skip to main content
10.1145/2147805.2147807acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Biological assessment of grid and spot detection in cDNA microarray images

Published:01 August 2011Publication History

ABSTRACT

One of the main issues of the analysis of microarray data is quantification of gene expression. The quantified signal intensities should be linearly related to the expression levels of the corresponding genes. In this paper, we present a biological assessment for detection and segmentation of grids and spots, and quantification of gene expression in cDNA microarray images. The results on several dilution steps on cDNA microarray images show that the proposed method can detect the location of the spots very effectively even for noisy conditions based on a parameterless multilevel thresholding algorithm. The proposed method can also segment and quantify the intensity of each probe with a nearly perfect degree of accuracy. This guarantees that the proposed method estimates the correct intensity of each spot with a high degree of accuracy and relates it to the expression levels of the corresponding genes very well.

References

  1. B. Ceccarelli and G. Antoniol. A Deformable Grid-matching Approach for Microarray Images. IEEE Transactions on Image Processing, 15(10):3178--3188, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Bariamis, D. Maroulis and D. Iakovidis. M3G: Maximum Margin Microarray Gridding. BMC Bioinformatics, 11:49, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  3. E. Zacharia and D. Maroulis. Micoarray image gridding via an evolutionary algorithm. IEEE International Conference on Image Processing, pages 1444--1447, 2008.Google ScholarGoogle Scholar
  4. F. Qi, Y. Luo, and D. Hu. Recognition of perspectively distorted planar grids. Pattern Recognition Letters, 27(14):1725--1731, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. G. Antoniol and M. Ceccarelli. A Markov Random Field Approach to Microarray Image Gridding. Proc. of the 17th International Conference on Pattern Recognition, pages 550--553, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Hekstra, A. Taussig, M. Magnasco, and F. Naef. Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide arrays. Nucleic Acids Res., 31(7):1962--1968, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. Angulo and J. Serra. Automatic Analysis of DNA Microarray Images Using Mathematical Morphology. Bioinformatics, 19(5):553--562, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679--698, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. Rueda. Sub-grid Detection in DNA Microarray Images. Proceedings of the IEEE Pacific-RIM Symposium on Image and Video Technology, pages 248--259, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Rueda and V. Vidyadharan. A Hill-climbing Approach for Automatic Gridding of cDNA Microarray Images. IEEE Transactions on Computational Biology and Bioinformatics, 3(1):72--83, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Luessi, M. Eichmann, M. Shuster, and A. Katsaggelos. Framework for efficient optimal multilevel image thresholding. Journal of Electronic Imaging, 18(1):013004+, 2009.Google ScholarGoogle Scholar
  12. M. Katzer, F. Kummer, and G. Sagerer. A Markov Random Field Model of Microarray Gridding. Proceeding of the 2003 ACM Symposium on Applied Computing, pages 72--77, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. L. Ramdas, K. R. Coombes, K. Baggerly, L. Abruzzo, W. E. Highsmith, T. Krogmann, S. R. Hamilton, and W. Zhang. Sources of nonlinearity in cdna microarray expression measurements. Genome Biology, 2(11), 2001.Google ScholarGoogle Scholar
  14. I. Rezaeian and L. Rueda. A Parameterless Automatic Spot Detection Method for cDNA Microarray Images. Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, pages 388--392, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  15. L. Rueda. An Efficient Algorithm for Optimal Multilevel Thresholding of Irregularly Sampled Histograms. Proceedings of the 7th International Workshop on Statistical Pattern Recognition, pages 612--621, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Theodoridis and K. Koutroumbas. Pattern Recognition. Elsevier Academic Press, fourth edition, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. U. Maulik and S. Bandyopadhyay. Performance Evaluation of Some Clustering Algorithms and Validity Indices. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(12):1650--1655, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Xiuwen Zheng, Hung-Chung Huang, Wenyuan Li, Peng Liu, Quan-Zhen Li and Ying Liu. Modeling nonlinearity in dilution design microarray data. Bioinformatics, 23(11):1339--1347, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Biological assessment of grid and spot detection in cDNA microarray images

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      BCB '11: Proceedings of the 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine
      August 2011
      688 pages
      ISBN:9781450307963
      DOI:10.1145/2147805
      • General Chairs:
      • Robert Grossman,
      • Andrey Rzhetsky,
      • Program Chairs:
      • Sun Kim,
      • Wei Wang

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 August 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate254of885submissions,29%
    • Article Metrics

      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader