
A Note on Complex Division

G. W. STEWART
University of Maryland

An algorithm (Smith, 1962) for computing the quotient of two complex numbers is modified to make
it more robust in the presence of underflows.

Categories and Subject Descriptors: G.l.O [Numerical Analysis]: General--numerical algorithms;
G.4 [Mathematics of Computing]: Mathematical Software-reliability and robustness

General terms: Algorithms

Additional Key Words and Phrases: Computer arithmetic, complex division, exponent exception

This note concerns the computation of the complex quotient

c + di z=a+bi=-
e + fi

(ef Z 0)

in floating point arithmetic. An algorithm, due to R. L. Smith [2], is based on
the identities

a + bi = c + d(fe-‘) + d - c(fe-‘) .
e + f(fe-‘) e + f(fe-‘) ’ (I4 2 Ifl)

and

a+bi=
d + c(ef-‘) _ c - d(ef-‘) .
f + e(ef-‘) f + e(ef-‘) ’

(lel 5 If I).

If the operations are performed in the order indicated by the parentheses, the
resulting algorithm is remarkably robust in the presence of exponent exceptions,
provided underflows are denormalized. Specifically, an analysis of Hough cited
by Coonen [l] shows that when the algorithm works, it returns a computed value
Z satisfying

IZ-21 I tlzl, (3)

where E is of the same order of magnitude as the rounding unit for the arithmetic

This work was supported in part by the Air Force Office of Scientific Research under Contract
AFOSR-82-0078.
Author’s address: Department of Computer Science, Institute for Physical Science and Technology,
University of Maryland, College Park, MD 20742.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0098-3500/85/0900-0238 $00.75

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985, Pages 233-241.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F214408.214414&domain=pdf&date_stamp=1985-09-01

A Note on Complex Division l 239

in question. Moreover, the algorithm works for virtually all problems in which
the numerator, denominator, and quotient are representable as normalized float-
ing point numbers.‘,’ Thus the algorithm returns something that is almost a
“correctly rounded” answer in the sense of (3).

However, 5 being accurate in the sense of (3) does not insure the accuracy of
its real and imaginary components. There are two sources of inaccuracy. The
first is cancellation of digits in the computation of sums like c + d(de-‘). There
is not much that can be done about this source of error except to compute in
higher precision.

The second source of error is the underflow of quantities like fe-’ to zero. How
this causes inaccuracies may be illustrated by the quotient

1o’O + 10-70i
lo= + 10-56i

= 1o14 - 1()-99i , (4)

(the real and imaginary components of the right hand side are accurate to more
than ten decimal digits). If the formula (1) is used to compute the imaginary part
of (4) in ten digit decimal arithmetic with an exponent range of +-99, the result
is

tl = fl(fe-‘) = 0
tz = fl(ft1) = 0
t3 = fl(e + t2) = 1O56
t4 = fl(ct1) = 0
t5 = fl(d - t4) = lo-=
b = fl(t&) = 0.

(5)

Thus b has a relative error of one. The problem is that in computing the quantity
t = c(fe-‘) = 1O-42 the product fe-’ underflows to zero, which results in a spurious
value of zero for t4, even though this is the most significant part of the sum
t6=d-t4.

Note that if t had been computed in the order (cf)e-‘, then a correct answer
would have resulted. This suggests that we attempt to order the calculations of
expressions like cfe-’ so that whenever the result is representable, no overflows
or underflows occur. That this can be done is a consequence of the following
observation.

PROPOSITION. Let x1, x2, . . . , x,, > 0 be representable numbers and suppose
that 7r = x1x2 * - - x,, is akio representable. Then max(xi) . min(q) is also repre-
sentable.

PROOF. Without loss of generality assume that x1 = max(zi) and x2 = min(xi).
If x1x2 overflows, then x2 > 1. Since x3, x4, . . . , x,, 2 x2 > 1 the product is not less
than x1x2 and also overflows. On the other hand if x1x2 underflows, then x1 < 1.
Since x3, x4, . . . , x, 5 x1 < 1, the product K is not greater than x1x2 and also
underflows.

’ We shall use the tern “representable” in this sense throughout the note.
* The algorithm also works well when underflows are set to zero, provided one avoids numbers whose
magnitudes will underflow when multiplied by the rounding unit.

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

240 l G. W. Stewart

flip := false;
if IfI 2 let then

e :=: f;
c :=: d;
flip := true;

end if;
s := l/e;
t := l/(e + f*(f*s));
if If I? IsI then

f :=: s;
end if;
if ldl 2 IsI then

Fig. 1. Computation of a + bi = (c + di)/(e + fL).
a := t*(c + s*(d:f));

elseif ldl 2 If I then
a := t*(c + d:(s*f));

else
a := t*(c + f+d));

end if;
if ICI 2 IsI then

b := t*(d + s:(c:f));
elseif Icl 2 If I then

b := t*(d + c+f));
else

b := t:(d + f+c));
end if
if flip then b := -b; fi;

If we write ?r in the form

7r = (X1X*)X& * * - X”, (6)

then ?r is exhibited as the product of n - 1 representable numbers, which can
then be computed by a recursive application of the proposition. Thus a general
algorithm for computing the product of a collection of numbers is to replace the
largest and smallest numbers in the collection by their product, repeating the
process until there is only one number.

When n is large, the algorithm sketched above involves many comparisons and
is probably impractical for most applications. In our application, however, where
n = 3, the technique is workable. The resulting algorithm for complex division is
exhibited in Figure 1. Some simplification in the code is obtained by observing
that, except for the sign of b, the formula (2) may be obtained from (1) by making
the interchanges c :=: d and e :=: f. The common denominator t-’ of the terms
in (1) may be computed as it appears there, since fe-’ is the product of the
greatest and the least of the numbers f, f, and e-l. The rest of the algorithm is
based on a straightforward implementation of the above technique for computing
a product.

This algorithm is more complicated than Smith’s, and it requires some addi-
tional comparisons and arithmetic operations. Is it worth it? On the one hand,
the output of Smith’s algorithm, which satisfies (3), is sufficient for the vast
ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

A Note on Complex Division l 241

majority of applications. Moreover, our algorithm is by no means foolproof; it
can fail on machines whose exponent is biased in such a way that the reciprocals
of small representable numbers can overflow. On the other hand, the algorithm
presented here is not that much more expensive and provides an additional
degree of protection against exponent exceptions. That might be enough to
convince a person of cautious temperament, especially since division is usually
performed less frequently than additions and multiplications.

REFERENCES
1. COONEN, J. T. Underflow and denormalized numbers. Comput. 13, (1980), 68-79.
2. SMITH, R. L. Algorithm 116: Complex division. Commun. ACM 5, 8 (1962), 435.

Received November 1982; revised February 1984 and March 1984; accepted May 1985.

ACM Transactions on Mathematical Software, Vol. 11, No. 3, September 1985.

