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ABSTRACT
The problem of predicting protein function using Gene On-
tology terms is a hierarchical classification problem. There
are a variety of genomic data that are relevant to a protein’s
function: its sequence, its interactions with other proteins,
expression of its gene, etc. Some of these sources (interac-
tions and expression) are species-specific, while protein se-
quence is comparable across species, which complicates the
task of integrating labeled data from a target species with
labeled data from other species. We address this problem us-
ing the methodology of structured output learning, present
a framework based on multi-view learning that is naturally
suited for combining both types of data, and demonstrate
its effectiveness in making predictions for proteins in S. cere-
visiae and M. musculus. The code for our framework is
available at http://strut.sourceforge.net.
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1. INTRODUCTION
The cost and effort involved in determining the function

of a protein in vivo has led to the development of many
computational methods aimed at predicting protein function
from a variety of biological data, such as protein sequence,
protein-protein interactions, and gene expression [21]. The
Gene Ontology (GO) is the standard ontology used for spec-
ifying the function of a protein. It comprises a set of terms
that belong to three separate hierarchies: molecular func-
tion, biological process and cellular component, where terms
deeper in a hierarchy describe function in a more specific
way. The GO consortium maintains GO terms and the hier-
archies in which they are embedded [11]. In machine learn-
ing terms, prediction of GO terms can be formulated as a
hierarchical multi-label classification problem [4].

Sequence or structural similarity has been the basis for
protein function prediction for a long time [16], and is typ-
ically employed as a nearest-neighbor method—transfer of
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annotation from proteins with known functions with the help
of alignment tools such as BLAST [1]. This approach works
well when a clear signal of similarity exists, but is not able to
effectively handle today’s variety of noisy high-throughput
biological data such as gene-expression, protein protein in-
teractions and other genomic data that is informative of pro-
tein function [21]. This has led to the development of ma-
chine learning approaches that typically address the prob-
lem as a collection of binary classification problems: whether
a protein should be associated with a given GO term (see
e.g., [19]).

Several recent publications have presented methods for
addressing GO term prediction as a hierarchical classifica-
tion problem. Most of them train classifiers for individual
GO terms and then reconcile their predictions with the hier-
archical constraints via Bayesian networks or logistic regres-
sion [4, 20]. Mostafavi and Morris proposed extensions of
their GeneMANIA method that directly predict a hierarchi-
cal labeling of a protein [18]. In parallel, we presented the
GOstruct method, which directly predicts the full set of GO
terms associated with a protein using structural SVMs [25].
This method exhibits state-of-the-art performance in a com-
parison with several methods tested in the Mousefunc bench-
mark. A similar approach was applied to prediction of en-
zyme function by Astikainen et al. [2].

The availability of a large variety of genomic data rele-
vant to the task of protein function prediction has led to the
development of a variety of methods for integrating those
disparate data sources. Approaches include kernel meth-
ods [15, 20] or label propagation on a network whose nodes
are proteins and edges indicate similarity according to some
data source [9, 19, 27]. All these methods perform data in-
tegration in a given species, and are not able to take into
account the labels of annotated proteins in other species.
The challenge in doing this integration is that examples are
heterogeneous—examples representing proteins in the given
species have features that capture diverse data: gene expres-
sion, protein-protein interactions, and sequence similarity.
Most of this data, except for sequence, is species-specific:
protein interactions are probed experimentally in a given
species, and the expression of a given gene measured in one
set of experiments is difficult to compare meaningfully to
expression measured in another species, under possibly dif-
ferent conditions.

In this paper, we explore extensions to the GOstruct frame-
work that allow combining both species-specific features and
cross-species features computed from sequence, to predict
GO annotations in a given species. The proposed extensions
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Figure 1: A schematic representation of the hierarchical

label space for GO term annotation. Given that a pro-

tein is associated with a particular node in the GO hier-

archy (e.g. DNA binding), it is also associated with all

its ancestors in the hierarchy (including the direct par-

ent of DNA binding which is Nucleic acid binding). The

collection of GO terms associated with a protein (shaded

in the figure) correspond to the nonzero entries in the

vector representing the annotations.

are based on the idea of multi-view learning, which is an ap-
proach for dealing with multiple independent feature sets
and unlabeled data. In multi-view learning, the input-space
features are separated into two or more groups (“views”) and
a separate model is trained for each view with the goal of
maximizing the accuracy on the labeled data and minimizing
view disagreement on the unlabeled data [5]. The applica-
tion of this technique to structured output spaces is fairly
recent and several algorithms exist that either minimize the
disagreement explicitly [10, 17] or use a more heuristic co-
training approach where each view suggests labels for its
peers [6].

Multi-view learning has been applied to natural-language
processing [6], document categorization [10, 17] and signal
processing [7]. However, all these applications maintain an
implicit assumption that every example can be represented
in every view. In this paper we break away from this as-
sumption by treating all cross-species features, such as se-
quence similarity, as one view and all species-specific fea-
tures, such as protein-protein interactions, as another. We
explore co-training [5, 6] and transductive learning [28] as
the two approaches to assigning labels to unlabeled data.
We demonstrate that our multi-view framework, that com-
bines all available sources of data, outperforms all single-
view formulations in situations that simulate annotation of
a newly-sequenced genome.

2. METHODS
We formulate the problem of GO term prediction as fol-

lows. Given a protein x, we are interested in inferring its
function y given by a vector of binary variables (y1, y2, ..., ym),
where yi ∈ {0, 1} denotes whether a protein is annotated
with the ith GO term. A valid annotation y is one in which
whenever a protein is annotated with a given GO term, it is
also annotated with all of the term’s ancestors in the GO hi-
erarchy. Figure 1 shows an example of a valid label. We work
with a set of nl labeled training data {(xi,yi)}nl

i=1 where the
inputs xi belong to the space of proteins X and the labels
yi belong to the space of GO annotations, Y.

We first describe the structured-output multi-view frame-
work as it applies to labeled data only and then show how

unlabeled data is incorporated. We consider two feature
maps, φ(c)(x) and φ(s)(x). The first one is defined for all pro-
teins and comprises a set of cross-species features that char-
acterize the sequence of a protein. The second map, φ(s)(x)
is defined for proteins from a particular species only and
comprises a set of species-specific features such as protein-
protein interactions and gene expression data. Our goal is to
leverage information from both feature maps to make pre-
dictions about the function of proteins in the target species.
We note that each view will contain a different number of
labeled examples, but in the interest of keeping the notation
simple, we use a single variable nl, with the understanding
that its value will vary from one view to another.

In its basic formulation, a structured-output method learns
a compatibility function f(x,y) between inputs and outputs;
it infers a label as the label most compatible with a given
input [26]:

ŷ = h(x) = arg max
y

f(x,y). (1)

In what follows we make the assumption that the compati-
bility function is linear in a feature space defined by a feature
map ψ(x,y) of both inputs and outputs:

f(x,y) = wTψ(x,y). (2)

In our multi-view setting we use two compatibility func-
tions: f (c), which handles the cross-species view, and f (s),
which handles the species-specific view. The inference is
then performed according to

ŷ = h(x) = arg max
y

“
f (c)(x,y) + f (s)(x,y)

”
. (3)

Each compatibility function, f (c) and f (s), is associated with
its own feature map, which we denote by ψ(c) and ψ(s),
respectively. We note that both feature maps ψ(c) and ψ(s)

are functions of both inputs and outputs as is standard in
structured-output methods. In our experiments we consider
all pair-wise products of input-space features φ(c) with the
binary output variables yi to generate ψ(c), and similarly
for ψ(s). To avoid computing these feature maps directly,
we work in the dual and make use of kernels. Given the
input-space and output-space kernels

K
(c)
X (x1,x2) = φ(c)(x1)Tφ(c)(x2)

K
(s)
X (x1,x2) = φ(s)(x1)Tφ(s)(x2)

KY(y1,y2) = yT1 y2 − 1,

we compute the joint kernel values for the cross-species view
as

K(c) ((x1,y1), (x2,y2)) = K
(c)
X (x1,x2)KY(y1,y2) (4)

and, similarly, as

K(s) ((x1,y1), (x2,y2)) = K
(s)
X (x1,x2)KY(y1,y2) (5)

for the species-specific view. Our intuition is that two input-
output example pairs have high similarity if they are similar
in both input and output spaces.

To measure performance of structured-output methods,
it is not enough to simply determine if the inferred label
matches the true label, a measure otherwise known as the
0-1 loss. We must be able to differentiate between slight
and gross misclassifications, because a prediction that dif-
fers from the true annotation by a single node deep in the



hierarchy is significantly better than a prediction made in an
entirely different region. To capture this notion of accuracy
we use the loss function

∆(y1,y2) = 1− 2
KY(y1,y2)

(KY(y1,y1) +KY(y2,y2))
, (6)

which is essentially the F1 measure expressed using ker-
nels [25].

In addition to the kernel loss, we propose a method for
computing ROC curves for our structured output method-
ology. This requires the definition of a confidence measure
at the level of individual GO terms; the compatibility func-
tion provides a confidence measure at the level of a set of
GO terms To allow us to compute ROC curves we define a
confidence measure for predictions of GO term i as:

ci(x) = max
y∈Y+

i

f(x,y)− max
y∈Y−i

f(x,y), (7)

where Y+
i = {y ∈ Y|yi = 1} is a subset of all labels that

satisfy the hierarchical constraints and have the ith variable
set to 1. The subset Y−i is defined in a similar fashion,
except with the ith variable being set to 0. The values of
ci(x) computed on test examples can be directly used to
compute an ROC curve for GO term i.

When working with labeled data only, each view is trained
independently of the other using the structured SVM formu-
lation [26]:

min
w,ξ

1

2
‖w‖22 +

Cl
n

nX
i=1

ξi (8)

s.t. ξi ≥ 0, i = 1, . . . , nl,

wTψ(xi,yi)−wTψ(xi,y) ≥ ∆(y,yi)− ξi,
i = 1, . . . , nl,y ∈ Y \ yi

where ψ(xi,yi) is the feature map of the corresponding
view. The margin violations are measured by the variables
ξi, known as slacks. The above formulation is known as
the margin rescaling version of the structured SVM; it al-
lows higher compatibility function values for candidate la-
bels that are closer to the truth. The parameter Cl controls
the trade-off between margin magnitude and the amount of
margin violations.

In addition to the multi-view method outlined above, we
investigate an approach we call the chain classifier. In this
approach, the predictions made by the cross-species classi-
fier are incorporated into the species-specific feature map
by adding a feature for each GO term. In other words,
arg maxy f

(c)(xi,y) becomes a set of features in φ(s)(xi).
The inference made by the species-specific classifier is then
reported as the overall prediction. Inference for both views
is performed according to Equation (1).

2.1 Unlabeled Examples
In addition to the labeled data {(xi,yi)}nl

i=1, we are also

given unlabeled data {(xi)}nl+nu
i=nl+1. The objective of multi-

view learning now becomes two-fold: maximize the accuracy
on the labeled data and minimize the disagreement between
views on unlabeled data [6]. Figure 2 presents the graphical
overview of the approach. We require that all unlabeled ex-
amples span both views to make disagreement minimization
possible in the absence of labels.

When dealing with labeled data, we aim to maximize the
margin between the true label yi and all other candidates.
A similar principle holds for the unlabeled data. Given an
unlabeled example, we would like to maximize the margin
in compatibility between some label zi and all other labels.
Formally, for each view we would like to optimize

min
w,ξ

1

2
‖w‖22 +

Cl
nl

nlX
i=1

ξi +
Cu
nu

nl+nuX
i=n1+1

ξi (9)

s.t. ξi ≥ 0, i = 1, . . . , nl + nu.

wTψ(xi,yi)−wTψ(xi,y) ≥ ∆(yi,y)− ξi
i = 1, . . . , n,y ∈ Y \ yi

∃zi wTψ(xi, zi)−wTψ(xi,y) ≥ ∆(zi,y)− ξi
i = nl + 1, . . . , nl + nu,y ∈ Y \ zi.

We pursue two approaches that approximate a solution to
this problem. The first approach follows the co-training al-
gorithm, proposed by Brefeld et al. [6]. Each view suggests
its most compatible label to be used as the“true” label zi for
the other view. The other view then updates its model based
on the proposed label and makes its own suggestion to the
first view. The process is repeated until consensus or until
some number of iterations. The second approach is a gener-
alization of the transductive structured SVM [28] to multi-
view learning. The label z is simply inferred using the cur-

rent model as zi = arg maxy

“
f (c)(xi,y) + f (s)(xi,y)

”
[28].

2.2 Training and Inference
We have to address several issues associated with training

of the proposed SVMs. One issue is that the size of the
output space Y is exponential in the number of GO terms,
which leads to an unmanageable number of constraints in
Eqns (8) or (9). To deal with this complexity, we choose to
focus only on those labels that appear in our dataset, arguing
that we have the best chance to learn from combinations of
GO terms that are biologically relevant [25].

Additionally, training follows the working set approach [6,
26], where a set of active constraints is maintained, and is
grown incrementally by adding the most violated constraint
at every iteration. The outer loop of the algorithm iterates
over the training examples, both labeled and unlabeled. The
inner loop that performs the model update is presented as
Algorithm 1. This algorithm addresses training of all the
SVM formulations considered here. The inner loop signals
whether a new constraint has been added to the working set
of a particular training example, and the outer loop termi-
nates when no new constraints have been added after a full
pass through the training data. Algorithms based around
a working set are guaranteed to converge in a polynomial
number of steps [6, 26]. In most of our experiments, the
number of iterations did not exceed 50.

Algorithm 1 adds a new constraint to the working set only
if it is violated by a larger amount than the current largest
violation. We maintain a separate working set and a sep-
arate set of dual variables αiy for each view. We optimize
the dual objective using a projection method by first find-
ing the optimal solution in an unconstrained space and then
projecting it to satisfy the constraints. The number of α
variables associated with the working set of a single training
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Figure 2: The multi-view approach. Data is separated into two views: a cross-species view that contains features

computed from sequence, and a species-specific view that contains features computed from PPI data in the target

species (S. cerevisiae or M. Musculus). The objective is to maximize the accuracy on the labeled data and minimize

the disagreement on the unlabeled data.

example is usually fairly small (less than 50), and the pro-
jection method converges to the optimal solution faster than
SMO-like algorithms [22], which are commonly employed for
this task.

The only place in Algorithm 1 where the two views in-
teract is during the inference of the label z for unlabeled
examples. As mentioned above, we explore two ways of in-
ferring the label z. First is the transductive approach, which
simply infers the most compatible label using the current
model [28]. The second approach is the co-training algo-
rithm proposed by Brefeld et. al [6]. There are several
deviations from that algorithm, however.

Brefeld et. al ’s algorithm cross-assigns the labels sug-
gested by each view as “truth” for the peer view. In our
experience, after the weights are updated, each view will
correctly infer the label suggested to it by the peer view,
but those labels are still in disagreement. So, the labels get
cross-assigned again and the algorithm continues to alter-
nate between the two states of label assignment, neither of
which yields consensus. To get around this problem, we re-
place cross-assignment with a one-way assignment where the
label suggested by the first view is given to the second view
and, after the second view updates its weights, we verify
that the new inference matches the suggestion. If it doesn’t,
then the second view suggests its label to the first view and
the update is performed analogously.

Another deviation from the original algorithm is in the
number of constraints added at every iteration. Brefeld et.
al proposed to keep adding constraints for a particular train-
ing example until all constraints outside of the working set
are violated by no more than the constraints in the work-
ing set [6]. Instead, we choose to add constraints until a
consensus between the two views is reached. Once the con-
sensus label z is obtained, at most one additional constraint
is added by Algorithm 1. Further constraints are not in-
cluded until the example is revisited again. Our intuition
is two-fold: focusing entirely on a single unlabeled exam-
ple before moving on to the next one is likely to skew the
model towards the examples considered earlier; and adding
a single violated constraint per iteration is more consistent
with how we treat labeled examples and inferences from the
transductive SVM, which allows for a cleaner comparison.

The final implementation issue is the order in which the
training examples are traversed. We alternate between a full
pass through the labeled data and a full pass through the
unlabeled data. Interspersing unlabeled data in such a way
prevents overfitting of the model to the labeled data and
“guides” the model towards a state that better captures the
general structure of the data. Note that it’s not viable to
completely randomize the order of example traversal, since
there’s a different number of labeled examples in each view.

3. EXPERIMENTAL SETUP
In each of our experiments we make predictions in a tar-

get species using data from that species and data from other
species, which we call the external species. As target species
we use S. cerevisiae and M. musculus. As external species
for yeast we use D. melanogaster and S. pombe, and H. sapi-
ens is used as an external species for mouse. We choose ex-
ternal species that are reasonably close to the target species
and have a significant number of experimentally derived GO
annotations.

GO Annotations.
We downloaded GO annotations from the Gene Ontology

website (http://www.geneontology.org). Every GO anno-
tation is accompanied by an evidence code that designates
how it was obtained. We excluded all annotations that were
obtained by computational predictions, as the inclusion of
these annotations introduces prediction bias [23]. We lim-
ited our analysis to the following evidence codes: IDA, TAS,
IMP, IGI, IPI, IEP, NAS, TC.

Sequence Data.
We used features based on protein sequence to construct

the cross-species view. Protein sequences for all species were
retrieved from the UniProt database (http://uniprot.org).
In the cases where a gene has multiple splice forms, the
longest one was used. Sequence features were extracted as
follows.

BLAST hits.
We represented a protein in terms of its BLAST scores



Algorithm 1 Model update for a single example xi, for
which a separate working set is maintained. The algorithm
finds the most violated constraint using label z, which is
taken to be yi for the labeled examples and inferred other-
wise. If the new constraint is violated by a larger amount
than the constraints already in the working set, it is added to
the working set and the dual objective variables are updated
using a projection algorithm.

Input: Training example xi, precision ε.
Output: Whether a new constraint has been added.
Define the current working set Wi = {y|αiy 6= 0}.
if xi is labeled then

Define z = yi.
else if using co-training then

repeat
Alternate between each view suggesting z [6]

until Consensus is reached or rmax iterations.
else if using transduction then

Define z = arg maxy

“
f (c)(xi,y) + f (s)(xi,y)

”
end if
If z changed since the last iteration, clear the working set.
for each view v = {c, s} do

Find the largest margin violation and the associated
slacks:
ȳ← arg maxy∈Y\z f

(v)(xi,y)

ξi ← max+
y∈Wi

(∆(z,y)− f (v)(xi, z) + f (v)(xi,y)

ξ̄ ← max
n

0, (∆(z, ȳ)− f (v)(xi, z) + f (v)(xi, ȳ))
o

if ξ̄ > ξi + ε then
Add the constraint to the working set: Wi ← Wi ∪
{ȳ}
Optimize the dual objective over the working set Wi

keeping αjy fixed for j 6= i.
end if

end for

against a database of annotated proteins [1]. This represen-
tation is known as the empirical kernel map [24]. We per-
formed all-vs-all BLAST and the output was post-processed
by excluding all hits with e-values above 50.0. The remain-
ing e-values were divided by 50.0 to normalize them. Any
values below 1e-10 after normalization were brought up to
1e-10. We then use the negative log of the resulting values
as features.

Localization signals.
We computed features that capture protein localization

signals using the WolfPsort program [12].

Transmembrane protein predictions.
For each protein we obtained predictions of the number of

transmembrane domains using the TMHMM program [14],
and an indicator variable was associated with each number
of transmembrane domains.

K-mer composition of N and C termini.
The N and C termini ends of a protein contain signals that

are important for protein localization, binding and other
protein functions [3]. We computed features that represent
the 3-mer composition of 10 amino acid segments in the N
and C termini of each protein.

Target Species S. cerevisiae M. musculus
Namespace MF BP CC MF BP CC
# Target 3401 4332 4115 3150 2633 2125
# External 3917 3000 5000 5000 3000 5000
# GO terms 317 946 308 310 1697 240

Table 1: The number of proteins in the target and
external species, as well as the number of GO terms
considered in each dataset. Namespace designations
are as follows: MF - molecular function; BP - bio-
logical process; CC - cellular component.

Low complexity regions.
Low-complexity regions in proteins are abundant, have

an effect on protein function and are not typically captured
by standard sequence comparison methods [8]. Each pro-
tein is scanned with a sliding window of size 20, and a low-
complexity segment is defined as the window that contains
the smallest number of distinct amino acids. We use the
amino acid composition of that segment as features.

Interaction Data.
We used S. cerevisiae and M. musculus protein-protein

interaction (PPI) data from STRING 8.3 [13] for species-
specific information. A protein is represented by a vector
of variables, where component i indicates the STRING evi-
dence score of an interaction between protein i and the given
protein.

Dataset.
The data pre-processing steps provided a certain number

of target proteins that have features in both views. Five-fold
cross-validation is performed on this set of proteins. Addi-
tional proteins, with cross-species features only, were ob-
tained from the external species D. melanogaster, S. pombe
and H. sapiens. Table 1 provides several statistics about
each dataset. In the interest of keeping the run times down,
we randomly subsampled the external set down to 5000 pro-
teins for molecular function and cellular component experi-
ments and down to 3000 proteins for biological process ex-
periments.

Kernels.
We used linear kernels in both input and output spaces.

All kernels were then normalized according to

K(z1, z2) =
K(z1, z2)p

K(z1, z1)K(z2, z2))
.

Multiple sets of features were combined via unweighted ker-
nel summation.

Model Selection and Classifier Assessment.
In each target species, classifier performance was esti-

mated using five-fold cross-validation on the proteins that
have features in both views; folds were randomly selected
such that no two proteins from different folds have more than
50% sequence identity. To select appropriate values for the
parameters Cl and Cu, we ran four-fold cross-validation on
the training data in each experiment. The values of Cl

nl
= 1

and Cu
nu

= 0.1 yielded the highest accuracy on the validation



Kernel Loss
Target species S. cerevisiae M. musculus
Namespace MF BP CC MF BP CC
Cross-Species 0.48 0.55 0.32 0.35 0.60 0.32
Species-Specific 0.44 0.35 0.21 0.38 0.55 0.30
Joint 0.34 0.35 0.20 0.32 0.54 0.28
Multi-view 0.34 0.34 0.22 0.30 0.53 0.27
Chain 0.33 0.34 0.20 0.31 0.55 0.27
BNN-Chain 0.33 0.35 0.20 0.32 0.55 0.28

AUC
Target species S. cerevisiae M. musculus
Namespace MF BP CC MF BP CC
Cross-Species 0.87 0.79 0.78 0.89 0.67 0.80
Species-Specific 0.90 0.94 0.94 0.83 0.81 0.84
Joint 0.94 0.94 0.95 0.88 0.80 0.85
Multi-view 0.95 0.94 0.94 0.90 0.79 0.88
Chain 0.94 0.94 0.95 0.90 0.82 0.87
BNN-Chain 0.94 0.94 0.95 0.89 0.82 0.87

Table 2: Classifier performance in predicting GO
terms, quantified by mean loss per example (top)
and mean AUC per GO term (bottom) when no
unlabeled data is used. Lower loss values and higher
AUC values are better. The results were obtained
via five-fold cross-validation on all proteins from the
target species. Multi-view and cross-species SVMs
were also provided with the training examples from
external species.

set almost universally.

4. RESULTS

4.1 Impact of Cross-Species Information
The first experiment is designed to illustrate the improve-

ment in prediction accuracy we obtain by introducing in-
formation from other species in the absence of unlabeled
data. The multi-view SVM in this case combines the cross-
species and species-specific SVMs that are trained sepa-
rately; both models are used together for inference, as per
Equation (3). The chain classifier first trains a structured
SVM on the cross-species view; it then incorporates the pre-
dictions made by this SVM into the input-space feature map
for the species-specific view. A second SVM, trained on
these predictions combined with the PPI data, is then ap-
plied to the test set. We consider a variant of the chain
classifier that uses a BLAST-nearest-neighbor (BNN) ap-
proach to perform the cross-species prediction instead of a
structured SVM. We refer to this classifier variant as “BNN-
Chain”. In preliminary experiments the structured SVM
provided more accurate predictions than the BNN approach [25],
but the BNN approach is more scalable to the large datasets
that can be used for the cross-species classifier. As a base-
line, we trained a single structured-output SVM, which we
call joint-SVM, on target species data only, combining the
features from both views. Additionally, we trained two single-
view SVMs: one using exclusively cross-species information
and one using exclusively species-specific features.

We observe that performance as measured by the kernel
loss is correlated with the number of variables in the output

Kernel Loss
# Training Samples

Classifier 2720 1500 1000 500
Cross-Species 0.48 0.49 0.51 0.51
Species-Specific 0.44 0.48 0.52 0.56
Joint 0.34 0.40 0.44 0.52
Multi-view 0.34 0.37 0.40 0.43
Chain 0.33 0.36 0.39 0.45
BNN-Chain 0.33 0.38 0.41 0.48

AUC
# Training Samples

Classifier 2720 1500 1000 500
Cross-Species 0.87 0.86 0.84 0.84
Species-Specific 0.90 0.87 0.85 0.80
Joint 0.94 0.91 0.89 0.83
Multi-view 0.95 0.94 0.92 0.90
Chain 0.94 0.92 0.91 0.88
BNN-Chain 0.94 0.93 0.91 0.87

Table 3: Classifier performance in predicting molec-
ular function GO terms, quantified by mean loss per
example (top) and mean AUC per GO term (bot-
tom) when no unlabeled data is used. Lower loss val-
ues and higher AUC values are better. The number
of training examples refers to S. cerevisiae proteins
that are represented in both views. Multi-view and
Cross-Species SVMs were provided the additional
3917 proteins that only have BLAST features.

space: the best results in Table 2 are observed in the cellular
component namespace, which has the smallest number of
GO terms being considered (Table 1). The biological process
namespace contains about three times as many GO terms
and generally leads to higher loss values observed in Table 2.
Because the AUC values are computed on a term-by-term
basis, they fail to measure the interdependence of GO terms
in a prediction and appear much more uniform across the
three namespaces.

The results in Table 2 demonstrate the advantage of the
multi-view and chain approaches: these classifiers achieve
the lowest loss and highest AUC of all the methods, and
achieve higher performance than either view by itself. The
BNN-chain classifier achieves slightly worse performance than
the chain classifier that uses the structured SVM; however,
the ability to use this classifier with larger much larger exter-
nal species datasets makes it a highly viable approach. The
species-specific classifier that uses only PPI data performs
better in yeast than in mouse, which is attributed to the
better characterization of its interaction network. For the
cross-species classifier we see the opposite effect, with the
mouse classifier exhibiting better accuracy than the yeast
classifier. The accuracy of the cross-species view has to do
with how well annotated are closely related species (S. pombe
in the case of S. cerevisiae, and H. sapiens in the case of M.
musculus).

To further investigate the interplay between cross-species
and species-specific information, we ran additional experi-
ments, reducing the number of target-species proteins while
keeping the set of external proteins fixed. We present the
results of these experiments on molecular function in S.
cerevisiae in Table 3. As expected, the cross-species in-



formation becomes more important as the number of train-
ing examples in the target species decreases. In particu-
lar, the cross-species SVM outperforms both the species-
specific and the joint SVMs when the number of S. cere-
visiae proteins is 500, a scenario that more closely simulates
annotating a newly-sequenced genome. We note that, in
all cases, the multi-view and chain classifiers outperform all
other methods, demonstrating their robustness in combin-
ing cross-species and species-specific information. We fur-
ther observe that as the cross-species features become more
relevant, proper utilization of those features becomes im-
portant; this is signified by the BNN-based chain classifier
degrading in performance faster than the SVM-based chain
classifier.

4.2 Impact of Unlabeled Data
The second set of experiments is designed to measure the

impact of unlabeled data. We ran five-fold cross-validation
using the same test data in every fold as above. The S.
cerevisiae training data for every experiment was split into
labeled and unlabeled examples. Similar to experiments in
the previous subsection, we include all labeled proteins that
only have feature representation in the cross-species view.

# examples Loss AUC
# Lbld # Ulbld CO-tr. Trans. CO-tr. Trans.

500 0 0.43 0.43 0.90 0.90
500 500 0.50 0.62 0.86 0.77
500 1000 0.65 0.66 0.75 0.74
500 1500 0.67 0.77 0.75 0.66
500 2000 0.71 0.77 0.72 0.63
1000 0 0.40 0.40 0.92 0.92
1000 500 0.42 0.44 0.91 0.89
1000 1000 0.43 0.57 0.91 0.81
1000 1500 0.42 0.62 0.91 0.77

Table 4: Mean loss per example for co-training and
transductive SVMs computed for various numbers
of labeled and unlabeled S. cerevisiae training ex-
amples. The number of non cerevisiae proteins was
the same in all cases. The test data used in these
experiments was identical to that used in Table 2.

As shown in Table 4 the addition of unlabeled data had
negative impact on classifier performance. The co-training
approach appears to be affected less severely, but both semi-
supervised algorithms fail to learn from unlabeled data. We
conjecture that this is due to the sparsity with which the
joint input-output space is characterized by the labeled ex-
amples.

5. CONCLUSION
We introduced a multi-view framework for protein func-

tion prediction that integrates heterogeneous sources of data:
species-specific information and features that capture pro-
tein similarity across multiple species. In the absence of un-
labeled data, we demonstrated its advantage over classifiers
that don’t have access to cross-species information. We ob-
served degraded performance when incorporating unlabeled
data, with less degradation observed with the co-training ap-
proach. Our approach offers flexibility with regards to data
availability: for newly sequenced genomes where no other

high-throughput data is available the cross-species classi-
fier can be applied; in more well studied species the full
framework can be used. We are making the code available
at http://strut.sourceforge.net. In future work we will
supplement the species-specific view with additional sources
of data.
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