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Self Localizing Smart Camera Networks

Babak Shirmohammadi, GRASP Laboratory, University of Pennsylvania
Camillo J. Taylor, GRASP Laboratory, University of Pennsylvania

This paper describes a novel approach to localizing networks of embedded cameras and sensors. In this
scheme the cameras and the sensors are equipped with controllable light sources (either visible or infrared)
which are used for signaling. Each camera node can then automatically determine the bearing to all of
the nodes that are visible from its vantage point. By fusing these measurements with the measurements
obtained from onboard accelerometers, the camera nodes are able to determine the relative positions and
orientations of other nodes in the network.

The method is dual to other network localization techniques in that it uses angular measurements de-
rived from images rather than range measurements derived from time of flight or signal attenuation. The
scheme can be implemented relatively easily with commonly available components and scales well since the
localization calculations exploit the sparse structure of the system of measurements. Further, the method
provides estimates of camera orientation which cannot be determined solely from range measurements.

The localization technology can serve as a basic capability on which higher level applications can be
built. The method could be used to automatically survey the locations of sensors of interest, to implement
distributed surveillance systems or to analyze the structure of a scene based on the images obtained from
multiple registered vantage points. It also provides a mechanism for integrating the imagery obtained from
the cameras with the measurements obtained from distributed sensors.
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1. INTRODUCTION AND RELATED WORK
As the prices of cameras and computing elements continue to fall, it has become in-
creasingly attractive to consider the deployment of smart camera networks. Such net-
works would be composed of small, networked computers equipped with inexpensive
image sensors. These camera networks could be used to support a wide variety of ap-
plications including environmental modeling, 3D model construction and surveillance.
For example, in the near future it will be possible to deploy small, unobtrusive smart
cameras in the same way that one deploys lightbulbs, providing ubiquitous coverage
of extended areas. We could imagine using such a system to track passengers at an
airport from the time that they arrive at curbside check in to the time that they board
their flight.
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A number of research efforts at a variety of institutions are currently directed to-
ward realizing aspects of this vision. The Cyclops project at the Center for Embedded
Networked Sensing (CENS) has developed small low power camera modules and has
applied them to various types of environmental monitoring applications [Rahimi et al.
2005]. Kulkarni et al. describe the SensEye system which provides a tiered architec-
ture for multi camera applications [Kulkarni et al. 2005]. Hengstler and Aghajan de-
scribe a smart camera mote architecture for distributed surveillance [Hengstler and
Aghajan 2006]. The Panoptes system at the Oregon Graduate Institute [Feng et al.
2005] and the IrisNet project at Intel Research [Nath et al. 2002; Nath et al. 2002;
Gibbons et al. 2003] both seek to demonstrate applications based on networks of com-
mercial off-the-shelf web cameras. Bhattacharya, Wolf and Chellapa have also inves-
tigated the design and utilization of custom smart camera modules under the aegis of
the Distributed Smart Camera Project [Yue et al. 2003; Lin et al. 2004].

One critical problem that must be addressed before such systems can be deployed
effectively is that of localization. That is, in order to take full advantage of the images
gathered from multiple vantage points it is helpful to know how the cameras in the
scene are positioned and oriented with respect to each other.

In this paper we describe a novel deployment scheme where each of the smart cam-
eras is equipped with a colocated controllable light source which it can use to signal
other smart cameras in the vicinity. By analyzing the images that it acquires over
time, each smart camera is able to locate and identify other nodes in the scene. This
arrangement makes it possible to directly determine the epipolar geometry of the cam-
era system from image measurements and, hence, provides a means for recovering the
relative positions and orientations of the smart camera nodes.

Much of the work on localization in the context of sensor networks has concentrated
on the use of time of flight or signal strength measurements of radio or audio trans-
missions [Bulusu et al. 2004; Moore et al. 2004; Newman and Leonard 2003]. The
Cricket ranging system developed at MIT is one example of such an approach. Image
measurements derived from the envisioned smart camera systems would provide a
complementary source of information about angles which can be used in conjunction
with the range measurements to better localize sensor ensembles.

There has been a tremendous amount of work in the computer vision community
on the problem of recovering the position and orientation of a set of cameras based
on images. Snavely, Seitz and Szeliski [Snavely et al. 2006] describe an impressive
system for recovering the relative orientation of multiple snapshots using feature cor-
respondences. This work builds on decades of research on feature extraction, feature
matching and bundle adjustment. An excellent review of these methods can be found
in [Hartley and Zisserman 2003]. These techniques typically work in a batch fashion
and require all of the imagery to be sent to a central location for processing.

Antone et al. [Antone and Teller 2002] and Sinha et al. [Sinha and Pollefeys 2006]
both describe schemes for calibrating collections of cameras distributed throughout a
scene. Sinha et al. [Sinha and Pollefeys 2006] discuss effective approaches to recover-
ing the intrinsic parameters of a pan tilt zoom camera while Antone et al. [Antone and
Teller 2002] discuss approaches that leverage the rectilinear structure of buildings to
simplify the localization procedure.

Devarajan et al. [Devarajan et al. 2006; Devarajan et al. 2008; Cheng et al. 2007] de-
scribe an interesting scheme which distributes the correspondence establishment and
bundle adjustment process among the cameras. The scheme involves having the cam-
eras communicate amongst themselves to detect regions of overlap. This approach can
be very effective when sufficient correspondences are available between the frames.

Recently two interesting algorithms have been proposed which address the smart
camera localization problem using distributed, consensus style schemes driven by mes-
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sage passing. Piovan et al. [Piovan et al. 2008] describe a scheme for recovering the
relative orientation of a set of cameras in the plane. Their method converges over time
to an estimate that is close to the global least squares estimate. Tron and Vidal de-
scribe a scheme that recovers the position and orientation of a set of cameras in 3D.
Their method relies on standard algorithms from computer vision that are employed
to recover the relative position and orientation of pairs of cameras based on corre-
spondences between the two images. Their approach uses a series of message passing
steps to recover an estimate for the relative orientation of the cameras, then another
set of message passing steps to recover the translation between the cameras. Lastly
the pose estimates are refined by a final set of iterations which adjust both the po-
sition and orientation of the nodes. Both methods are effectively distributed forms of
gradient descent which seek to optimize agreement between the predicted image mea-
surements and the observed values at each node. In contrast, in the method proposed
in this manuscript the nodes that perform the localization procedure collect the sight-
ing measurements from all of the nodes they wish to localize and run a computation to
determine the relative configuration of the ensemble.

Several researchers have developed algorithms to discover spatio-temporal corre-
spondences between two unsynchronized image sequences [Tuytelaars and Gool 2004;
Caspi et al. 2006; Wolf and Zomet 2002; Carceroni et al. 2004]. Once these correspon-
dences have been recovered, it is often possible to recover the epipolar geometry of the
camera system. The idea of using correspondences between tracked objects to calibrate
networks of smart cameras has also been explored by Rahimi et al. [Ali Rahimi and
Darrell 2004] and by Funiak et al.[Funiak et al. 2006]. These approaches can be very
effective when the system can discover a sufficient number of corresponding tracks.

Another interesting approach to smart camera localization has been presented by
Sinha, Pollefeys and McMillan [Sinha et al. 2004] who describe a scheme for calibrat-
ing a set of synchronized cameras based on measurements derived from the silhouettes
of figures moving in the scene.

The scheme described in this paper avoids the problem of finding corresponding
features between frames by exploiting active lighting which provides unambiguous
correspondence information and allows us to recover the relative orientation of the
cameras from fewer image measurements. Early versions of the proposed scheme were
described in [Taylor 2004; Taylor and Cekander 2005] subsequent works that built
on these ideas were presented in [Taylor and Shirmohammadi 2006] and in [Barton-
Sweeney et al. 2006]. The concepts were also adapted for use on small self assembling
mobile robots as discussed in [Shirmohammadi et al. 2007].

This paper describes a novel variant of the scheme which leverages the measure-
ments from three axis accelerometers onboard the cameras. These measurements al-
low the cameras to gauge their orientation with respect to gravity and greatly simplify
the problem of recovering the relative orientation of the cameras. Once the camera
orientations have been estimated, the localization problem is effectively reduced to the
problem of solving a sparse system of linear equations. A subsequent, optional bundle
adjustment stage can be employed to further refine the position estimates. Here again
we show how one can exploit the sparse structure of the measurement system and
perform this optimization efficiently even on networks involving hundreds of cameras.

Importantly, the proposed scheme allows us to develop smart camera systems that
can be deployed and calibrated in an ad-hoc fashion without requiring a time consum-
ing manual surveying operation.

2. TECHNICAL APPROACH
Figure 1 illustrates the basic elements of our vision based localization system. In this
localization scheme each of the embedded camera systems is equipped with a con-
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trollable light source, typically an infrared Light Emitting Diode (LED), a three-axis
accelerometer and a wireless communication system. Each smart camera uses its sig-
naling LED as a blinker to transmit a temporally coded sequence which serves as a
unique identifier. The cameras detect other nodes in their field of view by analyzing
image sequences to detect blinking pixels and, hence, are able to determine the rela-
tive bearing to other visible nodes. Figure 1 shows the simplest situation in which two
nodes can see each other. Here we note that the accelerometer measurements provide
another independent source of information about the orientation of the cameras with
respect to the vertical axis. These measurements allow two smart cameras to deter-
mine their relative position and orientation up to a scale factor. When a collection of
smart cameras is deployed in an environment, these visibility relationships induce a
sparse graph among the cameras as shown in Figure 2. These measurements can be
used to localize the entire network. The scheme provides a fast, reliable method for
automatically localizing large ensembles of smart camera systems that are deployed
in an ad-hoc manner.

vab vba

A B

ga
gb

Fig. 1. This figure shows the basic elements of the proposed localization scheme. It depicts two smart
camera nodes equipped with controllable light sources and accelerometers. The camera nodes are able to
detect and identify other nodes in the scene by analyzing their video imagery. They can then determine
their relative position and orientation up to a scale from the available measurements. Larger networks can
be localized by leveraging this relative localization capability.

a.

Smart Camera
Node

b.

Smart Camera
Node

Fig. 2. The visibility relationships between the nodes can be represented with a directed graph as shown on
the left. If we consider only pairs of nodes that are mutually visible we end up with the undirected variant
shown on the right.

One advantage of the proposed localization scheme is that it can also be used to
detect and localize other smaller, cheaper sensor nodes that are simply outfitted with
blinking LEDs. Figure 4 shows the result of localizing a constellation of 4 smart cam-
eras and 3 blinker nodes. The ability to automatically survey the locations of a set of
sensor motes distributed throughout a scene could be used to enable a variety of ap-
plication. We could imagine, for example, using the smart camera system to localize a
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set of audio sensors in an environment. Once this has been accomplished the signals
from the microphone sensors could be correlated to localize sound sources in the scene
as was done by Simon et al. [Simon et al. 2004]. The locations of these sound sources
could then be related to the images acquired by the cameras so that appropriate views
of the sound source could be relayed to the user.

Various components of the proposed localization scheme are described in more detail
in the following subsections.

2.1. Blinker Detection
In the first stage of the localization process, the nodes signal their presence by blink-
ing their lights in a preset pattern. That is, each of the nodes would be assigned a
unique string representing a blink pattern such as 10110101, the node would then
turn its light on or off in the manner prescribed by its string. Similar temporal coding
schemes are employed in laser target designators and freespace optical communication
schemes.1

The blink patterns provide a means for each of the camera equipped nodes to locate
other visible nodes in their field of view. They do this by analyzing the images to locate
pixels whose intensity varies in an appropriate manner. This approach offers a number
of important advantages, firstly it allows the node to localize and identify neighboring
nodes since the blink patterns are individualized. Secondly, it allows the system to
reliably detect nodes that subtend only a few pixels in the image which allows for
further miniaturization of the camera and sensor nodes.

0xB5 0xB50xB5
Blinker Pattern

Image Samples

Fig. 3. The optical intensity signal in the imager is sampled at twice the bit period which ensures that
either the odd or even sample set will correctly sample the message regardless of the offset between the
sampling and encoding clocks.

Figure 3 depicts the timing of the blink pattern and the image acquisition process.
As described earlier, the blinkers continuously repeat a prescribed bit sequence at a
fixed frequency. In the current implementation, this blinking function is carried out on
each node by a microcontroller based subsystem which controls an LED array.

Our current optical detection scheme does not seek to synchronize the image acqui-
sition process on the cameras with the blinkers. This implementation decision signif-
icantly reduces the complexity of the system and the amount of network traffic re-
quired.

In our detection scheme we assume that the exposure time of the images is small
compared with the bit period of the optical signal being transmitted. For example in
our current implementation the bit period is (1/6)th of a second while the exposure

1One could argue that freespace optical communication dates back to classical antiquity when the invading
Greeks signaled to their hidden fleet using torches once they had successfully breached the gates of Troy.
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time of each camera is approximately 10 microseconds. This means that each pixel in
the camera effectively functions as a sample and hold circuit sampling the value of
the intensity signal at discrete intervals. In general, if we were to sample a binary
signal with a sampling comb of the same frequency it would correctly reproduce the
binary signal on almost every occasion, the only exception being when the sampling
comb happens to be aligned with the transitions in the binary signal. In that case
since the samples are being taken while the input signal is transitioning between a
high value and a low value, the resulting sample can take on any intermediate value
and the decoded result will typically not correspond to a valid code. This problem can
be overcome by sampling the signal at twice the bit encoding frequency. We can then
divide the samples into two sets corresponding to odd and even numbered samples as
shown in Figure 3 and can guarantee that at least one of these sets correctly samples
the binary signal.

More specifically if the even set of samples happens to be aligned with the bit tran-
sitions we can be sure that the odd samples which are offset by precisely half a bit
period will safely sample the middle of each bit and vice versa. That is, while one or
the other of the sets of samples may be corrupted by an accidental alignment with the
bit transitions at least one set of samples must sample the bit pattern cleanly.

In our implementation, as each new image is obtained it is compared with the pre-
vious odd or even frame, each pixels intensity measurement is compared with its pre-
vious value and if it has changed by more than a specified amount we push a 1 bit
on a shift register associated with that pixel otherwise we push a 0 bit. By testing
the change in intensity values between frames rather than the intensity values them-
selves we avoid setting an absolute threshold on intensity values which makes our
implementation more robust to varying illumination conditions.

As an example, if the system observed the following sequence of intensity values
from a given pixel { 108, 110, 113, 70, 20, 68, 98, 58, 18, 60, 105, 108, 112, 55, 12, 54,
100, 101 }, it would produce the following 8 bit values from the odd and even samples
respectively 01111011 , 00000100 assuming that the sample indices start at 1 and a
threshold value of 50 is used to test the changes between consecutive samples. These
8 bit patterns are then compared to the transition patterns that would result from
the signal patterns that the smart camera is interested in detecting to see if a match
exists. For example a blink code of 0xB5 would produce the following pattern of tran-
sitions 11011110. This decoding can be accomplished simply and efficiently by using
a lookup table. Note that since the samples can start at any point in the sequence
the bit transitions can correspond to any cyclic permutation of the pattern of interest.
Similarly negating a given pattern produces the same sequence of transitions in the
intensity measurements only inverted. These issues are easily handled by appropri-
ately tagging all equivalent patterns of transitions in the lookup table with the same
base code. In the example above, the transition pattern 01111011 would map to the
code 0xB5 in the lookup table. Because of these equivalences, the number of unique
codes that this recognition scheme can distinguish is on the order of

(
2(n−1)

n

)
where n

denotes the number of bits in the code.
After eight even or odd samples have been acquired each additional frame adds

another transition which can be used to confirm the presence of a detected code. That
is, given a complete set of 8 samples one can predict what the next transition will
be if the pixel is in fact exhibiting the suspected blink pattern. This means that the
system can confirm the presence of a blink code by monitoring the pixel over a specified
number of samples to be sure of its identity. For example if a code of 0xB5 is detected
at a particular pixel based on either the odd or the even samples. The system would
monitor that location for an additional 20 frames which would provide 10 more odd
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or even samples which should follow the proscribed pattern before the detection is
confirmed. In practice this simply means that the transition patterns detected at the
pixel in question should be mapped by the lookup table to the same target code over
an extended sequence of frames. This is a very effective approach for removing false
detections caused by spurious sampling alignments since these false detections do not
recur reliably.

More sophisticated decoding schemes are certainly possible. One could, for example
imagine a coding scheme which used a unique preamble to delineate the start of the bit
sequence. The advantage of the scheme described here is the fact that it is amenable to
real time implementation using straightforward per-pixel operations. With our current
system we are able to process and decode 3 Mpix images at 12 frames per second on an
embedded processor. Note that this scheme returns all of the relevant blinker patterns
detected in the image so the camera can simultaneously detect multiple targets. Figure
4 shows the results of the blinker detection phase on a typical image. Here the detected
locations in the image are labeled with the unique codes that the system found.

Once the blinkers have been detected and localized in the images, we can derive the
unit vectors, vab and vba, that relate the nodes as shown in Figure 1. Here we assume
that the intrinsic parameters of each camera (focal length, principal point, distortion
coefficients) have been determined in a previous calibration stage. These parameters
allow us to relate locations in the image to direction vectors relative to the camera
frame.

a. b.

Fig. 4. This figure shows the results of automatically localizing a constellation of 4 smart cameras and 3
blinker nodes. The image obtained from one of the smart cameras is shown in (a) while the localization
results are shown in (b).

2.2. Recovering Orientation
Each of the smart camera nodes is equipped with an accelerometer which it can use
to gauge its orientation with respect to gravity. More specifically given a unit vector
gC denoting the measured gravity vector in the cameras frame of reference we can
construct an orthonormal rotation matrix RCW ∈ SO(3) which captures the relative
orientation between the cameras frame of reference denoted by C, and a local grav-
ity referenced frame centered at the camera denoted by W where the z axis points
upwards as shown in Figure 5.

From the vector gC we can derive a second vector nC which represents a normalized
version of (ex × gC) where ex denotes the unit vector along the x-axis, that is ex =
(1, 0, 0)T . We use the vector nC to define the y axis of the gravity reference frame, yW ,
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W
C

gc

ywxw

zw

xc

yc

zc

Fig. 5. Each smart camera uses the measurements from an onboard accelerometer to gauge its orientation
with respect to gravity.

in Figure 5. From the two perpendicular unit vectors, gC and nC , we can construct the
rotation matrix RCW ∈ SO(3) as follows: RCW = [ (gC × nC) nC −gC ]. Note that the
columns of RCW correspond to the coordinates of the x, y and z axes of the world frame
in the cameras frame of reference. These equations can easily be modified in situations
where the gravity vector is aligned with the x-axis.

W

ywxw

zw
vw

Fig. 6. Sighting vectors in each camera can be transformed to a local, gravity referenced frame and repre-
sented in terms of azimuth, α, and elevation, β, angles.

This rotation matrix can be used to transform the sighting vectors recovered in the
camera frame into the local gravity referenced world frame where they can be conve-
niently represented in terms of azimuth and elevation angles, α and β, as shown in
Figure 6. More specifically, once a blinker has been detected in the image, one can use
its position in the frame along with the intrinsic parameters of the camera, which are
recovered in a prior calibration phase, to compute a 3D vector, vC , which represents
the ray from the center of projection of the camera to the blinker 2. The rotation matrix
RCW can then be used to transform this vector from the cameras frame of reference to
the local gravity referenced frame as follows: vW = RT

CW vC . Equation 1 shows how the
resulting vector, depicted in Figure 6, is related to the azimuth and elevation angles,
α and β.

2This is a standard operation in many Computer Vision codes and one can find a thorough description of the
procedure by consulting the Matlab Calibration Toolbox which is freely available online. See also [Heikkila
and Silven 1997].
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vW =

 vX
W

vY
W

vZ
W

 ∝ ( cosβ cosα
cosβ sinα

sinβ

)
(1)

These equations allow us to recover the azimuth and elevation angles from the com-
ponents of the vector vW as follows: α = atan2(vY

W ,vX
W ), β = asin(vZ

W ). This change of
coordinates simplifies the overall localization problem since we can use the azimuth
angle measurements to localize the nodes in the horizontal plane and then recover the
vertical displacements between the nodes using the elevation angles in a second phase.

i

j

ij

ji
ij

xi

yi

xj

yj

Fig. 7. The relative yaw angle between two camera frames in the plane can easily be recovered from the
measured azimuth angles if the cameras can see each other.

While we can construct a gravity referenced frame for each of the cameras from the
accelerometer measurements, the relative yaw between these frames is initially un-
known. However, when two smart cameras can see each other as depicted in Figure 7
it is a simple matter to estimate their relative orientation from the available azimuthal
measurements αij and αji which are related by the following equation.

αji = αij − θij + π (2)

Here the parameter θij captures the yaw angle of camera frame j with respect to
camera frame i as shown in Figure 7.

More generally, the visibility relationships between the smart camera nodes can be
captured in terms of a directed graph where an edge between nodes i and j indicates
that node i can measure the bearing to node j as shown in Figure 2. Any smart camera
node can construct such a graph by querying its neighbors for their sighting mea-
surements. From this directed visibility graph we can construct an undirected variant
where two nodes are connected if and only if they can see one another. If there is a
path between two nodes in this undirected graph, they can determine their relative
orientation. This allows any smart camera node to estimate the relative orientation of
its neighbors via a simple breadth first labeling.

Once this has been done, all of the bearing angles can be referenced to a single frame
of reference, that of the root node. What remains then is to determine the position of
the nodes relative to the root. This can be accomplished by concatenating all of the
available azimuthal measurements into a single homogenous linear system which can
be solved using singular value decomposition (SVD).
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j

k

jk

kj

ik

i

ij

(xik, yik)

(xij, yij)

xi

yi

yj

yk

Fig. 8. In this figure the positions and orientations of the cameras j and k are referenced to the root node,
camera i. The bearing measurements αjk and αkj induce linear constraints on the coordinates (xij , yij)
and (xik, yik) .

Consider the situation shown in Figure 8 where node j measures the relative bear-
ing to node k. Since we have already recovered the relative orientation between camera
frame j and the root camera node i, θij , each bearing measurement induces a homoge-
nous linear equation in the unknown coordinates of the following form.

(xik − xij) sin(αjk + θij)− (yik − yij) cos(αjk + θij) = 0 (3)
Here (xij , yij) and (xik, yik) denote the coordinates of nodes j and k with respect

to camera frame i. The collection of homogenous linear equations can be aggregated
into a row sparse system of the form Ap = 0 where p is a vector with 2n entries
formed by concatenating the coordinates of the n camera frames with respect to the
root, p = (xi1, yi1, xi2, yi2, ..., xin, yin)T . The matrix A will have one row for each bearing
measurement.

Singular value decomposition can be employed to find the null space of the matrix
A. More specifically, it can be used to find the vector corresponding to the minimal sin-
gular value of A or the minimum eigenvalue of ATA. Because of the sparse structure,
such problems can be solved efficiently using modern matrix codes even for systems
involving hundreds of cameras [Golub and Loan 1996]. This approach subsumes and
improves upon earlier approaches to localizing larger collections of cameras based on
repeated triangulation [Taylor and Shirmohammadi 2006]. If the structure of the net-
work cannot be completely determined from the available measurements the dimen-
sion of the null space of A will be two or more. This can be detected by considering the
ratio between the smallest and second smallest singular values.

Since this linear system is homogenous we can only resolve the configuration of the
nodes up to a positive scale factor. In other words, the camera systems provide us with
angular measurements which allow us to perform localization via triangulation. They
do not provide distance measurements directly so the overall scale of the reconstruc-
tion is undetermined. This ambiguity can be resolved with a single distance measure-
ment, that is, knowing the distance between any two nodes in the network determines
the scale of the entire constellation.

If additional position measurements are available for some of the nodes, via GPS or a
prior survey, such information can easily be incorporated into the localization process.
For example if (xw

j , y
w
j ) denote the easting and northing GPS coordinates of node j we
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can add the following two equations which relate the coordinates recovered from the
homogenous system to the GPS measurements.

xw
j = λ(xij cos γ − yij sin γ) + tx (4)
yw

j = λ(xij sin γ + yij cos γ) + ty (5)

Where tx, ty and γ denote the position and orientation of the root node with respect to
the geodetic frame of reference and λ denotes the overall scale parameter that relates
the two frames. If we let c = λ cos γ and s = λ sin γ. We end up with two linear equations
in the unknowns c, s, tx and ty. Given two or more such GPS measurements one can
solve the resulting linear system to recover these unknown parameters and, hence,
recover the geodetic locations of all of the nodes in the system.

xw
j = cxij − syij + tx (6)
yw

j = sxij + cyij + ty (7)

2.3. Recovering Vertical Displacements

j

k

Zij

(Zik - Zij)

ljk

βjk

Zik

Fig. 9. The elevation measurements induce a linear constraint on the relative heights of the nodes once the
locations in the plane have been estimated.

Once the (x, y) locations of the nodes in the horizontal planes have been estimated,
it is a simple matter to recover the relative heights of the nodes. Figure 9 shows how
an elevation measurement, βjk, relates the heights of two nodes zij and zik. From each
such elevation measurement one can construct a linear equation.

zik − zij√
(xik − xij)2 + (yik − yij)2

= tanβjk (8)

These constraint equations can be aggregated into a single linear system of the form
Bz = c where the vector z represents the aggregates of all of the unknown vertical
coordinates, z = (zi1, zi2, ..., zin)T . Once again the root node i defines the origin so its z
coordinate is 0.
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2.4. Refining Pose Estimates
If necessary, the estimates for node position and orientation produced by the linear
process described in the preceding sections can be further refined. In this refinement
step the localization process is recast as an optimization problem where the objective is
to minimize the discrepancy between the observed image measurements and the mea-
surements that would be predicted based on the estimate for the relative positions and
orientations of the sensors and cameras. This process is referred to as Bundle Adjust-
ment in the computer vision and photogrammetry literature [Hartley and Zisserman
2003].

In the sequel we will let ujk ∈ R3 denote the unit vector corresponding to the mea-
surement for the bearing of sensor k with respect to camera j. This measurement is
assumed to be corrupted with noise. The vector vjk ∈ R3 corresponds to the predicted
value for this direction vector based on the current estimates for the positions and
orientations of the sensors. This vector can be calculated as follows:

vjk = Rij(tik − tij) (9)
In this expression Rij ∈ SO(3) denotes the rotation matrix which relates camera

frame j to the root frame i while tik, tij ∈ R3 denote the positions of nodes j and k
relative to node i.

The goal then is to select the camera rotations and sensor positions so as to minimize
the discrepancy between the vectors ujk and vjk for every available measurement.
In equation 10 this discrepancy is captured by the objective function O(x) where x
denotes a vector consisting of all of the rotation and translation parameters that are
being estimated.

O(x) =
∑
i,j

∥∥∥∥uij −
vij

‖vij‖

∥∥∥∥2 (10)

Problems of this sort can be solved very effectively using variants of Newton’s
method. In these schemes the objective function is locally approximated by a quadratic
form constructed from the Jacobian and Hessian of the objective function

O(x + δx) ≈ O(x) + (∇O(x))Tδx +
1
2
δxT(∇2O(x))δx (11)

At each step of the Newton algorithm we attempt to find a step parameter in the
space, δx, that will minimize the overall objective function by solving a linear equation
of the form.

δx = −(∇2O(x))(∇O(x)) (12)
Here we can take advantage of the fact that the linear system described in equation

12 is typically quite sparse. More specifically, the Hessian matrix ∇2O will reflect the
structure of the visibility graph of the sensor ensemble. This can be seen by noting that
the variables corresponding to the positions of nodes j and k only interact in the objec-
tive function if node j observes node k or vice versa. For most practical deployments,
the visibility graph is very sparse since any given camera typically sees a relatively
small number of nodes as depicted in Figure 2. This means that the computational
effort required to carry out the pose refinement step remains manageable even when
we consider systems containing several hundred cameras and sensor nodes.

The optimization problem given in Equation 10 can be further simplified by restrict-
ing the problem to recovering the relative positions of the camera in the horizontal
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plane. This can be accomplished simply by projecting the bearing measurements into
the plane perpendicular to the gravitational vector. In this case Equation 9 would be
modified, the rotation matrix Rij would be an element of SO(2) and the vectors tik, tij

and vjk would be in R2.

2.5. Scaling Up
The proposed linear and non-linear localization schemes which exploit the sparse
structure of the relevant matrices can be used to localize hundreds of nodes at a time.
However, when we consider networks of the future we may ultimately want to han-
dle systems that cover extended areas such as the airport scenario mentioned in the
introduction. Such systems may involve thousands of camera and sensor nodes which
are added and removed continuously. Here it may not be feasible or desirable to have
each node recover its position with respect to every other node in the ensemble. The
proposed scheme can be employed to allow each smart camera node to estimate its
position with respect to all of its neighbors within a specified radius. Each node would
then have an estimate for the configuration of a subset of the total ensemble. This is
however, sufficient to allow all of the nodes to agree on locations of salient objects via
a process of coordinate transformation.

Consider a situation where camera node j wants to inform its neighbor k of the
coordinates of some event. Let Rjk ∈ SO(3) and tjk ∈ R3 denote the estimates for the
position and orientation of node k with respect to node j which is maintained by node
j. Similarly let Rkj ∈ SO(3) and tkj ∈ R3 denote node k’s estimate for the relative
position of node j. Let ljk denote the distance between j and k in node j’s frame of
reference while lkj denotes the length of the same vector in k’s reference frame. Notice
that since the two nodes localize each other independently there is no reason that these
lengths should be the same in the absence of absolute distance measurements. Given
the location of a point in j’s reference frame, Pj , one can transform that coordinate to
k’s reference frame using the following expression.

Pk =
((

lkj

ljk

)
RkjPj

)
+ tkj (13)

Here the ratio
(

lkj

ljk

)
accounts for the change in scale factor between the two coor-

dinate frames. Since the procedure does not require the nodes to agree on a common
scale factor it can be employed even when no absolute distance measurements are
available.

These transformation can be chained so that events detected by one smart camera
node can be relayed to other nodes through a sequence of transformations so that
all of the events are referenced to a common frame where they can be compared and
correlated.

One can imagine embedding these coordinate transforms into the communication
and routing protocol so that position information is seamlessly transformed into the
prevailing coordinate frame of reference as it is sent through the network.

3. EXPERIMENTAL RESULTS
In order to characterize the efficacy of the proposed localization scheme a number
of experiments were carried out both in simulation and with our custom built smart
camera network. Section 3.1 briefly describes the Argus smart camera nodes that we
designed and built and Section 3.2 recounts the localization experiments that were
carried out with those nodes. Section 3.3 describes the results of a set of simulation
experiments that were designed to further characterize the behavior of the method.
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3.1. Smart Camera Node
Figure 10 shows a picture of the current generation of the Argus Smart Camera Sys-
tem. Each smart camera system is powered by a dual core 600 MHz Blackfin processor
from Analog Devices. This Digital Signal Processor was designed to support high per-
formance image processing operations in low power devices such as cameras and cell
phones. The smart camera board can be interfaced to a range of Aptina CMOS im-
agers, the configuration shown in the figure is outfitted with a 3 megapixel imager and
a fisheye lens which affords a field of view of approximately 180 degrees. The system
is also outfitted with a Zigbee wireless communication module, an Ethernet controller,
an 8 bit PIC microcontroller, a three axis accelerometer and an 850 nm high inten-
sity infrared signaling light. When properly aligned, the smart cameras can detect the
infrared signaling lights at distances in excess of twenty meters.

In this realization, the center of the lens and the center of the LED array are offset
by 5.5 cm. Ideally, they should be colocated. This could be accomplished by surrounding
the lens with the LEDs. In practice we assume that the modeling error introduced by
this offset will be negligible if the distance between the cameras is relatively large, on
the order of 2 meters or more.

The unit can, optionally, be equipped with a GPS receiver and/or a three axis magne-
tometer which would allow it to gauge it’s absolute position and orientation. The unit
consumes less than 3 watts of power in operation and can be powered for 6 hours with
a 6 ounce Lithium Ion battery pack.

Fig. 10. Argus Smart Camera Node used in our experiments.

3.2. Indoor Experiments
These smart camera nodes were deployed in an ad-hoc manner in various locations
in and around our laboratory facility. The linear localization and bundle adjustment
process were carried out on the bearing measurements obtained from the sensors. The
results of this procedure were then compared to measurements for the distances be-
tween the nodes obtained with a Leica Disto D3 handheld range finder. Because of the
distances involved and the geometry of the camera nodes the errors in these ground
truth distance measurements are on the order of 10 centimeters. In each experiment
an appropriate scale factor was chosen to account for the scale ambiguity in the local-
ization result.

For each of the deployment scenarios we show pictures of the environment along
with a sketch indicating the dimensions of the space and the recovered locations of
the cameras. Three dimensional renderings of the camera positions recovered by the
method are also presented.
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Fig. 11. Block Diagram showing the major components of the Smart Camera node.

Fig. 12. Floor Plan of the High Bay area showing the dimensions of the space and the recovered locations
of the cameras

3.2.1. High Bay. This experiment was conducted in the High Bay portion of our labo-
ratory in an area 6.3 meters by 9 meters on side. The results obtained by the localiza-
tion scheme were compared with 23 inter node distance measurements ranging from
3.62 meters to 9.98 meters. For the linear method the average absolute error in the
recovered range measurements was 5.36 cm while the average relative error in the
measurements was 0.91 %. After bundle adjustment the average absolute error was
6.24 cm and the average relative error was 1.05%.

3.2.2. GRASP Laboratory. This experiment was conducted in one of the main office ar-
eas of our laboratory in an area 20 meters by 16 meters on side. The results obtained
by the localization scheme were compared with 16 inter node distance measurements
ranging from 3.58 meters to 16.19 meters. For the linear method the average absolute
error in the recovered range measurements was 13.17 cm while the average relative
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Fig. 13. Snapshots of the High Bay area showing the deployed cameras

Fig. 14. Localization results returned by the proposed localization method showing the relative positions
and orientations of the nodes.

Fig. 15. Floor Plan of the GRASP Lab area showing the dimensions of the space and the recovered locations
of the cameras
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Fig. 16. Snapshots of the GRASP Lab area showing the deployed cameras

Fig. 17. Localization results returned by the proposed localization method showing the relative positions
and orientations of the nodes.

Fig. 18. Floor Plan of the first floor area showing the dimensions of the space and the recovered locations
of the cameras

error in the measurements was 1.56 %. After bundle adjustment the average absolute
error was 12.90 cm and the average relative error was 1.35%.

3.2.3. First Floor CS Building. In this experiment the cameras were deployed to cover
the entire first floor of the Computer and Information Science building, an area ap-
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Fig. 19. Snapshots of the first floor area showing the deployed cameras

Fig. 20. Localization results returned by the proposed localization method showing the relative positions
and orientations of the nodes.

proximately 20 meters by 16 meters on side. The results obtained by the localization
scheme were compared with 16 inter node distance measurements ranging from 5.06
meters to 17.48 meters. For the linear method the average absolute error in the re-
covered range measurements was 41.40 cm while the average relative error in the
measurements was 4.23 %. After bundle adjustment the average absolute error was
32.75 cm and the average relative error was 3.31%. In this experiment camera 9 was
actually mounted on the mezzanine overlooking the entranceway which accounts for
its vertical displacement.

3.3. Simulation Experiments
A series of simulation experiments were carried out to investigate how the proposed
scheme would perform on networks that were considerably larger than the ones we
could construct with our available hardware. Figure 21 shows the basic elements of
these simulation experiments. The horizontal plane was divided into a grid where the
cells were unit length on side. Each grid was populated with a number of virtual smart
cameras which were randomly positioned and oriented within that area. In these ex-
periments, the number of smart cameras per cell is referred to as the camera density.
Limitations on the cameras field of regard were modeled by stipulating that each cam-
era could observe all of the cameras in its own grid cell and the adjoining cells but
no others. The cameras were assumed to be effectively omnidirectional so they could
measure the bearing to all of the other cameras within their field of regard.
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Fig. 21. In the simulation experiments the virtual smart camera nodes were randomly placed within vari-
ous grid cells in the plane. Each cell is unit length on side and the number of cameras in each cell is referred
to as the camera density. One camera frame at the center defines the base frame of reference.

One camera was placed at the origin of the coordinate system and this node defined
the coordinate frame of reference. The proposed localization schemes were employed to
recover the positions and orientations of all of the other smart cameras with respect to
this base frame. The localization was restricted to the horizontal plane since vertical
displacements could easily be recovered once the horizontal locations were determined.

The bearing measurements recovered by the smart cameras were corrupted by uni-
formly distributed random noise. The maximum error in the bearing measurements is
referred to as the bearing error, so a bearing error of 2 degrees would indicate that the
measured bearing could differ from the true value by up to 2 degrees.

The first simulation experiment was designed to explore how the error in the recon-
struction varied as a function of distance from the reference camera. Here we explored
various camera configurations within a 7 by 7 grid. For each trial we recorded the er-
ror in the rotational and translational error in each position estimate and segregated
these errors based on distance. In Figure 22 the first error bar in each plot reports
the mean and standard deviation of the error for cameras between 0 and 1 units from
the reference camera, the second bar reports the error for cameras between 1 and 2
units from the origin and so on. The bearing error for these experiments was fixed
at 2 degrees. The reconstruction procedure first recovered an estimate for the camera
pose using the linear method and then refined that estimate with a bundle adjustment
stage.

The graphs indicate how the rotational and translational error increase as the dis-
tance from the reference node grows. This is similar to the effect observed in robotic
localization systems where small errors accumulate over time as the robot moves fur-
ther from its point of origin.

These experiments were repeated for camera densities varying from 1 camera per
cell up to 5 cameras per cell as shown in Figure 22. These plots indicate that as the
camera density increases, the reconstruction error decreases. Effectively, adding more
cameras to each cell increases the number of bearing measurements available and
further constrains the reconstruction improving the accuracy.
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Fig. 22. This figure shows how the position and orientation errors vary as the distance from the reference
frame increases and the camera density changes. The first second and third rows of graphs correspond to
camera densities of 1, 3 and 5 cameras per cell respectively. The error bars in the graph indicate the mean
and standard deviation of the errors in the reconstruction.

The second set of experiments was designed to explore how the error in the recon-
struction varied as a function of the bearing error. Several trials were carried out on a
7 by 7 grid with a camera density of 2 as the bearing error was varied from 0.5 degrees
up to 3 degrees. Figure 23 shows how the mean rotational and translational error in
the reconstruction were affected as the simulated measurement error grew.

The third set of experiments characterize the improvement afforded by the bundle
adjustment phase of the reconstruction procedure. The plots on the left hand side in-
dicate the rotational and translational error as a function of distance in the estimate
provided by the linear estimation stage over several trials. The plots on the right record
the error after those estimates have been refined by the bundle adjustment stage. In
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Fig. 23. This figure shows how the position and orientation errors vary as the magnitude of the bearing
error increases. The error bars in the graph indicate the mean and standard deviation of the errors in the
reconstruction.
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Fig. 24. The plots on the left hand column of the figure depict the error in the pose estimates after the
linear phase of the reconstruction procedure while the plots on the right depict the errors after the bundle
adjustment phase.

these experiments we employed a 7 by 7 grid with a camera density of 2 and a bearing
error of 2 degrees. In these experiments the bundle adjustment phase typically reduces
the errors in the estimates by about 50%.

Figure 25 plots the time required to perform both the linear and bundle adjust-
ment phases of the scheme as a function of the total number of smart cameras being
localized. The procedure was implemented in Matlab and run on a MacBook Pro lap-
top. Note that even for 451 camera positions the time required to execute the bundle
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Fig. 25. This figure shows how the time required to perform the linear and bundle adjustment phases of
the localization procedure grows as the number of cameras is increased.

adjustment phase was under 10 seconds. The linear phase of the reconstruction is ex-
ecuted in under 1.5 seconds in all cases. These experiments were run with a camera
density of 2 and a bearing error of 2 degrees. The number of cameras was increased by
increasing the number of grid cells.

4. DISCUSSION
This paper describes a scheme for determining the relative location and orientation of
a set of smart camera nodes. The scheme proposed in this paper involves a combina-
tion of hardware and software and is, therefore, most applicable in situations where
the user has some control over the design of the smart camera nodes. We argue that
relatively small additions to the smart camera hardware, namely an accelerometer
and a signaling LED, can be leveraged by an appropriate localization algorithm to de-
termine the relative location of the nodes with respect to each other rapidly, reliably
and accurately. Experimental results indicate that the scheme provides accurate lo-
calization results both in simulation and in practice. The results also provide some
indication for how the accuracy of the procedure changes as important configuration
parameters are varied.

These experimental results show that the accuracy of the proposed localization
scheme compares favorably with the accuracy results reported for other distributed
localization schemes on comparable problems. The simulation results provided in [De-
varajan et al. 2006] consider the problem of localizing a network of 40 cameras dis-
tributed over a circle with a radius of 110 meters. The maximum level of measurement
noise considered in this work was 0.1 degrees. Under these conditions their scheme lo-
calized the cameras with a mean rotation error of 0.12 degrees and a mean translation
err of 120.1 cm. In our simulation experiments the minimum noise level considered
was 0.5 degrees. Even with this level of noise the proposed scheme was able to localize
a network of 99 cameras distributed over a square 200 meters on side with a mean
rotation error of 0.15 degrees and a mean translation error of 14.28 cm.

Funiak et al. [Funiak et al. 2006] describe an experiment which involved localizing a
network of 25 cameras distributed over a rectangular area of 50 square meters. Their
scheme was able to localize the nodes with a root mean square error of approximately
20 cm. The scheme proposed in this paper was used to localize a network of 6 cameras
distributed over 54 square meters with an average error of 6.24 cm.

In the proposed approach the critical problem of establishing correspondences be-
tween the nodes is accomplished via optical signaling. This provides a mechanism for
reliably identifying nodes in the scene. Other schemes rely critically on the existence
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of an appropriate set of stationary or moving targets in the scene that can be matched
between views. The advantage of such schemes is that they do not require any mod-
ification of the camera hardware, however they can fail in situations where such cor-
respondences are hard to obtain or are not appropriately spaced. Furthermore, the
problem of matching objects between views is non-trivial and can require significant
computational resources particularly as the number of images grows. Agarwal et al.
[Agarwal et al. 2009] describe a state of the art, optimized, distributed scheme for
finding correspondences between images. They report computation times of 5 hrs, 13
hours and 27 hours to find correspondences among 57,845, 150,000 and 250,000 im-
ages respectively. These computations were performed on a network of 62 dual quad
core machines. Cheng et al. [Cheng et al. 2007] propose the use of feature digests to ef-
fectively reduce the amount of information that must be sent between smart cameras
in a network to establish correspondences. However, this scheme still requires each
camera to broadcast approximately 100 kilobytes of information to every other node in
the ensemble.

The scheme proposed in this paper provides a more direct approach that can reli-
ably identify neighboring nodes without any prior information in a matter of seconds
using embedded processors. Effectively the smart camera nodes act as their own fidu-
cials and the risks associated with relying on an appropriate distribution of feature
correspondences in the scene are reduced.

Importantly the resulting sightings directly measure the epipolar structure of the
camera network and, therefore, provide more information about the relative location
of the nodes than shared point correspondences. This can be seen by noting that two
cameras that can see each other can determine their relative position and orienta-
tion up to a scale whereas traditional relative orientation schemes require at least 5
correspondences in a non-degenerate configuration to recover the same information.
Because of this the number of measurements required to localize the network and the
amount of information that must be communicated between the nodes is significantly
reduced. Note, however, that the localization algorithm requires an adequate number
of line of sight measurements between pairs of cameras in the network so that the
resulting visibility graph can be resolved.

The optical signaling scheme employed in this work assumes that the observed in-
tensity of the signaling lights is on the order of the prevailing brightness in the scene
so that the signaling changes can be measured by the cameras. For example, it would
not be possible to detect a blinking LED in an image if the sun were directly behind it
since the sun is so much brighter. Since the observed intensity of a light source falls off
with distance, the range at which a particular signaling light can be detected will be
concomitantly limited. Our experiments indicate that an array of eight standard high
intensity infrared LEDs could be detected reliably at ranges up to 20 meters indoors
which proved more than adequate for most deployment scenarios. For outdoor opera-
tions, camera systems employing an optical notch filter tuned to the wavelength of the
LEDs have been used to detect high intensity LED arrays at distances on the order of
500 meters in direct sunlight.

Another key advantage of the proposed scheme is that it leverages the sparseness in-
herent in the system of sighting measurements which makes the resulting algorithms
much faster than standard vision-based schemes. In recent work Agarwal et al. [Agar-
wal et al. 2009] describe a state of the art, heavily optimized vision-based localization
system intended for city-scale reconstructions. They report reconstruction times of 16.5
hours, 7 hours and 16.5 hours on data sets with 11,868, 36,658 and 47,925 images re-
spectively. Furukawa etal. [Furukawa et al. 2009] applied this reconstruction method
to indoor environments they report reconstruction times of 13 minutes for a system
with 22 cameras, 76 minutes for a system with 97 cameras, 92 minutes for a system

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 39, Publication date: August 2011.



39:24 Shirmohammadi, Taylor

with 148 images and 716 minutes for a system with 492 cameras on a dual quad-core
2.66 GHz computer. Devarajan et al. [Devarajan et al. 2006] describe a distributed
approach to camera localization and report reconstruction times on the order of 54
minutes for a system with 40 images.

In contrast, the method described in this paper can be used to localize networks
consisting of hundreds of cameras in a matter of seconds with modest computational
effort. This is particularly relevant in the context of smart camera systems where com-
putational effort can be directly related to power consumption and time complexity
determines the responsiveness of the system. In our experiments with our ten camera
implementation the nodes were typically able to detect each other, communicate their
measurements and recover their relative positions within 30 seconds. The most time
consuming phase being the blinker detection portion which could be accelerated with
faster frame rates. The resulting system is fast enough that it can be used for ad-hoc
deployments and can respond quickly when nodes are added, removed or displaced.

The proposed localization scheme is effectively centralized since the sighting mea-
surements from all of the nodes being localized are collected at a central site and then
passed to the localization algorithm. However, each sighting measurement is relatively
small involving only three numbers: the id of the node spotted along with the azimuth
and elevation angles. On a network consisting of 1000 nodes if each camera saw 10
other targets the total amount of measurement information that would need to be col-
lected would be on the order of 30,000 numbers.

Distributed localization methods based on consensus style approaches have the ad-
vantage of only requiring communication between neighboring nodes in the network.
However, the number of communication steps in these schemes depends critically on
the convergence rate of the algorithm. For example Tron and Vidal [Tron and Vidal
2009] report using 1400 rounds of message passing to localize a network of 7 nodes.

It is important to note that in this framework angular measurements derived from
images and range measurements derived from other sources are treated as comple-
mentary sources of information. Measurements derived from the vision system can be
used to determine the relative orientations of the camera systems which is important
information that cannot be derived solely from range measurements. On the other
hand, range measurements can be used to resolve the scale ambiguity inherent in an-
gle only localization schemes. Similarly angular measurements can be used to disam-
biguate the mirror reflection ambiguities that are inherent in range only localization
schemes. Ultimately it is envisioned that smart camera networks would incorporate
range measurements derived from sources like the MIT Cricket system or Ultra Wide
Band radio transceivers. These measurements could be used to improve the results of
the localization procedure and to localize nodes that may not be visible to the smart
camera nodes.
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