. In the last case, the

46

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 47

runqueue will check to see if there exists a waiting task on another runqueue with a higher
priority than its own highest priority task. If such a task exists, it will pull the task to
itself and start executing it. This push-pull mechanism is only used within the scope of the
runqueue’s scheduling domain, which is a subset of the system’s runqueues. In the case of
our systems, we allow the default kernel policy to select the appropriate global domains. In
our cases, this policy made the global domains equivalent to physical processors.

This behavior allows SCHED FIFO to provide O(m) scheduling, since each runqueue can find
its own highest priority task in O(1) and needs to at most check m other runqueues for a
push or a pull operation [51]. Since each core schedules for itself, mapping is O(1).

6.2 Global FIFO

Global FIFO (G-FIFO) provides, as the name implies, a global first-in-first out policy. While
this should be logically equivalent to SCHED FIFO almost all the time, our G-FIFO algorithm
is implemented using the concurrent architecture. In our algorithm, each task is, on arrival,
inserted at the end of the global queue. After this, a scheduling event is invoked. During
this event, the scheduler performs two tasks. First, it checks if it currently has a task that
it has already begun to execute. If this is the case, this task is executed, since it must have
arrived before all tasks currently on the queue. If no task is found, it then locks the queue,
removes the first task, and begins to execute it.

Scheduling, task insertion, and mapping are therefore O(1). In theory, this scheduling al-
gorithm should perform nearly identically to SCHED FIFO. It is included here as a useful
measurement of the overhead of a single-queue implementation.

Leontyev and Anderson have shown that G-FIFO can provide bounded deadline tardi-
ness [73]. It therefore can be considered a soft real-time scheduling algorithm.

6.3 Global RMS

Global rate monotonic scheduling is a simple extension of rate monotonic scheduling to m
cores. Our algorithm is implemented on the stop-the-world architecture. Each arriving task
is inserted as its period-ordered place in the global queue. At each scheduling event, the m
first tasks are selected and mapped to cores.

As our global queue implementation is a doubly-linked list, insertion therefore takes O(n)
time. However, because the list is ordered, scheduling takes only O(m) time. Since m tasks
must be considered for mapping to m cores, mapping is O(m2).

Global rate monotonic scheduling has received significant effort from the research community,
and at least three theoretical schedulability tests have been devised. Anderson et. al. have

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 48

determined that a set of tasks in which the maximum per-task utilization is at most m/(3m−
2) is schedulable as long as the total utilization for the taskset is below m2/(3m− 1) [5]. A
second test was determined by Baruah and Goossens; they conclude that if the individual
utilization of a set of tasks does not exceed 1/3, the taskset will be schedulable as long as the
total utilization is not greater than m/3 [18]. A third and significantly more complex test
was developed by Baker for sporadic tasks with arbitrary deadlines [11]. Under this test, a
taskset is considered schedulable if for each task Tk, m < k ≤ n, there exists a positive value
µ such that

k−1∑
i=1

βµ,k(i) ≤ µ ≤ m

(
1− ek

min(Pk, dk)

)
(6.1)

Where λ = m−µ
m−1

and βµ,k(i) is defined as

βµ,k(i) =

{
ei

Pi
(1 + Pi−ei

dk
) for λ ≥ ei

Pi
ei

Pi
(1 + Pi−ei

dk
) + di

dk
(ei

Pi
− λ) for λ < ei

Pi

(6.2)

For more specific cases, such as deadlines equal to periods, this algorithm can be simplified.
Baker provides one such simplification in [10]. G-RMS does not bound tardiness, since by
definition longer period tasks will be preempted in favor of lower period tasks, and can
therefore be blocked indefinitely.

6.4 Global EDF

Global earliest deadline first (G-EDF) is a direct extension of the single-core earliest dead-
line first (EDF) policy. As with G-RMS, G-EDF is implemented with the stop-the-world
architecture. Each arriving task is inserted in a deadline-ordered list. At each scheduling
event, the first m tasks in the global queue are selected and mapped to the cores.

As the implementations of G-EDF is only one line different than that of G-RMS, insertions
are also O(n) and scheduling is O(m). Mapping is performed in the same manner as G-RMS
and therefore is O(m2), since G-EDF is a job-fixed priority algorithm.

A large number of schedulability tests have been developed for G-EDF. Unlike EDF, there is
no simple utilization based feasibility test which can be applied to G-EDF. This is because
of the “Dhall effect”, which states that on an m core system, it is possible to produce an
m+1 task taskset with a utilization arbitrarily close to 1 which cannot be scheduled [46]. A
simple example taskset is shown in Table 6.1 for a four-core platform. Under both G-RMS
and G-EDF, tasks 1-4 will be scheduled, which will not leave sufficient time to execute task
5 before its deadline.

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 49

Table 6.1: A periodic taskset for a four-core system that demonstrates the Dhall effect

Task Period WCET Deadline
1 100 10 100
2 100 10 100
3 100 10 100
4 100 10 100
5 101 92 101

There are at least five major sufficient schedulability tests for G-EDF [31]. The two simplest
of these are shown below, while the rest are omitted because of their length. One of the
simplest tests was devised by Srinivasan and Baruah [98]. They find that G-EDF is able to
schedule any set of periodic tasks with implicit deadlines in which no task has a utilization
exceeding m/(2m− 1) and the total system utilization is not greater than m2/(2m− 1).

Goossens et. al. have shown that G-EDF can schedule any taskset in which the total
utilization does not exceed m − (m − 1)umax, where umax is the utilization of the highest
utilization task in the taskset [53]. This is commonly known as the GFB test.

Two other tests, referred to as BAK2 and BCL have been summarized by Baker in [12]. The
fifth test is presented by Bertogna et. al. in [25].

G-EDF bounds deadline tardiness as long as the total utilization of the taskset does not
exceed the number of cores. Therefore, for the soft real-time case, testing that U ≤ m
is a sufficient test [45]. Devi and Anderson have found tardiness bounds for G-EDF and
G-NP-EDF [45]. They find that for G-EDF, the tardiness bound for Ti is

τ ≤ (m− 1)emax − emin

m− (m− 2)Umax

+ ei (6.3)

A less pessimistic but higher complexity form of this bound is presented by Devi in [44]. He
proves that a task Ti of a k task taskset will incur a maximum tardiness of

τ ≤
∑∆

n=1 en − emin

m−∑∆−1
n=1 Un

+ ei (6.4)

Where ∆ = b∑n≤k
n=1 Uic. This bound was later improved by Erickson [48]. If we want the

worst-case bound for any task in a taskset, we can substitute ei with emax. Both forms of
this bound have one issue; as per-task weights increase in the first form, the bounds become
highly pessimistic because m− (m− 2) ∗Umax approaches 2. Similarly, for the second form,
if a few heavy tasks dominate the taskset, the weight of these tasks pushes m−∑n≤m−1

n=1 Un

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 50

to 0. This is a known dilemma, and the authors state that the bounds are reasonable unless
both m and the average per-task utilization are high.

6.5 Global Non-Preemptible EDF

Global non-preemptible EDF (G-NP-EDF) is a variation of G-EDF which disallows the
preemption of a executing task by a task with a lower deadline. It is therefore a limited
migration algorithm; tasks are allowed to migrate freely at job boundaries, but once a job
begins to execute on a specific core, it is not allowed to migrate again until its completion.
In ChronOS, G-NP-EDF is implemented via the concurrent scheduling architecture. On
arrival, tasks are inserted on the deadline-ordered global queue. At each scheduling event,
the runqueue first checks if it is already executing a task, and if so continues. If it is not,
it locks the queue, dequeues the first task, and then migrates it to its own runqueue and
begins execution. Insertion is therefore O(n), while scheduling and mapping are O(1).

Since G-NP-EDF is a direct extension of G-EDF and for a given taskset the initial schedules
of both algorithms will be identical, it therefore follows that G-NP-EDF is subject to the
“Dhall effect”. However, G-NP-EDF suffers from another condition under which a taskset
might not be schedulable which does not affect G-EDF. Table 6.2 shows a taskset which
exposes this condition.

Table 6.2: A periodic taskset for a four-core system which is unschedulable under G-NP-EDF
but schedulable under G-EDF

Task Period WCET Deadline
1 100 51 100
2 100 51 100
3 100 51 100
4 100 51 100
5 1000 100 10000

The initial schedule generated by both G-EDF and G-NP-EDF will schedule tasks 1-4 on
the first four cores. After that, both algorithms will schedule task 5 on core 1. Under G-
EDF, task 5 will be preempted by task 1 every 100 time units, and will finish its execution
at time 202, having been preempted twice. However, under G-NP-EDF, task 5 will not be
preempted, meaning the second job of task 1 will not begin execution until time 151. Since
task 1’s execution time is 51, it therefore does not finish its execution before its deadline.

Exact feasibility of any non-preemptive scheduling algorithm has been previously shown
to be NP-hard in the strong sense even on a uniprocessor system [64]. Only one suffi-
cient schedulability test is known for G-NP-EDF. Baruah [16] has shown that for a factor

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 51

V (Ti, T) = e(Ti)
P (Ti)−emax(T)

, a taskset is feasible under G-NP-EDF if

i≤n∑
i=0

V (Ti, T) ≤ m− (m− 1)Vmax(T) (6.5)

This is similar to the GFB test for G-EDF, but not equivalent.

G-NP-EDF is also known to provide bounded deadline tardiness as long as the total uti-
lization of the taskset does not exceed the m. Therefore, for the soft real-time case, testing
that U ≤ m is a sufficient test [45]. Devi and Anderson have shown that for a task Ti, the
tardiness bound under G-NP-EDF is

τ ≤
∑∆+1

n=1 en +
∑m−∆−1

n=1 βn − emin

m−∑∆
n=1 Un

+ ei (6.6)

Where ∆ =
⌊∑n≤k

n=1 Ui

⌋
and βi is the ith largest non-preemptible section. As with the G-

EDF bound, there is a more pessimistic bound with a constant time computation cost [44].
This bound is

τ ≤ m · emax − emin

m− (m− 1)Umax

+ ei (6.7)

6.6 Global HVDF

Global highest value density first (G-HVDF) is the simplest fully preemptible heuristic utility
accrual algorithm presented. It was first mentioned by Garyali in [52], and is first described
here. G-HVDF is a direct result of the value density extension of the TUF concept described
in Chapter 3. In G-HVDF, each task is assumed to have a downward step TUF. Each task is
then assigned a local value density, which represents the ratio of its utility to its remaining
execution time. Since value densities are calculated based on the remaining execution time,
rather than the WCET, they must be recalculated every time the scheduler is run. G-HVDF
also assumes each thread may provide an abort handler. Such abortable threads are aborted
by the scheduler when they have passed their deadline.

G-HVDF is implemented using the stop-the-world architecture. On arrival, tasks are inserted
into an unordered list. At each scheduling event, each core first checks if it has any aborted
tasks in its runqueue. If aborted tasks are found, they are executed. If no tasks are found,
the scheduler recalculates the value densities for all tasks and checks for tasks which have
exceeded their deadlines. The m highest value density tasks are then selected and mapped
to cores. Insertion is therefore O(1) and scheduling is O(n). While G-HVDF uses the same

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 52

stop-the-world architecture as G-EDF and G-RMS, it is a job-dynamic priority algorithm
and therefore mapping is O(m2).

No schedulability tests, either sufficient or exact, have ever been found for G-HVDF. Ad-
ditionally, since the local value density of a task remains unchanged while the task is not
executed and can only increase while the task is executing, the behavior of the G-HVDF
is not unlike a fixed priority algorithm in some respects. However, since tasks are aborted,
deadline tardiness is not a meaningful metric.

6.7 Global Non-Preemptible HVDF

Global non-preemptible highest value density first (G-NP-HVDF) is a non-preemptible ver-
sion of G-HVDF. As with G-NP-EDF, it is therefore a limited migration algorithm; tasks
are allowed to migrate freely at job boundaries, but once a job begins to execute on a specific
core, it is not allowed to migrate again until its completion. In ChronOS, G-NP-HVDF is
implemented via the concurrent scheduling architecture. On arrival, tasks are inserted on
the LVD-ordered global queue. At each scheduling event, the runqueue first checks if it is
already executing a task, and if so continues. If it is not, it locks the queue, dequeues the first
task, and then migrates it to its own runqueue and begins execution. Insertion is therefore
O(n), while scheduling and mapping are O(1).

G-NP-HVDF has two distinct differences from G-HVDF. First, since only the first item on
the global queue is ever viewed by the scheduler, only this item may be aborted. This means
that it is possible for a task to reside in the queue for an unbounded amount of time after
having missed its deadline. Once the task begins execution, it is allowed to execute even
after its deadline is past. This means that each task will either never be aborted, or will be
aborted immediately after its call to begin rt seg. Second, since tasks LVDs are only ever
consider before they begin execution, G-NP-HVDF may be considered a non-preemptible
fixed priority scheduling algorithm.

As with G-HVDF, no sufficient or exact schedulability tests are known for G-NP-HVDF.
Because it is a fixed priority algorithm and does not abort tasks immediately if they miss
their deadline, under overloads lower priority tasks may incur unbounded deadline tardiness.

However, unlike G-HVDF, it is possible under some conditions to prove a lower utility accrual
and deadline satisfaction bound for G-NP-HVDF. This is shown below.

For n periodic tasks T1, T2, ... Tn−1, Tn with deadlines equal to periods, ordered by decreas-
ing value density (i.e. LV D1 ≥ LV D2 ... LV Dn−1 ≥ LV Dn), if

i≤n
max

i=m+1
(ei) ≤

i≤m

min
i=1

(Pi − ei) (6.8)

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 53

Then tasks T1 to Tm will meet their deadlines and accrue utility. Since these are the highest
LVD tasks in the system, this means at that we will accrue a minimum of m

n
of the total

possible utility. We sketch the proof of this as follows:

Assume a task Ti where 1 ≤ i ≤ m, and the above condition is true. Further assume
that at some point during its execution, Ti fails to meet its deadline and therefore does not
accrue utility. If there are less than m tasks in the system, G-NP-HVDF will schedule Ti

at its arrival, and therefore it will meet its deadline. Therefore there must be more than
m tasks in the system, and Ti must receive interference during its execution from another
task. We define the critical instant of a task as the instant by which it must be scheduled to
complete by its deadline, i.e. Ri + Pi − ei. We know that between the arrival of Ti and its
critical instant, at least m scheduling events occur due to task completions by equation 6.8.
Furthermore, since

i≤n
max

i=m+1
(ei) ≤

i≤m

min
i=1

(Pi − ei) ≤
i≤m

min
i=1

(Pi) (6.9)

there are at most m−1 arrivals of tasks with a higher LVD than Ti. Therefore, Ti must be the
highest LVD task available for scheduling at some scheduling event before its critical instant.
Since we know at each scheduling event the highest LVD task is selected for execution, Ti

must be selected, and therefore cannot fail to meet its deadline.

This proof can further be extended for any k ≤ m. Therefore, we can say that if

i≤n
max
i=k+1

(ei) ≤
i≤k

min
i=1

(Pi − ei) (6.10)

Then tasks T1 to Tk will meet their deadlines and accrue utility. Since these are the highest
LVD tasks in the system, this means at that we will accrue a minimum of k

n
of the total

possible utility.

The most important element of this bound is that it is not based on the utilization of the
taskset or of any specific task within it. Therefore, this bound remains valid in overloaded
systems, which are the prime candidate for a utility accrual algorithm.

6.8 gMUA

Global multiprocessor utility accrual scheduling algorithm (gMUA) was the first multipro-
cessor utility accrual algorithm designed [36]. While G-EDF is able to meet all deadlines,
it creates the same schedule as G-EDF. After this point, it provides heuristic utility accrual
behavior. Since the algorithm is quite complex and has been well documented by its authors,

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 54

we provide only a general description of it here. Our implementation provides O(1) insertion
of new tasks, O(mn2) scheduling, and O(m2) mapping.

In gMUA, each task first has its LVD computed, and is placed in a deadline-ordered list.
Each task in this list is then considered, and assigned to the core with the lowest total
utilization. Each core’s list is deadline ordered. Each core’s list is then checked for feasibility
by computing the slack time for each task with respect to the tasks before it. If any task
has a slack time less than 0, the list is declared infeasible and the lowest LVD task in that
core’s list is removed. This process is repeat until the list is feasible, and is done for each
core. Each core then executes the task at the head of its list. It should be noted that while
the algorithm assigns tasks to cores, all cores are considered identical, and therefore the
mapping algorithm described in Chapter 5 is still used. Pseudocode for gMUA is shown in
Algorithm 2.

In underload, all of the schedulability tests previously mentioned for G-EDF may be applied
to gMUA. In overload, gMUA is capable of providing statistical assurances for timeliness
behavior and utility accrual. However, since its bounds are based on probabilistic execution
times, and therefore are not not valid under worst-case execution times, we omit the bound
here.

6.9 NG-GUA

Non-greedy global utility accrual is a algorithm which expands gMUA to handler inter-task
dependencies [52]. When dependencies are not present, it creates schedules identical to
gMUA and has the same asymptotic costs. However, since it allows resources, it incurs
additional overhead, and is therefore included here as a comparison. Our implementation
is derived directly from Garyali’s implementation presented in [52]. We have made several
slight improvements which have improved the implementations speed by around 5

6.10 G-GUA

Greedy global utility accrual is a variant of NG-GUA that trades G-EDF performance in
underloads for a higher average case utility accrual performance in overloads [52]. As with
gMUA, G-GUA is a complex algorithm that has been described elsewhere, and so only a
short description of its functionality without dependencies is provided here. Like NG-GUA
and gMUA, insertions are O(1), scheduling is O(mn2) scheduling, and mapping is O(m2).

GGUA functions as follows; we first compute the LVD of each task and abort any tasks which
need aborted. Each task is also placed in a list, which is then sorted by LVD. The scheduler
then loops over every task in this list. For each task, all cores are considered, in order from
the least to the highest total utilization. The task is inserted at its deadline position on

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 55

Input: Runqueue; //FIFO-ordered runqueue

Data: DList1...DListm; //Empty deadline-ordered per-core lists

Data: LVDList; //Empty LVD-ordered list

foreach Task i in Runqueue do
if deadline(i) < now then

AbortTask(i);
end
CalculateLVD(i);
InsertOnList(i,LV DList);

end
SortByLVD(LV DList);
foreach Task i in LVDList do

while NotFeasible = true do
P = FindProcessor(CpuMask);
InsertAtDeadline(i,DListP);

end
foreach Core P do

while ScheduleInfeasible(DListP) do
RemoveLeastLVDTask(DListP);

end

end

end
return HeadOf(DList1...DListM);

Algorithm 2: Global multiprocessor utility accrual scheduling algorithm

the core’s schedule, and the schedule is then checked for feasibility using the same method
described for gMUA. If the schedule is infeasible, the task is removed, and the scheduler
tries it on the next core. Therefore, for a task to be omitted from the final schedule, it must
be found infeasible on every core. Pseudocode for a simplified version of G-GUA without
dependencies is shown in Algorithm 3. The FindProcessor(CpuMask) function returns the
lowest total utilization core not in CpuMask. If it returns NULL, there are no more cores.
Our implementation is derived directly from Garyali’s implementation presented in [52]. We
have made several slight improvements which have improved the implementations speed by
around 5

6.11 Partitioned RMS

Partitioned rate monotonic scheduling (P-RMS) schedules tasks based on a per-core basis.
Tasks are assigned to cores offline. On each core, tasks are scheduled using rate monotonic
scheduling, which assigns increasing fixed priorities to tasks in order of decreasing period.

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 56

Input: Runqueue; //FIFO-ordered runqueue

Data: DList1...DListm; //Empty deadline-ordered per-core lists

Data: LVDList; //Empty LVD-ordered list

Data: CpuMask; //Mask of all CPUs on which a given task infeasible

Data: NotFeasible; //Flag to check if feasibility check failed

foreach Task i in Runqueue do
if deadline(i) < now then

AbortTask(i);
end
CalculateLVD(i);
InsertOnList(i,LV DList);

end
SortByLVD(LV DList);
foreach Task i in LVDList do

CpuMask = 0;
NotFeasible = true;
while NotFeasible = true do

P = FindProcessor(CpuMask);
if P = NULL then

break;
end
InsertAtDeadline(i,DListP);
IncreaseUtilization(i,P);
if ScheduleInfeasible(DListP) then

RemoveTask(i, DListP);
DecreaseUtilization(i,P);
NotFeasible = true;
AddCpuToMask(P ,CpuMask);

end
else

NotFeasible = false;
end

end

end
return HeadOf(DList1...DListM);

Algorithm 3: A simplified version of G-GUA

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 57

Scheduling is preemptive, so the arrival of a task with a shorter period will preempt an
already executing task with a longer period. In our implementation, tasks are inserted at
their period position in the runqueue. This makes insertion O(n) and scheduling O(1).

RMS itself has been thoroughly studied for over 30 years, and both exact and sufficient
schedulability tests have been determined. Only the sufficient tests are shown here. Liu and
Layland proved that n periodic tasks are schedulable under RMS if U ≤ n(21/n − 1). This
results in a lower utilization bound of 69.3% [80]. It has also been shown that in underload,
RMS is an optimal fixed-priority scheduler [72]. Since the set of tasks assigned to each core
under P-RMS may be considered a separate taskset, these tests extend to P-RMS. However,
since it has been proved that partitioning a taskset is analogous to the bin-packing problem
and is therefore NP complete, we also require tests to determine whether a taskset can be
partitioned into m individually schedulable tasksets [70]. Oh and Baker have shown that
Liu and Layland’s utilization bound can be extended to show that any independent periodic
taskset with a utilization less than m(21/2 − 1) can be scheduled with P-RMS on a m core
system [93]. This bound was extended by Lopez et. al. to

U < (mβLLB + 1)(21/(βLLB+1) − 1) (6.11)

where βLLB = (1/log2(Umax + 1). The generic form of this for all utilization becomes U ≤
(m + 1)(21/2 − 1) [83].

6.12 Partitioned EDF

Under partitioned earliest deadline first (P-EDF) scheduling, tasks are first assigned to cores
offline and then scheduled dynamically. At every scheduling event, the earliest deadline task
available on that core is executed. In our implementation, tasks are inserted at their deadline
position in the runqueue. This makes insertion O(n) and scheduling O(1).

Like RMS, EDF has been extensively studied. Under EDF, a taskset having a total utilization
of less than 1 is both a sufficient and exact tests for schedulability, and is therefore an optimal
scheduling algorithm on uniprocessors [35]. EDF is also known to bound worst-case deadline
tardiness [101]

While it is therefore implicit that if a taskset is schedulable if it can be partitioned onto
m cores in such a way that no core’s total utilization is greater than 1, as with RMS the
partitioning itself is NP complete. Lopez et. al. have proven a utilization lower utilization
bound of

U <
mβEDF + 1

βEDF + 1
(6.12)

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 58

where βEDF = 1/Umax. The generalized form of this bound is U ≤ (m+1)/2 for P-EDF [82].

6.13 Partitioned HVDF

Partitioned highest value density first (P-HVDF) is a relatively simple heuristic utility ac-
crual algorithm based on the LVD concept. On each core, tasks are inserted into a deadline-
ordered runqueue on arrival. At each scheduling event, the scheduler checks if it should
abort the first task, and if so, performs the abort and executes the newly aborted task. If
the lowest deadline task has not passed its deadline, no other task will have, since the list
is deadline ordered. The scheduler then computes the LVD of each task in its runqueue and
executes the task with the highest LVD. Both insertion and scheduling are therefore O(n).

No schedulability tests or utility accrual bounds are known for HVDF. It is provided here as
a comparison to more advanced uniprocessor utility accrual algorithms, such as DASA-ND
and LBESA.

6.14 Partitioned LBESA

Locke’s best effort scheduling algorithm (LBESA) was designed by Doug Locke and first im-
plemented in the Alpha kernel [91]. It provides optimal behavior in underload by defaulting
to EDF, and provides best-effort performance in overload [81]. LBESA utilizes TUFs to
provides this functionality. While the original algorithm allowed for TUFs of various forms,
we allow only downward step TUFs in our implementation.

The algorithm is designed as follows; all tasks first have their LVD computed. They are then
placed in deadline-ordered schedule. This schedule is checked for feasibility by computing the
slack time for each task based on the execution times of the tasks before it. If slack time for
all tasks is negative, then the system is in underload, and the task at the head of the schedule
is selected for execution. If any task has a negative slack time, it may be assumed that the
system is in overload. The amount of overload is then compared to a user-defined value
representing the maximum allowable overload for the system. If this comparison determines
that an undesirable overload has occurred, then the task with the lowest LVD is removed
from the schedule. This process is repeated until an overload-free schedule is found.

Our implementation is as follows. Each task in the local runqueue has its LVD calculated. It
is then placed into two ordered lists — one deadline ordered and the other LVD ordered. The
deadline ordered list is then checked for feasibility. If the list is found to be infeasible, the
task at the tail of the LVD-ordered list is then removed from both lists. The actual runqueue
is deadline ordered. Insertion is therefore O(n), while scheduling is O(n2). Additionally, we
abort tasks which have exceeded their deadline. This was not described by Locke, but we
believe it is a reasonable addition. Pseudocode is shown in Algorithm 4.

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 59

Input: Runqueue; /*Deadline-ordered runqueue*/

Data: DList; /*Empty deadline-ordered list*/

Data: LVDList; /*Empty LVD-ordered list*/

foreach Task i in Runqueue do
if deadline(i) < now then

AbortTask(i);
return i;

end
CalculateLVD(i);
InsertOnList(i,LV DList);
InsertAtTail(i, DList);

end
SortByLVD(LV DList);
while ScheduleInfeasible(DList) do

RemoveLeastLVD(LV DList, DList);
end
return HeadOf(DList);

Algorithm 4: Locke’s Best Effort Scheduling Algorithm

Because it defaults to EDF, the previously mentioned utilization bound of U ≤ (m + 1)/2
for P-EDF also applies to P-LBESA.

6.15 Partitioned DASA-ND

Dependent activity scheduling algorithm (DASA) was developed by Ray Clark as the schedul-
ing algorithm for the Alpha kernel [39]. It is the successor to LBESA, and like it, exhibits
EDF performance in underloads while relying on a heuristic utility accrual approach in
overloads. Clark demonstrated that DASA will often create slightly better schedules than
LBESA. The largest difference between the two algorithms is that DASA allows inter-task
dependencies. Unlike LBESA, DASA only allows downward-step TUFs. Also, DASA allows
tasks to be aborted, but Clark does not specify a fixed set of conditions under which a task
should be aborted, except for two tasks deadlocking over a resource. He further assumes
that abort handlers will provide timing constraints, which we forbid in this thesis.

Since we only study independent tasks in this thesis, we present DASA-ND, a variant of
DASA that does not allow dependencies. It is therefore a direct competitor to LBESA.
The algorithm functions as follows. Tasks first have their LVD computed. They are then
placed in a list, and that list is sorted by LVD, with the highest LVD tasks at the front.
Tasks are then considered in LVD order. Each task is placed in a deadline ordered schedule.
This schedule is checked for feasibility in the same manner as LBESA. If the schedule is

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 60

not feasible, the task is removed, and the next task is considered, until all tasks have been
considered. The resulting schedule is therefore feasible.

Our implementation adds one optional function. As with LBESA, when a task exceeds it
deadline, it is aborted and immediately executed to remove it from the system. First, all
tasks in the local runqueue have their LVD calculated and are checked to see if they should
abort. If a task is found that must be aborted, it is executed. All tasks are then placed in a
list, which is sorted by LVD. Starting at the head of this list, tasks are removed and inserted
into a deadline-ordered list. This list is checked for feasibility in the same way as LBESA.
Once all tasks have been considered, the first task in the deadline ordered list is passed to
the scheduler for execution. The runqueue is deadline ordered, so insertion is O(n), while
scheduling is O(n2). Pseudocode is shown in Algorithm 5.

Input: Runqueue; /*Deadline-ordered runqueue*/

Data: DList; /*Empty deadline-ordered list*/

Data: LVDList; /*Empty LVD-ordered list*/

foreach Task i in Runqueue do
if deadline(i) < now then

AbortTask(i);
return i;

end
CalculateLVD(i);
InsertOnList(i,LV DList);

end
SortByLVD(LV DList);
foreach Task i in LVDList do

InsertAtDeadline(i,DList);
if ScheduleInfeasible(DList) then

RemoveFromList(i,DList);
end

end
return HeadOf(DList);

Algorithm 5: Dependent activity scheduling algorithm, no dependencies

As with LBESA, the previously mentioned utilization bound of U ≤ (m + 1)/2 for P-EDF
also applies to P-DASA-ND.

6.16 Clustered EDF

Clustered earliest deadline first (C-EDF) or hybrid EDF (H-EDF) is a restricted migration
variant of G-EDF [32]. In clustered EDF, tasks are statically partitioned offline onto clusters

Matthew A. Dellinger Chapter 6. Scheduling Algorithms 61

of cores. Within each cluster, G-EDF scheduling is performed, and tasks are allowed to
migrate freely, however no task may migrate out of its cluster. C-EDF was designed as a
compromise between G-EDF and P-EDF that could take advantage of the shared caches on
modern multicore processors.

In ChronOS, C-EDF is implemented by defining separate G-EDF domains for each cluster,
and then setting the CPU affinity of each task to the desired cluster. The method used to
determine cluster size and create clustered tasksets is discussed in Chapter 8.

Since C-EDF functions like G-EDF on a sub-taskset, the same schedulability tests mentioned
for G-EDF may be applied to each cluster to determine schedulability. C-EDF is known to
bound deadline tardiness as long as the total taskset utilization does not exceed m [20].

6.17 Summary

The execution cost, queue insertion cost, mapping cost, architecture, and categorization of
each algorithm discussed is summarized in the following table. Note that for mapping cost,
O(m2)* implies that the mapping cost, while still O(m2), is the lower worst-case cost de-
scribed in Chapter 5 for fixed and task-dynamic priority algorithms. Also, since SCHED FIFO

cannot be analyzed in the same way as the other algorithms, it is omitted.

Table 6.3: Summary of algorithm properties

Algorithm Grouping Architecture Scheduling Insertion Mapping
G-FIFO Traditional Concurrent O(1) O(1) O(1)
G-RMS Traditional STW O(m) O(n) O(m2)*
G-EDF Traditional STW O(m) O(n) O(m2)*

G-NP-EDF Traditional Concurrent O(1) O(n) O(1)
G-NP-HVDF GUA Concurrent O(1) O(n) O(1)

G-HVDF GUA STW O(n) O(1) O(m2)
gMUA GUA STW O(mn2) O(1) O(m2)

NG-GUA GUA STW O(mn2) O(1) O(m2)
G-GUA GUA STW O(mn2) O(1) O(m2)
P-RMS Partitioned Uniprocessor O(1) O(n) N/A
P-EDF Partitioned Uniprocessor O(1) O(n) N/A

P-HVDF Partitioned Uniprocessor O(n) O(1) N/A
P-LBESA Partitioned Uniprocessor O(n2) O(n) N/A

P-DASA-ND Partitioned Uniprocessor O(n2) O(n) N/A

Chapter 7

Scalability

In an ideal world, if a program can be parallelized into m threads, we should see an m time
speedup on an m core machine. However, this is sadly almost never possible in the real
world due to the cost of inter-processor communication and synchronization.

The governing law in multiprocessor programming is Amdahl’s law, which states that the
maximum speedup a program may achieve on an n core system is

S =
1

1− p + p
n

(7.1)

where p is the parallel part of the program [57]. This has an important implication; for a
given application with a given amount of parallelism, there is a limit to the speedup that can
ever be achieved. In other words, as the number of cores increases, the marginal speedup
decreases and the total speedup approaches some finite limit.

The most fundamental issue encountered in multiprocessor programming is the use of shared
data objects, and the data protection that must be used with them [56]. At its core, this
presents the mutual exclusion problem [102]. The question of scalable global scheduling in
ChronOS can be viewed as two distinct instances of this problem. First, we have a global
queue which contains all of the tasks in the system. To guarantee that the queue is in
a correct state when used, we must provide mutual exclusion for it. Second, we have a
schedule, which must be changed at scheduling events. Since this schedule is generated from
the global queue, we must be sure that the state of the queue does not change during the
generation of the schedule.

The most common solution to mutual exclusion is the use of locks, and we follow this
approach in ChronOS. Both the global queue and the global schedule are protected with
a single lock on each domain. Any core wishing to add or remove a task from the global
queue must acquire its lock, and any core wishing to create a schedule must acquire the

62

Matthew A. Dellinger Chapter 7. Scalability 63

schedule’s lock. Additionally, since the global schedule is created from the global queue, we
must acquire the global queue’s lock when trying to schedule. The only other locks accessed
by the scheduler are the locks for the per-core runqueues. Since these are per-core, each
task must only lock its own lock to schedule, and will only acquire another runqueue’s lock
if it needs to migrate a task from it. Therefore, while they are still locks and will effect
scalability, no lock should ever need to be acquired by a significant portion of the system’s
cores at once, except in extremely rare circumstances.

There are two well-known problems that arise when using locks to protect data structures on
high core-count systems. The first is that the lock may be highly contended, meaning that
a large number of threads may be waiting for access. This means that because the threads
are waiting for the lock, only a small amount of progress is being made in the system. This
can happen even if the threads are attempting to perform operations that would not collide
with each other, since the lock protects the whole data structure. The second problem is
that in a modern multiprocessor system, not all memory is necessarily local. Furthermore,
data is often stored in various caches throughout the system. This means that if all the cores
are accessing the same piece of data, each of them needs a fresh copy any time one of them
modifies it. This process generates a significant amount of bus traffic, which potentially
delays the next core in line for the lock from acquiring it [56].

To understand analyze whether scalability is an issue in ChronOS, we devise a set of tests
to run. G-EDF was selected as the scheduler to be used, because it is the most throughly
studied global scheduler presented in this thesis. Our test consists of 10 tasksets at every
integer load point from 1 to 48, resulting in a total of 480 tasksets. These tasksets are
periodic with implicit deadlines. Periods are uniformly distributed over [10ms, 100ms] and
have per-task utilization evenly distributed over [0.1, 0.4]. These values were chosen because
they fit nicely into the previously mentioned schedulability tests for G-EDF. Based on the
Srinivasan and Baruah’s test, we can guarantee that, in theory, G-EDF should be able to
schedule all tasksets up to a load of 24, while the GFB test allows us to generate a bound
of 29. The results of executing these tasksets on ChronOS is shown in Figure 7.3.

Obviously, ChronOS does not perform as intended. To discover the source of this poor per-
formance, we record the average number of waiters at each of the two previously mentioned
locks. Figure 7.1 shows the results as a histogram. The source of the problem is the high con-
tention for the scheduling lock. This is an important results, since the work of Brandenburg
et. al. identified contention on the global queue as the largest detriment to scalability [31].

This problem can be resolved two ways; either the locking mechanism can be improved to
decrease the contention, or the number of core contending for the lock can be reduced. We
take both approaches. Raw spinlocks in Linux are implemented as ticket locks. This means
that they offer similar performance to a raw compare-and-swap lock for low contention, but
also provide starvation freedom and FIFO ordering. However, they are well known to scale
poorly. To resolve this, we replaced the ticket lock being used to guard the schedule with
an MCS lock. MCS is a queue-based lock in which each lock requester spins on only its

Matthew A. Dellinger Chapter 7. Scalability 64

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

F
re

qu
en

cy
 (

%
)

Lock waiters

Task list lock Scheduling lock

Figure 7.1: Number of waiters for the scheduling and task list locks

local memory [86]. The performance difference between these locks on our platform is shown
in Figure 7.2. For this experiment, a variable number of threads were created which each
requested and released the lock 100,000 times. The plotted values are the total time required
for all threads to acquire and release the lock this many times.

When 48 threads are all contending for the lock, the resulting time for the ticket lock is 13
times higher than for the MCS lock. However, the ticket lock is faster when the contention
is low. Based on this, we replaced the scheduling lock with an MCS lock. Figure 7.3 shows
the performance relative to the previous results. This change increases the load at which we
achieve full schedulability by 200%. However, we are still not performing in keeping with
the theoretical performance.

To improve the scalability further, we leverage our knowledge of task mapping in the stop-
the-world model to avoid sending IPIs to ever core at every event. First, we know that cores
which are currently executing a task at a higher priority than the global scheduling priority
will reschedule their current task when they receive an IPI. Therefore, we check the current
priority of each core and only send an IPI if the core’s priority is less than or equal to the
global scheduling priority. Second, if there are more tasks in the system than cores, we know
that the task mapping algorithm will not make any unnecessary migrations. Because of
this, we know that any core with only one task will be mapped that task. This implies that
tasks will only be moved from cores with more than one task, and will only be to cores with
no tasks. In other words, if there are less tasks than cores, any core currently executing a
globally scheduled task does not need to receive an IPI. Finally, we know that if there are
n tasks in the system, we know that we will need to make at most n− 1 migrations, which

Matthew A. Dellinger Chapter 7. Scalability 65

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 4 8 12 16 20 24 28 32 36 40 44 48

T
ot

al
 T

im
e

(m
s)

Threads

Ticket Lock MCS Lock

Figure 7.2: Locking times for ticket and MCS locks on a 48-core system

means we will need to send IPIs to at most n − 1 cores. Since we know that tasks which
must be migrated are assigned to the first available core, we know that we need to signal the
first n− 1 cores in the system. Combining this with the previous rule, we know if there are
less tasks than cores we need to signal only the cores in the first n− 1 which are not already
executing a globally schedule task.

The results of applying this logic to our system is shown in Figure 7.3. This increases
the load at which we are able to schedule all tasks by 12.5% beyond the improvements
of the MCS lock. While this is close to the theoretical lower bound, it is still not quite
sufficient to meet it. Unfortunately, we cannot decrease the number of IPIs sent further in
the stop-the-world architecture, because job-dynamic priority algorithms such as G-GUA
may change any number of tasks in the schedule at every scheduling event. However, we can
leverage knowledge specific to fixed and dynamic priority algorithms. In these algorithms,
each scheduling event can enact only one change on the state of the global queue: a task
must be either added or removed. Furthermore, when a task is removed, the scheduling
event occurs on the core which removed the task, and because our mapping algorithm will
not move running tasks, we can guarantee that the task assignment for this core is the only
change that will be made in the system’s schedule. Based on this, when a core finishes a task,
we can schedule without sending any IPIs. This change is shown in Figure 7.3 as ”Reduced
IPIs 2”. This final change boosts our performance above the utilization bound.

Matthew A. Dellinger Chapter 7. Scalability 66

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Usage Cap

Original
MCS Lock

Reduced IPIs
Reduced IPIs 2

Utilization Bound

Figure 7.3: ChronOS scheduling performance with various improvements

Chapter 8

Experimental Scheduling Results

8.1 Hardware Platform

We conducted experiments on three different hardware platforms. The detailed specifications
of each machine are shown in Table 8.1. The first machine has a pair of quad-core Intel
Xeon E5520 processors. These processors support hyper-threading, but this feature has
been disabled due to the non-determinism it introduces. The second has a pair of 8-core
AMD Opteron 6128 chips. The third is based on four 12-core AMD Opteron 6164 HE
chips. Between these three platforms, we have a wide range of core counts and clock speeds,
allowing us to extensively test the scalability of our kernel and schedulers.

Table 8.1: Specifications of hardware platforms

Specification 8-Core 16-Core 48-Core
Processor Model Intel Xeon E5520 AMD Opteron 6128 AMD Opteron 6164 HE
Processor Count 2 2 4

Core Count 4 8 12
Clock Speed 2267 MHz 2000 MHz 1700 MHz
L2 Cache 4x 256 KB 8x 512 KB 12x 512 KB
L3 Cache 8 MB 2x 6 MB 2x 6 MB
Bus Speed 2933 MHz 3200 MHz 3200 MHz
Memory 8 GB 8 GB 16 GB

67

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 68

8.2 Software Platform

All machines were running Ubuntu 10.04 Server 64-bit with a ChronOS kernel based on the
2.6.31.14 kernel and the 2.6.31.12-rt21 PREEMPT RT patch, which we rebased to the 2.6.31.14
kernel. All user space code was compiled with GCC 4.4.3 and QT4 4.6.2.

8.3 Methodology

All of the algorithms described except the forms of RMS do not assume any specific task
arrival model. Tasks may arrive at any time in any pattern. However, to simplify experi-
mentation and allow comparison between all algorithms, we use only periodic tasks for our
experiments. This is also advantageous because computing theoretical bounds for many of
the algorithms are either difficult or impossible when aperiodic tasks are allowed into the
system. All deadlines are made equal to periods for the same set of reasons.

In order to measure the scheduling behavior of the system, we designed a test application
which takes as input a taskset file, scheduling algorithm, and experiment execution time.
This application makes use of the ChronOS APIs to schedule its tasks and supply their
timing constraints to the kernel. The taskset file provides a period, WCET, utility, and
processor affinity for each task. Our application uses the “thread-per-task” model, which
creates a single OS thread for each task, to which this task is permanently affixed. Each
task is run though a number of jobs equal to the ceiling of experiment’s runtime divided
by the period of the task. Each job of the task begins a real-time segment, burns the
processor for its WCET, and then ends its segment and sleeps until the beginning of the
next job. A simplified task loop is shown in Figure 8.1. All tasks are run at a priority of
40, so that they are under priority of the interrupts. This is not strictly necessary, since our
application’s wait for next period() method uses the nanosleep() function, which relies
on the per-cpu timer interrupt. Since this interrupt has been left in the dedicated interrupt
context in PREEMPT RT, it would be possible for us to run our tasks over the priority of the
interrupts. However, doing so assumes that no other interrupts will be needed, which is an
assumption that we cannot confidently make about real-world real-time workloads. Moving
the test application above priority 50 results in an increase in performance for more complex
schedulers like G-GUA, since they no longer have to regenerate a schedule when preempted
by an interrupt. For the simpler algorithms, such as G-FIFO, the performance difference
is negligible. This approach is also used to make our study more comparable with the two
previous studies ([31], [32]) which used a vanilla Linux kernel and were therefore subject to
interference from interrupts.

The processor is burned by incrementing a counter a precomputed number of times. The
number of times this counter must be incremented to burn 1µs of time is called the system
slope. There are two ways in which we can burn the processor: with or without checking for

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 69

int max_runs = ceil(runtime/period);

int runs = 0;

while(runs <= max_runs) {

runs++;

begin_rt_seg(prio, period, deadline, wcet, utility)

burn_cpu_abort(wcet);

end_rt_seg(prio + 1);

wait_for_next_period();

}

Figure 8.1: Simplified test application task loop

aborts. If we check for aborts, we will return from the burning function within a specifiable
amount of time after the abort is sent. As is shown in Figure 8.2, checking for aborts does
incur a slight amount of overhead. Over long burns, this is generally 3-4%. All tasks in our
test application check for aborts, to provide a consistent workload for our schedulers. The
slopes on the machines used have been adjusted to account for this overhead, but this does
slightly bias our tests against non-aborting algorithms such as G-EDF which do not need
this functionality.

-2

 0

 2

 4

 6

 8

 10

1 10 100 1000 10000

D
ev

ia
tio

n
(%

)

Desired Time (us)

burn_cpu(), 16
burn_cpu_abort(), 16

Ideal Behavior

burn_cpu(), 48
burn_cpu_abort(), 48

Figure 8.2: Slope accuracy

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 70

8.4 Baker Tasksets

Rather than use a single type of taskset to evaluate the algorithms, we use the a variation
of the method described by Baker to create a to create a set of tasksets which evaluate the
scheduler’s performance under a variety of circumstances [9]. In this method, we generate
a large number of tasks according to a set of task weightings and statistical distributions.
In this variation, which was first described by Brandenburg et. al., we use three different
weightings of two statistical distributions — a uniform and a bimodal distribution [31]. This
gives us a total of six taskset distributions. As was done by Brandenburg et. al., we distribute
all periods uniformly between 10ms and 100ms, and set deadlines equal to periods. Tasks
in the three uniform distributions were distributed over [0.001, 0.1], [0.1, 0.4], and [0.5, 0.9].
Tasks in the three bimodal distributions were distributed uniformly over [0.001, 0.5) or [0.5,
0.9] with probabilities of 8/9 and 1/9, 6/9 and 3/9, and 4/9 and 5/9. These six distributions
are referred to as light uniform (BLU), medium uniform (BMU), heavy uniform (BHU), light
bimodal (BLB), medium bimodal (BMB), and heavy bimodal (BHB).

Tasksets were generated for each integer utilization point on the interval (1, 48). For each
taskset, tasks were added until the utilization demand exceeded the desired utilization, and
then the last task was removed. 1000 tasksets were generated for each utilization point in
each distribution, resulting in a final count of 288,000 tasksets. The average number of tasks
in a taskset by utilization and distribution is shown in Figure 8.3.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
ve

ra
ge

 T
as

ks

Usage Cap

BHB BHU BMB BMU BLB BLU

Figure 8.3: Average tasks in a taskset for various per-task weight distributions

For each algorithm, a total of 1,031,707,071 jobs of 38,779,473 tasks were scheduled on the
48-core platform. 118,670,394 jobs of 4,460,485 tasks were scheduled on the 16-core platform,

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 71

and 47,781,229 jobs of 1,172,208 tasks were scheduled on the 8-core machine. This is by no
means the largest sample size ever used to analyze real-time schedulers; Brandenburg et.
al. have published two papers using 5.5 and 8.5 million tasksets [30], [31]. However, both
of these works rely on using a small number of tasksets to characterize the behavior of a
system, and then perform offline schedulability tests on the full set of tasksets. In contrast,
we schedule the experimental workload generated and measure schedulability and tardiness.
Our experiment is, to our knowledge, the largest sample size ever experimentally tested.

Utilities were assigned to tasks by taking the modulo of a randomly generated number and
the period of the taskset. This results is a slight value-density bias toward lower utilization
tasks, and no value-density bias with respect to periods. This leads to correlation values of -
0.43 (BLU), -0.54 (BMU), -0.32 (BHU), -0.23 (BLB), -0.33 (BMB), and -0.33 (BHB) between
task utilization and value density for the different distributions. Utilities were generated in
this manner to bias non-utility accrual schedulers such as variants of RMS toward higher
utility accrual numbers and thereby present competition to the utility accrual schedulers.
The performance of utility accrual schedulers under various utility distributions has already
been researched by Garyali [52].

8.5 Partitioning and Clustering

Tasksets were partitioned offline using one of two algorithms: a first fit method similar to
the method devised by Baruah and Fisher [15], and a simple least-utilization algorithm.
The first-fit algorithm was used for P-EDF, P-LBESA, and P-DASA-ND, all of which follow
EDF ordering in underloads. It is based on sufficient EDF schedulability criteria for sporadic
tasks. Since we are only using periodic tasks, we can safely ignore the request-bound function
constraint of the algorithm, and use only the utilization constraint. Tasks are assigned to the
first core with a utilization low enough that the sum of the utilizations of all tasks previously
assigned to the core and the current task is less than 1. This can be represented as follows.
On an m core machine, let T (πk) denote the tasks already assigned to a core k, where k ≤ m.
We will assign Ti to πk if and only if

(
1−

∑

Tj∈T (πk)

Uj

)
≥ Ui (8.1)

We make two changes to the original algorithm. First, some tasksets which are feasible under
algorithms like PFair and LLREF cannot be partitioned. For example, consider a dual-core
machine, and a taskset with three tasks, each having a utilization of 0.6. As the tasks have a
cumulative utilization of 1.8, the taskset is feasible under both PFair and LLREF, but cannot
be partitioned by Baruah’s algorithm. We commonly see such cases in our heavy-uniform
distributions. Additionally, since we test in overloads (which are by definition infeasible) and
need some kind of partitioning to provide valid results for best-effort algorithms like DASA

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 72

and LBESA, we need a solution to partitioning infeasible tasksets. In both such a case, we
employ a best-effort partitioning approach. If a task does not fit on any core, the task is
assigned to the core with the lowest total sum utilization.

Second, Baruah and Fisher assume that the algorithm is applied to the tasks in non-
decreasing deadline order. However, when combined with the first change and applied to
our tasksets, this order sometimes produces uneven distributions of tasks or results in cores
with utilizations of significantly higher than 1. To deal with this, we assign tasks in order
from highest utilization to lowest utilization (i.e. Ui ≥ Ui+1).

Since task execution times are not inflated to deal with system overheads, assigning a load
of 1 to a given core would place it slightly into overload. To deal with this, we replace the
fit bound of 1 with 0.95, leaving a small amount of room for overhead.

The least-utilization algorithm was used for the remaining two algorithms — P-RMS and
P-HVDF. Under this algorithm, tasks were considered in decreasing utilization order, and
each task was assigned to the core with the least total utilization. This guarantees that no
core will receive a second task until a task has been assigned to each core, and attempts to
evenly distribute the load among all cores.

Clustering is handled by partitioning the taskset, and then grouping all tasks assigned to
a set of cores together. For example, in a system with two quad-core processors and two
clusters, we partition the taskset and then place all tasks assigned to cores 0 through 3
on cluster A and all tasks assigned to cores 4 through 7 on cluster B. Clusters are always
selected to correspond to physical processors, and therefore our 8, 16, and 48 core systems
use clusters of 4, 8, and 12 cores respectively. Since the first-fit algorithm tends to group all
tasks on small set of cores, we use the least-utilization partitioning algorithm for creating
clustered tasksets.

8.6 Performance Measurements

We record four measurements when experimenting with scheduling algorithms — Deadline
Satisfaction Ratio (DSR), Accrued Utility Ratio (AUR), Schedulability, and Mean Maximum
Tardiness (MMT).

The DSR for a given taskset i at a utilization of U is

DSRi
U =

Deadlines met

Total deadlines
(8.2)

And therefore, the average DSR for k tasksets with a utilization of U is

DSRU =

∑k
i=1 DSRi

U

k
(8.3)

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 73

Similarly, the AUR for a given taskset i at a utilization of U is

AURi
U =

Utility accrued

Total possibleutility
(8.4)

And the average AUR for k tasksets with a utilization of U is

AURU =

∑k
i=1 AURi

U

k
(8.5)

The schedulability for a given taskset i at a utilization of U is

Schedulabilityi
U =

{
1 for DSRi

U = 1

0 for DSRi
U < 1

(8.6)

Therefore, the schedulability for a given utilization range U with k tasksets is calculated as
follows:

SchedulabilityU =

∑k
i=1 Schedulabilityi

U

k
(8.7)

Finally, the maximum tardiness is calculated by measuring the worst tardiness θi
U experienced

by any task in a taskset i at a utilization U . The mean maximum tardiness for a given
utilization range U with k tasksets is therefore

MMTU =

∑k
i=1 θi

U

k
(8.8)

DSR measures the percentage of the scheduled jobs that successfully met their deadlines.
Similarly, AUR measures the amount of utility accrued by these jobs with respect to the
total possible utility. These two metrics have been sufficient in the past [52], however, as
our results will show, they are no longer sufficient to understand the behavior of algorithms.
To complement them, we add schedulability, which represents the percentage of the time an
algorithm is able to meet all of a taskset’s deadlines, and mean maximum tardiness, which
measures the worst tardiness experienced by any task in the taskset. These two metrics help
us understand the behavior of algorithms in specific contexts; schedulability is helpful in
the context of hard real-time system, where the main constraint is often that all deadlines
must be met. In soft real-time system, a commonly used constraint is that tardiness must
bounded, and therefore measuring tardiness is a reasonable addition.

8.7 Schedulability Results

The schedulability results of our tests are shown in Appendix A, due to their length. For
schedulability results, we mostly ignore the results of G-NP-HVDF, G-HVDF, P-HVDF, and
G-GUA, since they make no attempt to meet all deadlines.

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 74

When analyzing scalability, we especially focus on the BHU, BMU, and BLU tasksets. This
is done for two reasons. First, these are the easiest to analyze under the previously discussed
schedulability tests for G-RMS, P-RMS, G-EDF, and P-EDF. Second, these represent the
most extreme cases, with BHU being the most difficult from a bin-packing perspective and
BMU and BLU having the largest number of tasks.

Tables 8.2 to 8.4 show the computed theoretical schedulability bounds for each of these three
algorithms for each of the three distributions on each platform. These are only the results
of Anderson and Baruah’s schedulability tests for G-RMS, and for Baruah’s test and the
GFB test for G-EDF. Where two bounds give different results, we take the higher bound.
The BHU bounds for G-EDF are significantly lower than their actual expected performance,

Table 8.2: Schedulable utilization bounds for G-RMS, P-RMS, G-EDF, and P-EDF on the
8-core platform

Algorithm BHU BMU BLU
G-RMS N/A N/A 2.78
P-RMS 3.81 4.44 5.17
G-EDF 1.70 5.20 7.30
P-EDF 4.68 6.00 7.36

Table 8.3: Schedulable utilization bounds for G-RMS, P-RMS, G-EDF, and P-EDF on the
16-core platform

Algorithm BHU BMU BLU
G-RMS N/A N/A 5.45
P-RMS 7.23 8.63 10.26
G-EDF 2.50 10.00 14.50
P-EDF 8.89 11.71 14.64

Table 8.4: Schedulable utilization bounds for G-RMS, P-RMS, G-EDF, and P-EDF on the
48-core platform

Algorithm BHU BMU BLU
G-RMS N/A N/A 16.11
P-RMS 20.90 25.39 30.60
G-EDF 5.70 29.20 43.30
P-EDF 25.74 34.57 43.73

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 75

since both of the tests used are known to be sub-optimal for heavy tasksets [9]. However,
this is not of critical importance for us, since scalability issues are more likely to arise during
the lighter tasksets.

8.7.1 8-Core Schedulability Results

On the 8-core platform, there is little of interest to observe. Most of the algorithms behave
in accordance with their theoretical performance. G-EDF, G-RMS, P-EDF, and P-RMS all
meet the bounds listed above. G-EDF, gMUA, and NG-GUA all demonstrate nearly identical
performance, which is expected since they all should theoretically produce the same schedules
when the system is underloaded. The lone exception is the BLU distribution, where gMUA
and NG-GUA begin loosing deadlines after a load of 6, compared to 7 for G-EDF. C-EDF
slightly outperforms G-EDF in most cases; this performance differences ranges from 66%
more tasksets scheduled at a load of 7 in the BMB case to no difference at all for the BLU
case. G-EDF, C-EDF, P-EDF, G-RMS, P-RMS, P-LBESA, and P-DASA-ND never fail to
schedule a taskset below a load of 4. One interesting aspect of G-EDF is that it for the
BLB case, rather than the sharp drop we see in the BLU and BMU cases, performance
gradually degrades. This is due to the fact that the BLB case is the most likely to contain
tasksets that demonstrate the Dhall effect. G-GUA, G-HVDF, and G-NP-HVDF all fail to
schedule tasksets at a load of three for some cases, which is expected as they provide only
best-effort scheduling. G-FIFO performs similarly to SCHED FIFO; and both fail to schedule
all tasksets at a load of 2 in the BLU case and are never able to schedule all tasksets over
a load of 5. G-NP-EDF is able to schedule some taskset up to a load of 7 for all cases, but
is also never able to provide full schedulability at a load higher than 5. This is consistent
with its expected performance as a non-preemptive algorithm. P-EDF performs near G-EDF
and C-EDF in most cases; it slightly outperforms them for the BMB and BLB cases, but
is outperform by both for the BHB and BHU cases, because of the bin-packing problems
associated with partitioning heavy tasksets. P-DASA-ND and P-LBESA perform identically
to P-EDF in the BHU and BLU cases. In all other cases, their performance begins degrading
one load point before P-EDF, likely due to their increased scheduling overhead. G-RMS and
P-RMS are slightly outperformed by G-EDF and P-EDF in all cases, as is expected with
static priority algorithms.

8.7.2 16-Core Schedulability Results

The scheduling results are similar to those on the 8-core, but there are a few noticeable
differences. Most algorithms perform as expected; G-RMS, G-EDF, P-EDF, and P-RMS
all achieve their theoretical bounds bounds for all cases. C-EDF outperforms G-EDF in all
cases, and both outperform all other global algorithms in the BHB, BHU, BMB, and BLB
cases. SCHED FIFO, G-FIFO, G-GUA, G-HVDF, and G-NP-HVDF show widely varying per-

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 76

formance, and are only able to meet all deadlines consistently under low loads. P-EDF, P-
LBESA, and P-DASA-ND all demonstrate nearly identical performance, as expected. They
also all show performance in keeping with the difficulties of the bin-packing problems in-
volved; the load at which they are able to successfully schedule all taskset is proportional
to the average task weight, and ranges from 10 for the BHU case to 15 for the BLU case.
Also, as expected, the partitioned deadline-based algorithms perform much better under the
bimodal cases than the global deadline-based algorithms, but worse for the BHU case. For
the BHB, BMB, and BLB cases P-EDF schedules all tasksets up to loads of 12, 13, and 14
respectively, while G-EDF only manages 8, 8, and 7. However, G-EDF is able to schedule
all tasksets up to a load of 11 for the BHU case, compared to 10 for P-EDF. These difference
are not due to scaling problems, but rather are the expected behaviors of the algorithms. G-
NP-EDF demonstrates high but unpredictable performance; it is significantly outperformed
by G-EDF, C-EDF, and G-RMS the BHB, BHU, and BMB cases. However, it outperforms
G-RMS and G-EDF at some loads in the BLB case, outperforms both for all loads and
C-EDF for some loads in the BMU case, and outperforms all three for the BLU case.

NG-GUA and gMUA provide similar performance, however they suffer significant perfor-
mance degradation due to their high overheads on large systems, and only perform near
G-EDF on heavier tasksets. Under the BLU tasksets, they suffer a catastrophic failure, and
meet deadlines only up to around half the load of G-EDF. Furthermore, gMUA consistently
outperforms NG-GUA by a small margin; in most cases, it appears to be able to decay
around a load of 0.5 later than NG-GUA. This is consistent with the effects of the overhead
difference between the two algorithms.

8.7.3 48-Core Schedulability Results

On the 48-core, four results stand out. First, under most conditions, G-NP-EDF is able
to successfully schedule the most tasksets of any global scheduling algorithm. Second, G-
FIFO and SCHED FIFO outperform G-EDF and G-RMS on four of the six distributions.
Third, in all six distributions, G-FIFO outperforms SCHED FIFO. They are quite close for the
heavier distributions, but when the number of tasks increases, the performance of SCHED FIFO

degrades significantly; for the BLU distribution, it is not able to provide full schedulability
even at a load of 1. Fourth, P-EDF and C-EDF clearly provide the highest performance.
Neither algorithm fails to provide full schedulability for any case at a load less than 28.
P-EDF is especially effective, scheduling all tasksets up to a load of 43 for the BLB and BLU
cases.

There are several other results worth noting. P-EDF and P-RMS exceed all of their the-
oretical bounds. G-EDF exceeds its theoretical bounds for the BHU and BMU cases, but
falls 47% short of its bound for the BLU case. G-RMS exceeds its BLU bound, but since
its is implemented in the same manner as G-EDF, this likely means that the bound is sig-
nificantly pessimistic. Despite this, the performance of both algorithms is quite impressive,

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 77

considering the rigorousness of the test and their implementation. None of the global utility
accrual algorithms are able to provide full schedulability at a load greater than 19. For the
BLU case, none can provide it at a load higher than 7. In this case, NG-GUA and gMUA
miss their theoretical bound by over 500%. The large number of tasks in the BLU case also
affects P-LBESA and P-DASA-ND, as neither is able to provide full schedulability for a load
over 19. On the surface, this result is surprising, because the average task weight is no larger
than that of the BLU case for the 16-core platform, and so the average number of tasks per
core should be the same. However, since a first-fit partition is used, it is likely that a large
number tasks allowed many extremely lightweight tasks to be assigned to the first several
cores in some cases. This degradation must be attributed to the overhead of the algorithms,
since no such effect occurs under P-EDF, which uses the same tasksets. P-DASA-ND fails
to schedule tasksets at a lower load than P-LBESA because P-LBESA takes the optimistic
approach of placing all tasks in the schedule, and then removing them until the schedule
is feasible while P-DASA-ND takes the pessimistic approach of adding tasks to an empty
schedule until it becomes infeasible. When in underload, there is always a feasible sched-
ule, and so P-LBESA’s approach will result in significantly lower overheads, as is shown in
Chapter 9.

8.8 DSR Results

The deadline satisfaction ratio results of our tests are shown in Appendix B, due to their
length.

8.8.1 8-Core DSR Results

We note the following about the DSR results on the 8-core platform. G-EDF and C-EDF
both maintain a DSR of over 98% up to a load of 7 for all taskset distributions. P-EDF is
not as consistent, meeting 97.5% of deadlines at a load of 8 for the BLU case, but meeting
only 72% at a load of 7 for the BHU case. This is because the BLU case is the easiest
to partition, while the BHU case is the hardest. G-EDF and C-EDF exhibit traditional
deadline-based scheduling behavior, experiencing a rapid loss of deadlines once the system
becomes fully loaded. This rapid loss is commonly known as the “domino effect”. P-EDF
shows this only for the lighter tasksets. For the heavier tasksets, the uneven loading caused
by partitioning means that not all cores become overloaded at the same time. Interestingly,
although C-EDF outperformed G-EDF in schedulability in most cases, in only outperforms
G-EDF in DSR for the BLU case. In all other cases, though both algorithms begin missing
a significant number of deadlines at the same point, C-EDF’s DSR drops faster. P-RMS and
G-RMS both begin missing deadlines earlier than any of the deadline algorithms, but also
miss less of them in overload. For all distributions, G-RMS meets between 84% and 87% at
a load of 10, the highest of all algorithms measured.

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 78

For the utility accrual algorithms, we see that behavior is as expected. NG-GUA and gMUA
both are able to meet a higher percentage of deadlines in underload than G-GUA and
G-HVDF, but meet less in underload. In four of the first five taskset distributions, G-
GUA is able to meet more deadlines than G-HVDF at all loads. The exception is the
BHU cases, where their performance is almost identical. In the first five distributions, G-
NP-HVDF meets less deadlines than all other UA schedulers at all points. However, this
changes for the BLU case. In this case, the large overheads of gMUA, NG-GUA, and G-
GUA inhibit their best-effort performance. At a load of 10, none are able to meet even
40% of deadlines. G-HVDF and G-NP-HVDF both meet a significantly larger number:
73% and 79% respectively. Among the partitioned UA algorithms, P-DASA-ND always
achieves the highest DSR, followed by P-LBESA and then P-HVDF. As expected, P-DASA-
ND and P-LBESA always lie nearly on top of P-EDF until it begins missing deadlines, and
then maintain a higher DSR. Except for the BLU case, none of the three ever exceed the
performance of G-GUA in overloads.

8.8.2 16-Core DSR Results

On the 16-core platform, we observe that G-EDF, G-NP-EDF, G-FIFO, and G-RMS perform
as expected. G-EDF and C-EDF meet over 99% of deadlines until a load of 14 for all
distributions. For both algorithms, we see the domino effect begin to occur between a
load of 15 and 16 in all distributions. As expected from the schedulability results, C-EDF
maintains a higher DSR than G-EDF at a load of 16 for the BMB, BMU, BLB, and BLU
cases, but looses deadlines more rapidly for the BHB and BHU cases. G-NP-EDF generally
begins dropping deadlines slightly earlier than G-EDF. Like G-EDF, G-NP-EDF maintains
a DSR over 99% for the BHB, BMB, BMU, BLB, and BLU distributions at a load of 14. For
the BHU distributions, G-NP-EDF meets only 97%. However, because of its non-preemptive
nature, the domino effect is not as pronounced. G-FIFO and SCHED FIFO experience a drop
in deadlines between loads of 8 and 10 for all distributions, but this decrease is slower, due to
the fact that tasks are not preempted. G-RMS maintains the highest DSR of any algorithm,
never meeting less than 89% of deadlines under any case.

Among the utility accrual algorithms, we observe that G-HVDF, G-NP-HVDF, and G-GUA
consistently begin missing deadlines between a load of 10 and 12, while gMUA and NG-
GUA begin missing a significant number of deadlines between 12 and 14. However, gMUA
and NG-GUA both loose deadlines far more rapidly once they begin to lose them; neither
meets more than 82% at a load of 16 for any distribution. Under the BLU distribution,
gMUA, NG-GUA, and G-GUA begin loosing deadlines rapidly between 6 and 8. Rather
than providing the best-effort performance they are designed to provide, all three algorithms
meet less than 5% of deadlines at full load for the BLU case. In contrast, for the BLU case
G-NP-HVDF is able to meet over 90% of deadlines at full load, and looses deadlines the
slowest of all the utility accrual algorithms.

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 79

We observe that P-EDF, P-LBESA, and P-DASA-ND all perform nearly identically under all
distributions until they start loosing deadlines. After they begin loosing deadlines, P-EDF’s
DSR drops faster than either P-LBESA or P-DASA-ND. For the BHU case, P-EDF’s DSR
drops in a linear manner, rather than the domino-effect failure pattern typically associated
with deadline-based scheduling. This happens because the bin-packing associated with par-
titioning implies that not all cores will undergo the domino effect at the same time. G-HVDF
begins missing deadlines significantly before any other partitioned algorithms (at a load of
2 in the BLU case). P-RMS always begins missing deadlines slightly earlier than P-EDF.
However, P-RMS and P-HVDF lose deadlines at a slower pace than the other algorithms.
The DSR curve for P-RMS is generally around 10% higher than the curve for P-HVDF for
all cases, while their slopes are generally similar.

8.8.3 48-Core DSR Results

The DSR results on the 48-core show several clear trends. G-GUA, NG-GUA, gMUA, and
G-HVDF do not provide a graceful performance degradation. All four show a sharp drop
in DSR, followed by a period of more level performance. Of the four, G-HVDF consistently
provides the highest DSR, followed by gMUA, then NG-GUA, then G-GUA. G-HVDF is
never able to meet more than 50% of deadlines at full load. NG-GUA and gMUA never
exceed 30% at full load, and G-GUA never surpasses 15%. In contrast, G-NP-HVDF never
meets less than 70% of deadlines at a load of 48. The domino effect is clearly visible in
G-EDF’s DSR behavior; in all cases, it drops from above 90% to below 30% in a load range
of three or less. This drop trails the drop in schedulability by a significant margin in some
cases; in the BLU case, the curves coincide, while for the BLB case the schedulability drops
at a load of 14 and the DSR drops at 31. This gap is due to two factors. First, overheads
may cause temporary delays which push only a few tasks beyond their deadlines. Second,
This gap is most pronounced for the bimodal cases, implying that we are seeing a few heavy
tasks failing to meet their deadline because of interference from lighter tasks. This allows
the DSR to remain high even though the taskset is not completely scheduled. For all cases,
G-FIFO and SCHED FIFO begin loosing deadlines slowly between a load of 20 and 30, and
then begin to rapidly miss deadlines between 40 and 44. C-EDF and G-NP-EDF perform
better, meeting over 95% of deadline until a load of between 37 and 44, and then rapidly
loosing deadlines after that. In all but the BLU case, G-NP-EDF is able to maintain a DSR
over 90% until at least 45. For all cases, G-NP-EDF has a higher DSR than G-EDF.

Among the partitioned algorithms, P-RMS consistently meets the largest number of deadlines
at a load of 48, and P-EDF the least. Aside from the BLU case, P-DASA-ND meets a larger
number of deadlines than P-LBESA, and both begin missing deadlines at the same point
as P-EDF. P-HVDF generally has the same slope as P-RMS in the 40-48 load range, but
meets around 10% less deadlines. Both have a slope roughly half as steep as P-LBESA and
P-DASA-ND in this range.

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 80

8.9 AUR Results

The deadline satisfaction ratio results of our tests are shown in Appendix C, due to their
length. Since the AUR for deadline, period, and FIFO based algorithms is directly tied to
their DSR, we provide only a limited discussion of those algorithms here. Furthermore, since
utility accrual is only important metric in high-load and overloaded systems, we only analyze
the results in these areas.

8.9.1 8-Core AUR Results

On the 8-core, G-HVDF provides the highest AUR in overload for all tasksets distributions
except BLU, where it accrues 4.7% less utility than G-NP-HVDF. At a load of 10, G-HVDF
never accrues less than 86% of the possible utility. For the three heaviest distributions (BHB,
BHU, and BMB) G-GUA performs second, accruing between 79% and 85% at a load of 10.
For the lightest three distributions (BMU, BLB, and BLU) G-NP-HVDF performs second,
accruing between 87% and 95% utility at a load of 10. NG-GUA and gMUA accrue less
utility in overload than the other global UA algorithms for the first five distributions. At
a load of 10, neither algorithm ever exceeds 78% utility. For the BLU distribution, as has
been noted in other sections, G-GUA, NG-GUA, and gMUA do not perform as intended for
the BLU case due to their high overhead, and in fact accrue less utility than G-FIFO and
SCHED FIFO.

Among the partitioned UA algorithms, G-HVDF always accrues the least utility in underload
conditions, but the most utility in overload. P-DASA-ND and P-LBESA both perform
similarly, accruing more utility than G-HVDF in underloads, then dropping rapidly between
a load of 8 and 9, and then leveling off between 9 and 10. For the first five distributions,
P-DASA-ND accrues more utility in all cases, but never exceeds P-LBESA by more than
3.6%. For the BLU case, both perform identically in underloads, but P-LBESA begins to
pull ahead in overloads. At a load of 10, it accrues 6.8% more utility than P-DASA-ND. In
no case do P-DASA-ND or P-LBESA accrue more utility than G-HVDF during overloads.

8.9.2 16-Core AUR Results

For the 16-core, we observe the following. First, all of the non utility-accrual algorithms
(SCHED FIFO, G-FIFO, G-RMS, G-EDF, C-EDF, P-RMS, P-EDF) demonstrate utility ac-
crual performance directly related to their DSR performance. This is to be expected, since
they do not consider the utility of tasks when scheduling.

Second, we observe that P-HVDF outperforms P-LBESA by up to 19% and outperforms
P-DASA-ND by up to 23% at a load of 16. P-HVDF is never outperformed by P-LBESA at
this load. P-DASA-ND only outperforms P-HVDF once at this load; it accrues 1.6% more

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 81

utility than P-HVDF for the BMB distribution.

For the global utility accrual algorithms, we see that gMUA and NG-GUA always accrue
the least utility at high loads. Neither algorithm has an AUR of more than 80% at full load.
Interestingly, gMUA generally accrues less utility than NG-GUA, despite their functionality
being similar. G-GUA only accrues less utility than NG-GUA at high load for the BMU
and BLU distributions. This makes sense, because the overhead of G-GUA is much larger
than that of NG-GUA and therefore even though it is theoretically superior, it is unable
to actually achieve this performance. In high load situations, G-NP-HVDF and G-HVDF
accrue significantly more utility than any of the more complex heuristics; neither algorithm
ever accrues less utility than gMUA, NG-GUA, or G-GUA at a load of 16. The relative
performance of G-NP-HVDF and G-HVDF is dependent on the weight of the tasksets. For
BHU, the heaviest distribution in the system, G-HVDF accrues 8.9% more utility at a load
of 16. However, for the BLU case, which is the lightest distribution tested, G-NP-HVDF
accrues 25% more utility than G-HVDF. Overall, for all tasksets considered, G-NP-HVDF
is able to accrue the most utility.

8.9.3 48-Core AUR Results

Our observations about the AUR results for the 48-core are similar to those made about the
DSR results. G-GUA, NG-GUA, gMUA, and G-HVDF fail to provide a graceful decline in
performance. They are consistently outperformed by both the partitioned algorithms and
G-NP-HVDF. At full load, G-NP-HVDF accrues at least 8% more utility than any other
algorithm for all cases except BLU. In the BLU case, P-HVDF accrues 1% more utility.
P-HVDF always accrues at least 5% more utility than either P-LBESA or P-DASA-ND at
full load. As noted before, P-DASA-ND slightly outperforms P-LBESA for all cases except
BLU, where the pessimistic approach of P-DASA-ND hinders it.

8.10 Tardiness Results

The mean maximum tardiness results of our tests are shown in Appendix D, due to their
length. Since fully abortive algorithms (G-GUA, NG-GUA, gMUA, G-HVDF, P-HVDF,
P-LBESA, P-DASA-ND) abort tasks as soon as they exceed their deadlines, they should
never allow tasks to display unbounded tardiness. Our discussion of their tardiness results
is therefore limited.

Tardiness bounds are computed for G-NP-EDF and G-EDF using the methods discussed
in 6. We know that G-FIFO also bounds tardiness, but since the only method available
requires a specific evaluation of each task in each taskset, we do not compute a bound for
G-FIFO. The bound’s authors experiments show that the bound for G-FIFO is always higher
than that for G-NP-EDF and G-EDF. In their experimental results, they found the bound

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 82

for GFIFO to always be between two and ten times that of the deadline-based algorithms.
Based on this, we analyze G-FIFO’s experimental results for reasonableness. Furthermore,
we must note that overheads have not been considered in the system load, and so on each
platform, full load actually occurs somewhere between a load of m and m− 1. Application
overhead is calculated in 9.

Table 8.5 shows computed tardiness bounds for G-EDF and G-NP-EDF computed using
these methods. It should be noted that the bound computed for G-EDF is known to provide
unreasonable bounds when both m and average per-task utilization are high, which is likely
why the bounds for the BHU and bimodal distributions are so high. It must also be noted
that since these bounds do not account for overhead, none of our algorithms ever meet them.
Nonetheless, they provide an idea of the behavior we should observe.

Table 8.5: Tardiness bounds for G-EDF and G-NP-EDF (microseconds)

Algorithm Cores BHU BMU BLU All Bimodal
8 313076 88214 19445 332269

G-EDF 16 472352 96730 20267 487029
48 723333 103175 20827 730893
8 444118 69616 11046 423571

G-NP-EDF 16 606000 73000 11128 576060
48 799123 75411 11184 757978

Since we cannot easily compute bounds for all of the tardiness-bounding algorithms (SCHED FIFO,
G-FIFO, G-EDF, G-NP-EDF, C-EDF, P-EDF), we also measure tardiness by visually ana-
lyzing each graph to identify the point at which tardiness begins to rapidly increase. All of
the mentioned algorithms should provide relatively low tardiness up until they enter over-
load, at which point their tardiness should begin increasing rapidly. The results of this
analysis are shown at the end of each section.

8.10.1 8-Core Tardiness Results

On the 8-core, G-RMS and P-RMS always incur the largest MMT. This is expected, since
both are fixed priority algorithms. For all distributions, once the system is overloaded the
maximum observed tardiness rises above 1 second — the length of the test. This implies that
a task was blocked for the entirety of the test. G-NP-HVDF is also a fixed priority algorithm,
and like the period-based algorithms, tasks suffer unbounded tardiness. However, this is
consistently lower than either of the periodic algorithms because G-NP-HVDF aborts tasks,
lowering the system load. After these three algorithms come the two FIFO-based algorithms
— G-FIFO and SCHED FIFO. Both perform nearly identically, incurring a maximum mean
tardiness of between 600,000 and 900,000 µs at a load of 10 for all distributions. These

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 83

algorithms should bound tardiness at full load, and do for the four heaviest distribution.
For the two lightest distributions (BMU and BLU) we see that tardiness is bounded at a
load of 7, but not at a load of 8. For all cases, G-EDF, G-NP-EDF, P-EDF, and C-EDF
demonstrate a tardiness of between 200,000 and 400,000 µs at a load of 10. Both G-EDF
and G-NP-EDF bound tardiness under all distributions at full load. P-EDF and C-EDF
bound tardiness at full load for all cases except the BHU case. In this case, tardiness cannot
be bounded at full load because there is no viable partitioning for the tasksets. Table 8.6
shows the load points after which algorithms which bound tardiness are in overload.

Table 8.6: Last underload point for tardiness-bounding algorithms on our 8-core platform

Algorithm BHB BHU BMB BMU BLB BLU
SCHED FIFO 8 8 8 7 7 7

G-FIFO 8 8 8 7 7 7
G-EDF 8 8 8 8 8 8

G-NP-EDF 8 8 8 8 8 8
C-EDF 7 7 8 8 8 8
P-EDF 7 6 7 7 8 8

8.10.2 16-Core Tardiness Results

We note several things about the tardiness results on the 16-core platform. First, at no
time to any of the fully abortive algorithms show a tardiness of more than 20 microseconds.
Second, G-RMS, P-RMS, and G-NP-HVDF all demonstrate completely unbounded latencies,
with latencies approaching 1 second in some tests. This makes sense, since all three are static
priority algorithms, and therefore cannot bound tardiness by definition. Of the three, G-RMS
demonstrates the highest latencies measured, with latencies for the BLU case reaching 1.175
seconds. Since our tests are only one second long, this implies that a task has been blocked
for the entire duration of the test and part of the clean-up period. G-EDF, C-EDF, and
G-NP-EDF all demonstrate bounded latencies. Based on this, we conclude that G-NP-EDF,
G-EDF, and C-EDF all demonstrate sufficient performance to state that they provide soft
real-time scheduling on this platforms. P-EDF demonstrates tightly bounded latencies in all
but the heavy taskset cases. In these cases, the bin-packing problems dictate that certain
cores will be overloaded significantly before the total load on the system reaches overload.
This implies that neither soft nor hard real-time schedulability is possible. Table 8.7 shows
the load points after which algorithms which bound tardiness are in overload.

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 84

Table 8.7: Last underload point for tardiness-bounding algorithms on our 16-core platform

Algorithm BHB BHU BMB BMU BLB BLU
SCHED FIFO 15 15 15 15 15 15

G-FIFO 15 15 15 15 15 15
G-EDF 15 15 15 15 15 14

G-NP-EDF 15 15 15 15 15 15
C-EDF 14 14 15 15 15 15
P-EDF 13 11 15 15 15 15

8.10.3 48-Core Tardiness Results

In the 48-core tardiness results, there are two key facts to note. The first is that for all cases
except BLU, G-NP-EDF bounds tardiness at a higher load than any other algorithm. While
it does fail to meet its theoretical bounds, its high performance implies that it scales to our
48-core platform. The second fact to note is that for the BMB, BMU, BLB, and BLU cases,
C-EDF and P-EDF also bound tardiness at quite high loads. In the other two cases, their
performance is limited by the partitioning.

Other results worth nothing are that for the first five cases, G-EDF is able to bound tardiness
below a load of 34 for the first five distributions. It is also able to meets its computed
tardiness bounds for the BHB, BHU, BMB, and BLB distributions, although these are not
tight bounds. Additionally, for the first five cases G-FIFO is able to provide tardiness below
100ms below a load of 44, and always provides a lower MMT than SCHED FIFO. Last, for
the BLU case, not even fully aborting algorithms can bound tardiness; G-GUA experiences
latencies in excess of 1.4 seconds, implying that tasks are being released faster than they can
be aborted. Table 8.8 shows the load points after which algorithms which bound tardiness
are in overload.

Table 8.8: Last underload point for tardiness-bounding algorithms on our 48-core platform

Algorithm BHB BHU BMB BMU BLB BLU
SCHED FIFO 44 45 44 43 43 36

G-FIFO 44 45 44 44 44 40
G-EDF 36 37 35 33 33 24

G-NP-EDF 46 46 46 46 46 42
C-EDF 39 38 44 43 44 42
P-EDF 39 33 44 43 44 46

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 85

8.11 Migrations and Abortion

The migration and abortion results of our tests are shown in Appendix E, due to their length.
Since partitioned algorithms (P-RMS, P-EDF, P-HVDF, P-LBESA, P-DASA-ND) make no
migrations, they are omitted from the results. P-HVDF, P-LBESA, and P-DASA-ND do
abort tasks, so their abortion results are grouped together with those of the utility accrual
algorithms.

8.11.1 8-Core Migration Results

In analyzing the migration results on the 8-core platform, we can see the following. First, the
three non-preemptive algorithms (G-FIFO, G-NP-EDF, and G-NP-HVDF) always perform
the least migrations, and for each distribution, all perform a around the same number of
migrations. Second G-RMS always performs around 24% more migrations than G-EDF.
C-EDF generally performs around 15% less migrations than G-EDF. This makes sense,
because though the actual algorithm logic is similar, the lower number of cores in a cluster
implies a higher probability of a selected task already being on the correct core. G-HVDF
always performs a number between G-RMS and G-EDF. In the lighter distributions, G-GUA
performs significantly more migrations than any other algorithm; however, on the heavier
distributions, it performs around the same number as G-HVDF. Conversely, for the lighter
distributions, NG-GUA and gMUA perform similar numbers of migrations to G-HVDF,
while for the heavier distributions they perform more. While both perform a similar number
of migrations to G-EDF in all cases, this is coincidence, since their behavior in overloads
(and therefore their migration patterns) are different.

8.11.2 16-Core Migration Results

We observe the following about the migration results on the 16-core platform. First, non-
preemptive algorithms such as G-FIFO and G-NP-EDF, perform a relatively low number
of migrations. G-FIFO and G-NP-EDF migrate around the same number of tasks, while
G-NP-HVDF always migrates less tasks than them because it aborts tasks and aborted
tasks are never migrated. Second, G-RMS and G-EDF both consistently perform more
migrations than the concurrent architecture schedulers. G-EDF performs between 1% and
8% less migrations than G-RMS for all cases except the BHU case. C-EDF always performs
less migrations than G-EDF but more than G-NP-EDF. This is due to its clustered nature,
which increases the probability that a task will not need migrated. Because it is clustered,
these migrations will also be less expensive on average than the migrations made by global
schedulers. NG-GUA and gMUA both perform slightly more migrations than G-RMS and
G-EDF, despite aborting tasks. The only exception to this is the BLU case, where NG-GUA
and gMUA abort enough segments that they migrate less. G-GUA performs around 40%

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 86

less migrations than gMUA and NG-GUA for the two heavy tasksets. However, for the BMU
and BLU tasksets it performs up to 77% more migrations.

8.11.3 48-Core Migration Results

On the 48-core, NG-GUA and gMUA no longer perform similar numbers of migrations to
G-RMS and G-EDF. For most cases, they perform almost twice as many, while for the BLU
case they only perform one third as many. We do note that the relationship between G-RMS
and G-EDF, and C-EDF remains unchanged; G-RMS performs around 10% more migrations
than G-EDF, which performs around 10% more than C-EDF. Also, as before, G-FIFO and
G-NP-EDF perform less than any of the three. G-NP-HVDF once again performs slightly
less than G-NP-EDF for all cases.

8.11.4 8-Core Abortion Results

On the 8-core, there are two primary observations we may make about the abortion results.
The first is that the abort counts for G-GUA, gMUA, NG-GUA, P-LBESA, and P-DASA-
ND are roughly consistent across all three bimodal distributions, despite the fact that the
BLB distribution creates nearly twice the tasks of the BHB distribution. In fact, G-GUA and
P-DASA-ND both show around a 5% decrease in abort count between the BHB and BLB
distributions. This is due to the fact that while the task count increases, the average task
weight decreases, making it easier for these algorithms to perform their bin-packing. Hence,
they are able to successfully schedule a larger percentage of the tasks. This is born out
in the DSR results, where we see NG-GUA, gMUA, P-DASA-ND and P-LBESA achieving
higher DSR numbers for BMB than for BHB, and yet still higher numbers for BLB. This is
further evidenced by the opposite behavior from the simple heuristics; P-HVDF, G-HVDF,
and G-NP-HVDF show increasing abort counts as the task count increases. This also explain
why G-GUA aborts less tasks than gMUA and NG-GUA for all five distributions without
runaway aborts; since it performs a more rigorous bin-packing method, it is able achieve
a higher DSR in overload than NG-GUA and gMUA, which is where the vast majority of
aborts occur. While it performs more in underload, this number is dwarfed by the number
produced in overload, and so its total abort count is less.

The second behavior is that, for all except the BLU case where gMUA, G-GUA, and NG-
GUA perform runaway aborts, P-HVDF performs the highest number of aborts of any algo-
rithm. This is because it is a partitioned algorithm, and because the partitioning was done
with no respect to value-densities, but in order of decreasing utilization. This implies that
each core has a smattering of both light and heavy utilization tasks in these distributions.
Therefore, if several low utilization tasks are assigned to the same core as a single high
value-density high utilization task on a fully loaded or overloaded core, most of them may
be aborted.

Matthew A. Dellinger Chapter 8. Experimental Scheduling Results 87

8.11.5 16-Core Abortion Results

Several interesting behaviors may be observed in our abortion results from the 16-core plat-
form. The most important of these is that the abort counts for G-NP-HVDF, G-HVDF,
gMUA, and NG-GUA actually decreases for the BHB, BHU, and BMB cases relative to the
8-core results. The reason for this is that we test the 8-core platform further into overload
than the 16 core platform. The second observation is that unlike on the 8-core, G-GUA per-
forms more aborts than NG-GUA in most cases. When combined with the DSR results, we
see that for most cases, it both meets more deadlines and aborts more tasks than NG-GUA.
This difference is due to the fact that G-GUA begins aborting tasks at a lower load than
NG-GUA. We also observe that, unlike the 8-core results, gMUA and NG-GUA have signif-
icantly different abort counts for the bimodal cases. This is due to the overhead differences
between the two algorithms. gMUA’s lower overhead means less scheduling events conflict,
and so it performs more optimistically. G-NP-HVDF always performs less aborts than any
other global algorithm, but performs more aborts than P-DASA-ND and P-LBESA. These
two algorithms exhibit an unusual behavior; all the other algorithms shown perform an in-
creasing number of aborts as the number of tasks increase. However, because more tasks
implies smaller tasks, which allows for better partitioning, both of these algorithms actually
perform half as many aborts for the BLU case as they do for the BHU case.

8.11.6 48-Core Abortion Results

The results for the 48-core platform are more consistent than they were for the 16-core
platform. G-GUA performs the most aborts in all cases, aborting 41% of segments in the
BHU case and 91% of segments in the BLU case. Since this number includes segments from
low loads in which no segments were aborted, we find that for the BLU case at a load of 48,
G-GUA is aborting over 99% of the segments, most of which are aborted before they begin
their execution. For the first five distributions, NG-GUA and gMUA abort between 60% and
80% of the number of tasks that G-GUA aborts. However, for the BLU case, both algorithms
abort over 97% of the segments G-GUA aborts. G-HVDF performs less aborts than gMUA,
NG-GUA, and G-GUA for all cases, but as with them, its performance seriously degrades for
both the BMU and BLU cases. As with the previous platforms, G-NP-HVDF performs less
aborts than any other global algorithm. However, on the 48-core, this different is enlarged;
G-NP-HVDF performs at least one order of magnitude less aborts for all distributions.

Of the partitioned algorithms, no algorithm consistently aborts more segments than another.
However, there are several predominant trends; first, for all except the BLU distribution,
P-DASA-ND aborts less tasks than P-LBESA. The difference in the BLU case is likely due
to the fact that P-DASA-ND incurs a higher overhead than P-LBESA. Also, unlike the other
partitioned algorithms, P-HVDF aborts an increasing number of segments as the number of
tasks increases. The last trend is that all three partitioned algorithms perform less aborts
in all conditions than any global algorithm except G-NP-HVDF.

Chapter 9

System Measurements

In order to understand the limitations of ChronOS, we must understand various sources
of overhead and inaccuracy in the system. To accomplish this, we measure a variety of
overheads and possible sources of inaccuracy to determine their effects.

All of our measurements are taken by using the x86 rdtsc instruction. This instruction
reads the processor’s time-stamp counter, and is a common feature on all x86 processors
manufactured in the last decade. This provides single-cycle resolution and allows for the
fine-grain measurements we need. As is good practice, we preface all RDTSC instructions
with a CPUID instruction to prevent instruction reordering [41].

9.1 Scheduling Overheads

The most obvious source of overhead in real-time scheduling is the time cost of performing
the scheduling itself. Since the scheduler must be invoked at every scheduling event, its cost
is of prime importance. This is especially true for algorithms such as G-GUA and NG-GUA
that schedule in O(mn2) worst-case time.

To measure scheduling overhead, we instrument the scheduler to record a timestamp before
and after our scheduling algorithm is called. Additionally, we record the number of tasks
in the scheduler. For each scheduler, we graph the scheduling overhead with respect to
the number of tasks. To generate the data, we ran one full-load taskset for each taskset
distribution. On average, each data point is the result of 158 readings. The scheduling
overhead for all of the scheduling algorithms used in this thesis are shown in Figures 9.1
through 9.9. Note that for partitioned algorithms, we only measure up to 16 tasks for all
machines because the partitioning means that for each distribution, each core will receive
roughly the same number of tasks in a fully loaded system regardless of core count.

The results make several things clear. First, G-FIFO, G-RMS, P-RMS, G-EDF, C-EDF,

88

Matthew A. Dellinger Chapter 9. System Measurements 89

P-EDF, G-NP-EDF, and G-NP-HVDF all provide O(1) performance, as they should. In-
terestingly, the execution times of G-EDF and G-RMS fluctuate largely when there are less
tasks than cores. The scheduling cost of G-EDF and G-RMS are largely dependent on the
cost of accessing m task descriptors, most of which are on remote processors. This cost
combined with the number of global scheduling events explains the poor scalability of these
algorithms in some cases.

Also, as expected, despite the fact that C-EDF and G-EDF are in fact executing the same
code, C-EDF is consistently faster due to the cache and memory access times associated
with fetching task descriptors.

Second, the more advanced utility accrual algorithms are immensely expensive and demon-
strate roughly linear performance. The linear performance is because while the asymptotic
cost of gMUA, G-GUA, and NG-GUA is O(mn2) and that of P-LBESA and P-DASA-ND is
O(n2), this only occurs under rare conditions. Despite not reaching their asymptotic bounds,
these algorithms still incur enormous overheads. On the 48-core platform, G-GUA took a
maximum of 1,541,297 cycles, or 906µs. Furthermore, all the other cores in the system are
signaled and therefore will block during this time. Since the average execution time of a task
in the BLU distribution is 2.78ms, and the average inter-event time measured for a BLU
taskset with a load of 48 is 40µs, scheduling for 906µs is immensely problematic. Due to this,
G-GUA only manages to schedule for 3.5% of the scheduling events for BLU tasksets with
a load of 48. The costs of gMUA and NG-GUA are both significantly lower than G-GUA,

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

in
g

C
os

t (
tic

ks
)

Tasks

G-FIFO
G-RMS

G-NP-EDF
G-EDF

C-EDF

Figure 9.1: Scheduling cost of the traditional global scheduling algorithms on the 8-core
platform

Matthew A. Dellinger Chapter 9. System Measurements 90

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

in
g

C
os

t (
tic

ks
)

Tasks

G-NP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

Figure 9.2: Scheduling cost of the global utility accrual scheduling algorithms on the 8-core
platform

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

in
g

C
os

t (
tic

ks
)

Tasks

P-RMS
P-EDF

P-HVDF
P-LBESA

P-DASA-ND

Figure 9.3: Scheduling cost of the partitioned scheduling algorithms on the 8-core platform

Matthew A. Dellinger Chapter 9. System Measurements 91

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
ch

ed
ul

in
g

C
os

t (
tic

ks
)

Tasks

G-FIFO
G-RMS

G-NP-EDF
G-EDF

C-EDF

Figure 9.4: Scheduling cost of the traditional global scheduling algorithms on the 16-core
platform

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
ch

ed
ul

in
g

C
os

t (
tic

ks
)

Tasks

G-NP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

Figure 9.5: Scheduling cost of the global utility accrual scheduling algorithms on the 16-core
platform

Matthew A. Dellinger Chapter 9. System Measurements 92

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

in
g

C
os

t (
tic

ks
)

Tasks

P-RMS
P-EDF

P-HVDF
P-LBESA

P-DASA-ND

Figure 9.6: Scheduling cost of the partitioned scheduling algorithms on the 16-core platform

 0

 10000

 20000

 30000

 40000

 50000

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

S
ch

ed
ul

in
g

C
os

t (
tic

ks
)

Tasks

G-FIFO
G-RMS

G-NP-EDF
G-EDF

C-EDF

Figure 9.7: Scheduling cost of the traditional global scheduling algorithms on the 48-core
platform

Matthew A. Dellinger Chapter 9. System Measurements 93

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96

S
ch

ed
ul

in
g

C
os

t (
tic

ks
)

Tasks

G-NP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

Figure 9.8: Scheduling cost of the global utility accrual scheduling algorithms on the 48-core
platform

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

in
g

C
os

t (
tic

ks
)

Tasks

P-RMS
P-EDF

P-HVDF
P-LBESA

P-DASA-ND

Figure 9.9: Scheduling cost of the partitioned scheduling algorithms on the 48-core platform

Matthew A. Dellinger Chapter 9. System Measurements 94

but both are still quite high. The maximum observed overheads for gMUA and NG-GUA
are 371341 and 352552 ticks, respectively.

9.2 Preemption and Migration Overheads

Another source of system overhead is due to cache misses after a task is preempted or mi-
grated. When a task is preempted and another task begins execution, some of the first task’s
data may be removed from the processor’s cache. When the first task resumes execution,
accessing this data will incur a cache miss. Similarly, when a task is migrated between two
processors, it is likely that its data is not not cache-hot on the task’s new processor. Fur-
thermore, some of the data will likely be cache-hot on the tasks’s previous processor, which
means that if the task changes data, a cache-invalidate message must be sent to the previous
processor. Additionally, if the processors the task is migrated between do not share memory,
fetching the data into the second processor’s cache may require additional overhead.

Since our test application performs most of its execution in a simple burn loop, its working set
is quite small, and therefore it cannot be instrumented to capture these overheads. Instead,
we create a separate test to measure them. This test works as follows; first, a working set
of some i pages is allocated. The thread running the test is then locked to a core, and the
buffer is initialized. The thread then writes data into j evenly spaced addresses within each
page of the buffer, and records the time it took to perform all the writes. This is done 1000
times. The thread then initializes the buffer from some core PA, and then migrates itself to
some other core PB, so that its data is cache-cold. Once executing on PB, the thread then
performs the same set of writes as before, and again measures the time taken. This is also
done 1000 times. The difference between the times is therefore the cost of the cache misses.
These measurements are performed for working sets of 1, 2, 4, 8, 16, 32, and 64 pages.

We measure the cost of three different migration paths. First, we measure the cost of
migrating between two cores which share L3 cache, but not L2 or L1. Second, we measure
the cost to migrate to a different processor, thereby loosing direct access to memory. On the
48-core platform, we test two variants of this path: migrating from processor 0 to processor
1 and to processor 2. Third, on our 16 and 48-core platforms, Each chip shares a bank of
memory, but has two separate L3 caches, each for half of the processor’s cores. Therefore,
on these two platforms we test migrating between cores on the same processor which do not
share L3 cache. This path is not measured on the 8-core, due to the cache architecture. On
our systems, a page is 4096 bytes, and a cache line is 64 bytes. Therefore, the maximum
number of writes per page we can use without duplicating writes on a given cache line is 64.
Additionally, both AMD and Intel implement sequential cache line prefetching [8], [55]. In
order to avoid inaccuracies from this, we measure with 4 and 16 writes-per-page, or every 4
and 16 cache lines. All of our tests use CPU 0 as the first CPU.

Figures 9.10, 9.11, and 9.12 show the cost of these migration routes on the various platforms.

Matthew A. Dellinger Chapter 9. System Measurements 95

 0

 25000

 50000

 75000

 100000

 125000

 150000

 175000

1 2 4 8 16 32 64

M
ig

ra
tio

n
C

os
t (

tic
ks

)

Pages

4 WPP, 1 16 WPP, 1 4 WPP, 4 16 WPP, 4

Figure 9.10: Migration costs of two migration paths on the 8-core

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

1 2 4 8 16 32 64

M
ig

ra
tio

n
C

os
t (

tic
ks

)

Pages

4 WPP, 1
16 WPP, 1

4 WPP, 4
16 WPP, 4

4 WPP, 8
16 WPP, 8

Figure 9.11: Migration costs of three migration paths on the 16-core

Although standard deviations were calculated, they never exceeded 72 ticks, and are therefore
indistinguishable on the graph.

Matthew A. Dellinger Chapter 9. System Measurements 96

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

1 2 4 8 16 32 64

M
ig

ra
tio

n
C

os
t (

tic
ks

)

Pages

4 WPP, 1
16 WPP, 1

4 WPP, 6
16 WPP, 6

4 WPP, 12
16 WPP, 12

4 WPP, 24
16 WPP, 24

Figure 9.12: Migration costs of four migration paths on the 48-core

From these results, we can clearly see several things. First, there is a measurable difference
in the various migration paths. In fact, the cache-miss overhead when migrating a task
between two physically distinct processors is around four times the cost to migrate within
an L3 cluster on all platforms. While this does not significantly impact our scheduling results,
it could be a significant performance hit to a highly memory-intensive application. Second,
we see that, as expected, memory access times are significantly shorter when accessing the
calling processor’s memory. The one exception to this is that, on our 48-core platform,
calling processor 1’s memory from processor 2 or 4 only incurred around a 15% overhead,
while accessing processor 1’s memory from processor 3 doubles the cost. We ran several
further tests, and found that this effect also happened when fetching between processors
2 and 4. This is likely due to the interconnect topology. Additionally, because of the
interconnect topology, we found that since only half of the cores in our 48-core system are
directly connected to each other (see Figure 3.3) access times increased for all two-hop paths
relative to their corresponding one-hop paths.

Second, the migration overhead scales inversely with clock speed. In all of our platforms, the
memory speed is independent of the processor’s clock speed. Therefore, slowing down the
clock speed does not effect the time required to fetch data from memory. Therefore, fewer
cycles are spent waiting for the fetched values. This is especially apparent on our AMD
platforms, which share memory speed and processor architecture, but have different clock
speeds. At most points, the difference between measured times for identical cases is almost
exactly proportional to the difference in clock speeds.

Matthew A. Dellinger Chapter 9. System Measurements 97

The second aspect of task migration which needs measured is the cost of performing the
actual migration in the scheduler. Table 9.1 shows the average cost of migrations for each
scheduling architecture on each platform. At least 4000 data points were collected for each
measurement. Since the same migration function is used by all the schedulers, migration
costs are nearly identical under all algorithms which share an architecture. These results
were collected with G-NP-EDF and G-EDF.

Table 9.1: Migration cost for various architectures and platforms (ticks)

Concurrent Stop-The-World
Platform Average St. Dev. Worst Average St. Dev. Worst
8-Core 2183 727 12672 4318 1808 12844
16-Core 3326 728 23238 7346 2477 13728
48-Core 4516 1423 48459 14866 8401 38867

The difference between the two architectures is mainly due to lock contention for the per-
core runqueue. When a core A wants to pull a task from core B, it must first lock B’s
runqueue. If B is currently in the scheduler, it will have its own runqueue locked, so A must
wait until B finishes scheduling. In the stop-the-world architecture, it is likely that the core
being pulled from is in the scheduler, so the puller must often block. However, the number of
migrations is generally small, so it is unlikely that migrations will interfere with each other.
In the concurrent architecture, it is unlikely that the target core is in the scheduler, leading
to a lower average time. However, it is also possible that several migrations are interfering
with each other. Hence, the worst observed time is significantly higher.

This cache miss overhead manifests itself not only in user space task execution times and
migration overheads, but also in the time required to context switch to a new task. Fig-
ure 9.13 shows a histogram plot of the context switch times on our three platforms. Both
the 8- and 16-core platforms show two distinct peaks, one representing context switches to
a local task, and one representing a context switch to a recently-migrated task. The 48-core
platform shows three peaks, representing local migration and the two possible migration
paths discussed above.

9.3 System Call and Mutex Overhead

There are two system calls which are highly important to ChronOS: begin rt seg() and
end rt seg(). Each of these calls must be made by each segment, and therefore, the sum
of their execution time represents the minimum possible segment length. Figures 9.14
a, c, and e show the overheads of various system calls, including begin rt seg() and
end rt seg(). Both gettid() and clock getres() are relatively short, and therefore both

Matthew A. Dellinger Chapter 9. System Measurements 98

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20000 40000 60000 80000 100000 120000 140000

F
re

qu
en

cy
 (

%
)

Context Switch Time (ticks)

Context Switch, 8-Core
Context Switch, 16-Core

Context Switch, 48-Core

Figure 9.13: Context switch costs on our three platforms

of them provide reasonable estimates of the overhead of a system call. Both ChronOS sys-
tem calls are quite long, but not inordinately so when compared to sched setaffinity()

and sched setscheduler, both of which also potentially invoke scheduling changes. In fact,
both ChronOS system calls perform the same underlying operations as sched setscheduler,
and therefore their high cost is completely reasonable. Taking these system call costs into
account, we can improve our understanding of when the systems enter overload. By multi-
plying the average begin rt seg() and end rt seg() costs with no tasks in the system by
the average arrival and departure frequencies, we generate the estimates shown in Table 9.2
for when our systems are fully loaded based on system call overhead.

Table 9.2: Taskset load values at which the system is fully loaded based on system call
overhead

Platform BHB BHU BMB BMU BLB BLU
8-Core 8.00 8.00 8.00 8.00 8.00 7.98
16-Core 16.00 16.00 15.99 15.99 15.99 15.96
48-Core 47.98 47.99 47.98 47.97 47.97 47.84

Another source of overhead exhibited in ChronOS is the cost of locking mutexes. While
scheduler-managed mutexes are not exercised in any of the tests performed in this thesis, they
are still an important feature, and therefore worth measuring. Figures 9.14 b, d, and f show
the uncontested locking and unlocking costs of various types of locks, including the scheduler-
managed locks provided in ChronOS. The overhead is significant, but not unexpected. The

Matthew A. Dellinger Chapter 9. System Measurements 99

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

 3000

 3250

Avg. Min. Max.

T
im

e
(t

ic
ks

)

Begin_rt_seg
End_rt_seg

Gettid
Clock_getres

Sched_setaffinity
Sched_setscheduler

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

Avg. Min. Max.

T
im

e
(t

ic
ks

)

Pthread_lock
Pthread_unlock

ChronOS_lock
ChronOS_unlock

CAS_lock
CAS_unlock

(b)

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

 3000

 3250

Avg. Min. Max.

T
im

e
(t

ic
ks

)

Begin_rt_seg
End_rt_seg

Gettid
Clock_getres

Sched_setaffinity
Sched_setscheduler

(c)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

Avg. Min. Max.

T
im

e
(t

ic
ks

)

Pthread_lock
Pthread_unlock

ChronOS_lock
ChronOS_unlock

CAS_lock
CAS_unlock

(d)

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

 3000

 3250

Avg. Min. Max.

T
im

e
(t

ic
ks

)

Begin_rt_seg
End_rt_seg

Gettid
Clock_getres

Sched_setaffinity
Sched_setscheduler

(e)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

Avg. Min. Max.

T
im

e
(t

ic
ks

)

Pthread_lock
Pthread_unlock

ChronOS_lock
ChronOS_unlock

CAS_lock
CAS_unlock

(f)

Figure 9.14: System call overheads for (a) 8-core (c) 16-core and (e) 48-core platforms and
mutex locking and unlocking overheads for (b) 8-core (d)-16-core and (f) 48-core platforms

Matthew A. Dellinger Chapter 9. System Measurements 100

majority of the overhead is due to the fact that schedule() is called during every locking
and unlocking call. This is potentially wasteful, since if the call is uncontested, this will most
likely result in the calling task being scheduled, and therefore will not change the system
schedule. However, it is necessary to provide correct scheduling behavior for algorithms like
G-GUA and NG-GUA, which consider each resource request and release to be a scheduling
event, even if the resource is uncontested.

9.4 Timing Accuracy

As mentioned in Chapter 3, there are two possible threading models, each of which can be
implemented in Linux and rely on different timing mechanisms. We have implemented test
programs to measure the accuracy of each model. The “thread-per-task” model was tested
by creating a high priority thread which repetitively calls the Linux usleep() function and
measures the actual time slept. The “thread-per-job” model was tested by creating a timer
using pthread create() with the SIGEV THREAD set. The resulting thread reads the TSC
and then terminates. Figures 9.15 and 9.16 shows the results for the two models. Since the
units presented to the timing mechanisms are are units of time, our cycle measurements have
been converted to units of time. Although standard deviations were calculated for all tests,
they were omitted from the graphs because they never exceeded 0.6µs, and were therefore
invisible on the graphs.

Clearly, both models provide sufficient accuracy above 1ms. The “thread-per-job” model
appears to retain this accuracy down to around 100µs, after which point it becomes inaccu-
rate. This is due to the overhead of thread creation and destruction. The “thread-per-task”
model begins to lose accuracy slightly earlier, but is much more accurate in the in the 1-100µs
range.

To further explore the accuracy, we measured each model on our 16-core platform under four
different circumstances; the system was tested in an unloaded state and in a fully loaded state
as described in Chapter 4. Additionally, we tested with the measuring thread locked to the
lowest and highest cores in the system. The results of these tests are shown in Figures 9.17
and 9.18.

These tests clearly shown that the previous test results are pessimistic for the “thread-per-
task” model; under fully loaded conditions the accuracy of the “thread-per-task” model
improves significantly. As was the case with our tests in 4, this is because of the overhead
of a core becoming idle and then returning. The “thread-per-job” model remains consistent
across CPUs and load conditions. The degree of accuracy for both models is within the
known range for the Linux timing infrastructure [96].

Matthew A. Dellinger Chapter 9. System Measurements 101

 1

 10

 100

 1000

 10000

1 10 100 1000 10000

A
ct

ua
l T

im
e

(u
s)

Desired Time (us)

8-Core
16-Core

48-Core
Ideal Behavior

Figure 9.15: “Thread-per-task” accuracy on a variety of platforms

 1

 10

 100

 1000

 10000

1 10 100 1000 10000

A
ct

ua
l T

im
e

(u
s)

Desired Time (us)

8-Core
16-Core

48-Core
Ideal Behavior

Figure 9.16: “Thread-per-job” accuracy on a variety of platforms

Matthew A. Dellinger Chapter 9. System Measurements 102

 1

 10

 100

 1000

 10000

1 10 100 1000 10000

A
ct

ua
l T

im
e

(u
s)

Desired Time (us)

No load, CPU 0
Full load, CPU 0

No load, CPU 15
Full load, CPU 15

Ideal Behavior

Figure 9.17: “Thread-per-task” accuracy under various conditions

 1

 10

 100

 1000

 10000

1 10 100 1000 10000

A
ct

ua
l T

im
e

(u
s)

Desired Time (us)

No load, CPU 0
Full load, CPU 0

No load, CPU 15
Full load, CPU 15

Ideal Behavior

Figure 9.18: “Thread-per-job” accuracy under various conditions

Chapter 10

Conclusions

In this thesis, we experimentally evaluated the scalability of sixteen real-time scheduling
algorithms on large-scale multicore platforms (e.g. 48-core AMD Opteron). These algorithms
include global, clustered, and partitioned algorithms, and range from simplistic algorithms
like G-FIFO to highly complex heuristic algorithms such as NG-GUA. Such an evaluation
has not been done previously. Our 48-core platform is the highest core-count platform ever
used to study global real-time scheduling.

Additionally, we presented the ChronOS Linux kernel, which is extended from the PREEMPT RT

real-time Linux patch. We present a set of modifications made to ChronOS to minimize lock
contention, decrease lock blocking time, and optimize inter-processor synchronization.

Our experimentation consists of executing 288,000 tasksets divided among 6 different per-
task weight distributions on the 16 schedulers. Our experimentation reveals that on our
48-core platform, all of our algorithms except G-GUA, NG-GUA, gMUA, and G-HVDF
demonstrate performance consistent with their theoretical behavior for at least some tasksets.
We see that three global algorithms (G-FIFO, G-NP-EDF, and G-NP-HVDF) and three
partitioned algorithms (P-RMS, P-EDF, and P-HVDF) and C-EDF are quite close to their
theoretical performance on the 48-core for all tasksets. Additionally, G-RMS, G-EDF, G-
HVDF, P-LBESA, and P-DASA-ND are able to provide nearly correct performance for some
of the six classes of tasksets. Furthermore, on our 48-core platform, our single-queue based
G-FIFO implementation outperformed the Linux kernel’s SCHED FIFO implementation.

Based on this, we conclude that the conclusion reached by previous authors [4] that “global
scheduling research should focus on modest processor counts (e.g. ≤ 8)” only applies to
certain classes of algorithms. We find that on the 48-core, P-EDF and C-EDF are both
able to provide high levels of schedulability, which is consistent with the results shown by
Brandenburg et. al. However, unlike Brandenburg et. al. [31] we conclude that in our imple-
mentation, scalability is restricted by high scheduling overheads for some algorithms, cache-
miss overheads, contention over the global scheduling lock and the cost of inter-processor

103

Matthew A. Dellinger Chapter 10. Conclusions 104

communication, rather than the implementation of the global queue. Furthermore, we note
that G-NP-EDF is able to provide high levels of scalability on our 48-core system.

Table 10.1 shows the asymptotic cost of each algorithm implemented and the performance
of each algorithm on our three platforms. Each algorithm’s performance is listed as “None”,
meaning it failed to provide theoretically correct performance for any of the six taskset
distributions, “Some”, implying correct behavior for at least one of the six, or “All”, implying
correct or nearly correct behavior under all conditions. Based on this, we conclude that in
our implementation, there is a direct relationship between the complexity of an algorithm
and its ability to scale to large-scale multicore platforms.

Table 10.1: Summarized results for all algorithms

Algorithm Asymptotic Cost 8-Core 16-Core 48-Core
G-FIFO O(1) All All All

G-NP-EDF O(1) All All All
G-RMS O(m) All All Some
G-EDF O(m) All All Some
C-EDF O(m) All All All

G-NP-HVDF O(1) All All All
G-HVDF O(n) All Some None
gMUA O(mn2) All Some None

NG-GUA O(mn2) All Some None
G-GUA O(mn2) All Some None
P-RMS O(1) All All All
P-EDF O(1) All All All

P-HVDF O(n) All All All
P-LBESA O(n2) All All Some

P-DASA-ND O(n2) All All Some

To refine these conclusions, we note that for all six taskset distributions:

• G-NP-EDF and G-FIFO are able to bound tardiness under nearly all loads on all three
platforms ChronOS.

• G-EDF and G-RMS are able to meet their theoretically computed schedulability bounds
for all distributions on the 8 and 16-core platforms and for some distributions on the
48-core platform.

• P-EDF and P-RMS are able to meet their theoretically computed schedulability bounds
for all three platforms.

Matthew A. Dellinger Chapter 10. Conclusions 105

• For all cases, C-EDF provides full schedulability under a higher load than any global
algorithm, except G-NP-EDF in the BMU and BLU cases on the 16-core platform and
the BMU case on the 48-core.

Our research further demonstrates that the complexity and scheduling model of an algorithm
directly affect its scalability. In theory, NG-GUA and G-EDF perform identically, however
on our 48-core platform, we observed the following:

• G-EDF always provides full schedulability up to a load between 77.7% and 228% higher
than NG-GUA on our 48-core platform.

• G-EDF achieves up to 3004% higher deadline satisfaction ratio on the 48-core platform,
and up to 1035% higher deadline satisfaction ratio on the 16-core platform.

• G-EDF accrues up to 3664% more utility than NG-GUA on the 48-core platform, and
up to 1195% more utility on the 16-core platform.

These differences are caused by the differences in scheduling overheads and by optimizations
we are able to make to G-EDF which cannot be made to NG-GUA because of its scheduling
model.

Additionally, our research showed that a simple heuristic can significantly outperform the-
oretically better heuristics in high core-count systems. Although G-NP-HVDF provides no
schedulability guarantees, and schedules without regard to deadlines or other typical timing
constraints, we observe the following:

• At full load, G-NP-HVDF meets at least 66% more deadlines than any other global
utility accrual scheduler for all six distributions.

• At full load, G-NP-HVDF accrues at least 57% more deadlines than any other global
utility accrual algorithm for all six distributions.

Based on these results, we conclude that scheduling algorithms implemented under the con-
current architecture are able to provide scalable global real-time scheduling up to 48 cores
in ChronOS. In our experiments, these algorithms are G-FIFO, G-NP-EDF, and G-NP-
HVDF. Furthermore, we conclude that it is possible to implement reasonably scalable global
scheduling algorithms under the stop-the-world architecture, as is evidenced by the perfor-
mance of G-RMS and G-EDF. Lastly, we conclude that clustered and partitioned algorithms
also provide highly scalable solutions, but do so with a reduction in application flexibility.

We also present a set of modifications made to ChronOS to minimize lock contention, de-
crease lock blocking time, and optimize inter-processor synchronization. These modifications
are experimentally tested and shown to increase the performance of stop-the-world architec-
ture scheduling algorithms in ChronOS by up to 263% on 48-core platform.

Chapter 11

Future Work

11.1 Distributed Scheduling

As demonstrated by the Linux SCHED FIFO scheduler and our concurrent architecture, a dis-
tributed approach to scheduling scales significantly better than a scheduling model which
creates a schedule for the entire system. However, as demonstrated by SCHED FIFO, this
approach can require much more complex mechanisms to provide correct performance. De-
spite this difficulty, a distributed approach to scheduling appears the best model for scalable
global scheduling. Future work must therefore focus on producing distributed algorithms
which also provide theoretical bounds. While this has proven quite difficult in the hard real-
time space, almost no effort has been given to the design of such algorithms in the utility
accrual scheduling space. It is likely that relatively simple algorithms could be designed
which would fit in our concurrent scheduling approach and also provide tighter bounds than
G-NP-HVDF.

11.2 Parallel Scheduling

Previous work had suggested that it would be beneficial to create parallel scheduling algo-
rithms, especially for complex algorithms such as G-GUA and NG-GUA [52]. While this
approach is valid in theory, it is difficult to implement in practice. IPIs are not received in-
stantaneously, cannot always be sent, and even when an IPI is sent, its reception cannot be
guaranteed. This means that we cannot count on a given core performing part of the sched-
ule and cannot guarantee that if performed it will be performed in a timely manner. Based
on our research, we therefore conclude that unless a better mechanism for inter-processor
synchronization can be found, parallel scheduling does not appear to be a feasible way of
improving the schedulability of global scheduling algorithms.

106

Matthew A. Dellinger Chapter 10. Future Work 107

11.3 Simpler Heuristics

As demonstrated by G-HVDF and G-NP-EDF, simpler heuristics can significantly outper-
form more complex heuristics on high core-count systems. There are a large number of other
possible simple heuristics, such as fully abortive G-NP-HVDF, and global highest static
value density first (G-HSVDF), which could be implemented and tested, and may in fact
yield higher performance than those shown here. Further research is needed to explore such
simple heuristics.

11.4 Reducing Contention and Improving Performance

There are a number of ways performance within ChronOS could be improved. First, it
would likely significantly reduce migration distance to implement a distance-optimal mapping
algorithm. This would in turn reduce bus contention after a scheduling event and increase
scalability. However, this would not reduce the m− 1 migrations in the worst case for some
classes of algorithms. This could be improved with cache-aware scheduling algorithms, or
by redesigning existing algorithms to use job-static priorities. Such a redesign would also
remove the need to calculate a job’s priority at every scheduling event, reducing overhead
for algorithms like G-HVDF, G-GUA, and NG-GUA.

Second, the global queue could be stored as a more advanced data structure, such as a heap.
A binomial heap was shown to be an effective data structure for storing the global task
list in [30]. Even if the global queue is stored as a linked-list, there are likely a range of
improvements that can be made to improve the average and worst-case insertion times.

11.5 Additional Workloads

This thesis has only explored CPU-intensive workloads composed of independent tasks.
While this is a large subset of real-time workloads, further understanding would be gained
into the scalability of these algorithms by exploring memory-intensive workloads and de-
ponent tasks. There exist a wide range of scientific calculations which commonly occur in
real-time systems and exhibit both of these behaviors when executed in a multi-threaded
manner. Three example workloads are multi-threaded matrix multiplication, multi-threaded
FFT computation, and multi-threaded sorting of a large dataset.

Matthew A. Dellinger Bibliography 108

11.6 Improved interrupt Handling

In this thesis, we scoped out experimenting with a variety of interrupt handling patterns.
However, given that the PREEMPT RT places interrupts in Linux kernel threads, a logical
extension would be to make the priorities of these interrupts user space manageable. This
would allow the user to selectively chose which interrupts it needs and receive interference
from only those interrupts by managing both application and interrupt handling priorities.
Furthermore, based on the work of Brandenburg et. al. [30], it is worth further investigating
the binding of interrupt handling to specific processors.

Bibliography

[1] AMD. High Performance Computing with Amd, March 2010. http:

//sites.amd.com/us/business/it-solutions/compute-intensive-hpc/Pages/

compute-intensive-hpc.aspx.

[2] AMD. Magny-Cours and Direct Connect Architecture 2.0, March
2010. http://developer.amd.com/documentation/articles/pages/

magny-cours-direct-connect-architecture-2.0.aspx.

[3] James Anderson, Vasile Bud, and UmaMaheswari Devi. An edf-based restricted-
migration scheduling algorithm for multiprocessor soft real-time systems. Real-Time
Systems, 38:85–131, 2008. 10.1007/s11241-007-9035-0.

[4] James H. Anderson. Real-time multiprocessor scheduling: Connecting theory
and practice, November 2010. www.cs.unc.edu/~anderson/litmus-rt/slides/

rtns2010-keynote.pptx.

[5] Bjorn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority scheduling on mul-
tiprocessors. Real-Time Systems Symposium, IEEE International, 0:193, 2001.

[6] Bjrn Andersson and Lus Miguel Pinho. Implementing multicore real-time scheduling
algorithms based on task splitting using ada 2012. In Ada-Europe, pages 54–67, 2010.

[7] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John
Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David
Wessel, and Katherine Yelick. A view of the parallel computing landscape. Commun.
ACM, 52:56–67, October 2009.

[8] Anderson Bailey. Going to barcelona: A modern architecture for breakthrough soft-
ware performance, September 2007. http://developer.amd.com/documentation/

articles/pages/972007175_4.aspx.

[9] T. Baker. A comparison of global and partitioned edf schedulability tests for multi-
processors., 2005. Technical Report TR-051101, Florida State University.

109

http://sites.amd.com/us/business/it-solutions/compute-intensive-hpc/Pages/compute-intensive-hpc.aspx�
http://sites.amd.com/us/business/it-solutions/compute-intensive-hpc/Pages/compute-intensive-hpc.aspx�
http://sites.amd.com/us/business/it-solutions/compute-intensive-hpc/Pages/compute-intensive-hpc.aspx�
http://developer.amd.com/documentation/articles/pages/magny-cours-direct-connect-architecture-2.0.aspx�
http://developer.amd.com/documentation/articles/pages/magny-cours-direct-connect-architecture-2.0.aspx�
www.cs.unc.edu/~anderson/litmus-rt/slides/rtns2010-keynote.pptx�
www.cs.unc.edu/~anderson/litmus-rt/slides/rtns2010-keynote.pptx�
http://developer.amd.com/documentation/articles/pages/972007175_4.aspx�
http://developer.amd.com/documentation/articles/pages/972007175_4.aspx�

Matthew A. Dellinger Bibliography 110

[10] Theodore P. Baker. Multiprocessor edf and deadline monotonic schedulability analysis.
In Proceedings of the 24th IEEE International Real-Time Systems Symposium, RTSS
’03, pages 120–, Washington, DC, USA, 2003. IEEE Computer Society.

[11] Theodore P. Baker. Comparison of empirical success rates of global vs. partitioned
fixed-priority and edf scheduling for hard real time. Technical report, Florida State
University, 2005.

[12] Theodore P. Baker. Further improved schedulability analysis of edf on multiprocessor
platforms. Technical report, Florida State University, 2005.

[13] T.P. Baker. An analysis of edf schedulability on a multiprocessor. Parallel and Dis-
tributed Systems, IEEE Transactions on, 16(8):760–768, aug. 2005.

[14] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and C. Taliercio.
Performance Comparison of VxWorks, Linux, RTAI, and Xenomai in a Hard Real-
Time Application. Nuclear Science, IEEE Transactions on, 55(1):435 –439, feb. 2008.

[15] Sanjoy Baruah and Nathan Fisher. The partitioned multiprocessor scheduling of spo-
radic task systems. In RTSS ’05: Proceedings of the 26th IEEE International Real-Time
Systems Symposium, pages 321–329, 2005.

[16] Sanjoy K. Baruah. The Non-preemptive Scheduling of Periodic Tasks upon Multipro-
cessors. Real-Time Syst., 32(1-2):9–20, 2006.

[17] Sanjoy K. Baruah, N. K. Cohen, C. Greg Plaxton, and Donald A. Varvel. Proportionate
Progress: A Notion of Fairness in Resource Allocation. Algorithmica, 15(6):600–625,
1996.

[18] Sanjoy K. Baruah and Joel Goossens. Rate-monotonic scheduling on uniform multi-
processors. Distributed Computing Systems, International Conference on, 0:360, 2003.

[19] Sanjoy K. Baruah and Jayant R. Haritsa. Scheduling for overload in real-time systems.
IEEE Trans. Comput., 46(9):1034–1039, 1997.

[20] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. An empirical com-
parison of global, partitioned, and clustered multiprocessor edf schedulers. Real-Time
Systems Symposium, IEEE International, 0:14–24, 2010.

[21] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. Is semi-partitioned
scheduling practical? In ECRTS ’11: Proceedings of the 23rd Euromicro Conference
on Real-Time Systems, 2011. to appear.

[22] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs,
Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The mul-
tikernel: a new os architecture for scalable multicore systems. In Proceedings of the

Matthew A. Dellinger Bibliography 111

ACM SIGOPS 22nd symposium on Operating systems principles, SOSP ’09, pages
29–44, New York, NY, USA, 2009. ACM.

[23] Alessio Bechini and Cosimo Antonio Prete. Performance-steered design of software
architectures for embedded multicore systems. Softw. Pract. Exper., 32(12):1155–1173,
2002.

[24] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Improved Schedulability Anal-
ysis of EDF on Multiprocessor Platforms. In ECRTS ’05, pages 209–218, 2005.

[25] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability analysis of
global scheduling algorithms on multiprocessor platforms. IEEE Trans. Parallel Dis-
trib. Syst., 20:553–566, April 2009.

[26] Aaron Block, Björn Brandenburg, James H. Anderson, and Stephen Quint. An Adap-
tive Framework for Multiprocessor Real-Time System. In Proceedings of the 2008
Euromicro Conference on Real-Time Systems, ECRTS ’08, pages 23–33, Washington,
DC, USA, 2008. IEEE Computer Society.

[27] Aaron Block, Hennadiy Leontyev, Bjorn B. Brandenburg, and James H. Anderson.
A flexible real-time locking protocol for multiprocessors. In Proceedings of the 13th
IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA ’07, pages 47–56, Washington, DC, USA, 2007. IEEE Computer
Society.

[28] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans
Kaashoek, Robert Morris, and Nickolai Zeldovich. An analysis of linux scalability
to many cores. In Proceedings of the 9th USENIX conference on Operating systems
design and implementation, OSDI’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX
Association.

[29] B Brandenburg, A Block, J Calandrino, U Devi, H Leon-tyev, and J Anderson.
LITMUSRT : A Status Report. In RTLWS ’07, 2007.

[30] Björn B. Brandenburg and James H. Anderson. On the implementation of global real-
time schedulers. In RTSS ’09: Proceedings of the 2009 30th IEEE Real-Time Systems
Symposium, pages 214–224, Washington, DC, USA, 2009. IEEE Computer Society.

[31] Bjorn B. Brandenburg, John M. Calandrino, and James H. Anderson. On the scalabil-
ity of real-time scheduling algorithms on multicore platforms: A case study. In RTSS
’08, pages 157–169, Washington, DC, USA, 2008. IEEE Computer Society.

[32] John M. Calandrino, James H. Anderson, and Dan P. Baumberger. A hybrid real-time
scheduling approach for large-scale multicore platforms. Real-Time Systems, Euromi-
cro Conference on, 0:247–258, 2007.

Matthew A. Dellinger Bibliography 112

[33] John M. Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C. Devi, and
James H. Anderson. Litmusr̂t : A testbed for empirically comparing real-time multi-
processor schedulers. Real-Time Systems Symposium, IEEE International, 0:111–126,
2006.

[34] John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James Anderson, and
Sanjoy Baruah. A categorization of real-time multiprocessor scheduling problems and
algorithms. In Handbook on Scheduling Algorithms, Methods, and Models. Chapman
Hall/CRC, Boca, 2004.

[35] Houssine Chetto and Maryline Chetto. Some results of the earliest deadline scheduling
algorithm. IEEE Trans. Softw. Eng., 15:1261–1269, October 1989.

[36] Hyeonjoong Cho. Utility Accrual Real-Time Scheduling and Synchronization on Single
and Multiprocessors: Models, Algorithms, and Tradeoffs. PhD thesis, Virginia Tech,
August 2006.

[37] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. An Optimal Real-Time
Scheduling Algorithm for Multiprocessors. In RTSS ’06: Proceedings of the 27th IEEE
International Real-Time Systems Symposium, pages 101–110, Washington, DC, USA,
2006. IEEE Computer Society.

[38] R. Clark, E. Jensen, and F. Reynolds. An architectural overview of the alpha real-time
distributed kernel. In 1993 Winter USENIX Conf., pages 127–146, 1993.

[39] R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis, CMU, 1990.
CMU-CS-90-155.

[40] Raymond Clark, E. Douglas Jensen, Arkady Kanevsky, John Maurer, Paul Wallace,
Thomas Wheeler, Yun Zhang, Douglas Wells, Tom Lawrence, and Pat Hurley. An
Adaptive, Distributed Airborne Tracking System (“Process the Right Tracks at the
Right Time”). In In IEEE WPDRTS, volume 1586 of LNCS, pages 353–362. Springer-
Verlag, 1999.

[41] Intel Corporation. Using the rdtsc instruction for performance monitoring, 1997.

[42] Edward Curley. Recovering from Distributable Thread Failures with Assured Timeli-
ness in Real-Time distributed Systems. Master’s thesis, Virginia Tech, February 2007.

[43] Arnaldo Carvalho de Melo. signaltest: Using the rt priorities, May 2007. rt.et.

redhat.com/wiki/images/8/8e/Rtprio.pdf.

[44] Umamaheswari C. Devi and J. H. Anderson. Tardiness bounds under global edf
scheduling on a multiprocessor. Real-Time Syst., 38:133–189, February 2008.

rt.et.redhat.com/wiki/images/8/8e/Rtprio.pdf�
rt.et.redhat.com/wiki/images/8/8e/Rtprio.pdf�

Matthew A. Dellinger Bibliography 113

[45] UmaMaheswari C. Devi and James H. Anderson. Tardiness bounds under global edf
scheduling on a multiprocessor. In RTSS ’05: Proceedings of the 26th IEEE Interna-
tional Real-Time Systems Symposium, pages 330–341, Washington, DC, USA, 2005.
IEEE Computer Society.

[46] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. In Operations Research,
26(1), pages 127–140, 1978.

[47] Peter Dibble. Real-Time Java Platform Programming. BookSurge Publishing, June
2008.

[48] Jeremy Erickson, UmaMaheswari Devi, and Sanjoy Baruah. Improved tardiness
bounds for global edf. In Proceedings of the 2010 22nd Euromicro Conference on
Real-Time Systems, ECRTS ’10, pages 14–23, Washington, DC, USA, 2010. IEEE
Computer Society.

[49] S. Fahmy. Collaborative Scheduling and Synchronization of Distributable Real-Time
Threads. PhD thesis, Virginia Tech, May 2010.

[50] Free Software Foundation. Gnu general public license. http://www.gnu.org/

licenses/gpl.html.

[51] Ankita Garg. Real-time linux kernel scheduler, August 2009. http://www.

linuxjournal.com/magazine/real-time-linux-kernel-scheduler.

[52] Piyush Garyali. On Best-Effort Utility Accrual Real-Time Scheduling on Multiproces-
sors. Master’s thesis, Virginia Tech, Jul 2010.

[53] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of periodic
task systems on multiprocessors. Real-Time Syst., 25:187–205, September 2003.

[54] Linley Gwennap. Two-headed snapdragon takes flight. Microprocessor Report, 323:1–6,
July 2010.

[55] Ravi Hegde. Optimizing application performance on intel core mi-
croarchitecture using hardware-implemented prefetchers, October 2008.
http://software.intel.com/en-us/articles/optimizing-application

-performance-on-intel-coret-microarchitecture-using-hardware-

implemented-prefetchers/.

[56] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

[57] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. Computer,
41:33–38, July 2008.

http://www.gnu.org/licenses/gpl.html�
http://www.gnu.org/licenses/gpl.html�
http://www.linuxjournal.com/magazine/real-time-linux-kernel-scheduler�
http://www.linuxjournal.com/magazine/real-time-linux-kernel-scheduler�
http://software.intel.com/en-us/articles/optimizing-application -performance-on-intel-coret-microarchitecture-using-hardware- implemented-prefetchers/�
http://software.intel.com/en-us/articles/optimizing-application -performance-on-intel-coret-microarchitecture-using-hardware- implemented-prefetchers/�
http://software.intel.com/en-us/articles/optimizing-application -performance-on-intel-coret-microarchitecture-using-hardware- implemented-prefetchers/�

Matthew A. Dellinger Bibliography 114

[58] Philip L. Holman. On the implementation of pfair-scheduled multiprocessor systems.
PhD thesis, 2004.

[59] Paul Hyde. Java Thread Programming. Sams Publishing, 2001.

[60] IEEE. IEEE Std 1003.1-2001 Standard for Information Technology – Portable Operat-
ing System Interface (POSIX) System Interfaces, Issue 6. 2001. Open Group Technical
Standard Base Specifications, Issue 6, 1992.

[61] Apple Inc. Grand Central Dispatch: A better way to do multicore. Technical report,
August 2009.

[62] Lineo Inc. DIAPM RTAI Programming Guide 1.0. Technical report, September 2000.

[63] Damir Isović and Gerhard Fohler. Efficient scheduling of sporadic, aperiodic, and
periodic tasks with complex constraints. In Proceedings of the 21st IEEE conference
on Real-time systems symposium, RTSS’10, pages 207–216, Washington, DC, USA,
2000. IEEE Computer Society.

[64] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of periodic
and sporadic tasks. In Proceedings of the 12th IEEE International Real-Time Systems
Symposium, RTSS ’91, pages 129–139, San Antonio, Texas, December 1991.

[65] E. Jensen, C. Locke, and H. Tokuda. A Time Driven Scheduling Model for Real-Time
Operating Systems, 1985. IEEE RTSS, pages 112–122, 1985.

[66] Vahid Kazempour, Alexandra Fedorova, and Pouya Alagheband. Performance Im-
plications of Cache Affinity on Multicore Processors. In Proceedings of the 14th in-
ternational Euro-Par conference on Parallel Processing, Euro-Par ’08, pages 151–161,
Berlin, Heidelberg, 2008. Springer-Verlag.

[67] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer, second edition, 2011.

[68] G. Koren and D. Shasha. D-OVER; An Optimal On-line Scheduling Algorithm for
Overloaded Real-Time Systems. In Real-Time Systems Symposium, 1992, pages 290–
299, 2-4 1992.

[69] Gilad Koren and Dennis Shasha. MOCA: A Multiprocessor On-line Competitive Al-
gorithm for Real-Time System Scheduling. Theor. Comput. Sci., 128(1-2):75–97, 1994.

[70] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned Fixed-Priority Preemp-
tive Scheduling for Multi-core Processors. In Real-Time Systems, 2009. ECRTS ’09.
21st Euromicro Conference on, pages 239–248, 1-3 2009.

Matthew A. Dellinger Bibliography 115

[71] Karthik Lakshmanan, Ragunathan Rajkumar, and John Lehoczky. Partitioned fixed-
priority preemptive scheduling for multi-core processors. In Proceedings of the 2009
21st Euromicro Conference on Real-Time Systems, pages 239–248, Washington, DC,
USA, 2009. IEEE Computer Society.

[72] J. P. Lehoczky, L. Sha, and Y. Ding. Rate-Monotonic Scheduling Algorithm: Ex-
act characterization and average case behavior. In Proc. of the 11th IEEE Real-time
Systems Symposium, pages 166–171, December 1989.

[73] Hennadiy Leontyev and James H. Anderson. Tardiness bounds for fifo scheduling
on multiprocessors. In Proceedings of the 19th Euromicro Conference on Real-Time
Systems, pages 71–, Washington, DC, USA, 2007. IEEE Computer Society.

[74] P. Li. Utility Accrual Real-Time Scheduling: Models and Algorithms. PhD thesis,
Virginia Tech, 2004.

[75] Peng Li. Utility Accrual Real-Time Scheduling: Models and Algorithms. PhD thesis,
Virginia Tech, July 2004.

[76] Peng Li, Binoy Ravindran, and E. Douglas Jensen. Adaptive time-critical resource
management using time/utility functions: Past, present, and future. In COMPSAC
’04, pages 12–13, Washington, DC, USA, 2004. IEEE Computer Society.

[77] Peng Li, Binoy Ravindran, Syed Suhaib, and Shahrooz Feizabadi. A formally veri-
fied application-level framework for real-time scheduling on posix real-time operating
systems. IEEE Transactions on Software Engineering, 30(9):613–629, 2004.

[78] Peng Li, Haisang Wu, Binoy Ravindran, and E. Douglas Jensen. A Utility Accrual
Scheduling Algorithm for Real-Time Activities with Mutual Exclusion Resource Con-
straints. IEEE Trans. Comput., 55(4):454–469, 2006.

[79] Ville Likitalo. Threads and Scheduling in Real-Time Specification for Java Framework.
In Proceedings of Seminar on Real-Time Programming, pages 9–15, Espoo, Finland,
2004. Helsinki University of Technology.

[80] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[81] C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD thesis,
CMU, 1986. CMU-CS-86-134.

[82] J. M. López, M. Garćıa, J. L. Dı́az, and D. F. Garćıa. Worst-case utilization bound
for edf scheduling on real-time multiprocessor systems. In Proceedings of the 12th
Euromicro conference on Real-time systems, Euromicro-RTS’00, pages 25–33, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

Matthew A. Dellinger Bibliography 116

[83] Jos M. Lpez, Jos L. Daz, and Daniel F. Garca. Minimum and maximum utilization
bounds for multiprocessor rate monotonic scheduling. In In 13th Euromicro Conference
on RealTime Systems, pages 67–75, 2001.

[84] Tim Mattson. The future of many core computing: A tale of two processors, March
2010. og-hpc.com/Rice2010/Slides/Mattson-OG-HPC-2010-Intel.pdf.

[85] Paul McKenney. A realtime preemption overview, August 2005. http://lwn.net/

Articles/146861/.

[86] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchroniza-
tion on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9:21–65, February
1991.

[87] Sun Microsystems. Memory Management in the Java Hotspot Virtual Machine. Tech-
nical report, April 2006.

[88] Jonas Mitschang. Harte echtzeit unter linux fallstudie rtai vs. rt-preempt, March 2007.
mitschang.net/download/IESE-Report%2058.pdf.

[89] Matteo Monchiero, Ramon Canal, and Antonio González. Design space exploration
for multicore architectures: a power/performance/thermal view. In Proceedings of the
20th annual international conference on Supercomputing, ICS ’06, pages 177–186, New
York, NY, USA, 2006. ACM.

[90] Douglas Niehaus. Kusp: Kernel/user systems programming, 2010. http://www.ittc.
ku.edu/kurt/.

[91] J. Duane Northcutt. Mechanisms for Reliable Distributed Real-Time Operating Sys-
tems: The Alpha Kernel. Academic Press, 1987.

[92] National Institute of Standards and Technology. Introduction to linux for real-time
control, 2002.

[93] D. I. Oh and T. P. Baker. Utilization bounds for n -processor rate monotone scheduling
with stable processor assignment. Real Time Systems, 15(2):183–193, September 1998.

[94] OMG. Real-time CORBA Specification 1.2: : Dynamic Scheduling Specification.
Technical report, Object Management Group, January 2005.

[95] Binoy Ravindran, Edward Curley, Jonathan S. Anderson, and E. Douglas Jensen.
On best-effort real-time assurances for recovering from distributable thread failures in
distributed real-time systems. In ISORC ’07, pages 344–353. IEEE Computer Society,
2007.

[96] Steve Rostedt and Darren V. Hart. Internals of the RT patch. In Proceedings of the
Linux Symposium, volume 2, pages 161–172, 2007.

og-hpc.com/Rice2010/Slides/Mattson-OG-HPC-2010-Intel.pdf�
http://lwn.net/Articles/146861/�
http://lwn.net/Articles/146861/�
mitschang.net/download/IESE-Report%2058.pdf�
http://www.ittc.ku.edu/kurt/�
http://www.ittc.ku.edu/kurt/�

Matthew A. Dellinger Bibliography 117

[97] Paulo Baltarejo Sousa. Implementing a multiprocessor linux scheduler for real-time
sporadic tasks. In Proceedings of the 4th Doctoral Symposium on Infomatics Engineer-
ing, February 2009.

[98] Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of periodic task
systems on multiprocessors. Inf. Process. Lett., 84:93–98, October 2002.

[99] John A. Stankovic and Krithi Ramamritham. The spring kernel: A new paradigm for
real-time systems. IEEE Softw., 8:62–72, May 1991.

[100] Per Stenström, Truman Joe, and Anoop Gupta. Comparative performance evaluation
of cache-coherent numa and coma architectures. In Proceedings of the 19th annual
international symposium on Computer architecture, ISCA ’92, pages 80–91, New York,
NY, USA, 1992. ACM.

[101] A. Stoyenko and L. Georgiadis. On optimal lateness and tardiness scheduling in real-
time systems. Computing, 47:215–234, 1992. 10.1007/BF02320193.

[102] Boleslaw K. Szymanski. Mutual exclusion revisited. In Proceedings of the fifth
Jerusalem conference on Information technology, JCIT, pages 110–119, Los Alamitos,
CA, USA, 1990. IEEE Computer Society Press.

[103] Teik Guan Tan and Wynne Hsu. Scheduling multimedia applications under overload
and non-deterministic conditions. IEEE RTSS, 0:178, 1997.

[104] Ringlord Technologies. Posix Signal Handling in Java. Technical report, 2006.

[105] Inc. Tokyo Stock Exchange Group. Tse launches next-generation ”arrowhead” trad-
ing system, January 2010. http://www.fujitsu.com/global/news/pr/archives/

month/2010/20100108-01.html.

[106] Theodore Ts’o, Darren Hart, and John Kacur. Real-time linux wiki, 2011. https:

//rt.wiki.kernel.org/.

[107] Yu-Chung Wang and Kwei-Jay Lin. Implementing a general real-time scheduling frame-
work in the red-linux real-time kernel. In RTSS ’99, page 246, 1999.

[108] L. R. Welch, B. Ravindran, B. A. Shirazi, and C. Bruggeman. Specification and
modeling of dynamic, distributed real-time systems. In Proceedings of the IEEE Real-
Time Systems Symposium, RTSS ’98, pages 72–, Washington, DC, USA, 1998. IEEE
Computer Society.

http://www.fujitsu.com/global/news/pr/archives/month/2010/20100108-01.html�
http://www.fujitsu.com/global/news/pr/archives/month/2010/20100108-01.html�
https://rt.wiki.kernel.org/�
https://rt.wiki.kernel.org/�

Appendix A

Complete Schedulability Results

This appendix provides our complete schedulability results. It contains 36 plots grouped in
12 figures by taskset distribution and machine. It is organized as follows:

• Figure A.1 shows schedulability results for our 8-core platform under heavy bimodal
load

• Figure A.2 shows schedulability results for our 8-core platform under heavy uniform
load

• Figure A.3 shows schedulability results for our 8-core platform under medium bimodal
load

• Figure A.4 shows schedulability results for our 8-core platform under medium uniform
load

• Figure A.5 shows schedulability results for our 8-core platform under light bimodal
load

• Figure A.6 shows schedulability results for our 8-core platform under light uniform
load

• Figure A.7 shows schedulability results for our 16-core platform under heavy bimodal
load

• Figure A.8 shows schedulability results for our 16-core platform under heavy uniform
load

• Figure A.9 shows schedulability results for our 16-core platform under medium bimodal
load

118

Matthew A. Dellinger Appendix A. Schedulability Results 119

• Figure A.10 shows schedulability results for our 16-core platform under medium uni-
form load

• Figure A.11 shows schedulability results for our 16-core platform under light bimodal
load

• Figure A.12 shows schedulability results for our 16-core platform under light uniform
load

• Figure A.13 shows schedulability results for our 48-core platform under heavy bimodal
load

• Figure A.14 shows schedulability results for our 48-core platform under heavy uniform
load

• Figure A.15 shows schedulability results for our 48-core platform under medium bi-
modal load

• Figure A.16 shows schedulability results for our 48-core platform under medium uni-
form load

• Figure A.17 shows schedulability results for our 48-core platform under light bimodal
load

• Figure A.18 shows schedulability results for our 48-core platform under light uniform
load

Matthew A. Dellinger Appendix A. Schedulability Results 120

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.1: 8-Core Schedulability results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 121

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.2: 8-Core schedulability results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 122

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.3: 8-Core schedulability results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 123

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.4: 8-Core schedulability results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 124

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.5: 8-Core schedulability results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 125

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.6: 8-Core schedulability results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light uniform per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 126

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.7: 16-Core Schedulability results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 127

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.8: 16-Core schedulability results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 128

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.9: 16-Core schedulability results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 129

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.10: 16-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 130

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.11: 16-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 131

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.12: 16-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under light uniform per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 132

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.13: 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 133

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.14: 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 134

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.15: 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 135

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.16: 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 136

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.17: 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix A. Schedulability Results 137

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

S
ch

ed
ul

ab
ili

ty

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure A.18: 48-Core schedulability results for (a) traditional global, (b) global utility ac-
crual, and (c) partitioned algorithms under light uniform per-task weight distributions

Appendix B

Complete Deadline Satisfaction
Results

This appendix provides our complete deadline satisfaction ratio results. It contains 36 plots
grouped in 12 figures by taskset distribution and machine. It is organized as follows:

• Figure B.1 shows DSR results for our 8-core platform under heavy bimodal load

• Figure B.2 shows DSR results for our 8-core platform under heavy uniform load

• Figure B.3 shows DSR results for our 8-core platform under medium bimodal load

• Figure B.4 shows DSR results for our 8-core platform under medium uniform load

• Figure B.5 shows DSR results for our 8-core platform under light bimodal load

• Figure B.6 shows DSR results for our 8-core platform under light uniform load

• Figure B.7 shows DSR results for our 16-core platform under heavy bimodal load

• Figure B.8 shows DSR results for our 16-core platform under heavy uniform load

• Figure B.9 shows DSR results for our 16-core platform under medium bimodal load

• Figure B.10 shows DSR results for our 16-core platform under medium uniform load

• Figure B.11 shows DSR results for our 16-core platform under light bimodal load

• Figure B.12 shows DSR results for our 16-core platform under light uniform load

• Figure B.13 shows DSR results for our 48-core platform under heavy bimodal load

• Figure B.14 shows DSR results for our 48-core platform under heavy uniform load

138

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 139

• Figure B.15 shows DSR results for our 48-core platform under medium bimodal load

• Figure B.16 shows DSR results for our 48-core platform under medium uniform load

• Figure B.17 shows DSR results for our 48-core platform under light bimodal load

• Figure B.18 shows DSR results for our 48-core platform under light uniform load

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 140

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.1: 8-Core DSR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 141

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.2: 8-Core DSR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 142

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.3: 8-Core DSR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 143

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.4: 8-Core DSR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 144

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.5: 8-Core DSR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 145

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.6: 8-Core DSR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under light uniform per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 146

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.7: 16-Core DSR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 147

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.8: 16-Core DSR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 148

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.9: 16-Core DSR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 149

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.10: 16-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 150

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.11: 16-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 151

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.12: 16-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 152

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.13: 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 153

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.14: 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 154

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.15: 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 155

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.16: 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 156

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.17: 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix B. Deadline Satisfaction Results 157

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure B.18: 48-Core DSR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions

Appendix C

Complete Utility Accrual Results

This appendix provides our complete accrued utility ratio results. It contains 36 plots
grouped in 12 figures by taskset distribution and machine. It is organized as follows:

• Figure C.1 shows AUR results for our 8-core platform under heavy bimodal load

• Figure C.2 shows AUR results for our 8-core platform under heavy uniform load

• Figure C.3 shows AUR results for our 8-core platform under medium bimodal load

• Figure C.4 shows AUR results for our 8-core platform under medium uniform load

• Figure C.5 shows AUR results for our 8-core platform under light bimodal load

• Figure C.6 shows AUR results for our 8-core platform under light uniform load

• Figure C.7 shows AUR results for our 16-core platform under heavy bimodal load

• Figure C.8 shows AUR results for our 16-core platform under heavy uniform load

• Figure C.9 shows AUR results for our 16-core platform under medium bimodal load

• Figure C.10 shows AUR results for our 16-core platform under medium uniform load

• Figure C.11 shows AUR results for our 16-core platform under light bimodal load

• Figure C.12 shows AUR results for our 16-core platform under light uniform load

• Figure C.13 shows AUR results for our 48-core platform under heavy bimodal load

• Figure C.14 shows AUR results for our 48-core platform under heavy uniform load

• Figure C.15 shows AUR results for our 48-core platform under medium bimodal load

158

Matthew A. Dellinger Appendix C. Utility Accrual Results 159

• Figure C.16 shows AUR results for our 48-core platform under medium uniform load

• Figure C.17 shows AUR results for our 48-core platform under light bimodal load

• Figure C.18 shows AUR results for our 48-core platform under light uniform load

Matthew A. Dellinger Appendix C. Utility Accrual Results 160

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.1: 8-Core AUR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 161

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.2: 8-Core AUR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 162

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.3: 8-Core AUR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 163

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.4: 8-Core AUR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 164

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.5: 8-Core AUR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 165

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.6: 8-Core AUR results for (a) traditional global, (b) global utility accrual, and (c)
partitioned algorithms under light uniform per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 166

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.7: 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 167

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.8: 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 168

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.9: 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 169

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.10: 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 170

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.11: 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 171

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.12: 16-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 172

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.13: 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 173

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.14: 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 174

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.15: 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 175

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.16: 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 176

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.17: 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix C. Utility Accrual Results 177

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure C.18: 48-Core AUR results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions

Appendix D

Complete Tardiness Results

This appendix provides our complete tardiness results. It contains 36 plots grouped in 12
figures by taskset distribution and machine. It is organized as follows:

• Figure D.1 shows tardiness results for our 8-core platform under heavy bimodal load

• Figure D.2 shows tardiness results for our 8-core platform under heavy uniform load

• Figure D.3 shows tardiness results for our 8-core platform under medium bimodal load

• Figure D.4 shows tardiness results for our 8-core platform under medium uniform load

• Figure D.5 shows tardiness results for our 8-core platform under light bimodal load

• Figure D.6 shows tardiness results for our 8-core platform under light uniform load

• Figure D.7 shows tardiness results for our 16-core platform under heavy bimodal load

• Figure D.8 shows tardiness results for our 16-core platform under heavy uniform load

• Figure D.9 shows tardiness results for our 16-core platform under medium bimodal
load

• Figure D.10 shows tardiness results for our 16-core platform under medium uniform
load

• Figure D.11 shows tardiness results for our 16-core platform under light bimodal load

• Figure D.12 shows tardiness results for our 16-core platform under light uniform load

• Figure D.13 shows tardiness results for our 48-core platform under heavy bimodal load

• Figure D.14 shows tardiness results for our 48-core platform under heavy uniform load

178

Matthew A. Dellinger Appendix D. Tardiness Results 179

• Figure D.15 shows tardiness results for our 48-core platform under medium bimodal
load

• Figure D.16 shows tardiness results for our 48-core platform under medium uniform
load

• Figure D.17 shows tardiness results for our 48-core platform under light bimodal load

• Figure D.18 shows tardiness results for our 48-core platform under light uniform load

Matthew A. Dellinger Appendix D. Tardiness Results 180

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.1: 8-Core tardiness results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 181

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.2: 8-Core tardiness results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 182

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.3: 8-Core tardiness results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 183

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.4: 8-Core tardiness results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 184

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.5: 8-Core tardiness results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 185

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1 2 3 4 5 6 7 8 9 10

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.6: 8-Core tardiness results for (a) traditional global, (b) global utility accrual, and
(c) partitioned algorithms under light uniform per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 186

-100000

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

-100000

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

-100000

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.7: 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 187

-100000

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

-100000

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

-100000

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.8: 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 188

-100000

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

-100000

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

-100000

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.9: 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 189

 0

 200000

 400000

 600000

 800000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.10: 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 190

 0

 200000

 400000

 600000

 800000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.11: 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 191

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.12: 16-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light uniform per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 192

 0

 200000

 400000

 600000

 800000

 1e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.13: 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy bimodal per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 193

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.14: 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under heavy uniform per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 194

 0

 200000

 400000

 600000

 800000

 1e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.15: 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium bimodal per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 195

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.16: 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under medium uniform per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 196

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.17: 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light bimodal per-task weight distributions

Matthew A. Dellinger Appendix D. Tardiness Results 197

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

NONE G-FIFO G-RMS G-NP-EDF G-EDF C-EDF

(a)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

G-NP-HVDF G-HVDF gMUA G-GUA NG-GUA

(b)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
ax

im
um

 T
as

k
T

ar
di

ne
ss

 (
us

)

Utilization Cap

P-RMS P-EDF P-HVDF P-LBESA P-DASA-ND

(c)

Figure D.18: 48-Core tardiness results for (a) traditional global, (b) global utility accrual,
and (c) partitioned algorithms under light uniform per-task weight distributions

Appendix E

Complete Migration and Abortion
Results

This appendix provides our complete migration and abortion results. It contains 24 plots
grouped in 4 figures by machine and metric. It is organized as follows:

• Figure E.1 shows migration results for our 8-core platform

• Figure E.2 shows migration results for our 16-core platform

• Figure E.3 shows migration results for our 48-core platform

• Figure E.4 shows abort counts for all of our platforms

198

Matthew A. Dellinger Appendix E. Migration and Abortion Results 199

 0

 0.5

 1

 1.5

 2

 2.5

BHB BHU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

G-FIFO G-RMS GNP-EDF G-EDF C-EDF

(a)

 0

 0.5

 1

 1.5

 2

 2.5

BHB BHU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

(b)

 0

 5

 10

BMB BMU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

G-FIFO G-RMS GNP-EDF G-EDF C-EDF

(c)

 0

 5

 10

BMB BMU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

(d)

 0

 5

 10

 15

 20

 25

 30

BLB BLU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

G-FIFO G-RMS GNP-EDF G-EDF C-EDF

(e)

 0

 5

 10

 15

 20

 25

 30

BLB BLU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

(f)

Figure E.1: 8-Core migration results for (a) heavy (c) medium and (e) light distributions
under traditional algorithms and (b) heavy (d) medium and (f) light distributions under
utility accrual algorithms

Matthew A. Dellinger Appendix E. Migration and Abortion Results 200

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

BHB BHU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

G-FIFO G-RMS GNP-EDF G-EDF C-EDF

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

BHB BHU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

(b)

 0

 5

 10

 15

 20

 25

BMB BMU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

G-FIFO G-RMS GNP-EDF G-EDF C-EDF

(c)

 0

 5

 10

 15

 20

 25

BMB BMU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

(d)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

BLB BLU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

G-FIFO G-RMS GNP-EDF G-EDF C-EDF

(e)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

BLB BLU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

(f)

Figure E.2: 16-Core migration results for (a) heavy (c) medium and (e) light distributions
under traditional algorithms and (b) heavy (d) medium and (f) light distributions under
utility accrual algorithms

Matthew A. Dellinger Appendix E. Migration and Abortion Results 201

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

BHB BHU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

G-FIFO G-RMS GNP-EDF G-EDF C-EDF

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

BHB BHU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

(b)

 0

 25

 50

 75

 100

 125

 150

 175

 200

BMB BMU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

G-FIFO G-RMS GNP-EDF G-EDF C-EDF

(c)

 0

 25

 50

 75

 100

 125

 150

 175

 200

BMB BMU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

(d)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

BLB BLU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

G-FIFO G-RMS GNP-EDF G-EDF C-EDF

(e)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

BLB BLU

M
ig

ra
tio

ns
 (

m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA

(f)

Figure E.3: 48-Core migration results for (a) heavy (c) medium and (e) light distributions
under traditional algorithms and (b) heavy (d) medium and (f) light distributions under
utility accrual algorithms

Matthew A. Dellinger Appendix E. Migration and Abortion Results 202

 0.1

 1

 10

BHU BMU BLU

A
bo

rt
s

(m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA
P-HVDF

P-LBESA
P-DASA-ND

(a)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

BHB BMB BLB

A
bo

rt
s

(m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA
P-HVDF

P-LBESA
P-DASA-ND

(b)

 0.1

 1

 10

BHU BMU BLU

A
bo

rt
s

(m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA
P-HVDF

P-LBESA
P-DASA-ND

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

BHB BMB BLB

A
bo

rt
s

(m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA
P-HVDF

P-LBESA
P-DASA-ND

(d)

 0.1

 1

 10

 100

BHU BMU BLU

A
bo

rt
s

(m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA
P-HVDF

P-LBESA
P-DASA-ND

(e)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

BHB BMB BLB

A
bo

rt
s

(m
ill

io
ns

)

GNP-HVDF
G-HVDF

gMUA
G-GUA

NG-GUA
P-HVDF

P-LBESA
P-DASA-ND

(f)

Figure E.4: Abortion results for various uniform per-task weight distributions on (a) 8 cores
(c) 16 cores and (e) 48 cores and results for various bimodal per-task weight distributions
on (b) 8 cores (d) 16 cores and (f) 48 cores

Appendix F

Complete Scheduling Statistics

This appendix provides the complete scheduling statistics for each scheduling algorithm,
distribution, and platform in tabular form. It is organized as follows:

• Table F.1 shows scheduling statistics for G-FIFO on our 8-core platform under various
load distributions

• Table F.2 shows scheduling statistics for G-NP-EDF on our 8-core platform under
various load distributions

• Table F.3 shows scheduling statistics for G-RMS on our 8-core platform under various
load distributions

• Table F.4 shows scheduling statistics for G-EDF on our 8-core platform under various
load distributions

• Table F.5 shows scheduling statistics for G-NP-HVDF on our 8-core platform under
various load distributions

• Table F.6 shows scheduling statistics for G-HVDF on our 8-core platform under various
load distributions

• Table F.7 shows scheduling statistics for gMUA on our 8-core platform under various
load distributions

• Table F.8 shows scheduling statistics for NG-GUA on our 8-core platform under various
load distributions

• Table F.9 shows scheduling statistics for G-GUA on our 8-core platform under various
load distributions

203

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 204

• Table F.10 shows scheduling statistics for P-RMS on our 8-core platform under various
load distributions

• Table F.11 shows scheduling statistics for P-EDF on our 8-core platform under various
load distributions

• Table F.12 shows scheduling statistics for P-HVDF on our 8-core platform under var-
ious load distributions

• Table F.13 shows scheduling statistics for P-LBESA on our 8-core platform under
various load distributions

• Table F.14 shows scheduling statistics for P-DASA-ND on our 8-core platform under
various load distributions

• Table F.15 shows scheduling statistics for C-EDF on our 8-core platform under various
load distributions

• Table F.16 shows scheduling statistics for G-FIFO on our 16-core platform under var-
ious load distributions

• Table F.17 shows scheduling statistics for G-NP-EDF on our 16-core platform under
various load distributions

• Table F.18 shows scheduling statistics for G-RMS on our 16-core platform under various
load distributions

• Table F.19 shows scheduling statistics for G-EDF on our 16-core platform under various
load distributions

• Table F.20 shows scheduling statistics for G-NP-HVDF on our 16-core platform under
various load distributions

• Table F.21 shows scheduling statistics for G-HVDF on our 16-core platform under
various load distributions

• Table F.22 shows scheduling statistics for gMUA on our 16-core platform under various
load distributions

• Table F.23 shows scheduling statistics for NG-GUA on our 16-core platform under
various load distributions

• Table F.24 shows scheduling statistics for G-GUA on our 16-core platform under vari-
ous load distributions

• Table F.25 shows scheduling statistics for P-RMS on our 16-core platform under various
load distributions

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 205

• Table F.26 shows scheduling statistics for P-EDF on our 16-core platform under various
load distributions

• Table F.27 shows scheduling statistics for P-HVDF on our 16-core platform under
various load distributions

• Table F.28 shows scheduling statistics for P-LBESA on our 16-core platform under
various load distributions

• Table F.29 shows scheduling statistics for P-DASA-ND on our 16-core platform under
various load distributions

• Table F.30 shows scheduling statistics for C-EDF on our 16-core platform under various
load distributions

• Table F.31 shows scheduling statistics for G-FIFO on our 48-core platform under var-
ious load distributions

• Table F.32 shows scheduling statistics for G-NP-EDF on our 48-core platform under
various load distributions

• Table F.33 shows scheduling statistics for G-RMS on our 48-core platform under various
load distributions

• Table F.34 shows scheduling statistics for G-EDF on our 48-core platform under various
load distributions

• Table F.35 shows scheduling statistics for G-NP-HVDF on our 48-core platform under
various load distributions

• Table F.36 shows scheduling statistics for G-HVDF on our 48-core platform under
various load distributions

• Table F.37 shows scheduling statistics for gMUA on our 48-core platform under various
load distributions

• Table F.38 shows scheduling statistics for NG-GUA on our 48-core platform under
various load distributions

• Table F.39 shows scheduling statistics for G-GUA on our 48-core platform under vari-
ous load distributions

• Table F.40 shows scheduling statistics for P-RMS on our 48-core platform under various
load distributions

• Table F.41 shows scheduling statistics for P-EDF on our 48-core platform under various
load distributions

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 206

• Table F.42 shows scheduling statistics for P-HVDF on our 48-core platform under
various load distributions

• Table F.43 shows scheduling statistics for P-LBESA on our 48-core platform under
various load distributions

• Table F.44 shows scheduling statistics for P-DASA-ND on our 48-core platform under
various load distributions

• Table F.45 shows scheduling statistics for C-EDF on our 48-core platform under various
load distributions

Table F.1: G-FIFO scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 2819086 1958379 3578307 5744045 4809142 28865632
Block 0 0 0 0 0 0

Preschedule 6192271 5745601 6589119 7598483 7184551 18962606
Local 8686948 7497328 9738243 12731792 11435095 45032189

IPI Sent 585 618 696 807 754 921530
IPI Received 583 616 690 801 742 770632
IPI Missed 2 2 6 6 12 150898
Migrations 1206798 738521 1652724 3042886 2400078 20438504
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Aborts 0 0 0 0 0 0

Table F.2: G-NP-EDF scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 2818110 1958391 3576855 5741727 4807028 28860934
Block 0 0 0 0 0 0

Preschedule 6156781 5745335 6529951 7587191 7106629 18738446
Local 8667626 7518347 9700877 12708750 11368295 44472360

IPI Sent 602 591 630 478 518 288232
IPI Received 588 587 622 464 510 238334
IPI Missed 14 4 8 14 8 49898
Migrations 1228472 723748 1692460 3155239 2479302 19947961
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Aborts 0 0 0 0 0 0

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 207

Table F.3: G-RMS scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 11879755 10387500 13108191 16330400 15016091 50492656
Block 38760566 30258636 45328275 65123917 55828129 242086054

Preschedule 0 0 0 0 0 0
Local 38115094 29612445 45248211 67657275 56868994 266843572

IPI Sent 29133683 21893767 35133469 54046698 44847828 215751483
IPI Received 29131403 21893085 35129719 54035814 44840606 215576495
IPI Missed 2282 682 3750 10884 7222 174988
Migrations 1943027 1135483 2650260 4781877 3810060 23598759
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Aborts 0 0 0 0 0 0

Table F.4: G-EDF scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 11117837 9712829 12296928 15415267 14119566 46839128
Block 39922467 32270304 46110746 63203285 55409579 220408026

Preschedule 0 0 0 0 0 0
Local 40288154 32696652 47029585 66309868 57307061 242152664

IPI Sent 31680705 25198809 37405663 53707455 46029086 199720397
IPI Received 31679217 25198407 37403181 53700473 46024344 199635305
IPI Missed 1488 402 2482 6982 4742 85092
Migrations 1559957 926322 2142289 3859036 3090628 21586361
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Aborts 0 0 0 0 0 0

Table F.5: G-NP-HVDF scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 2817954 1957477 3576771 5740923 4807124 28858152
Block 0 0 0 0 0 0

Preschedule 6211352 5674614 6706191 8254920 7547877 24614876
Local 8604712 7369155 9700845 13010167 11527223 49877005

IPI Sent 704 706 707 908 2732 187154
IPI Received 700 700 697 886 2670 147454
IPI Missed 4 6 10 22 62 39700
Migrations 1075128 625606 1502871 2786301 2211382 18315194
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Aborts 163532 126018 196734 200106 267742 1864600

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 208

Table F.6: G-HVDF scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 11054823 9591509 12276676 15332030 14158194 46638114
Block 35394892 27898060 41552922 60738473 51585248 219382512

Preschedule 196202 160854 229424 491776 308792 3100144
Local 35396034 28041832 42023644 63694434 53048526 244282778

IPI Sent 26905096 20707354 32495676 50811311 41738582 195189868
IPI Received 26902714 20706700 32491362 50800411 41730818 195022216
IPI Missed 2382 654 4314 10900 7764 167652
Migrations 1703974 969847 2364878 4129364 3400232 22144814
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Abortions 234048 199449 263668 478449 327710 2786704

Table F.7: gMUA scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 10938324 9425646 12162098 15468404 14124926 37770085
Block 38119758 29570032 44963721 63730007 55468470 166430256

Preschedule 271700 256142 274084 346866 278710 8828680
Local 38431088 29908829 45936590 67270044 57551042 191183605

IPI Sent 29796728 22548050 36128412 53701978 45709373 147687834
IPI Received 29793934 22547350 36123726 53687306 45699711 147563212
IPI Missed 2794 700 4686 14672 9662 124622
Migrations 2177296 1264342 3002687 5750154 4399200 22793313
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Abortions 282850 273465 281650 342722 281188 8213574

Table F.8: NG-GUA scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 10918422 9412204 12170434 15456446 14117187 37510055
Block 38044511 29480585 45025888 63722679 55476060 165828165

Preschedule 269274 256232 271024 355471 277935 8950353
Local 38358098 29789671 45970222 67272123 57580728 190676316

IPI Sent 29722322 22432533 36153163 53702360 45730500 147279440
IPI Received 29719558 22431720 36147987 53686926 45720142 147157796
IPI Missed 2764 813 5176 15434 10358 121644
Migrations 2142001 1231025 2961955 5681157 4345871 22563665
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Abortions 280306 273598 278538 351282 280850 4162931

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 209

Table F.9: G-GUA scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 10980197 9446434 12348857 15471074 14197589 35217904
Block 36373687 28149835 43131693 64500137 54238600 153369213

Preschedule 210432 211137 209699 324384 213429 10073230
Local 35409028 27336863 42658800 68019288 55464302 177778915

IPI Sent 27021012 20123473 33188147 54442828 43898594 136651692
IPI Received 27017812 20122597 33182128 54421278 43886234 136501336
IPI Missed 3200 876 6019 21550 12360 150356
Migrations 1642280 774164 2618399 8257639 4983188 28913025
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Abortions 240908 246242 235301 321929 224964 9368928

Table F.10: P-RMS scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 9505767 7933408 10895253 15118681 13206440 57608774

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Abortions 0 0 0 0 0 0

Table F.11: P-EDF scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 9257512 7457912 10695502 14465679 12916969 53442235

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Abortions 0 0 0 0 0 0

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 210

Table F.12: P-HVDF scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 8952807 7335877 10298794 14136778 12492978 55717061

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Abortions 358972 314599 405081 648778 245609 2206516

Table F.13: P-LBESA scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 9487171 7365454 11146298 15576333 13689131 59379494

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Abortions 252326 273897 255162 325008 272118 1313907

Table F.14: P-DASA scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 9522587 7396541 11189364 15664132 13761103 59421468

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Abortions 239318 264483 232281 268989 230513 1074510

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 211

Table F.15: C-EDF scheduling statistics on the 8-core platform

BHB BHU BMB BMU BLB BLU
Global 10838592 9471092 12142152 15531177 14098600 50997780
Block 16900948 12336388 20273296 28918404 25039625 106320128

Preschedule 0 0 0 0 0 0
Local 22031424 16575876 26171980 37321281 32208692 142040696

IPI Sent 13387373 9088840 16449244 24556648 20814468 96874396
IPI Received 13384788 9088220 16444600 24545988 20806360 96661864
IPI Missed 2585 620 4644 10660 8108 212532
Migrations 1300857 644292 1870704 3489400 2765529 19003729
Segments 2822145 1953732 3579648 5744266 4809356 28872082
Abortions 0 0 0 0 0 0

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 212

Table F.16: G-FIFO scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 7087041 4953292 8937944 14279177 11918988 71493952
Block 0 0 0 0 0 0

Preschedule 15827479 14984491 16647614 19298707 18042268 51533013
Local 21869469 19327546 24152218 31147827 27952199 112058947

IPI Sent 9898902 5479405 12292075 16361166 15132757 33062685
IPI Received 9661687 5333792 11979498 15832575 14697407 30174082
IPI Missed 237215 145613 312577 528591 435350 2888603
Migrations 2008008 1138257 2887307 6004151 4489777 48612725
Segments 7087041 4953292 8937944 14279177 11918988 71493952
Aborts 0 0 0 0 0 0

Table F.17: G-NP-EDF scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 7087041 4953292 8937944 14279177 11918988 71493952
Block 0 0 0 0 0 0

Preschedule 15727848 14889113 16864248 19636935 18314327 53084630
Local 21716614 19176388 24291186 31297034 28103695 111865229

IPI Sent 9671565 5307305 11707599 15034622 14253919 32870896
IPI Received 9466592 5191291 11455256 14577879 13881876 30083522
IPI Missed 204973 116014 252343 456743 372043 2787374
Migrations 1826362 1015336 2800171 5822733 4341038 46352093
Segments 7087041 4953292 8937944 14279177 11918988 71493952
Aborts 0 0 0 0 0 0

Table F.18: G-RMS scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 29968267 26527321 32895697 40465519 37342369 114504896
Block 101540063 79683992 116001084 157483860 137165641 457641021

Preschedule 0 0 0 0 0 0
Local 74562600 58092227 89272785 137254760 112917433 481738800

IPI Sent 98895031 78092399 112405399 150627785 131857027 410232387
IPI Received 98891701 78091834 112399990 150612115 131847153 409649286
IPI Missed 3330 565 5409 15670 9874 583101
Migrations 2471498 1263325 3686670 8219425 5949801 54758570
Segments 7087041 4953292 8937944 14279177 11918988 71493952
Abortions 0 0 0 0 0 0

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 213

Table F.19: G-EDF scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 29450420 25965539 32324553 39798169 36698456 110492896
Block 111391854 88937874 125641793 167493690 146918704 535109234

Preschedule 0 0 0 0 0 0
Local 86036170 68657156 100584849 149124190 124475080 558135490

IPI Sent 108810290 87390813 122121406 161015225 141797749 493135417
IPI Received 108807374 87390248 122116304 161002019 141788695 492793893
IPI Missed 2916 565 5102 13206 9054 341524
Migrations 2440688 1316370 3544625 7420337 5509613 50758760
Segments 7087041 4953292 8937944 14279177 11918988 71493952
Abortions 0 0 0 0 0 0

Table F.20: G-NP-HVDF scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 7087003 4953282 8937827 14278259 11918678 71411589
Block 0 0 0 0 0 0

Preschedule 15533337 14760685 16355788 19249389 17807031 55460846
Local 21485452 19045722 23666130 30330470 27270009 111582591

IPI Sent 13700921 6581483 15045988 16565403 16471240 32743377
IPI Received 13385470 6423187 14718529 16056197 16020034 30043248
IPI Missed 315451 158296 327459 509206 451206 2700129
Migrations 1681456 944909 2456789 5262714 3889921 44203793
Segments 7087041 4953292 8937944 14279177 11918988 71493952
Aborts 24706 18457 41889 138918 68857 961839

Table F.21: G-HVDF scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 29424022 25995336 32297333 39507364 36623557 98478062
Block 132691023 90273730 159005737 248069044 201768291 897005744

Preschedule 96591 65357 131032 418650 212985 10337029
Local 90926685 67022011 114048366 207182658 157178022 874184030

IPI Sent 129450998 88423253 154701536 240377565 195676667 851486331
IPI Received 129442631 88415820 154692043 240363911 195664988 851028620
IPI Missed 8367 7433 9493 13654 11679 457711
Migrations 2491222 1352545 3634935 7901293 5804628 50240334
Segments 7087041 4953292 8937944 14279177 11918988 71493952
Aborts 151245 110517 188144 395686 249605 9184092

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 214

Table F.22: gMUA scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 29125872 25773720 31857542 38868234 36055360 56328364
Block 152417126 111379788 181866067 271116009 226723014 484394113

Preschedule 139843 104025 171440 391345 236924 41908082
Local 113052075 81770337 140259159 232978548 184933562 504727059

IPI Sent 149210456 109433329 177507065 263374155 220457317 467502055
IPI Received 149207768 109432623 177502426 263361025 220448523 467297742
IPI Missed 2688 706 4639 13130 8794 204313
Migrations 3036783 1586202 4464985 11366834 7304138 50055470
Segments 7087041 4953292 8937944 14279177 11918988 71493952
Aborts 149018 116187 179367 391979 241866 37915711

Table F.23: NG-GUA scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 29187664 25783202 31994650 38865354 36142675 53987354
Block 147440603 102103629 178906444 271938464 226619661 467704679

Preschedule 174913 129629 213330 519199 295867 46657566
Local 112003420 80448002 139760724 235481357 186459399 497110884

IPI Sent 143935258 100103330 174158397 263547577 219793039 453829792
IPI Received 143930980 100100366 174152665 263536395 219784590 453636472
IPI Missed 4278 2964 5732 11182 8449 193320
Migrations 3231142 1739139 4685759 11820785 7596390 48477868
Segments 7087041 4953292 8937944 14279177 11918988 71493952
Aborts 189553 150331 224367 513090 302135 40035853

Table F.24: G-GUA scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 29069972 25597648 31881166 38649494 36128176 50044906
Block 134996872 93785693 164577377 271787296 217222388 426237684

Preschedule 202597 171469 221088 638397 258623 49720127
Local 95999298 68626358 121922730 235686107 174240726 458776220

IPI Sent 131348793 91624300 159680299 263338995 210244228 414791160
IPI Received 131341863 91620730 159669469 263308239 210224562 414501505
IPI Missed 6930 3570 10830 30756 19666 289655
Migrations 2190749 964053 3751696 20958047 8859383 71970570
Segments 7087041 4953292 8937944 14279177 11918988 71493952
Aborts 257102 218446 274169 630325 285657 42370901

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 215

Table F.25: P-RMS scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 22986579 19468267 26206034 36059943 31525376 136739580

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 7087041 4953292 8937944 14279177 11918988 71493629
Aborts 0 0 0 0 0 0

Table F.26: P-EDF scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 24438289 18987701 28748093 39798626 35062966 151258531

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 7087041 4953292 8937944 14279177 11918988 71493629
Aborts 0 0 0 0 0 0

Table F.27: P-HVDF scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 22542683 18906093 25665314 34851026 30850590 134206875

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 7087041 4953292 8937944 14279177 11918988 71493629
Aborts 175727 309836 174851 407601 234100 1165563

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 216

Table F.28: P-LBESA scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 24457970 18866324 28760661 40028220 35122568 151661968

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 7087041 4953292 8937944 14279177 11918988 71493629
Aborts 69814 233231 35686 51113 31280 95565

Table F.29: P-DASA-ND scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 24463214 18897268 28774725 40065782 35153114 151473053

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 7087041 4953292 8937944 14279177 11918988 71493629
Aborts 65896 221350 33649 42741 28468 84988

Table F.30: C-EDF scheduling statistics on the 16-core platform

BHB BHU BMB BMU BLB BLU
Global 29543923 25606257 32911955 42114144 38234412 128044452
Block 64631094 46705784 80578093 125360781 105221755 524866713

Preschedule 0 0 0 0 0 0
Local 58795816 41798741 74836010 121860937 99733257 557761647

IPI Sent 63398463 46014412 78815566 122019537 102607347 499133185
IPI Received 63385169 46012953 78790956 121958891 102568234 497852982
IPI Missed 13294 1459 24610 60646 39113 1280203
Migrations 2312438 984683 3592692 7462860 5673582 48775525
Segments 7087041 4953292 8937944 14279177 11918988 71493952
Aborts 0 0 0 0 0 0

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 217

Table F.31: G-FIFO scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 62159119 44061636 77816203 124587697 103829753 619252663
Block 0 0 0 0 0 0

Preschedule 140529744 134121010 146769210 167119870 157880202 437992393
Local 195324083 173496504 215472402 276208970 248688064 963439248

IPI Sent 161317480 88874849 194385344 243620728 232026634 2767101199
IPI Received 152394895 84283073 182289576 223367358 215292454 2692824631
IPI Missed 8922585 4591776 12095768 20253370 16734180 74276568
Migrations 18829900 10951142 26929554 56137054 42140806 455410662
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 0 0 0 0 0 0

Table F.32: G-NP-EDF scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 62159119 44061636 77816203 124587697 103829753 619252663
Block 0 0 0 0 0 0

Preschedule 138999558 132597124 145248854 168049626 156911650 366915196
Local 192724364 171381432 212926178 275516358 246813370 902383800

IPI Sent 153910936 81069106 187024132 224730218 220651846 6541575696
IPI Received 145324360 76965952 175251380 204965066 204188850 6429381908
IPI Missed 8586576 4103154 11772752 19765152 16462996 112193788
Migrations 17087044 9894048 24453802 52028732 38502620 423068148
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 0 0 0 0 0 0

Table F.33: G-RMS scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 226443024 206592868 243864780 287186816 269269132 586457212
Block 3970394577 3329642057 4125195513 5230927692 4623853604 13055763357

Preschedule 0 0 0 0 0 0
Local 2858578532 2669398932 3289217228 4578503497 3849725796 12909426213

IPI Sent 3917196353 3298049564 4054921804 5102385261 4521598225 12311048060
IPI Received 3917176613 3298046820 4054847332 5101744205 4521322272 12278748157
IPI Missed 19740 2744 74472 641056 275953 32299903
Migrations 26974792 10219364 42901772 102842836 73623041 550188205
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 0 0 0 0 0 0

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 218

Table F.34: G-EDF scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 225859225 205862932 243008944 280851064 266879876 525283612
Block 5044150700 3993803644 5387342669 6982770757 6252014304 15129602187

Preschedule 0 0 0 0 0 0
Local 4097611009 3474995109 4732952677 6524485376 5682367832 15033543943

IPI Sent 5000218708 3966265965 5332487328 6888157259 6174991160 14573821820
IPI Received 5000180388 3966265012 5332441084 6887990133 6174912740 14572213324
IPI Missed 38320 953 46245 167124 78420 1608496
Migrations 23395768 12358940 35122996 78850705 57800716 485028021
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 0 0 0 0 0 0

Table F.35: G-NP-HVDF scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 62159818 44099232 77869058 124603618 103726294 618379084
Block 0 0 0 0 0 0

Preschedule 137198378 131476578 143187744 165933508 154695540 496475188
Local 190736192 170052502 209268478 268504840 241166666 996905268

IPI Sent 249061332 118140686 256114616 252896138 260699628 3585724460
IPI Received 236710988 112055690 241481346 230907520 242040868 3509445536
IPI Missed 12350344 6084996 14633270 21988618 18658760 76278924
Migrations 15421638 8865140 22370152 48130304 35614780 412955856
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 344830 250038 454026 1276832 701832 21187812

Table F.36: G-HVDF scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 187577742 172454490 198232226 203798100 208348794 202211052
Block 3994103584 2952611764 4561455286 5868197364 5410385584 5561582160

Preschedule 12023092 9522232 14481612 39159090 22440960 423559452
Local 2973395564 2350372854 3520281606 5262037446 4566793224 5329382592

IPI Sent 3921855860 2911108806 4467303376 5728917898 5287610960 5154857912
IPI Received 3921814882 2911095688 4467220958 5728670654 5287426830 5151777956
IPI Missed 40978 13118 82418 247244 184130 3079956
Migrations 30955356 13490688 45806130 78088904 68748490 201626940
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 13161248 5756807 14991234 18941113 11083435 397652240

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 219

Table F.37: gMUA scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 175691328 166506392 178910704 156555204 173688340 99820904
Block 3761689556 2902599552 4300430552 4509462384 4699319252 2143833960

Preschedule 16976928 11121792 23332028 66153736 40022468 607101648
Local 2981210424 2362530628 3553059896 4133734696 4124585188 2416130472

IPI Sent 3687465432 2855357960 4201875800 4375853440 4572174028 1969042052
IPI Received 3687404368 2855334828 4201744260 4375180552 4571855096 1965707088
IPI Missed 61064 23132 131540 672888 318932 3334964
Migrations 52287120 20170144 84368280 176276780 135061176 214923600
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 17979552 14640644 23737756 65511432 40064992 556212512

Table F.38: NG-GUA scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 168150112 159717844 170282036 148495784 163646920 100294108
Block 3585219510 2728475930 4060119294 4270631820 4364024678 2261183200

Preschedule 16744224 10922894 22982456 66130044 40289856 601994948
Local 2831970608 2198077706 3339757450 3910393674 3807759440 2550835240

IPI Sent 3506667314 2677084284 3959839836 4133515102 4233868630 2081200736
IPI Received 3506606628 2677061954 3959728738 4133080654 4233631820 2077976124
IPI Missed 60686 22330 111098 434448 236810 3224612
Migrations 49489522 19293068 78671956 169017754 126349436 228016100
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 17917780 14366476 23425924 65620424 40350502 551889400

Table F.39: G-GUA scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 130789710 131371918 122119910 104428640 113011918 89322404
Block 1981689624 1668928240 2120139240 2494621244 2377515542 1983903664

Preschedule 17926864 7464612 34279068 87116302 61498648 616148432
Local 1366002164 1164066786 1561758864 2178146546 1941392194 2221953568

IPI Sent 1873612972 1587060370 1995201320 2347036068 2233646896 1813285348
IPI Received 1873565472 1587050540 1995098166 2346537010 2233380810 1809434532
IPI Missed 47500 9830 103154 499058 266086 3850816
Migrations 30224630 4519802 67033620 198755388 143162250 320279872
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 25655088 18096910 38368766 85596330 61443918 564657144

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 220

Table F.40: P-RMS scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 203727013 174308697 230773668 315535033 276411617 1196452737

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 0 0 0 0 0 0

Table F.41: P-EDF scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 216363100 169420137 252954168 347188360 306674793 1299400592

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 0 0 0 0 0 0

Table F.42: P-HVDF scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 199856857 169325896 225812384 304331257 269302165 1166730976

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 1787012 701439 2056473 4558221 2920377 18040856

Matthew A. Dellinger Appendix F. Complete Scheduling Statistics 221

Table F.43: P-LBESA scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 217106529 168542701 253792888 350335200 308103660 1321765373

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Aborts 613924 2086804 360077 515013 326576 3671847

Table F.44: P-DASA-ND scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 0 0 0 0 0 0
Block 0 0 0 0 0 0

Preschedule 0 0 0 0 0 0
Local 217354588 168888581 253953852 350858864 308456403 1289616160

IPI Sent 0 0 0 0 0 0
IPI Received 0 0 0 0 0 0
IPI Missed 0 0 0 0 0 0
Migrations 0 0 0 0 0 0
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Abortions 588649 1976765 349905 425804 293553 2245727

Table F.45: C-EDF scheduling statistics on the 48-core platform

BHB BHU BMB BMU BLB BLU
Global 245562084 214034101 271681967 346486004 314285381 1036775180
Block 672611621 519918049 795029949 1145255301 986394988 4450421024

Preschedule 0 0 0 0 0 0
Local 615001761 454965525 743018084 1125732321 943823244 4906453469

IPI Sent 659394325 512904161 776448327 1110815361 958874125 4299407082
IPI Received 659037683 512870241 775610786 1108058140 956960924 4229956842
IPI Missed 356642 33920 837541 2757221 1913201 69450240
Migrations 20423060 8321503 31220461 64928044 49321269 436000343
Segments 62159119 44061636 77816203 124587697 103829753 619252663
Abortions 0 0 0 0 0 0

