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We present concurrent algorithms for the solution of narrow banded systems on ensemble architec- 
tures, and analyze the communication and arithmetic complexities of the algorithms. The algorithms 
consist of three phases. In phase 1, a block tridiagonal system of reduced size is produced through 
largely local operations. Diagonal dominance is preserved. If the original system is positive, definite, 
and symmetric, so is the reduced system. It is solved in a second phase, and the remaining variables 
obtained through local back substitution in a third phase. With a sufficient number of processing 
elements, there is no first and third phase. We investigate the arithmetic and communication 
complexity of Gaussian elimination and block cyclic reduction for the solution of the reduced system 
on boolean cubes, perfect shuffle and shuffle-exchange networks, binary trees, and linear arrays. 

With an optimum number of processors, the minimum solution time on a linear array is of an 
order that ranges from O(n*%) to 0( m3 f m310g&V/m)) depending on the bandwidth, the 
dimension of the problem, and the times for communication and arithmetic. For boolean cubes, cube- 
connected cycles, prefect shuffle and shuffle-exchange networks, and binary trees, the minimum time 
is O(m3 + m310g, (N/m)) including the communication complexity. 

Categories and Subject Descriptors: C.1.2: [Processor Architectures]: Multiple Data Stream 
Architectures (Multiprocessors)-muItiple-instruction stream, multiple-data stream processors 
(MIMD); F.2.1: [Analysis of Algorithms and Problem Complexity] Numerical Algorithms and 
Problems-computation on matrices; G.1.3: [Numerical Analysis]: Numerical Linear Algebra- 
linear systems (direct and iteratiue methods); G.4: [Mathematics of Computing]: Mathematical 
Software-algorithm analysis; 1.1.2: [Algebraic Manipulation]: Algorithms-analysis of algorithms 

General Terms: Algorithms, Performance 

Key Words and Phrases: Multiprocessors, banded linear systems 

1. INTRODUCTION 

The architectural model used for the complexity analysis is one in which there 
are no shared resources. Each processor has its own storage and executes its own 
instruction stream. Hence, the architecture is of the MIMD type in Flynn’s 
classification [ 21. We refer to such architectures as ensemble architectures, a term 
introduced many years ago (e.g., in the PEPE, Parallel Element Processing 
Ensemble). The processor interconnections considered here are linear arrays, 
boolean cubes, perfect shuffle and shuffle-exchange networks, and binary trees. 
These configurations offer different trade-offs between communication capabil- 
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ities and interconnection cost. For computations distributed throughout the 
ensemble, and requiring global communication, such as the solution of irreducible 
systems of linear equations, the complexity of computation contains at best, a 
term proportional to the diameter of the ensemble [3]. Contention for commu- 
nication resources or sequential dependencies in the algorithm can considerably 
increase this lower bound on the communication complexity. The lowest com- 
munication complexity of the algorithms presented in this paper is proportional 
to the diameter of the ensemble. 

The banded irreducible system AX = Y is assumed to be of order N and 
bandwidth 2m + 1, where oij = 0 for ] i - j ] < m. The number of processing 
elements relative to the bandwidth of the matrix and the interconnection of the 
processing elements are important factors in choosing an algorithm for the 
solution of a banded system of equations. Here we present and analyze the 
arithmetic and communication complexities of some algorithms for systems of a 
narrow bandwidth, m/N < 1. No advantage is taken of any particular structure 
within the band. Algorithms for the solution of tridiagonal systems of equations 
on a variety of ensemble architectures are described and analyzed in [8]. In [lo] 
we present and analyze algorithms for banded systems with a large bandwidth. 

Parallel algorithms for the solution of a system of linear equations are often 
devised through partitioning of the set of equations into subsets (substructures), 
for which computations to a certain extent can be performed independently and 
concurrently. The substructuring technique employed for the algorithms pre- 
sented here is inspired by that of [ll, 121 for banded systems, and [15] for 
tridiagonal systems. It is closely related to nested dissection [4, 5, 121, which 
would yield P substructures, not being bisectors for P - 1 bisectors. An algorithm 
based on substructuring techniques for banded systems has also been proposed 
by Reiter and Rodrigue [13] who analyze some of the numerical properties of 
their algorithm. 

Our algorithm proceeds in 3 phases (as do the algorithms of Sameh et. al., and 
Wang). In phase 1 computations are performed within the substructures and 
with limited communication between adjacent substructures so that the banded 
system is transformed into a form from which a block tridiagonal system of order 
P and block size m by m can be separated out and solved in phase 2. If nested 
dissection is applied to the graph corresponding to a banded matrix with dense 
band of width 2m + 1, then the reduced system would correspond to the P - 1 
bisectors, each of which is of size m (and the reduced system would be of order 
(P - l)m). In the graph corresponding to the N by N matrix A, there are N 
vertices labeled with a distinct index i = (1, 2, . . . , Nj, and a directed edge from 
node i to node j if aij # 0. In phase 3, the variables internal to the substructures 
are computed through back substitution. Lawrie and Sameh [ll] transform the 
system of equations in their first phase such that a block pentadiagonal system 
of order 2(P - 1) with blocks of order m by m can be separated out and solved 
in a second phase. The number of arithmetic operations required to deduce the 
block tridiagonal system is the same as the number of operations required to 
deduce the pentadiagonal system. If the original matrix is symmetric and positive 
definite, then so is the block tridiagonal system. This is not necessarily true for 
the pentadiagonal system of Lawrie and Sameh’s algorithm. The pentadiagonal 
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system can be permuted into a block tridiagonal system by pairwise column 
permutations, but this system is no longer diagonally dominant. 

Lawrie and Sameh investigate the solution of the pentadiagonal system by 
Gaussian elimination on a linear array. The solution of the block tridiagonal 
system by 2-way Gaussian elimination yields an arithmetic complexity with the 
highest order terms equal to (7/3m3 + 3m2)P for phase 2 of our algorithm 
compared to (9m3 + 12m’)P for Lawrie and Sameh’s algorithm, a reduction by 
approximately a factor of 4. If the banded system is symmetric and positive 
definite then an additional reduction in the arithmetic complexity of our method 
is possible. In [l] the solution of the reduced system by block-Jacobi iterations, 
and by the preconditioned conjugate gradient method on a linear array is studied. 
We show that block cyclic reduction (BCR) is of a lower total complexity 
than 2-way Gaussian elimination (2GE) on a linear array, if a! = t,/t, I 2&n/9 
for one right hand side, and cy I 4NR if NR >> m, where NR is the number of 
right hand sides. The time for communicating one floating-point number is de- 
noted t, and the time for an arithmetic operation t,,. Some detailed optimiza- 
tions of the algorithm, that are not carried out here, change the constants in 
these relations only to a minor extent. Depending on the relative values of m, 
N, ta, and t,, the minimum complexity of BCR is O(m2d? + m310g2N) or 
O(m3 + m310g2(N/m)). 

Block cyclic reduction is particularly well suited for ensemble architectures 
configured as boolean cubes, cube-connected cycles, perfect shuffle and shuffle- 
exchange networks, and binary trees. With one processor per block row and 
O(N/m) processing elements the banded system can be solved with a computa- 
tional complexity of O(m3 + m310g2(N/m)) on those ensemble configurations 
compared to a minimum complexity of O(m2&) for Gaussian elimination on 
a linear array of O(m) processing elements. 

For the algorithms analyzed here N/P consecutive equations are allocated to 
a processor that computes N/P unknowns. P is constrained by the relation 
P I TN/ml, in order that the partitioned system be block tridiagonal. If sub- 
structuring through nested dissection is made, then each substructure will have 
(N + m)/P - m equations for local variables, and with an entire bisector assigned 
to a substructure not being a bisector all but one of those will have additional m 
equations and variables. Since the bisectors for a matrix with dense band of 
width 2m + 1 is of size m it follows that the number of bisectors and other 
substructures must be less than N/m. 

The number of processors can be larger than P. Multiple processors can 
be used per partition. With clusters of m2 suitably configured processors 
assigned to each partition, a solution can be obtained in a time of order O(m + 
mlogz (N/m)) [lo], including the time for communication. Those algorithms 
combine the algorithms presented here with an algorithm obtained from a 
transformation of the concurrent Gaussian elimination algorithm in [7]. In a 
boolean cube, lower dimensional subcubes can be considered as clusters. 

In Section 2 we define the submatrices that follow from the partitioning of the 
banded system and introduce the notation used in describing the algorithm and 
performing the analysis. In Section 3 the computations and communication of 
phases 1 and 3 are defined and analyzed. An algorithm implementing a version 
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of Gauss-Jordan elimination for the substructures is described first. Next, a 
parallel Cholesky factorization algorithm is given for symmetric, positive definite 
matrices. Section 4 deals with the solution of the reduced system, phase 2, by 
Gaussian elimination and block cyclic reduction on a variety of ensemble archi- 
tectures. The complexity results for the solution of the banded system are 
summarized in Section 5. Section 6 contains the conclusions of the analysis. 

2. PRELIMINARIES 

The banded system AX = 1’ is partitioned into P partitions, with each partition 
consisting of consecutively indexed equations. The partitioned matrix is block 
tridiagonal for N/P L m. For m < N/P the off diagonal blocks contain a large 
fraction of zeros. Advantage can be taken of this property, and a reduced system 
derived with dense matrices of order m by m. For q = N/P not an integer, 
N - PrN/Pl partitions are assigned LN/PJ equations (and the remaining 
partitions [N/P1 equations). We ignore this possible difference in partition 
size in the description and analysis of the algorithms. The reduced system is 
always of size mP by mP for the substructuring employed here ((P - 1)m by 
(P - 1)m for nested dissection). The partitioned banded system has the following 
block form 

Ci Ai Bi Xi Yi 
. = . 

. . 
. . 

CN AN XN YN 

The blocks have an additional structure as illustrated in Figure 1 for P << N/m. 
and P = N/m. 

In the following we use the notation 

The matrices Ei,, Fi,, and Gi, are m by m matrices, and Hi, and Uh are m by NR 
matrices. The matrices G,, Ei,, Fi2, and Hi, form a block row of the reduced block 
tridiagonal system, the solution of which is denoted U,, i = (1, 2, . . . , P), or X2. 
The matrix Ei, is a q - m by q - m matrix, Ek and Gi, are q - m by m matrices, 
Hi,, and Vi, are q - m by NR matrices. E, and Fi, are m by q - m matrices. 

With the notation in Figure 1 the initial assignments are 

Ei, = Aill, Ek = Ail22 Ei3 = Azl, Ei, = A,,, 

(Fi,J’b) = (B,,O), ($=(cd”). 
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Fig. 1. Partitioning of a banded matrix 

For a symmetric matrix A 

Bi,, = cL12, A,, = Ar2, A,, = ATI, Ai,, = Azz. 

3. LOCAL ELIMINATIONS 

The complete algorithm for the solution of narrow banded systems proceeds in 
five steps as follows: 

1. Locally solve in each partition a banded system with system matrix Ei, and 
the right hand side Gi,, Ei,Hi,. 

2. Locally eliminate the matrix Ei,. 
3. Through communication with adjacent partitions eliminate Fi, . 
4. Solve the reduced system of equations to obtain U,, i = (1, 2, . . . , P). 

(Requires global communication). 
5. Solve for the remaining variables U,, i = (1, 2, . . . , P), X1, through commu- 

nication with adjacent partitions. 

The first 3 steps constitute phase 1, step 4 phase 2, and step 5 phase 3. 
In this section we define the algorithm for phase 1, in which a banded system 

is transformed into a system of equations from which a block tridiagonal system 
of order P and block size m by m can be separated out and solved independently. 
We also give an algorithm for the computation of the remaining variables, phase 
3. The arithmetic and communication complexity of the computations are de- 
rived. Preservation of diagonal dominance, symmetry, and positive definiteness 
in phase 1 is proved. 

3.1. An Algorithm for Phases 1 and 3 

Below we specify the computations of each of the steps l-3 and 5 in some detail. 

Step 1. Factor the blocks Ei, and solve the first q - m equations in each 
partition. 

Et, + L, ui,, or for A symmetric Ei, + Li,Di,Lr, i = 11, 2, . . . ) P); 

Gi, t Ei,‘Gi, 9 E, t Ei,‘Ei,, Hi, t Ez’Hi,, i = (1, 2, . . . , P). 
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Ei, !EizA 

i 

:.:: , 
:: . 
:: . 
.A. 
.:.: . 

;:j: : 

Fig. 2. The system of equations after a local solve on the first N/P-m equations 

The system of equations now have the form shown in Figure 2. 

Step 2. Eliminate the matrix Ei, by multiplying the first q - m rows in partition 
i by E, and subtracting the result from the last m rows of the partition. 
The computations are 

G, + Gi, - E&G,,, Ei, + E, - E,E,y and Hi, t Hi, - Ei, Hi, 9 
i = (1, 2, . . . , P). 

Note that if q > 2m, then Gi, is initially 0, and the first q - 2m columns of Ei, 
are 0, while the last m columns contain an upper triangular matrix. Hence, 
effectively the last min(q - m, m) rows of Gi,, E,, and Hi, are used for the 
elimination. 

Step 3. Eliminate the matrix Fi, by multiplying the first q - m rows of partition 
i + 1 by Fi, and subtracting the product from the last m rows of partition 
i, i = (1, 2, . . . , P - 1). This step requires communication between 
adjacent partitions. The computations are 

Ei, + Ei4 - Fi,Gi+l,, J’i:! + Fh - FilEi+12, and Hi, + Hi, - Fi, Hi+ 1,s 
i = (1, 2, . . . , P - 1). 

Note that if q z 2m, then Fi, is initially 0, and the last q - 2m columns of Fi, 
are 0, while the first m columns contain a lower triangular matrix. Effectively, 
the first min(q - m, m) rows of Gi+ll, Ei+l,, and Hi+ll are used for the 
elimination. 

At this point the form of the system of equations is as shown in Figure 3. 
The last m equations of each partition together form a block tridiagonal system 

of equations of P block rows. Before discussing Step 4, the solution of the reduced 
block tridiagonal system, we consider Step 5, the step in which q - m variables 
for each right hand side are solved for in each partition. 

Step 5. Having solved the block tridiagonal system, Step 4, X, is known and X, 
can be computed. 

UI, + HI, - E12Ul:!, and Ui, + Hi, - Ek Viz - Gi, Ui-1,) 
i = (2, 3, . . . , P). 
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Fig. 3. The system of equations after steps 1-3 

Complexities of Steps l-3 and 5. Each of the four arithmetic operations 
(+, -, *, and /) requires time t,. Partitions i and i + 1, i = (1, 2, . . . , P - 11, are 
assumed to be in adjacent processing elements. This assumption is important for 
the communication in Step 3. The time to communicate a floating-point number 
is t,. The following complexity estimates can be derived assuming that A is 
symmetric, and that adjacent partitions are mapped to neighboring processors. 

Arithmetic: 

((7m2 + 8mNR + 3m + 2NR + l)/(N/P - 2m) 
+ m((m + 1)(4m + (2m + 1)/3 + NR(8m + 2) + 3) - 2)t,. 

Communication: 

(min(q - m, m)(2m + NR) + mNR)t,. 

The arithmetic complexity is increased by a term m2(N/P - 2m)t, 
if A is not symmetric. The communication complexity can be reduced by 
min(q - m, m)(min(q - m, m) - 1)/2t, if the elimination of Fi, is made in 
partition i + 1. 

For ensembles configured as Boolean cubes and cube-connected cycles net- 
works and linear arrays, mapping adjacent partitions into neighboring processing 
elements is feasible also with respect to the solution of the reduced block 
tridiagonal system. For a binary tree configured ensemble an inorder mapping of 
partitions to processing elements is feasible with respect to phase 2. The inorder 
mapping increases the communication complexity by a factor of log2 P - 1. 

3.2. Symmetric Positive Definite Matrices 

If A is symmetric and positive definite it is desirable to exploit this property in 
solving the system of equations. Next we will show that our substructuring 
technique allows for the use of Cholesky factorization instead of Gauss-Jordan 
elimination if the matrix A is symmetric and positive definite. Moreover, the 
Cholesky factorization is parallelizable in the same way as the Gauss-Jordan 
elimination. It follows from the use of Cholesky’s method that, at the end of 
phase 1, the partially factored matrix A is symmetric positive definite and the 
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reduced system can also be solved taking advantage of symmetry and positive 
definiteness. The reduced system obtained by Sameh et al. [ 111 is not necessarily 
symmetric and positive definite. 

We will also show that diagonal dominance is preserved. 
3.2.1. Preservation of symmetry andpositive definiteness. To show that parallel 

Cholesky factorization can be performed on A (if it is symmetric and positive 
definite) in phases 1 and 2, ‘we perform a permutation on rows and columns such 
that the first 4 - m rows and columns of all partitions are ordered before the last 
m rows, and columns of any partition. The order of rows and columns within the 
subpartitions is preserved, and so is the order of the subpartitions. The permu- 
tation matrix R is 

R= 

Iq-, O,-,,, O,-, 0,-m, Of7-m G-mm * * * ' 
0,~, O,-,,, Iqwm Oq--mm Q-m Oq-mm * * * 
o,-, o,-,,, 0,-m c&run LFn ovm **. 

anq-In L Omqwm 0, ow-, 0, - ’ * 
o,,-, 0, Omqmm I, o,-, 0, * * * 
Qnq--m OnI anq-m 0, anq-In Ln * * * 

The subscript denotes the dimension of the matrix. For a square matrix one 
subscript is given, for a rectangular matrix the number of rows are given before 
the number of columns. Clearly RRT = I, and RART = A is also symmetric 
positive definite. The matrix a is of the form 

A= 

El2 \ 
Gz~ ~72~ 

G31 E32 

GP, EP~ 

El, Fl, 

G2, E24 F2, 

The matrix a has a symmetric factorization zLT. Any positive definite sym- 
metric N by N matrix M can be factored as (Cholesky) 
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where h?f, = iV, - uluT/d. it?, is clearly symmetric, and it is also positive definite, 
and the process can be repeated for Ml. 

M, = LzMzLT and M = LIL2M2LTLT. LILz is also lower triangular. 
For the matrix A, the factorization with respect to any column (q - m)j + k, 

k = 11, 2, . . .) q - ml is independent of the factorization with respect to any 
column (q - m)i + k, k = (1, 2, . . . , q - m), i # j, i, j = (1, 2, . . . , I’). Hence, the 
factorization with respect to the different blocks of q - m columns can be 
performed concurrently. Communication between adjacent partitions is needed 
due to the blocks Fi,, and each E,p i = {l, 2, . . . , P - 11 is updated by partition i 
and i + 1. After factorization with respect to the first (q - m)P columns, the 
matrix a is factored as 

where A, is symmetric, positive definite, and of order mP by mP. It defines the 
reduced system to be solved in phase 2. It is readily verified to be block tridiagonal 
with block size m by m. The matrix L is of the form 

L= 

Lll 
L2, 

J531 

LPI 
Ll, Ll, 

L2, Lz, 

\ 

The solution to the banded system can be obtained as follows 

It follows that Si = Z,, a2S2 = Z2 and X2 = S2. Hence, after the forward 
substitution the set of variables U,, i = (1, 2, . . . , P) are obtained from the 
solution of the reduced system. 

The reduced block tridiagonal system can be solved through continued sym- 
metric factorization. But, the factorization with respect to any column in partition 
i, (q - m)P + m(i - 1) + k, k = (1, 2,. . . , m) affect all the columns in partition 
i + 1, that is, columns (q - m)P + mi + k, k = 11, 2, . . . , m). However, a 
permutation of the last P block rows and columns can be performed to yield the 
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elimination order of block cyclic reduction. Then, approximately P/2 blocks can 
be factored concurrently, then P/4, etc. 

The permutation of the last rows and columns corresponding to block cyclic 
reduction is the same as if nested dissection is applied to the graph corresponding 
to the banded matrix, and the first bisector labeled last and the last set of 
bisectors labeled first. 

3.2.2. Diagonal dominance. We will now show that diagonal dominance in a 
certain sense is preserved during phase I of the algorithm. 

THEOREM 3.1. Let the matrix A satisfy the following diagonal dominance 
conditions: 

II E;:E,,Il < 1, II &%,II + II E:,%, II + II K:F,,II < 1; 
11 Ei,‘Gi,II + II E<lE,II = ai + bi c 1, i = (2, 3, . . . , P); 

11 E,‘G,II + II E,‘E,II + II Ei,‘Fi,II + II Ei,‘Fi,II = ci + di + ei + fi < 1, 

i = 12, 3, . . . , P - 1); 
II EF&II + JG+%~II < 1. 

Then the nonzero submatrices of AZ, E,, fin, and G, satisfy the relations 

II %,lR;,, II < 1, 11 E<'G, 11 + E<lPi,II < 1, i = (2, 3, . . . , P - 1) 

II G&II < 1. 
PROOF. We will prove that the dominance conditions hold for i = (2,3, . . . , 

P - 1). The cases i = 1 and i = P are proved similarly. 

Ei, = E, - Ei,Ei,lEh - Fi,E~~,Gi+l,, i = (1, 2, . . . , P - 1); 
e. = G. - E. ET~('. 

fl; = F; - F,;&$;+,,, 
i = (2, 3, . . . , P); 

i = (1, 2, . . . , P - 1). 

We need to show that 

II (Ei, - Ei3E,‘Ei2 - Fi,EZ1,Gi+l,)-‘(G~ - Ei,Ei,‘Gi,) II 
+ II (Ei, - Ei3E,‘Ei2 - J’iIEZ:lIGi+~,)-‘(J’i2 - Fi,EZ~:1,Ei+12) II < 1; 

or 
II (I - Ei,‘Ei,Ei,‘Ei, - Ei,‘Fi,E~:1,Gi+l,)-‘Ei,‘(Gi, - Ei,Ei,‘Gi,) II 

+ II (I - Ei,‘Ei,Ei,‘Ei, - Ei,‘Fi,E~:1,Gi+l,)-‘Ei,‘(Fi, - Fi,Ezl:l,Ei+l,) II < 1. 

or with the shorthand notation introduced above 

(1 (I - dibi - eiai+l)-l(ci - diai) II + II (I - dibi - eiai+l)-‘( fi - eibi+l) II = gi. 

But, 

11 (I dibi eiai+l)-’ II 
1 1 

- - 5 S 1 - II dibi + eiai+l II 1 - dibi - eiai+l 

and 

1 

gi 5 l-ibi - eiai+l 
(ci + diai + fi + eibi+l). 
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From the diagonal dominance assumptions it follows that 

dibi + eiUi+l + Ci + diUi + fi + e&i+1 = Ci + di(Ui + bi) + ei(Ui+l + bi+l) + fi 
<Ci+di+ei+fi<l 

or 

Ci + diUi + fi + eibi+l < 1 - dibi - eiCZi+l. cl 

4. SOLUTION OF THE BLOCK TRIDIAGONAL SYSTEM, STEP 4 

The feasibility of different methods for solving the block tridiagonal system 
depends on numerical aspects, and the configuration of the ensemble of process- 
ing elements. We will compare the complexities of 2GE and BCR on linear 
arrays, boolean cubes, perfect shuffle and shuffle-exchange networks and binary 
trees. 

4.1. Linear Array 

4.1.1. 2-way Gaussian Elimination. The blocks are treated as dense blocks. 
We assume that P = 2p - 1 in order to simplify the comparison between 2GE 
and BCR. In 2GE the elimination process proceeds toward the middle from both 
ends, followed by back substitution from the middle toward the ends. Since P is 
odd, the elimination phase terminates with one block system to be solved. For 
P = 3, 2GE and BCR are identical. Assuming that 

1. There is one block row per processing element; 
2. The solve operation on a block row with the off-diagonal blocks appended to 

the right hand sides is carried out in the processing element storing the row; 
3. The matrix multiplication and addition required for the elimination of an off 

diagonal block is performed in the processing element storing the block to be 
eliminated. 

We derive the following complexity estimates 

Arithmetic: 

(m(7m2/3 + 3mNR - (9m + 6NR + 1)/12)(P - 1) 
+ m(2mNR + (4m2 + 3m - 1)/6))t,. 

Communication: 
(number of elements) x (distance)(m(m + 2NR)(P - 1)/2 + m2)tc. 

The minimum number of interprocessor communications is P - 1. 
4.1.2. BCR. For BCR we base the complexity estimates on the following 

assumptions 

1. There is one block row per processing element; 
2. The solve operation on a block row with the off-diagonal blocks appended to 

the right hand sides is carried out in the processing element storing the row; 
3. One of the row multiplications required for the elimination of an off diagonal 

block is performed in the processing element storing the block row used for 
the elimination; 

4. The elimination is performed in the block row storing the blocks to be 
eliminated. 
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The first two assumptions are the same as for the Gaussian elimination 
algorithm. The third assumption allows concurrent operations on the two rows 
used for the elimination of the two off-diagonal blocks to be eliminated in a row. 
This assumption implies that m2 elements need to be communicated between the 
processors storing the blocks to be eliminated and the processors storing the 
rows used for the elimination. This communication is not necessary in the 
Gaussian elimination algorithm, and is the price paid for operating concurrently 
on the two rows used for the elimination of the two off-diagonal blocks in a row. 
Elimination of the off-diagonal blocks is then accomplished in the processing 
element storing the block row in which elimination is to take place by adding 
block rows received in communication with the appropriate processing elements. 
In the back substitution phase, two vectors of dimension m of previously com- 
puted unknowns are needed. The vectors can be communicated over different 
paths. Cyclic reduction on a linear array can be carried out by explicitly imple- 
menting shuffle operations, or in place. In such an algorithm, partitions reside in 
a given processor until needed in the reduction process by another processor. In 
[8] we proved that the in-place algorithm is more efficient on a linear array than 
a shuffle based algorithm. Our complexity estimates are as follows: 

Arithmetic: 

(m(26m2/3 + 8mNR - 3m - 2/3)(log# - 2) 
+ m((16m2 - 1)/3 - m + NR(8m - 1)))L 

Communication: 

(number of elements) x (distance)((m(5m + 4NR)(P + 1)/4 - m(3m + 2NR))t,. 

The minimum number of interprocessor communications is P - 1. 
4.1.3. Comparing the complexities of 2GE and BCR on a linear array. The 

parallel arithmetic complexities of both Gaussian elimination and BCR, as given 
above, can be reduced somewhat by distributing the computations over additional 
processing elements at the expense of additional communication. 

THEOREM 4.1. The parallel arithmetic complexity of BCR is at most the same 
as that of 2GE for P I 3. 

PROOF. The proof is by induction. The arithmetic complexities are the same 
for p = 2, that is, P = 3, and the proposition is true. Assume it is true for p = n, 
n > 2. Then the increment in arithmetic complexity is easily shown to be less 
for BCR than for 2GE, and the proposition is true. 0 

If the number of interprocessor communications is considered, then 2GE and 
BCR are equivalent, and if the communication bandwidth requirement is meas- 
ured by the number of elements communicated times the distance, then 2GE is 
the most efficient. The communication bandwidth requirement is quadratic in 
the matrix bandwidth, whereas the arithmetic complexity is cubic. If the archi- 
tecture allows concurrent computation and communication, the time for arith- 
metic will dominate if the communication bandwidth is high. If the bandwidth is 
small the sequential dependencies are such that it is necessary to add at least the 
time for communicating one floating-point number. If the architecture does not 
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Fig. 4. Regions of lowest total complexity of 2GE and BCR on a linear array. 

allow concurrent communication and computation, a pessimistic assumption, 
then, considering only highest order terms, BCR may still be preferable. 

THEOREM 4.2. Considering only highest order terms, there exists some PO such 
that for P 1 PO BCR is of a lower total complexity (arithmetic + communication) 
than 2GE on a linear array, if LY = tJt= < 28m/9 and NR << m, and LX < 4NR for 
NR>m. 

PROOF. Follows directly from the complexity estimates. q 

COROLLARY 4.1. BCR is of a lower total complexity than. 2GE on any linear 
array for which LY < 1, P 2 3. 

PROOF. It is true for m = 1, [8]. The complexity of BCR increases at a lower 
rate with the matrix bandwidth than 2GE on a linear array. Cl 

Hence, BCR is of a lower complexity than Gaussian elimination even under 
more pessimistic assumptions than those in [ll]. Figure 4 shows the boundary 
between the regions in which each method is preferable with respect to total 
complexity. The curves are computed from the complexity estimates given above 
and with the assumption that communication and computation do not take place 
concurrently. The region in which BCR is of lower complexity increases with 
NR, and decreases with CL. 

Note, that with communication and computations actually occurring concur- 
rently the region in which BCR is of a lower complexity than 2GE is increased. 

4.2. Boolean Cube and Perfect Shuffle Networks 

We choose to perform the elimination of off-diagonal blocks in the same manner 
as on a linear array. Hence, the arithmetic complexity is the same for a linear 
array, a boolean cube and a perfect shuffle network with the same number of 
processing elements. The communication complexities of BCR on boolean cube 
and perfect shuffle networks are the same: 

Communication: 

(number of elements) x (distance)(m(3m + 2NR)(log,P - 2) + 2m(m + NR))t,. 
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The minimum number of interprocessor communications is 4(log, P - 2) + 2. 

BCR is always of a lower total complexity than 2-way Gaussian elimination on 
these networks. 

4.3. Binary Trees and Shuffle-Exchange Networks 

For a binary tree of processors we assume an inorder mapping of partitions to 
processors, following [8]. A binary tree is a natural computation structure for 
partitioning by nested dissection, in which case the first bisector is mapped into 
the root, and successive levels of bisectors are mapped on to successive levels of 
the tree. The last set of bisectors are mapped to the leaves of the tree. Substruc- 
tures not being bisectors are also mapped to the leaf nodes (except 1 such 
substructure that is mapped to a parent node of a leaf node). 

For the binary tree we make the same assumptions regarding the distribution 
of computations for the elimination of a row as for Gaussian elimination on a 
linear array. The distribution used for BCR on linear arrays, boolean cubes, and 
perfect shuffle networks requires communication in both directions, which pre- 
vents effective pipelining of operations on a binary tree with an inorder mapping 
of equations. The following complexity estimates can be derived 

Arithmetic: 

2(m(38m2/3 + 8mNR - 2m - 2/3)(log,P - 2) 
+ m((16m2 - 1)/3 - m + NR(8m - l)))t,. 

The minimum number of interprocessor communications is 3 log2 P - 4. 

BCR on a shuffle-exchange network can be performed by simulating a binary 
tree. An effective embedding is obtained by labeling the root of the tree 1, label 
the left descendant of any node labeled p by 2p and the right descendant 2p + 1. 
The distance from a parent node to its right child is 2, and the communication 
complexity is somewhat higher than for the tree. 

5. SUMMARY OF COMPUTATIONAL COMPLEXITIES FOR NARROW 
BANDED SYSTEMS 

Adding the complexities for all five steps, and assuming that the communi- 
cation and arithmetic complexities are additive, the highest order terms for 
2GE are 7m2N/P + (7/3m” + m2a/2)P for one right hand side. The o tim- 
urn value of PO,,, is J3N/(m + 3a/14), which is approximately + 3N/m for 
large matrix bandwidths, or communication of a speed comparable to the 
time for arithmetic. The minimum time YZ’min is approximately 14m2 m. 
For block cyclic reduction on a linear array the highest order terms are 
7m2N/P + 26/3m310g2P + 5/4m2aP, and the optimum value of P, PO,,, = 
52m/(15a)( J28N/(5a(15a/52m)2) + 1 - l), is obtained as the solution to 
a second order equation. For m2 << NLY/~ Popt = J28N/(5~u) and Tmi, = 
6m2& + 14/3m310g2 N/a. For m2 = Nc~/2 PO,, = p~f28N/(5c~), and 
Tmin = (/3 + 1/P)6m2&% + 14/3m310g2N/a. Finally, for m2 >> NcY/~ PO,, = 
21N/26m, and Tmi, z 26/3m3(1 + log, (N/m)). 
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Table I. Estimates of Optimum Number of Processors and Solution Time, One Problem. 

Optimum number 
Configuration of processors Minimum time 

Linear arrays 

2GE &N(m + 3a/14) 14m2dN(m/3 + a/14) 

BCR m2 -=K Na/2 xhizqm 6m2& + 14/3m310g, N/a 

m2 = N~u/2 pm (/3 + 1/P)6m2& + 14/3m’log,N/(u 

m2 >> No112 21N/26m 26/3m3 (1 + log, (N/m)) 

Boolean cube and 
perfect shuffle 

Binary tree 

21N/(26m + 9a) (26/3m3 + 3m%)(l + log2 (N/(m + a/3))) 

21N(76m + 6a) (76/3m3 + 3m*a)(l + logs (N/(m + a/13))) 

For a boolean cube and a perfect shuffle network the highest order terms 
are 7m2N/P + (26/3m3 + 3m2a)log2P, and P,,pt = 21N/(26m + 9a), and 
Tmin z (26/3m3 + 3m2a)(l + log2(N/m)). For the binary tree the highest order 
terms are 7m2N/P + (76/3m3 + 2m2a) log2 P. The value of Popt for a binary tree 
is approximately 21N/(76m + 6a), which for m/a large is approximately 1 of the 
value for a boolean cube or perfect shuffle network, and for m/a small 1.5 times 
larger than for the two other networks. Note that the partitioning method as 
used here is only valid if P 5 N/m. Table I summarizes the results for one right 
hand side. 

For a large number of right hand sides, NR >> m, the highest order terms for 
2GE are 8mNRN/P + 3m2NRP + mNRaP, and for BCR on a linear array 
8mNRN/P + 8m2NRlog2 P + mNRaP, on a perfect shuffle or boolean cube 
8mNRN/P + (8m2NR + 2mNRa) log2 P, and on a tree 8mNRN/P + (16m2NR 
+ 2mNRa) log2 P, respectively. Optimization with respect to highest order terms 
yields PO,, = &N/(3m + 20~) with Tmin = 4mNRJ2N(3m + 2a) for 2GE. For 
BCR on a linear array and m2 -=K NLY/~ PO,,, = a, and Tmin = 4mNR& 
+ 4m2NR 10 2 (N/a). For m2 z Ncu/2 P,,,, = /3 m, and Tmi, x (p + l//3) 
.4mNR 9 ~NCY + 4m2NRlogz(N/a). For m2 >> No1/2 Popt = N/m, and Tmin = 
8m2NR(1 + log2 (N/m)). For boolean cubes and perfect shuffle networks Popt = 
8N/(8m + Z(Y), and Tmi, z (8m2NR + 2mNRa)(l + log2(N/(m + a/4))). For a 
binary tree finally P,,,, = 8N/(16m + 2a) with a corresponding difference in Tmin. 
Table II summarizes the results for multiple right hand sides. 

Comparing the estimates in the two tables we conclude that the value of P,,,, 
only changes to a small extent with the number of right hand sides. 

The estimates in Table II are based on the assumption that the entire ensemble 
is used for the solution of each problem. Alternatively, the ensemble can be 
partitioned such that a partition solves a subset of the problems. The optimum 
partitioning depends on the values of m, NR, to, and t,. For cy + 00 NEP,,,t + P, 
where NEP is the number of ensemble partitions, that is, for suficiently slow 
communication the optimum ensemble partitioning is obtained by dividing the 
set of problems among the processors and solving each set locally. However, if t, 
and t, are of the same order, then NEP,,, # P. The optimum value is found as 
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Table II. Estimates of Optimum Number of Processors and Solution Time, Multiple Problems. 

Optimum number 
Configuration processors Minimum time 

Linear array 

2GE diii@m + 2a) 4mNRJZN(3m + 2a) 
BCR m2 << No112 Ji,N/(u 4mNR& + 4m’NR log, (N/a) 
m2 = NO/Z pJsN/a (B + 1/@)4mNR& + 4mZNRlog, (N/a) 

mz Z-Z> No(/2 N/m Bm’NR(1 +log,(N/m)) 

Boolean cube and 

perfect shuffle BN/(Bm + ZCX) (Bm*NR + ZmNRa)(l + log, (N/(m + a/4))) 

Binary tree BN(16m + 2a) (16m’NR + ZmNRa)(l + log, (N/(m + a/B))) 

the solution of a higher order equation, even if only the arithmetic terms are 
considered. 

6. SUMMARY AND CONCLUSIONS 

We described concurrent algorithms suitable for the solution of narrow banded 
systems. In such systems the independence of the operations in the elimination 
of different variables from the system of equations is the main source of concur- 
rency, whereas relatively few operations are required for the elimination of a 
single variable. The potential concurrency in such an operation is low. 

The algorithms are based on partitioning the sets of equations into subsets 
(substructures). The substructuring used for the algorithm is closely related to 
nested dissection. Similarities and differences between the different substructur- 
ing techniques are discussed. A block tridiagonal subsystem is the result of 
concurrent Gauss-Jordan elimination or Cholesky factorization in a first phase 
in which most operations are local to a substructure. Some communication with 
adjacent substructures is required. 

For symmetric positive definite matrices, it is shown that Cholesky factoriza- 
tion can be performed concurrently in all substructures in phase 1 of the 
algorithm. The reduced system can also be factored by Cholesky factorization in 
a sequence of steps with successively decreasing concurrency by using a cyclic 
reduction procedure. In the context of nested dissection this procedure corre- 
sponds to factoring the last set of bisectors first, and the first bisector last. 

We proved that the algorithm preserves diagonal dominance. 
We showed that for ensembles configured as linear arrays the computational 

complexity, including communication, is lower for block cyclic reduction than 
2-way Gaussian elimination for P 2 PO, and t,/t, < 28m/9 if NR << m or 
&It, = 4NR if NR > m. If t,,lt, 5 1 then PO = 1, that is block cyclic reduction is 
always preferable. 

We showed that block cyclic reduction on boolean cubes, perfect shuffle 
and shuffle-exchange networks, and binary trees is of a lower complexity (be- 
cause of lower communication complexity), than on a linear array. The 
optimum number of partitions is increased from O(m) for Gaussian 
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elimination on a linear array to O(N/m) (assuming one processor per partition) 
for block cyclic reduction on the networks of diameter log, P. The minimum time 
is O(m3 + n310g2 (N/m)). 

The complexity advantage of block cyclic reduction increases if the reduced 
block tridiagonal system is sufficiently diagonally dominant to allow for a 
truncation of the reduction process, [6]. In a fully parallel implementation of 
(block) cyclic reduction the solution time is proportional to the number of 
reduction steps. The benefit of truncating the reduction process is substantially 
greater than in a sequential implementation, since half the number of arithmetic 
operations are performed in the first reduction step. 

With increasing values of t,/t, = (Y the value of Popt decreases and Tmin increases. 
The dependence is by a factor of X& for a linear array, and by a factor of CY for 
boolean cubes, perfect shuffle and shuffle-exchange networks, and binary trees. 

For multiple right hand sides partitioning of the set of problems into subsets 
and the processing ensemble into subensembles is always beneficial with respect 
to computational complexity if m = 1 [8]. For m > 1 this is not true, in general, 
since the computations required for the factorization of the system matrix may 
be dominating the operations involving the right hand sides to the extent that 
the reduced communication needs do not make up for the increased amount of 
arithmetic per processor. 

The boolean cube, perfect shuffle and shuffle-exchange networks, and the 
binary tree configurations offer a high speedup for small values of m/N for the 
substructuring technique used for the algorithms. For large values of m/N the 
speedup is poor. The substructuring technique applied above exploits the inde- 
pendence of the operations required for the elimination of different variables 
from the system of equations. For banded systems with m/N = 1 there are only 
a few variables that can be eliminated concurrently, but the amount of 
work required for the elimination of each is of order O(N2). The independence 
of the operations in the elimination of a single variable is the main source of 
concurrency 191. 
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