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The most widely used ordering scheme to reduce fills and operations in sparse matrix computation 
is the minimum-degree algorithm. The notion of multiple elimination is introduced here as a 
modification to the conventional scheme. The motivation is discussed using the k-by-k grid model 
problem. Experimental results indicate that the modified version retains the fill-reducing property of 
(and is often better than) the original ordering algorithm and yet requires less computer time. The 
reduction in ordering time is problem dependent, and for some problems the modified algorithm can 
run a few times faster than existing implementations of the minimum-degree algorithm. The use of 
external degree in the algorithm is also introduced. 

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra-sparse 
and uery large systems; G.4 [Mathematics of Computing]: Mathematical Software--algorithm 
analysis 
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1. INTRODUCTION 

We consider the ordering problem in the direct solution of sparse symmetric 
positive definite linear systems, 

Ax = b. 

It is well known that the equivalent system 

PAPT(Px) = Pb 

can be solved, and for a judicious choice of the permutation matrix P, significant 
reduction in arithmetic operations and storage can often be achieved. Readers 
are referred to George and Liu [7] for details. 

The most widely used general-purpose ordering scheme in sparse matrix 
computation is the minimum-degree algorithm [l, 4, 7, 111. It is a heuristic 
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algorithm, but it is remarkably successful in reducing fills and operations in the 
direct solution. There are several implementations of this algorithm: the SPAR- 
SPAK package [B], the Yale Sparse Matrix Package, YSMP [4], and the Harwell 
code [3]. Many novel features have been incorporated into these implementations 
to improve the overall efficiency of the algorithm. 

In this paper we introduce the idea of multiple elimination as a modification to 
the minimum-degree ordering algorithm. It helps to reduce the number of degree 
updates, which is the most time consuming part in the overall scheme. The 
motivation for our approach is given in Section 3, after some background material 
of the minimum-degree strategy is reviewed in Section 2. In Section 4 we describe 
multiple elimination and its relationship to the ordering algorithm. The section 
also contains a slight variant of the basic modification. In Section 5 we discuss 
the use of external degree as another modification to the basic ordering scheme. 
Some numerical experiments are presented in Section 6, and Section 7 contains 
the concluding remarks. 

2. BACKGROUND ON THE MINIMUM-DEGREE ALGORITHM 

The best known, most widely used, and very successful fill-reducing ordering 
scheme is the minimum-degree algorithm [l, 4, 6, 10, 111. The scheme attempts 
to reduce the fill of a given matrix by a local minimization of nonzeros in the 
factored matrix. It is used as a practical approximate solution to the NP-complete 
fill minimization problem [ 121. 

In this paper, readers are assumed to be familiar with the basic graph-theoretic 
terminology used in the study of sparse elimination. Moreover, fill, elimination 
graphs, and other related concepts are assumed. All the necessary material can 
be found in [7]. Here we begin by reviewing the minimum-degree algorithm. 

The basic algorithm can be conveniently described in terms of elimination 
graphs [lo] as follows: 

Step 1. Treat the given symmetric graph (matrix structure) as the current elimination 
graph. 

Step 2. Choose a node y of minimum degree in the current elimination graph. 

Step 3. Form the new elimination graph by eliminating y. Update the degrees of the 
uneliminated nodes. 

Step 4. Repeat steps 2 and 3 until all nodes are eliminated. 

In step 3 the new elimination graph can be obtained by deleting the node y 
and its incident edges from the graph and then adding new edges so that the 
adjacent nodes of y are now pairwise adjacent. In other words, the set of adjacent 
nodes of y becomes a clique. This process has been described in [lo]. 

Different techniques have been developed to improve the overall performance 
of this basic algorithm. The concept of indistinguishable nodes [6], or superuari- 
ables [3, 41, is developed to eliminate a subset of nodes all at the same time 
instead of just one node as in steps 2 and 3 of the above formulation. In the 
elimination process, nodes x and y that satisfy 

M(y) U (~1 = M(x) U 1x1 
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in an elimination graph are said to become indistinguishable. These nodes can 
be numbered consecutively in the minimum-degree ordering. 

The use of quotient graphs [6], generalized element models, or superelements 
[3,5] gives a more compact and elegant representation of the changing sequence 
of elimination graphs. The cliques formed by elimination (the adjacent nodes of 
the eliminated node in step 3) are represented by the eliminated node’s member- 
ship relation rather than the explicit edges. This has significant impact on the 
storage requirement and data management. 

The technique of incomplete degree update is used in the Yale Sparse Matrix 
Package [4]. Recall that in step 2, in order to choose a node of minimum degree 
in the current elimination graph, we need to update the degrees of uneliminated 
nodes. This technique speeds up the algorithm by recomputing only the “neces- 
sary” degrees and thus avoiding the computation of the degrees of a significant 
number of nodes. In the elimination process, if 

in an elimination graph, the node x is said to become outmatched by y. It can 
then be shown that the node y can be chosen for ordering before x in the 
minimum-degree algorithm. This implies that the degree of x need not be 
computed until the node y has been eliminated. 

A more refined and detailed description of the algorithm can now be stated as 
follows: 

Step 1. (Initialization) Compute the degree of all the nodes in the graph. 
Step 2. (Selection) Pick a node y with the minimum degree. 
Step 3. (Mass elimination) Number the node y and those indistinguishable from y. 
Step 4. (Degree update) Determine the representation of the new elimination graph. 

Update the degrees of the remaining nodes except those that are outmatched. 
Step 5. (Loop or stop) Repeat steps 2-4 until all nodes are eliminated. 

It has been well recognized that the most time-consuming part of the algorithm 
in this formulation is in the degree update step. In addition, in terms of 
programming and design, this is the most complicated part of the entire imple- 
mentation. The novel feature of incomplete degree update in YSMP is incorpo- 
rated to speed up this critical step. 

The technique of multiple elimination introduced in this paper also reduces 
the amount of degree update. Indeed, the author rediscovered the above incom- 
plete degree update method but later found out that this technique has already 
been used in the latest version of YSMP code. 

3. CASE STUDY: THE k-BY-k GRID 

Consider the application of the minimum-degree algorithm to the k-by-k regular 
grid problem. Here we assume the nine-point difference operator, so that all 
nodes sharing the same square element are connected. 

Consider the situation as shown in Figure 1. It shows only part of the whole 
grid. We assume that the minimum-degree algorithm numbers the nodes a, b, c, 
d in the same relative order (8 is the current minimum degree). 
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Let us now study the effect of the elimination of nodes a, b, c, and d to node y 
and nodes Zi, i = 1, . . . , 4 (see Figure 2). If we follow the formulation of the 
minimum-degree algorithm described in Section 2, the degree of node y has to be 
recomputed four times during the elimination of these nodes. This implies that 
the effort spent in the first three computations of the degree of y is, in effect, 
wasted. Moreover, the degrees of the nodes Zi, i = 1, . . . , 4, have to be updated 
at least twice. Similar observations can be made of other adjacent nodes of a, b, 
c, and d. 

In view of the fact that degree update is expensive, these observations suggest 
an approach whereby degree recomputation is only performed when “necessary.” 
In terms of the above example, it is desirable to delay the degree update of the 
node y and the nodes Zi, i = 1, . . . , 4 until after the elimination of the nodes a, 
b, c, and d. The next section explores this approach. 

It should be pointed out that if the technique of incomplete degree update is 
used, the node y will be outmatched by the node z1 after the elimination of the 
node b. In other words, the degree of y has been recomputed only twice instead 
of four times. 

4. MODIFICATIONS BY MULTIPLE ELIMINATIONS 

4.1 Multiple Eliminations 

The case study in Section 3 provides the motivation for delaying the degree- 
update step to reduce the number of updates performed. In this section we study 
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the implication of this approach and formulate modifications to the standard 
ordering algorithm on the basis of this observation. 

The discussion in the case study suggests that one should modify the standard 
algorithm by numbering all possible nodes of minimum degree before the degree- 
update step is performed. The following algorithm is formulated. 

Step 1. (Initialization) Compute the degree of all the nodes. Initialize the set of eliminated 
nodes S := empty. 

Step 2. (Min degree) Determine the new minimum degree and the set T of all nodes in 
the set X - S of this degree. 

Step 3. (Mass elimination) All nodes are unflagged. 
For each y in T do 

If node y is unflagged 
then (find the set Y of indistinguishable nodes of y; 

flag the adjacent nodes of Y and the nodes of Yin the current elimination 
graph; 
s := s u Y) 

Step 4. (Degree update) Determine the representation of the new elimination graph. 
Update the degree of all the flagged nodes in X - S that have not been outmatched. 

Step 5. (Loop or stop) Repeat steps 2 to 4 until T is empty. 

The standard formulation of the minimum-degree algorithm can be regarded 
as consisting of a main loop with three major steps in it: 

Minimum-degree selection and elimination 
Elimination graph transformation 
Degree update 

On the other hand, the modification can be viewed as taking the degree-update 
step out of the main loop: 

Minimum-degree selection and elimination 
Elimination graph transformation 

Intuitively, here we eliminate multiple nodes with the current minimum degree 
before a complete update of degrees is executed. Hence, the term multiple 
elimination is used to describe this technique. However, the user should be aware 
of the differences between multiple elimination and mass elimination as intro- 
duced in [6]. 

The perceptive reader will recognize that this modification may not give an 
ordering that is the same as that provided by the original minimum-degree 
algorithm, since we process all the possible candidates from the set T before we 
update the degrees and recalculate the new minimum degree. 

The example of Figure 3 serves to illustrate the difference. The current 
minimum degree is 2, and the nodes in this set, ]a, b, d, f, g), are all of this 
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minimum degree. Consider the elimination of node a. Node b is indistinguishable 
from a, so that a and b will be eliminated together. The new minimum degree 
now is 1, and c is the node with this degree. By using the conventional algorithm, 
the following elimination sequence will result: 

Here, nodes eliminated together are grouped by braces. 
On the other hand, if we apply the modified version of the minimum-degree 

algorithm, the following nodes of degree 2 will be eliminated: 

Thus the resulting ordering will be 

This, however, is not a minimum-degree ordering, since after the elimination of 
the nodes {a, bj there is only one possible candidate (namely, c) in the resulting 
elimination graph. 

4.2 A Slight Variant 

The minimum-degree restriction may be further lessened: A node will be elimi- 
nated if its degree does not differ “too much” from the minimum. In other words, 
in the mass multiple and elimination step, an unflagged node will be eliminated 
if 

degree of unf’lagged node 4 minimum degree + 6, 

where 6 is a tolerance parameter. When 6 is zero, we obtain the algorithm as 
given in Section 4.1. 

The use of a positive 8 can sometimes prove effective. Saving in degree update 
is again the motivation for the introduction of this “almost” minimum-degree 
algorithm. The actual saving in experimental runs will be demonstrated in Section 
6. It is interesting to note that a similar technique has been used in the study of 
parallel pivoting algorithms for sparse symmetric matrices [9]. 

5. MODIFICATIONS BY EXTERNAL DEGREE 

In the minimum-degree algorithm the selection of a node of minimum degree to 
eliminate implies that the size of the clique formed is small. The success of this 
heuristic ordering scheme may be attributed to this property of forming the 
smallest possible clique as a result of elimination. 

In the conventional scheme the degree used is the number of adjacent nodes 
in the current elimination graph, that is, the true degree. Since we are now using 
ACM Transactions on Mathematical Software, Vol. 11, No. 2, .June 1985. 



Modification of the Minimum-Degree Algorithm . 147 

Fig. 4 

the technique of mass elimination to number the chosen node y and its indistin- 
guishable nodes together, the size of the resulting clique is often different from 
the true degree of the node y. 

This observation leads to the use of external degree instead of the true degree 
in the algorithm. Specifically, by the external degree of a node y we mean the 
number of neighbors of y that are not indistinguishable from y. In this way the 
size of the clique formed by the elimination of y and its associated nodes will be 
the same as the external degree of y. 

The possible advantage gained (and motivation too) can be illustrated by the 
following example. Consider the elimination graph in Figure 4. The current 
minimum degree is six, and y is the only node with this degree. The elimination 
of the node y will create a clique with nodes (a, b, c, m, n, 0). However, it should 
be clear to the reader that at this stage either the nodes in (d, e, f, g, h] or the 
nodes in (p, q, r, s, t 1 should be eliminated. Indeed, the true and external degree 
of the nodes are given as follows: 

Nodes True degree External degree 

Y 6 6 
a, b, c, 8 6 
m, n, 0 
4 e, f, g, h 7 3 
P, 4, r, s, t 

The elimination of nodes (d, e, f, g, hj at this stage will result in a new clique {a, 
b, c] of size three. 

In practical terms there is little additional cost involved in using external 
degree instead of true degree in the implementation (provided the number of 
indistinguishable nodes for each node is maintained). For the author’s program 
code it involves the addition of one line in the source program. In order to 
demonstrate that this modification can have savings in terms of fills, we tabulate 
runs on the k-by-k grid problem (nine-point difference operator) with varying 
values of k (see Table I). 

It can be observed that there is a saving of from 3 percent to 7 percent of the 
number of nonzeros in the factored matrix by using external degree. Experiments 
have been performed on other less regular problems, and similar savings have 
been obtained. The saving is not dramatic; however, it is obtained with virtually 
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Table I. Number of Off-Diagonal Nonzeros in the Matrix Factors Using Actual and External 
Degree on the k-by-k Regular Grid Problem 

Number of Number of Actual External Percent 
k equations edges degree degree saved 

30 900 3422 17213 15963 7.26 
40 1600 6162 35101 33304 5.12 
50 2500 9702 59274 57579 2.86 
60 3600 14042 92342 89528 3.05 
70 4900 19182 140340 131255 6.47 

no extra effort. Furthermore, the saving in storage here implies a higher per- 
centage saving in arithmetic operations to perform the numerical factorization. 

6. NUMERICAL EXPERIMENTS 

The ordering algorithm as modified by multiple elimination (Section 4) and 
external degree (Section 5) has been implemented using standard FORTRAN. A 
parameter called DELTA is provided to the subroutine. If the value of DELTA 
is greater than or equal to zero, multiple elimination will be used in producing 
the ordering, and DELTA provides the tolerance factor as described in Section 
4.2. If DELTA is -1, the subroutine will produce the conventional minimum- 
degree ordering (using external degree), that is, one degree update after each 
mass elimination. In the results tabulated in this section, we have labeled this 
the minimum-external-degree algorithm. 

To demonstrate the improvement, we have included the result of GENQMD 
from the SPARSPAK [8] (that is, the minimum-degree ordering routine in the 
package). Note that the case when DELTA equals -1 is essentially the same as 
GENQMD, except that the incomplete-degree-update technique and external 
degree have been incorporated. 

The runs from the minimum-degree routine of the Yale Sparse Matrix Package 
YSMP [4] are also included for comparison. It differs from GENQMD in the use 
of an incomplete-degree-update technique and the use of linked lists to represent 
elimination graphs. 

All the experiments were run on a VAX 11/780, and the times reported in this 
section are in seconds on this machine. 

6.1 Star Graph 

The different programs are used to order the star graph of N nodes, that is, a 
graph in which N - 1 nodes are connected to one center node. The graph 
structure, though simple, serves to demonstrate the effectiveness of the incom- 
plete-degree-update strategy and the multiple-elimination scheme. Table II shows 
the time for the different methods. 

All methods produce the best possible ordering for the star graph, that is, 
numbering the center node last or next to last. However, the time required to 
perform the task varies drastically among the methods. The method proposed in 
this paper runs about seven times faster than GENQMD and almost three times 
faster than YSMP. Admittedly, this is only a contrived example, but it does 
indicate the dramatic savings that are possible. In the Sections 6.2 and 6.3, 
significant savings are demonstrated on practical matrix examples. 
ACM Transactions cm Mathematical Software, Vol. 11, No. 2, June 1985. 
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Table II. Execution Time on the Star Graph of N Nodes 

Number of 
equations N GENQMD YSMP 

Minimum external 
degree 

Multiple 
elimination 

500 28.68 10.61 13.12 4.22 
1000 113.45 46.60 54.70 16.68 
1500 254.22 105.28 124.53 37.20 
2000 455.08 185.21 224.60 66.27 

Table III. Execution Time on the k-by-k Grid 

Multiple elimination: 

Minimum external 
DELTA 

k CENQMD YSMP degree 0 5 

30 3.69 1.54 1.85 1.39 1.31 
40 6.39 2.93 3.42 2.43 2.38 
50 11.43 4.63 4.97 3.79 3.78 
60 16.63 6.88 7.39 5.45 5.41 
70 22.87 8.94 9.83 7.66 7.51 

Table IV. Number of Off-Diagonal Nonzeros in Matrix Factor on the k-by-k Grid 

Multiple elimination: 

Minimum external 
DELTA 

k GENQMD YSMP degree 0 5 

30 16633 17062 15836 15963 16924 
40 36630 37322 33340 33304 33585 
50 67773 61629 58660 57579 57946 
60 101824 97886 90225 89528 89175 
70 139979 137617 132719 131255 131377 

6.2 k-by-k Regular Grid 

The different schemes were applied to the regular k-by-k grid, with k = 30, 40, 
50,60,70. The nine-point difference operator is assumed. Table III compares the 
execution time in seconds, while Table IV compares the quality of the resulting 
orderings in terms of the number of off-diagonal nonzeros in the factor matrices. 

The results in Table III show that the minimum-external-degree algorithm 
enjoys over 50 percent improvement in execution time over the GENQMD 
version. This is mainly due to the incomplete-degree-update strategy. On the 
other hand, the use of the multiple-elimination technique (i.e., DELTA = 0) 
reduces the execution time by about 25 percent over the minimum-external- 
degree method (DELTA = -1). 

Table IV compares the quality of the resulting orderings. The ordering pro- 
duced by the modified version with multiple elimination (DELTA = 0) and 
external degree is consistently the best or close to the best. This justifies the use 
of these modifications. It is interesting to note from this table that there can be 
a difference of over 15 percent in terms of the number of off-diagonal nonzeros 
in the matrix factor between the best and the worst orderings, and they represent 
orderings from basically the same algorithm. 
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Table V. Minimal Storage Requirement (Number of Words) for Ordering on the k-by-k Grid 

Multiple elimination Multiple elimination 
(adjacent structure (adjacent structure 

k YSMP saved) not saved) 

30 18189 10445 7023 
40 32649 18725 12563 
50 51309 29405 19703 
60 74169 42485 28443 
70 101229 57965 38783 

Another point worth mentioning is that there is no apparent advantage in 
using a positive DELTA for the k-by-k grid problem. Other values of DELTA 
were tried, and similar results were obtained. The next section contains some 
runs in which a positive DELTA produces noticeable reductions in ordering time. 

The ordering routine from the Yale Sparse Matrix Package, YSMP, performs 
quite well. It requires less time than the minimum-external-degree method. It 
uses more storage (in the form of linked lists) to represent the elimination graphs 
and hence has a more efficient way of doing the elimination graph transformation. 
Yet our modified version uses less execution time (from 10 to 20 percent), 
requires significantly less core storage, and produces a marginally better ordering. 

In Table V we tabulate the minimal amount of core storage required to execute 
the ordering routine of YSMP and our version for the k-by-k grid problem. Here, 
we have used half integers (INTEGER * 2) for indexing arrays whenever possible. 
The YSMP ordering routine requires more than two and a half times the storage, 
since it duplicates the adjacency structure in the form of linked lists, and full 
integers (INTEGER * 4) have to be used for the linked values. 

On the other hand, our version performs the ordering “in-place” within the 
given adjacency structure. This will of course destroy the original matrix struc- 
ture. The storage requirement for ordering can have an important bearing on the 
solution of very large sparse problems where the ordering is performed in-core 
and numerical factorization and solution are done out of core. 

6.3 Harwell-Boeing Sparse Matrix Test Problems 

Selected problems from the Harwell-Boeing collection of sparse matrix examples 
[2] were tested using the different ordering schemes, in order to demonstrate the 
performance of the modified version of the minimum-degree algorithm on a 
variety of practical problems. Table VI contains the list of problem examples 
selected, and we use the same keys as provided by the Harwell-Boeing tape to 
identify the different matrices. 

Nine symmetric and three unsymmetric matrices are used. For the unsymme- 
tric examples, we use the structure A + A T. Table VII compares the execution 
time of the different schemes, while Table VIII compares their fill-reducing 
performances. 

The results tabulated in Tables VII and VIII provide observations similar to 
those for the k-by-k regular grid problem. The modified version runs more than 
seven times faster than GENQMD for the problem “FS 451 1” and more than 
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Table VI. Selected Harwell-Boeine Test Matrices 

Key 

Number of 
equations 

BCSPWROS 1723 
BCSPWRlO 5300 
BCSSTKOB 1074 
BCSSTK13 2003 
BCSSTMl3 2003 
BLCKHOLE 2132 
CAN 1072 1072 
DWT 2680 2680 

LSHP3466 3466 

Description 

Symmetric structure of western US power network 
Symmetric structure of entire US power network 
Symmetric stiffness matrix, frame building (TV studio) 
Symmetric stiffness matrix, fluid flow gen. eigenvalues 
Symmetric mass matrix, fluid flow gen. eigenvalues 
Connectivity struct of a geodesic dome on a coarse base 
Symmetric pattern from Cannes, Lucien Marro 
Symmetric connection table from DTNSRDC, 
Washington 
Symmetrix matrix from Alan George’s L-SHAPE 
problems 

FS 541 1 541 
SHL 400 663 
BP 1600 822 

Unsymmetric facsimile convergence matrix 
Unsymmetric basis from LP problem SHELL 
Unsymmetric basis from LP problem BP 

Table VII. Execution Time on Harwell-Boeing Examples 

Multiple elimination: 

Minimum external 
DELTA 

Problem GENQMD YSMP degree 0 5 

BCSPWROS 4.66 2.56 2.91 2.35 2.39 
BCSPWRlO 22.17 10.46 12.59 10.33 9.92 
BCSSTK08 95.27 35.16 32.80 17.72 13.37 
BCSSTK13 135.85 37.63 29.99 27.16 23.51 
BCSSTM13 23.71 7.64 7.38 6.07 5.28 
BLCKHOLE 9.85 3.90 4.40 3.35 3.79 

CAN 1072 10.96 4.32 5.10 3.83 3.14 

DWT 2680 25.58 10.08 12.97 9.90 8.44 
LSHP3466 11.25 6.29 6.94 5.52 5.40 

FS 541 1 27.00 8.21 8.79 3.48 3.10 
SHL 400 30.12 10.32 12.97 7.19 5.39 
BP 1600 124.59 43.99 42.95 41.58 28.81 

five times faster for the problem BCSSTK08. For these two problems the YSMP 
ordering routine requires more than twice the amount of ordering time. For the 
other problems the modified version generally requires less time for ordering, 
and the savings are often quite significant. 

In terms of the quality of the ordering, the modified version produces either 
the best or close to the best ordering. 

The modified version with DELTA = 5 generally requires the least amount of 
ordering time. The saving for the problem BP 1600 is quite substantial. However, 
the quality of the resulting ordering in terms of the number of off-diagonal 
nonzeros in the factor matrix is generally inferior to the others. Hence, the saving 
in ordering time will be more than offset by the increase in numerical factorization 
and solution time resulting from an inferior ordering. The use of a positive- 
tolerance-value DELTA is therefore not recommended. 
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Table VIII. Number of Off-Diagonal Nonzeros in Matrix Factor on Hanvell-Boeing Examples 

Problem 

Multiple elimination: 

Minimum external 
DELTA 

GENQMD YSMP degree 0 5 

BCSPWROS 4600 4539 4502 4592 5014 
BCSPWRlO 22837 22906 22793 22764 24313 
BCSSTK08 30167 29768 29389 29973 31020 
BCSSTK13 270925 287946 269657 269668 272960 
BCSSTM13 46727 48330 45273 43491 45655 
BLCKHOLE 56097 53418 51543 51570 52758 
CAN 1072 20726 20453 19104 19329 20424 
DWT 2680 53187 52609 51499 53364 51103 
LSHP3466 87758 88152 79801 83116 83233 

FS 541 1 6955 6631 6695 6768 
SHL 400 14605 14706 14837 14411 
BP 1600 64331 64783 64119 63844 

7255 
15182 

7. CONCLUDING REMARKS 

In this paper we have modified the conventional minimum-degree algorithm by 
introducing the notions of multiple elimination and external degree. This has 
resulted in a different but closely related ordering algorithm. Our experimental 
results indicate that the modified version consistently retains the fill-reducing 
property of the ordering scheme and often produces the best ordering in terms 
of fills among its competitors. Moreover, it can be implemented to run faster 
than the original approach. The saving in ordering time is problem-dependent. 
For some problems the modified algorithm runs a few times faster than existing 
implementations of the minimum-degree algorithm. 

The reduction in ordering time can be explained as follows. The modification 
to the algorithm contributes to earlier detections of indistinguishable nodes and 
outmatched nodes. More important, it helps to reduce the number of degree 
updates necessary to effect the minimum-degree selection. 

If we apply the modified algorithm to the k-by-k regular grid, the result 
corresponds quite closely to the nested dissection ordering specified in a “bottom- 
up” manner. This helps to explain the till-reducing property of the algorithm. 
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