
32 communications of the acm | april 2012 | vol. 55 | no. 4

V
viewpoints

doi:10.1145/2133806.2133818	 Selma Tekir

Viewpoint
Reading CS Classics
Revisiting required reading.

W
e often focus so much
of our attention on our
particular research ar-
eas that we do not fully
utilize the potential

coming from the core theoretical com-
puter science. We lack the fundamen-
tal theoretical knowledge of the field.
Moreover, the computer science clas-
sics are unknown to many computer
scientists. Knowledge of the theories
of computer science helps in under-
standing the limitations of the field.
This directly influences your ongoing
research by providing you with new
perspectives and insights. In addition,
the stories of the pioneers of the field
inspire young professionals, provide a
common history to unite the commu-
nity, and facilitate the recognition of
computer science as an independent
science and profession.

With these ideas in mind, I orga-
nized CS classics meetings in my com-
puter engineering department during
the last summer term. Our group se-
lected a subset of classics to initialize
the project. The selected classics and
their respective ordering reflected our
personal interests; in the end, they be-
come part of a coherent whole.

It can be a good practice for CS pro-
fessionals to compile their own list of
classics that highlights some key scien-
tific concepts of the field. Such an at-
tempt improves the understanding of
the field and serves as a valuable source
of reference, as this Viewpoint attests.
Our group discussed these CS classics:

˲˲ “The Emperor’s Old Clothes,”
C.A.R. Hoare

˲˲ “An Axiomatic Basis for Computer
Programming,” C.A.R. Hoare

˲˲ “Gödel’s Undecidability Theo-
rem,” S.F. Andrilli

˲˲ “Computing Machinery and Intel-
ligence,” A.M. Turing

˲˲ “Reflections on Trusting Trust,” K.
Thompson

˲˲ “The Humble Programmer,” E.W.
Dijkstra

˲˲ “An Interview with Edsger W. Dijks-
tra,” P. Frana

˲˲ “Computer Programming as an
Art,” D. Knuth

˲˲ “The ‘Art’ of Being Donald Knuth,”
E. Feigenbaum

˲˲ “Donald Knuth: A Life’s Work In-
terrupted,” E. Feigenbaum

We found these intellectual gath-
erings quite useful and subsequently
decided to make the CS classics group
reading a regular activity of our aca-
demic environment. Here, I give an
overview of the classics we discussed
and encourage further reading.

Classics Overview
In reading Hoare,6,7 you learn about
the computing industry of the 1960s

and 1970s in Britain. The program-
ming languages community of those
years was also well described in the
reading. Hoare wrote a more efficient
sort algorithm than the one invented
by D.L. Shell.9 When he had the op-
portunity to hear about the recursive
procedures in an ALGOL 60 course,
Hoare realized this mechanism is
the right way of expressing his new
sort algorithm, which is the original
QuickSort. The moral of this example
is that one should communicate with
people to seek better solutions to the
problems at hand and extend the ex-
isting solutions. His remark on sim-
plification is of high importance as
well. A simple, reliable core is criti-
cal for a programming language, an
operating system, and even for any
software product. With this realiza-
tion, Hoare provides a foundation for
the formal proofs of programs by an
algebraic assertions-based approach,
which is named as “An Axiomatic Ba-
sis for Computer Programming.”7

Gödel’s undecidability theorem1
states that any mathematical system
containing all the theorems of arith-
metic is an incomplete system. This
opens the way for Turing to introduce
the famous halting problem: There is
no general algorithm that can always
correctly predict whether a randomly
selected computer program will run
or not.11 Before knowing about Gödel
and his undecidability theorem, Tur-
ing stands out as the most prominent
figure in computer science. After you
hear about Gödel’s work, you realize
Turing is standing on the shoulders of
giants. The proof of the undecidability
theorem has important implications

Knowledge of the
theories of computer
science helps
in understanding
the limitations
of the field.

viewpoints

april 2012 | vol. 55 | no. 4 | communications of the acm 33

V
viewpoints

for computer science by introducing
the Gödel numbering scheme, which
introduces unique numbering to each
symbol, formula, or proof in the sys-
tem. This system is the basis of the
computer numbering systems that
provide unique representation to every
programming construct: due to this
property, code can be treated as data.

The idea of this unique numbering
system can be better explained by the
challenge of writing a source program
that, when compiled and executed,
will produce as output an exact copy
of its source. It is a Turing machine
SELF that is printing itself. The SELF
machine is constructed such that it
contains two concatenated machines
and one of them is the Gödel number
equivalent of the other. Such a self-
reproducing program is introduced
by Ken Thompson in “Reflections on
Trusting Trust”10 as the most primitive
version of today’s trojans. When you
see the scientific layers on top of each
other like the one presented, you begin
to appreciate the real beauty of science
and the scientific developments.

By reading Dijkstra independent
from his contemporary Hoare you
have information about the comput-
ing environment of that era. To make
a correct assessment of that time

period and the products that were
launched, independent but consis-
tent views are required. In this sense,
Dijkstra and Hoare’s identical views
on ALGOL 60 help us appreciate this
programming language. Additionally,
the realization of the recursion mech-
anism by both is spectacular—a good
example of the axiom “great minds
think alike.”

Dijkstra’s dialogue with his profes-
sor cannot be overlooked. Most signifi-
cant is his realization of the high intel-
lectual challenge of programming and
the professor’s encouragement that
made him one of the greatest minds of
computer programming.5

One lesson comes from the huge
abstraction capability/potential in-

herent in computer science. Abstrac-
tion is extending the viewpoint in a
way that the specificities of the prob-
lem can be reflected in a better way
rather than being vague. The tools
we work with can then have vital im-
portance in abstracting. Dijkstra’s
comment on computing tools is re-
markable in this sense:2 he states that
computing tools have direct influence
on the thinking habits of their users.
If you constrain yourself with one
specific tool, your thinking becomes
constrained in the boundaries of this
tool. You continue to stay at the same
level of thinking as the creator of this
tool in accordance with the famous
quote by Einstein: “The significant
problems we face cannot be solved at
the same level of thinking we were at
when we created them.”

Donald Knuth is extraordinary with
his perspective on computer program-
ming.3,4 His definition of programming
identifies the right balance between
conceptual clarity and implementation
efficiency. He says: “Programming is
the art of telling another human being
what one wants the computer to do.”

In understanding the importance
of this definition, one should realize it
is beyond the traditional definition of
the task of telling a computer what to

Reading CS classics
widens your
perspective by
introducing stable,
timeless ideas.

P
h

o
t

o
g

r
a

p
h

 b
y

 G
e

e
t

 D
u

g
g

a
l

34 communications of the acm | april 2012 | vol. 55 | no. 4

viewpoints

References
1.	A ndrilli, S.F. Gödel’s Undecidability Theorem.

Applications of Discrete Mathematics. J.G. Michaels
and K.H. Rosen, Eds. McGraw-Hill, 1991.

2.	 Dijkstra, E.W. The humble programmer.
Commun. ACM 51, 10 (Oct. 1972), 859–866; DOI:
10.1145/355604.361591.

3.	 Feigenbaum, E. Donald Knuth: A life’s work
interrupted. Shustek, L., Ed. Commun. ACM 51, 8 (Aug.
2008), 31–35; DOI: 10.1145/1378704.1378715.

4.	 Feigenbaum, E. The ‘art’ of being Donald Knuth.
Shustek, L., Ed. Commun. ACM 51, 7 (July 2008),
35–39; DOI: 10.1145/1364782.1364794.

5.	 Frana, P. An interview with Edsger W. Dijkstra. T.J.
Misa, Ed. Commun. ACM 53, 8 (Aug. 2010), 41–47;
DOI: 10.1145/1787234.1787249.

6.	H oare, C.A.R. The emperor’s old clothes.
Commun. ACM 24, 2 (Feb. 1981), 75–83; DOI:
10.1145/358549.358561.

7.	H oare, C.A.R. An axiomatic basis for computer
programming. Commun. ACM 12, 10 (Oct. 1969),
576–580; DOI: 10.1145/363235.363259.

8.	 Knuth, D.E. Computer programming as an art.
Commun. ACM 17, 12 (Dec. 1974), 667–673; DOI:
10.1145/361604.361612.

9.	S hell, D.L. A high-speed sorting procedure.
Commun. ACM 2, 7 (July 1959), 30–32; DOI:
10.1145/368370.368387.

10.	T hompson, K. Reflections on trusting trust.
Commun. ACM 27, 8 (Aug. 1984), 761–763; DOI:
10.1145/358198.358210.

11.	T uring, A.M. I—Computing machinery and intelligence.
Mind LIX, 236 (1950), 433–460; http://mind.
oxfordjournals.org/content/LIX/236/433.full.pdf+html

Selma Tekir (selmatekir@iyte.edu.tr) is a postdoctoral
instructor in the Department of Computer Engineering at
Izmir Institute of Technology in Turkey.

I would like to thank Burcu Külahçioğlu, Murat Özkan, and
Serap Şahin for the joyful CS classics meeting we had.

Copyright held by author.

do. Knuth’s viewpoint is more encom-
passing and is helpful in understand-
ing the diversity and convergence of
programming languages. Moreover,
it points out an important trade-off
between conceptual clarity and imple-
mentation efficiency. When the task is
to define a job to a computer, low-level
instructions are better in terms of ex-
ecution efficiency. However, people
have difficulty in understanding such
written code. When you try to describe
a task to a human being, you can skip
some steps because humans are good
at filling in the blanks; machines have
difficulty doing this. The best is to
compromise: to discuss the task at a
high level but in a manner that can be
converted into a machine-processable
format as indicated by Knuth’s prodi-
gious statement.

Knuth’s opinions about tools are
similarly noteworthy.8 Like Dijkstra,
he thinks the tools we utilize have
direct influences on what we accom-
plish. He puts emphasis on the artistic
aspect of programming. According to
him, the beauty and aesthetics of tools
improves the enjoyment of users and
enhances their thinking habits. Com-

bining the assessments of Dijkstra
and Knuth, what we (plan to) do is not
independent of how we (plan to) do it.
The process is a good indicator of the
resultant product most of the time.

Conclusion
Reading CS classics widens your per-
spective by introducing stable, time-
less ideas. You escape the popular
themes of your times and evaluate the
field from a more literal position. You
learn about the qualities that make a
person a great scientist. You realize
those people are delighted to think
over problems. By learning the histo-
ry of computers and studying the lives
and works of eminent computer sci-
entists we all recognize the true merit
of being part of such a respectful pro-
fession and privileged community.

I hope this Viewpoint raises read-
ers’ interest in CS classics, causes CS
professionals to revise their reading
lists to include these books and ar-
ticles, and inspires them to further ex-
tend their classics library. Time spent
on the classics is not wasted but is
an investment in your career as a re-
searcher as well as an educator.	

Simons Foundation Program for Mathematics & the Physical Sciences
seeks to extend the frontiers of basic research. The Program’s primary focus is

on the theoretical sciences radiating from Mathematics: in particular, the fields of
Mathematics, Theoretical Computer Science and Theoretcial Physics.

Graduate Fellowships in TCS

Up to 10 Fellowships will be awarded to applicants with a track record of
outstanding results in theoretical computer science.

Applicants must be Ph.D. students at a U.S. institution of higher education.

There is a limit of one application per university;

please coordinate with the Department Chair

Application Deadline: May 1, 2012

For more information on our grants programs visit
simonsfoundation.org

