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An algorithm (Smith, 1962) for computing the quotient of two complex numbers is modified to make 
it more robust in the presence of underflows. 
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This note concerns the computation of the complex quotient 

c + di z=a+bi=- 
e + fi 

(ef Z 0) 

in floating point arithmetic. An algorithm, due to R. L. Smith [2], is based on 
the identities 

a + bi = c + d(fe-‘) + d - c(fe-‘) . 
e + f(fe-‘) e + f( fe-‘) ’ (I4 2 Ifl) 

and 

a+bi= 
d + c(ef-‘) _ c - d(ef-‘) . 
f + e(ef-‘) f + e(ef-‘) ’ 

(lel 5 If I). 

If the operations are performed in the order indicated by the parentheses, the 
resulting algorithm is remarkably robust in the presence of exponent exceptions, 
provided underflows are denormalized. Specifically, an analysis of Hough cited 
by Coonen [l] shows that when the algorithm works, it returns a computed value 
Z satisfying 

IZ-21 I tlzl, (3) 

where E is of the same order of magnitude as the rounding unit for the arithmetic 
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in question. Moreover, the algorithm works for virtually all problems in which 
the numerator, denominator, and quotient are representable as normalized float- 
ing point numbers.‘,’ Thus the algorithm returns something that is almost a 
“correctly rounded” answer in the sense of (3). 

However, 5 being accurate in the sense of (3) does not insure the accuracy of 
its real and imaginary components. There are two sources of inaccuracy. The 
first is cancellation of digits in the computation of sums like c + d(de-‘). There 
is not much that can be done about this source of error except to compute in 
higher precision. 

The second source of error is the underflow of quantities like fe-’ to zero. How 
this causes inaccuracies may be illustrated by the quotient 

1o’O + 10-70i 
lo= + 10-56i 

= 1o14 - 1()-99i , (4) 

(the real and imaginary components of the right hand side are accurate to more 
than ten decimal digits). If the formula (1) is used to compute the imaginary part 
of (4) in ten digit decimal arithmetic with an exponent range of +-99, the result 
is 

tl = fl(fe-‘) = 0 
tz = fl( ft1) = 0 
t3 = fl(e + t2) = 1O56 
t4 = fl(ct1) = 0 
t5 = fl(d - t4) = lo-= 
b = fl(t&) = 0. 

(5) 

Thus b has a relative error of one. The problem is that in computing the quantity 
t = c( fe-‘) = 1O-42 the product fe-’ underflows to zero, which results in a spurious 
value of zero for t4, even though this is the most significant part of the sum 
t6=d-t4. 

Note that if t had been computed in the order (cf)e-‘, then a correct answer 
would have resulted. This suggests that we attempt to order the calculations of 
expressions like cfe-’ so that whenever the result is representable, no overflows 
or underflows occur. That this can be done is a consequence of the following 
observation. 

PROPOSITION. Let x1, x2, . . . , x,, > 0 be representable numbers and suppose 
that 7r = x1x2 * - - x,, is akio representable. Then max(xi) . min(q) is also repre- 
sentable. 

PROOF. Without loss of generality assume that x1 = max(zi) and x2 = min(xi). 
If x1x2 overflows, then x2 > 1. Since x3, x4, . . . , x,, 2 x2 > 1 the product is not less 
than x1x2 and also overflows. On the other hand if x1x2 underflows, then x1 < 1. 
Since x3, x4, . . . , x, 5 x1 < 1, the product K is not greater than x1x2 and also 
underflows. 

’ We shall use the tern “representable” in this sense throughout the note. 
* The algorithm also works well when underflows are set to zero, provided one avoids numbers whose 
magnitudes will underflow when multiplied by the rounding unit. 
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flip := false; 
if IfI 2 let then 

e :=: f; 
c :=: d; 
flip := true; 

end if; 
s := l/e; 
t := l/(e + f*(f*s)); 
if If I? IsI then 

f :=: s; 
end if; 
if ldl 2 IsI then 

Fig. 1. Computation of a + bi = (c + di)/(e + fL). 
a := t*(c + s*(d:f)); 

elseif ldl 2 If I then 
a := t*(c + d:(s*f)); 

else 
a := t*(c + f+d)); 

end if; 
if ICI 2 IsI then 

b := t*(d + s:(c:f)); 
elseif Icl 2 If I then 

b := t*(d + c+f)); 
else 

b := t:(d + f+c)); 
end if 
if flip then b := -b; fi; 

If we write ?r in the form 

7r = (X1X*)X& * * - X”, (6) 

then ?r is exhibited as the product of n - 1 representable numbers, which can 
then be computed by a recursive application of the proposition. Thus a general 
algorithm for computing the product of a collection of numbers is to replace the 
largest and smallest numbers in the collection by their product, repeating the 
process until there is only one number. 

When n is large, the algorithm sketched above involves many comparisons and 
is probably impractical for most applications. In our application, however, where 
n = 3, the technique is workable. The resulting algorithm for complex division is 
exhibited in Figure 1. Some simplification in the code is obtained by observing 
that, except for the sign of b, the formula (2) may be obtained from (1) by making 
the interchanges c :=: d and e :=: f. The common denominator t-’ of the terms 
in (1) may be computed as it appears there, since fe-’ is the product of the 
greatest and the least of the numbers f, f, and e-l. The rest of the algorithm is 
based on a straightforward implementation of the above technique for computing 
a product. 

This algorithm is more complicated than Smith’s, and it requires some addi- 
tional comparisons and arithmetic operations. Is it worth it? On the one hand, 
the output of Smith’s algorithm, which satisfies (3), is sufficient for the vast 
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majority of applications. Moreover, our algorithm is by no means foolproof; it 
can fail on machines whose exponent is biased in such a way that the reciprocals 
of small representable numbers can overflow. On the other hand, the algorithm 
presented here is not that much more expensive and provides an additional 
degree of protection against exponent exceptions. That might be enough to 
convince a person of cautious temperament, especially since division is usually 
performed less frequently than additions and multiplications. 
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