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1. INTRODUCTION, REVIEW, AND PRELIMINARY NOTATION 
Let (, ) denote an inner product on an appropriate class of real-valued functions 
of n real variables. Let ql, . . . , 1c/, be linearly independent functions, and let 
F(xl, . . . , x,) = f(xl, . . . , x,) + e(xl, . . . , x,J, where e represents some random 
error. The problem of fitting f, in the least-squares sense, in the space spanned 
by the $i requires that coefficients c = cl, . . . , cm be determined so that 

minimizes 

(F - P, F - I’). 
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202 l R. H. Bartels and J. J. Jezioranski 

The coefficients cl, . . . , cm will be given by the solution to the normal equations 

[ 

(y?l; jll (y;jy El]= [(Y] , (1.1) 

provided that these equations are nonsingular. 
For multinomial least-squares fitting $i, . . . , Grn are often taken to be the first 

m monomials in the n variables of the problem, #‘s being arranged according to 
some increasing power order. For example, 

n = 1, 

(g, h) = i w(i)g(x(i))h(x(i)); 
i=l 

$1(x), . . . , l),(x) = 1, x, 2, . . . , P-l 

or 

$lh x2), . * *, Ic/,h, x2) = 1, Xl, x2, xf, x1x2, & *. . , PXL?. 

A choice of this sort of basis for multinomials will generally result in an ill- 
conditioned system of equations (1.1). If, instead of the monomials, we choose a 
basis of multinomials that are orthogonal with respect to (, ), then the matrix of 
(1.1) will be diagonal. 

One may, of course, use the Gram-Schmidt process to orthogonalize the basis 
$11 * * * , &, but Forsythe [3] and Weisfeld [6] have shown that a revised Gram- 
Schmidt process is more efficient. Forsythe worked with 

n = 1, 

(g, h) = ; zdi)g(di))h(di)) 
i=l 

and generated #l,. . . , #,,, by 

91 = 1, 

1c/i = x$j-1 - ;C, ai,l*l. 

This construction ensures that It/j will be manic with highest-order term equal to 
xi-l. (A normalizing constant is often added to the above, which we shall ignore 
for the sake of simplicity.) 

It is easily verified that $j will be orthogonal to tij-1, . . . , $1 if aj,l is chosen as 
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for all 1= 1, . . . , j - 1. Forsythe showed that (x#jbl, $1) = 0 for all j - 1> 2 (i.e., 
l<j- 2). That is, the construction of the orthogonal basis of multinomials is 
accomplished by a three-term recurrence. 

Weisfeld considered general inner products and a general n. He introduced the 
notation of vector indices 

where 

By letting a(J) = j, + 

to mean 

or else 

and 

+J = J/U,.....i,), 

J = (j,, . . . , id. 
. + j, for any vector index J, he defined 

I<J 

40 < a(J), (1.2.1) 

a(I) = u(J) (1.2.2a) 

il+ -*- +i,<jl+ --. +j, (1.2.2b) 

for some 1~ n. (Note that this does not define a unique ordering. Two distinct 
sequences, among many possible ones, are produced by consistently choosing 1 in 
the above to be the least, respectively greatest, integer such that 1 ES n.) 

Given a vector index 

J = (iI,. . . , jk, 0,. . . , 01, 
where j, > 0, Weisfeld defined an associated vector index 

3 = (jl, . . . , jk - 1, 0, . . . , 0), 

and constructed 

(1.3) 

(1.4) 

Gco,.. .,O) = 1, 

$J = xk#j - r, aJ,L’hL. 
LcJ 

(1.5) 

As before, it is easily verified that $J will be orthogonal to all ~C/L (L < J) if aJ,L 

is chosen as 

(xk+i, $L) 

aJ*L = ($L, $L) * 

Weisfeld proved that cx J,L is zero for all L < J such that u(J) - a(L) > 2. This 
constitutes a generalization to n variables of the three-term recurrence. 

In this paper we improve upon Weisfeld’s results by taking greater care in 
fixing the ordering. We shall also concern ourselves with the details of mapping 
vector indices onto the natural numbers to facilitate transcribing our results into 
a computer program. We will find that more coefficients CY turn out to be zero 
than are indicated in Weisfeld’s results, and we are able to take advantage of 
some identities among the CY’S. 
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2. ORDERING 

We need to establish a specific mapping from the monomials to the integers, one 
that will provide a convenient framework for dealing with the orthogonal multi- 
nomials. To do this, we arrange the monomials involving n variables in a 
triangular pattern in which the rth row contains all monomials of (r - 1)st 
power, and each row of which past the first is organized into n ranges: 

Definition 1. 
Row 1 contains only 1. 
Row 2 contains the n ranges x1, x2, . . . , x,; that is, the tzth range contains only 

the monomial xk. 
Row r has as its kth range the monomials found by multiplying xk by each 

member, in order, of ranges k, . . . , n in row r - 1. 
For example, when n = 3, 

Row 1: 1 
Row 2: x1 x2 x3 

Row 3: 3~:: ~1x2 x1x3 x; x2x3 d 

ROW 4: XT X:X:! X:X~ XIX; ~1x2~3 XIX: X: X;X~ ~2x3 X$ 

The three ranges in Row 3 are 

x1x{x1 x2 x3) = {x:: x1x2 x1x31, 

x2 x (x2 x31 = (xi x2x3), 

x3 x (x3) = (x5). 

Our notational conventions for this table will be as follows: 

(1) The position in the table of current interest will be indexed by j. 
(2) The jth monomial in the table will be denoted by p(j). 
(3) The vector of exponents associated with CL (j ) will be denoted by v (j ). 
(4) u(j) is the sum of the exponents associated with p(j), that is, the sum of 

the components of v(j). 

The monomials p(j), their position j in the table, and their exponent vectors 
V( j ) are all ordered sets, all isomorphic to each other. The n = 3 example gives 

ii I= (1,2,3,4,5,6,7,8,9,. . .I, 

(~L(j))=(l,xl,x2,x3,x:,xlx2,xlxS,x~,x2x3t...], 

b(j)) = i(O, 0, (0, (LO, O), (0, LO), 0% 0, l), C&O, 01, (1, 1, O), 

(LO, 0, ((4% 01, ml, u, * - .I. 

We shall use the symbol < for each of these three sets with the meanings 

(1) j* <j** E j* comes before j** in {j); 
(2) v(j*) < y(j**) = (jT, . . . , j,*) comes before (jY*, . . . , in**) in (v(j)); 
(3) p(j*) < p(j**) = x+* . a e x? comes before x2** . . . xF* in (p(j)). 
ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1935. 
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The symbol I will denote 

j*<j** or j* =j**, 

and similarly for v (j ) and P( j ). 
With respect to our notation, a monomial pL( j ) associated with 

V(j) = (0, . . . , o,jkj, . . . , h), jkj > 0, 

is in the kjth range of the row numbered ( jkj f . - - + j, + 1) = a(j) + 1, and 
this monomial was constructed by multiplying the monomial associated with the 
exponent vector 

(0, * * - , 0, [jkj - 11, . . . , in) 

by xkj. 

By convention, if 

v(j) = (0, . . . , 07jkj9 . . . ,jd, jkj > 0, 

we will define j ’ to be the index in the table for which 

so that 

di) dj’) = - 
xkj ’ 

or equivalently 

xk&‘) = P(j)- 

As such, this represents the inverse of the process of building the ranges that 
make up row u(j) + 1. 

Continuing one stage further, if j ’ satisfies 

v(j’) = (0, . . ., 0, jLj,, . . ., ji3, is, > 0, 

then we will define j N by 

v(j”) = (0, . . . , 0, [jij, - 11, . . ., j;) 

so that 

or equivalently 

The indices j, kj, j ‘, kjs, and j m play a defining role in our construction. 

To compare with Weisfeld’s ordering (1.2): 

LEMMA 1. Consider 

dj*) = (jr, . . . , iit) and v(j**) = (j:*, . . . , j,**). 
ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985. 
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The ordering in the table is such that 

I < v(j**) (andj* <j** and p(j*) < p(j**)) 

if and only if either 

u(j*) < u(j**) 

or else 

a(j*) = a(j**) 

and 

ik* > jk**, 

where k is the smallest index such that jk* # jX*. 

This is easily seen by direct verification from Definition 1. 

(2.1) 

(2.2a) 

(2.2b) 

3. INDEXING 

Our construction will make use of the indices j, kj , j ‘, and j N as given above. But 
in generating the orthogonal multinomials J/j, and in the evaluation of any 
general multinomial 

it will not be necessary to access the indices j, kj , j ‘, and j n randomly; we may 
always proceed along the table of monomials from top to bottom and left to right, 
maintaining and updating these indices as we go. 

The kjth range of row r = u(j) + 1, r > 1, is constructed to consist of all 
monomials in which x1, . . . , xkj-l appear to the power 0; that is, it is associated 
with the exponent vectors v(j) of the form (0, . . . , 0, j,, . . . , j,) with jkj > 0. In 
the rth row we must have the equality 

jkj+ -.. + jn = r - 1. 

Hence the number of items in the kjth range is equivalent to the number of 
ways in which r - 1 counters (indistinguishable balls) can be distributed among 
n - kj + 1 exponent positions (distinguishable urns), requiring that at least one 
counter be assigned to the first position. This number is given by the binomial 
coefficient 

n-kid-r-2 
r-2 

The number of entries in range kj through n is the number we obtain by removing 
the restriction that a counter be placed in the first position: 

n-l+r-2 ,;.( r-2 
I 

)=(“-y;-‘). 
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And, frbm this, the number of entries in the entire rth row is given by 

(“:I; “) 

and the number of entries in all of the first r rows together is 

(,,,- 1). 

That is, if T = n - 1 + r - 2 and I3 = r - 2, the run lengths are of the form 

Rowr: (;) (‘; ‘) (T; ‘) . . . . 

Row r + 1: (E :) (BT 1) (BT; :) me*’ 

and the row lengths are of the form 

Thus, the relationships 

and 

are clearly useful. 

Row r: 

Row r + 1: 

As j runs through range kj in row r, j ’ runs in step through ranges kj, . . . , n 
in row r - 1. As j crosses from range kj to range kj + 1, j’ must be set back to 
the beginning of range kj + 1 in row r - 1. Similarly, as j ’ runs along row 
r - 1, j M runs in step along row r - 2, and whenever j ’ crosses from range kj, to 
range kj,+l in row r - 1, then j” must be reset to the beginning of range kit+1 in 
rowr- 1. 

The code below displays how one can march through the monomial table in 
order from left to right and from top to bottom. 

A program to step through the indices in the ordering table 
for the orthogonal multinomials. The orthogonal multinomials 
are generated according to the pattern 

psi[j] = x[kj]*psi[jprime] 
- sum(index t running from jprimeprime to j - 1: 

a[j, tl *psi [tl ) 
dimen number of variables 

degree maximum number of rows to be used in table 

ACM Transactionson MathematicalSoftware,Vol. ll,No.3,September1985. 
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npolys 
j 

kj 
jprime 

jprimeprime 
ralen 

rowlen 
jsw 

indexs 
top 

bot 

size of table 
current position in table 
current range in row 
distinguished multinomial in previous row 
lower limit on summation 
current range length in current row 
length of current row 
position of start of next range 
array for storage of kj, jprime, jprimeprime 
T, the top of the binomial coefficient giving 
rowlen 
B, the bottom of this binomial coefficient 

Note: The value of ralen is computed directly from the bino- 
mial coefficient binomial(top, hot), while the value of 
rowlen is obtained by updating this binomial coefficient. 

Note: npolys = binomial(dimen + degree - 1, dimen). 

Note: 
indexs[l, j] will store jprime values; 
indexs[2, j] will store kj values; 
indexs[l, indexs[l, j]] will give the jprimeprime values 

(for j > dimen + 1). 

Note: constants are currently set for the 3-variable, 4-row 
problem. 

I 

const 
dimen = 3; 
degree = 4; 
npolys = 20; 

var 
j, jbeg, jend, jprime, jprimeprime, jsw, 
kj, curdeg, ralen, rowlen, top, bot : integer; 
indexs : array [1..2, 1.. npolys] of integer; 

begin 
rowlen := 1; 
j := 1; 

jprime := 0; 
top := dimen - 1; 
bot := 0; 
indexs[l, 21 := 1; 

for curdeg := 2 to degree do 
begin 

jbeg := j + 1; 
kj := 1; 
top := top + 1; 

bot := bot + 1; 
ralen := rowlen; 
rowlen := (rowlen*top)div bot; 
jsw := j + ralen; 
jend := j + rowlen - 1; 

for j := jbeg to jend do 
begin 

jprime := jprime + 1; 
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if (j 1 jsw) then 
begin 

ralen := (ralen*(top - kj - bot + 1)) div (top - kj); 
kj := kj -I- 1; 
jsw := j + ralen; 
jprime := jprime - ralen 

end; 
indexs[j, l] := kj; 
indexs[j, 2] := jprime; 
jprimeprime := indexs[jprime, 21; 

end 

end 
end. 

4. THE MULTINOMIAL GRAM-SCHMIDT PROCESS 

We propose that the Gram-Schmidt process be 

$1 = 1, 

and forj = 1,2,. . . , 
j-l 

‘&j = xk,J/j’ - 1 aj,l$l, 
l-l 

(4.1) 

where 

ffj.1 = 
(xk;$j’, $1) 

($19 *1> 

and where kj and j ’ are related to j according to the indexing program of the 
preceding section. 

To analyze this version of the Gram-Schmidt process, we establish the follow- 
ing lemmas. 

LEMMA 2. Let 

P(Z) < p(m), 
and let xP be any of the variables of the problem. Then 

qd.4~) < XpPh). 

PROOF. If 

u(l) < u(m), 

then 

u(p-‘(Xp)p(Z)) = a(Z) + 1 < a(pL-‘(xp)p(?n)) = a(m) + 1. 

So assume that u(Z) = u(n); that is, p(Z) and p(m) are found in the same row 
of the table. If p(Z) < p(m), then Y(Z) and v(m) are such that 

zk > mk (4.2) 

for the first entry, k, from the left at which these two exponent vectors differ. 
ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985. 



210 l R. H. Bartels and J. J. Jezioranski 

But the exponent vectors of xPp(l) and x,p(m) are those of p(Z) and p(n), 
respectively; with a 1 added into position p. This does not change the role of the 
index K or the relationship in (4.2) above. Cl 

COROLLARY~. If 

P(1) < Aj’), 

then 

and if 

then 

XkjcLW c Xkjdj’) = P(j), 

PU) < CL(jn), 

xkjd < Xk+(j? = dj’). 

LEMMA 3. If x,, and xq are variables of the problem, and p(l)is any monomial, 
then 

(i) ifp 5 4, then x,+(Z) zs xpp(l); 
(ii) ifp < q, then xPp(Z) < x,p(l). 

PROOF. The exponent vector for xPp(l) would be 

(1 11 * * * , 4x-1, [I, + 11, &+I, * * * , L?, * - *, M, 
whereas that for xqp(l) would be 

(L - - - , lp, * . . , Iq-1, [Jq + 11, &+I, * - - , L). 
Hence the first exponent vector comes before the second in the ordering of the 
table (unless p = q, in which case the two exponent vectors are equal). 0 

COROLLARY 2. If p I q and 1 I n, then x,p(l) 5 x,p(m). If, in addition, 
p < q or Z< m, then xPk(l) c x,p(m). 

PROOF. By Lemma 3 

qlcL(O 5 X,PW. 

By Lemma 2 

x,rU) 5 w(m). 

Ifp C q or 1< m, this makes at least one of these inequalities sharp. Cl 

LEMMA 4. The Gram-Schmidt process (4.1) yields 

j-l 

J/j = P(j) + lgl 61cL(l) 

for some coefficients &. 
ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985. 
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PROOF (by induction). 
For j = 1: 

+bj E 1 and CL(j) = 1, 

and (4.3) holds trivially. 
For j > 1: Suppose that the result has been established for 1 I 1 I j - 1. 

Consider 
j-l 

But Itk,b( j ’ ) = p(j). Furthermore, j’ % j - 1, so by hypothesis 
j'-1 

rc'j' = dj') + lzl S;rC(l). 

Hence, 

But from Corollary 1 

xkp(l) < P(j) 

foralllz2Zsj’ - 1, and, by the induction hypothesis, each $, in the right-hand 
summation can be expressed as a linear combination of the 1st through (j - 1)th 
monomials. The result follows by collecting terms in the individual monomi- 
als. Cl 

LEMMA 5. The multinomials J/i are linearly independent. 

This is evident from Lemma 4. 

From the foregoing we can establish 

LEMMA 6. If rkjp(l) < a, then ai,!= 0. 

PROOF. aj,l= 0 means (xk!)j’, +l) = 0. 
But 

By Lemma 2, 

Hence, 

xkjlL(l) 5 xkp(j - 1). 

So xkj$l will be in the span of (p(l), . . . , p(j’ - 1)) = (#I,. . . , #j,-i). q 

THEOREM 1. For all 1 <j”, 

CYj,l = 0. 

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985. 
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PROOF. 1< j” and lzj I kj,. So, by Corollary 2, xkjp(Z) < p( j ‘), and the result 
follows from Lemma 6. q 

Some results from data with n = 2 are given in tabular outline below, where 
“*” denotes the position of the orthogonal multinomial being constructed, “+” 
denotes the position of a previous orthogonal multinomial whose associated CY is 
computed to be nonzero, and “0” denotes the position of a previous orthogonal 
multinomial whose associated CY is computed as zero. The position of j” is 
indicated by “!“. 

j=l: * 

j=2: + j=3: + 

j=4: i! 
+* 

j = 5: O! 
++ ++ 

j=6: ;! 
+* 

j=7: 0 
++ +! + 
++* +++ 

j=S: 0 j = 9: ii 
0 +! 0 O! 
+++ +++ 
+* ++* 

j = 10: 0 j= 11: 0 
0 +! 00 
+++ +! + + 
+++* ++++ 

* 

It is visible from this that certain extra (Y’S will turn out to be zero. What is 
not visible in the above schema is that many of the nonzero (Y’S have related 
values, which could be used to save storage and computation. The next section 
will establish some results. 

5. ADDITIONAL RELATIONSHIPS 

We made use of the fact that kj 5 kj, in establishing Theorem 1 of the preceding 
section. We can sharpen the result of that theorem by splitting this inequality 
up into its two possible cases. 

COROLLARY 3. Assume that 

kj = kj, and u(j) 22. 

Then 

CYj,j" # 0. 
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PROOF. Consider 

j’-1 

It follows from this and the orthogonality of the rc/‘s that 

(tii', +j' ) = txkj, J/i", rlj' > 

= (xkjf#j’, $‘j”> 

= (Xkj$‘j’, ‘hi”> 

= “j,j”(+j”, 1c/i”>* 

Since both inner products are positive, 

COROLLARY 4. Assume that 

Then 

'Yj,l = 0 

for 1 running from jN out to the end of the row containing j”, that is, for 

p(j”) 5 p(l) 5 x;(j)-*. 

PROOF. In this case we have 

cL(.i) associated with (0, . . . , 0, [l], 0, . . . , 0, [j,,], . . . , j,), 
p(j’) associated with (0,. . . , 0, [0], 0,. . . , 0, [j,,], . . . , j,), 
,(j”) associated with (0,. . . , 0, [0], 0,. . . , 0, [j,, - 11,. . . , in), 

where [l] and [0] mark the kjth component. 
But xkj < rkj, and ~(1) I p(j”). SO xkjp(l) < p(j’) by Corollary 2, and aj,l = 0 

by Lemma 6. 0 

Notice that, if indices j, 1, p, and m are such that 

(xkj$j’, $1) = (xk,,\l/p’s IC/m> 

then 

(5.1) 

To explore such associations, we have generated numbers of examples with 
random data. To give an instance, using three variables up through the first four 
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rows of the table yielded the following associations: 

wx2 * a5.3 m5.5 - m1.9 

a7.2 * a5,4 %5,6 * m2,9 

a7.3 * w,4 %5,7 - m3.9 

a9.3 * a,4 ff15.8 * m4.9 

an,3 c-, a,5 %6,6 w ~11.10 

m1.4 * a7.5 %6,6 - a12.10 

%2,4 - a7.6 a16.7 * %3,10 

al&5 * all.6 a16,8 - a14.10 

m3.5 * &1,7 a16.9 - a15.10 

a13.6 * %2,7 a7.4 * ~9,a 

a14.5 * all.8 (y18.8 f, m7.9 

a14.6 * a12.8 %9,8 * a17.10 

&4,.7 - a13.8 %S,S - a18.10 

In each of the above the association is such that 

if and only if 

and 

ffj,l @ ap,m 

m=j’, l=p’ 

kj = kpe 

(5.2) 

It is trivial to show that the (Y’S associate when j, 1, and p satisfy these require- 
ments. Apparently no other (Y’S associate. 

This association will be of use primarily in telling us that the inner product 

has been computed before. 
As a first consideration, the case 

P(1) < P(i”) 

can be ignored, since 

(xkj$j’, $1) = 0 

for all such 1. Second, the case 

1.4) = Ai”) 
ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985. 
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is not of interest, since it is handled fully in Corollary 2 and Corollary 3. Third, 
the case 

p(j”) I p(1) 5 xp2 

is not of interest when kj < kjp, since 

(XkjJ/j', $0 = 0 

by Corollary 3. As a fourth consideration, (5.2) will require that 

p(l) L .pl I 
when p( 1) falls in the row of j ‘. And finally, we must have 

P(P) = ~kjcLW < P(j), 

since we are only interested in inner products that have been computed in the 
past and can be reused. This implies that 

~(0 < dj’). 

Hence we are left only with the cases 

(A) x:y)-’ < p(Z) 5 x$)-~ and kj = kj*; 

(II) x$‘)-’ 5 p(l) < p(j’). 

The examples of az16,( are illustrative. Since 

~(16) = ~410) 

and 

/J.(m = W(4), 

we have 

j = 16, j’ = 10, kj = 1, j” = 4, kj, = 3. 

Hence we must have 

e3.1 = a,,10 

for each p(p) that can be expressed as xlp (I). These are precisely those for which 
(B) above holds: 

d = do < Pm& 

which yields 

for 

p = 11, 12, 13, 14, 15 

respectively. 

1 = 5, 6, 7, 8, 9, 
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6. FORTRAN PROGRAM 

A program has been prepared to implement the results described in this paper 
(see Algorithm 634, pages 218-228). All of the features of indexing, attention to 
zero inner products, and attention to associations between (Y’S have been included 
as described. In addition, the computation of the fitting coefficients 

is done by the alternative formula 

cI = (a-1, $1) 

(*l, *1> ’ 

where 
I-1 

~1-1 = F - C ci$i 
i=l 

as is advocated in [ 11. The program has been passed by the PFORT [5] verifier. 

7. BASIS SELECTION 

In the case that the function 

WI,. . . , x,1 = fbl, . . . , GA + 4x1,. . . ,x,1 

that is being fit satisfies 

(1) the errors at each point in the sample space (xl, . . . , x,) are e(xl, . . . , x,) - 
NO, d, 

(2) for all points in the sample space (x1, . . . , x~), the e(xl, . . . , x,) are inde- 
pendent with the same variance, 

(3) fh * * *, x,) is, in fact, a multinomial, 

and in the case that the first m orthogonal multinomials generated by our process 
yield a satisfactory model for the data, that is, f is in their span, then the person 
interested in doing the least-squares fitting can test the hypothesis that the 
subset 

are the only basis elements necessary to represent f, if 

N-m (F- P,., F- Pr) - (F-Pm,F-Pm) -F 
r,N m _ 

r (F - Pm,, F - Pm) 

is true, where F is the F-distribution, P, is the least-squares fitting multinomial 
produced using only the +i,, and P,,, is the least-squares fitting multinomial 
produced from the full basis til, . . . , lClrn. 

The above accords with the description that Forsythe gives in [3] about 
selecting the order of the fitting polynomial; Forsythe’s description treats the 
special case where the basis subset consists of &, . . . , $J~. A reference for F- 
testing is to be found on [2, pp. 307-3101. (For a routine that was written to 
administer the selection of subsets in regression problems according to the 
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material in [2], refer to the routine RLEAP in the IMSL [4] and to the further 
bibliographic references given for that routine.) 

The FORTRAN code referred to in the previous section was written to be 
efficient for a limited brand of incremental fitting. It is possible to obtain the 
least-squares fit using the subset ql, . . . , qr+i from the fit obtained using the 
subset $i, . . . , qr with a minimum of computational effort. 
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