Check for
Updates

by Jon Bentley

programming
pearis

A LITTLE PROGRAM, A LOT OF FUN

Small computer programs are often educational and en-
tertaining. This column tells the story of a tiny program
that, in addition to those qualities, proved quite useful
to a small company.

The Prablem

The company had just purchased several personal com-
puters. After [got their primary system up and running,
I encouraged people to keep an eye out for tasks around
the office that could be done by a program. The firm’s
business was public apinion polling, and an alert em-
ployee suggested automating the task of drawing a ran-
dom sample from a (printed) list of precincts. Because
doing the job by hand required a boring hour with a
table of random numbers, she proposed the following
program:

I'd like a program to which the user types a list of
precinct names and an integer M. Iis output is a list
of M of the precincts chasen at random, There are
usually a few hundred precinct names (each of
which is an alphanumeric string of al most a dezen
characters), and M is typically between 20 and 40.

That’s the user’s idea for a program. Do you have any
suggestions about the problem definition before we dive
into coding?

My primary response was that it was a great idea; the
task was ripe for automation. 1 then pointed out that
typing several hundred names, while perhaps easier
than dealing with long columns of randoem numbers,
was still a tedious and error-prone task. In general, it’s
foolish to prepare a lot of input when the program is
going to ignore the bulk of it anyway. I therefore sug-
gested an alternative program:

The input consists of two integers M and N, with
M < N. The output is a sorted list of M random
integers in the range 1..N in which no integer oc-
curs more than once. For probability buffs, we de-
sire a sorted selection without replacement in
which each selection occurs equiprobably.

When M = 20 and N = 200, the program might produce
a 20-element sequence that starts 4, 15, 17, ... The user
then draws a sample of size 20 from 200 precincts by

counting through the list and marking the 4™, 15", and

@ 1984 ACM 0001-0762,/64/1200-1179 75C

December 1984 Volume 27 Number 12

17" names, and s0 on. (The numbers are required to be
sorted because the hard copy list isn't numbered.)

That specification met with the approval of its poten-
tial users. After the program was implemented, the task
that previously required an hour could be accom-
plished in a few minutes.

Now look at the problem from the other side: how
would you implement the program? Assume that vour
system provides a function RandInH(!, J) that returns a
random integer chosen uniformly in the range I..], and
a function RandReal(A, B) that returns a random real
number chosen uniformly in the interval [A, B).

One Solution

As soon as we settled on the problem to be solved, I ran
to my nearest copy of Knuth'’s Seminumerical Algorithms
(having copies of Knuth's three volumes both at home
and at work has been well worth the investment). Be-
cause [had studied the book carefully a decade earlier,
[knew that it contains several algorithms for problems
like this. After spending a minute considering several
possible designs that we’ll study shortly, I realized that
Algorithm S in Knuth’s Section 3.4.2 was the ideal solu-
tion to this problem.

The algorithm considers the integers 1, 2, ..., N in
order, and selects each one by an appropriate random
test. By visiting the integers in order, we guarantee that
the output will be sorted.

To understand the selection criterion, let’s consider
the example that M = 2 and N = 5. We should select
the integer 1 with probability 2/5; a program imple-
ments that by a statement like

if RandReal(0,1)<2/S then

Unfortunately, we can’t select 2 with the same proba-
bility: doing sa might or might not give us a total of 2
out of the 5 integers. We will therefore bias the deci-
sion and select 2 with probability 1/4 if 1 was chosen
but with probability 2 /4 if 1 was not chosen. In general,
to select S numbers out of R remaining, we'll select the
next number with probability 5/R.

This probabilislic idea results in Program 1.

Select := M; Remaining := N
for I := 1 to N do
if RandReal(0,1)<Select/Remaining
then
print I; Select := Select—1
Remaining := Remaining—1

Communications of the ACM

179

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2135.381151&domain=pdf&date_stamp=1984-12-01

Programming Pearls

1180

As long as M = N, the program selects exactly M inte-
gers: il can’t select more because when Select goes to
zero no integer is selected and it can’t select fewer
because when Select/Remaining goes to one an integer is
always selected. The for statement ensures that the
integers are printed in sorted order. The above descrip-
tion should help you believe that each subset is equally
likely to be picked; Knuth gives a probabilistic proof.

Knuth'’s second volume made the program easy to
write. Even including titles, range checking, and the
like, the final program required cnly 13 lines of BASIC,
It was finished within half an hour of when the prob-
lem was defined, and has been used for several years
without problems.

The Design Space

I just described one part of a programmer’s job: solving
today’s problem. Another, and perhaps more important,
part of the job is to prepare for solving tomorrow'’s
problems. Sometimes that preparation involves taking
classes ar studying books like Knuth’s. More often,
though, we programmers learn by the simple mental
exercise of asking how we might have solved a problem
differently. Let’s do that now by exploring the space of
possible designs for a program to select M integers at
random from 1..N.

We'll start by evaluating Program 1. The algorithmic
idea is straightforward, the code is short, it uses just a
few words of space, and the run time is fine for this
application. The run time might, however, be a prob-
lem in other applications: to select a single integer from
the range 1..2*' — 1, for instance, would take hours on a
supercomputer. It's therefore worth a few minutes of
our time to study other ways of solving the problem.
Sketch as many high-level designs as you can before
reading on; don’t worry about implementation details
yet.

One solution inserts random integers into an initially
empty set until there are enough. In pseudocode, it is

Initialize set S to empty
Size := (0
while Size<M do
T := RandInt{1,N)
if T is not in S5 then
Insert T in S

Size := 8ize + 1
Print the elements of 8§ in sorted
order

The algorithm is not biased towards any particular ele-
ment; its output is random. We are still left with the
problem of implementing the set §; think about an ap-
propriate data structure.

The bitmap data structure is particularly easy to im-
plement. We represent the set S by an array of bits in
which the " bit is one if and only if the integer [is in
the set. We initialize it by the subroutine InitToEmpty:

for I := 1 to N do
Bit{I} := 0

Communications of the ACM

The function Member(T) tells whether T is in S by re-
turning Bit[T), and the procedure Insert(T) inserts T in §
by the assignment Bif[T]: = 1. Finally, PrintInOrder
prints the elements of S:

for I := 1 to N do
if Bit[I]=1 then
print I

These subroutines allow us to write more precise pseu-
docods for Program 2.

InitToEmpty
Size := 0
while Size<M do
T := RandInt(1,N)
if not Member(T) then
Insert(T)
Size := Size + 1
PrintInOQrder

The bitmaps in Program 2 use N/b words of b-bit
memory. The obvious implementations of the initializa-
tion and printing routines hath require time propor-
tional to N, but that can be reduced to N/b by operat-
ing on the b bits in a word simultaneously (this holds as
long as M < N/b; we’ll soon consider what to do when
M is close to N). There are always exactly M calls to the
Insert procedure, but there may be more calls to Member
because some of RandInt's random numbers may al-
ready be in the set. Problem 2 shows that as long as
M < N/2, the expected number of Member tests is less
than 2M. Both Member and Insert require constant time
per operation, so the total cost of these operations is
proportional to M. Thus the expected total run time of
Program 2 is O(N/b).

Although the performance analysis assumed that the
set was implemented by a bitmap, nothing in Program 2
says so: the InitToEmpty, Member, Insert, and PrintInQOrder
operations all refer to the “Abstract Data Type” of sets.
Replacing those four subroutines can change the repre-
sentation of the sets and thereby change the perform-
ance of the program. Figure 1 illustrates several possi-
ble data structures at the end of a run in which
M =5, N =10, and RandIn#(1, 10) returns the sequence
3,1,41,5,9.

Binary search trees are described in most texts on
algorithms and data structures. Because the insertions
into the tree are in random order, it is unlikely to get
toa far out of balance; complex balancing schemes are
therefore not needed in this application. The M bins
can be viewed as a kind of hashing in which the inte-
gers in the range 1..N/M are placed in the first bin, and
the integer I is placed in bin (roughly) I x M/N. The
bins are implemented as an array of linked lists, each of
expected length one. The average performance of the
various schemes, when M < N/b, is given in Table 1.

Beware of the constant factors hiding in the big-ohs:
the array operations are usually cheap compared to
some implementations of the bil vector accesses, the
pointer operations on binary trees, and the divisions

December 198¢ Volume 27 Number 12

Programming Pearls

Bit Vector: Unsorted Array: Sorted Array:
|10]11l][)()10l |31459| |13459l

Bins:

[14
1f3ls| l9

Binary Search Tree:

(3)
O @
(3)
&)

FIGURE 1. Data Structures for Representing Sets

used by bins. To understand the performance issues,
let’s consider the case that N = 1,000,000 and b = 32.
When M = 5,000, bins are probably the most efficient
structure; when M = 50,000, bitmaps are faster and
take less space; when M = 500,000, Program 1 uses
much less space and is also faster. When M = 999,995,
though, we would do better to represent the five ele-
ments not selected; either kind of array would be easy
to code and fast for this task.

Yet another approach to generating a sorted subset of
random integers is to shuffle an N-element array that
contains the numbers 1..N, and then sort the first M to
be the output. Knuth’s Algorithm P in Section 3.4.2
shuffles the array X[1..N]:

for I := 1 to N 4o
swap(X[I],X[RandInt(I,N)])

Ashley Shepherd and Alex Woronow of the University
of Houston observed that in this problem we need only
shuffle the first M elements of the array. The complete
program is thus Program 3:

i

for I 1 to N do X[I]:=I
for I := 1 to M do

swap(X[I] ,X[RandInt(I,N)])
sort{1,M)

The sorted list is in X[1..M]. The algorithm uses N
words of memory and O(N + M log M) time. We can
view this algorithm as an alternative to Program 2 in
which we represent the set of selected elements in
X[1..I] and the set of unselected elements in

X[! + 1..N]. By explicitly representing the unselected

elements we don’t have to test whether the newly se-
lected element is already chosen,

Although Programs 1, 2, and 3 offer many different
solutions to the problem, they by no means cover the
possible design space. One approach generates the
“paps” between successive integers in the set. Although
[don’t know how to make it work, the method might
be used to generate M random integers in O(M) time
and constant space. Problem 8 describes an approach in
which a multiple-pass algorithm yields a time-space
trade-off.

Principles

This column illustrates several important steps in the
programming process. Although the following discus-
sion presents the stages in a natural order, the design
process is more active: we hop from one activity to
another, visiting each many times before arriving at an
acceptable solution.

Understand the Perceived Problem. Talk with the user
about the context in which the problem arises. Problem
statements often include ideas about solutions; like all
early ideas, they should be considered but not followed
slavishly.

Specify an Abstract Problem. A clean, crisp prohlem
statement helps us first to solve this problem and then
to see how this solution applies to other problems.

Explore the Design Space. Too many programmers
jump too quickly to “the” solution to their problem;
they think for a minute and code for a day rather than
thinking for an hour and coding for an hour. Using
informal high-level languages helps us to describe de-

TABLE 1. The Performance of the Data Structures

S . Offimeper Operstion)

Representation jna Momber ‘tnsert | Print ime - Wor
Bit Vector NIb 1 NIb O(N/b) Nfb
Unsorted Array 1 M Miog M oM M
Sorted Array 1 iog M M oM?) M
Binary Tree 1 logM logM M OMlogM}) M
Bins M 1 M om) aM

December 1984 Volume 27 Number 12

Communications of the ACM

1181

Programming Pearls

1182

signs succinctly: pseudocode represents control flow
and “Abstract Data Types” represent the crucial data
structures (such as the sets in Program 2). A tharough
knowledge of the literature is invaluable at this stage of
the design process.

Implement One Solution. On lucky days our explora-
tion of the design space shows that one program is far
superior to the rest; at other times we have to prototype
the top few to choose the best. We should strive to
implement the chosen design in straightforward and
succinct code.*

Retrospect. Polya's delightful How to Solve 1t can help
any programmer hecome a better problem solver. On
page 15 he observes that “There remains always some-
thing to do; with sufficient study and penetration, we
could improve any solution, and, in any case, we can
always improve our understanding of the solution.” His
hints are particularly helpful for locking back at pro-
gramming problems.

Problems

1. The problem specified that all M-element suhsets be

chosen with equal probability, which is & stronger

requirement than choosing each integer with proba-
bility M/N. Describe an algorithm that chooses each
element equiprobably, but chooses some subsets
with greater probability than others.

Show that when M < N/2, the expected number of

Member tests made by Program 2 hefore finding a

number not in the set is less than 2.

3. Counting the Member tests in Program 2 leads to
many interesting problems in combinatorics and
probability theory. How many Member tests does the
program make on the average as a function of M and
N? How many does it make when M = N? When is it
likely to make more than M tests?

4. This column described several algorithms for a sin-

gle problem. Make a table describing when each is

appropriate as a function of constraints on run time,
space, coding time, etc.

[Class Exercise] I assigned the problem of generating

sorted subsets twice in an undergraduate course on

algorithms. Before the unit on sorting and searching,
students had to write a pragram for M = 20 and

N = 400; the primary grading criterion was a short,

clean program—run time wes not an issue, After the

unit on sorting and searching they had to solve the

problem again with M = 2,000 and N = 1,000,000,

and the grade was based primarily on run time.

6. [V.A. Vyssotsky] Algorithms for generating combina-

2

5

(2]

* Problem 5 describes a class exercise that I graded on programming
style. Mast students turned in one-page solutions and received mediocre
grades. Two students who had spent the previous summer on a large
software development project turned in beautifully documented five-
page programs, hroken inta about a dazen procedures, each with an
elaborate heading. The studenis were upset when I gave their code
failing grades. My reason was simple: my program worked in five lines
of code, and the inflation factor of 60 was too much. John Mashey
eloguently described the two styles: code that simply does the job ver-
sus voluminous daclarations of good intent.

Communications of the ACM

Further Reading

Combinatorigl Algorithms for Computers and Calculators by
Nijenhuis and Wilf [second edition published by Aca-
demic Press in 1978) describes a large collection of algo-
rithms both abstractly and as ready-to-run FORTRAN
programs, It is particularly strong in algorithms for gen-
erating combinatorial objects.

torial objects are often profitably expressed as recur-
sive procedures. Program 1 can be writlen as

procedure RandSelect(M,N)
if M>0 then
if RandReal(0,1)<M/N then
print N
RandSelect(M—1,N—1)
else
RandSelect (M,N—-1)

This program prints the random integers in decreas-
ing order; how could you make them appear in in-
creasing order? Argue the correctness of the result-
ing program. How could you use the basic recursive
structure of this program to generate all M-element
subsets of 1.N?

7. How would you generate a random selection of M
integers from 1..N with the constraint that the final
cutput must appear in random order? How would
you generate a sorted list if duplicate integers were
allowed in the list? What if both duplicates and a
random order were desired?

8. Describe a k-pass algorithm that uses O(kM) ex-
pected time but only O(kM'/*) space to generate a
sorted list of M random integers from 1..N, with du-
plicate integers allowed.

9, [M.I. Shamos] A promotional game consists of a card
containing 10 spots, which hide a random permuta-
tion of the integers 1..10. The player rubs the dots off
the card to expose the hidden integers. If the integer
three is ever exposed, then the card loses; if one and
two (in either order) are revealed, then the card
wins. Describe the steps you would take to compute
the probability that randemly choosing a sequence
of spots wins the game; assume that you may use at
most one hour of CPU time.

Solution for a Navember Problem

1. The sequential program reads 10,000 blocks at 200
blocks /second, so it always requires 50 seconds.
The on-line program reads R records in R/20 sec-
onds, so when R = 100 it takes five seconds; when
R = 10,000 it takes about eight minutes.

For Correspondence: Jon Bentley, AT&T Bell Laboratories, Room 2C-317,
600 Mountain Avenue, Murray Hill, NJ 07974

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
clal advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and for specific permission.

December 1984 Volume 27 Number 12

