skip to main content
10.1145/2147805.2147848acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
short-paper

A scalable approach for inferring transcriptional regulation in the yeast cell cycle

Published:01 August 2011Publication History

ABSTRACT

The high complexity in the gene regulation mechanism and the prevalent noise in high-throughput detection experiments are considered to be the two major obstacles in discovering transcriptional regulation with high accuracy from experimental gene expression data. In this paper, we study a model based on dynamic Bayesian networks to predict gene regulation by integrating transcription factor binding site data and proteinprotein interaction data with gene expression data. The knowledge of genetic interactions between proteins and the presence of transcription factors binding site at the promoter region of a gene have been used to restrict the number of potential regulators of each gene. We show the effectiveness of combining multiple data sources in the prediction of transcriptional regulation through the analysis of Saccharomyces cerevisiae (Yeast) cell cycle data. Experiments conducted on real microarray datasets show that the proposed model is significantly more efficient and topologically more accurate compared to other existing models based on dynamic Bayesian networks. We also demonstrate the scalability of the proposed model through the analysis of a large dataset with a sustainable performance level.

References

  1. Shmulevich, I., Dougherty, E. R., Seungchan, K., and Zhang, W. 2002. Probabilistic Boolean Networks: A Rule-Based Uncertainty Model for Gene Regulatory Networks. Bioinformatics, 18(2), 261--274.Google ScholarGoogle Scholar
  2. de Hoon, M. J. L., Imoto, S., Kobayashi, K., Ogasawara N., and Miyano, S. 2003. Inferring Gene Regulatory Networks from Time-Ordered Gene Expression Data of Bacillus Subtilis Using Differential Equations. In Proc. of the Pac.Symp. on Biocomp, 17--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Friedman, N., Linial, M., Nachman, I., and Pe'er, D. 2000. Using Bayesian Network to Analyze Expression Data. Computational Biology. 7, 601--20.Google ScholarGoogle ScholarCross RefCross Ref
  4. Noman, N., and Iba, H., 2007. Inferring Gene Regulatory Networks Using Diffrential Evolution with Local Search Heuristics. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 4, 634--647. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Murphy, K. P., and Mian, S. 1999. Modelling Gene Expression Data using Dynamic Bayesian Networks. Technical Report. MIT Artificial Intelligence Laboratory, Cambridge, USA.Google ScholarGoogle Scholar
  6. Shermin, A., and Orgun, M. 2009. Using Dynamic Bayesian Networks to infer Gene Regulatory Networks from Expression Profiles. In Proc. of the ACM Symposium on Applied Computing: Bioinformatics Track. ACM Press, 799--803. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Shermin, A., and Orgun, M., 2009. A 2-stage Approach for Inferring Gene Regulatory Networks using Dynamic Bayesian Networks. In Proc. of the IEEE International Conference on Bioinformatics and Biomedicine. 166--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Kim, S., Imoto, S., and Miyano, S. 2004. Dynamic Bayesian Networks and Nonparametric Regression for Nonlinear Modelling of Gene Networks from Time Series Expression Data. Biosystems. 75, 57--65.Google ScholarGoogle ScholarCross RefCross Ref
  9. Zou, M. and Conzen, S. D. 2005. A New Dynamic Bayesian network (DBN) Approach for Identifying Gene Regulatory Networks from Time Course Microarray Data. Bioinformatics. 21, 71--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Koh, C., Wu, F. X., Selvaraj, G., and Kusalik, A. J. 2009. Using a state-space model and location analysis to infer time-delayed regulatory networks. EURASIP J. on Bioinformatics and System Biology. 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Wentao, Z., Serpedin E., Dougherty E. R. 2006. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics. 22(17), 2129--2135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chaitankar, V., Ghosh Preetam, P., Edward, J., Gong, P., Deng, Y., Zhang, C. 2010. A novel gene network inference algorithm using predictive minimum description length approach. BMC Systems Biology. 4(Suppl 1):S7.Google ScholarGoogle ScholarCross RefCross Ref
  13. Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., and Young, R. A. 2002. Combining Location and Expression Data for Principled Discovery of Genetic Regulatory Network Models. In Proc. of the Pac. Symp. on Biocomputing. 437--449.Google ScholarGoogle Scholar
  14. Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., and Miyano, S. 2003. Estimating gene networks from gene expression data by combining BN model with promoter element detection. Bioinformatics. 227--236.Google ScholarGoogle Scholar
  15. Segal, E., Yelensky R., and Koller, D. 2003. Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics. 273--282.Google ScholarGoogle Scholar
  16. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., and Futcher, B. 1998. Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Sacccharomyces Cerevisiae by Microarray Hybridization. Molecular Biology of the Cell. 9, 3273--3297.Google ScholarGoogle ScholarCross RefCross Ref
  17. Kanehisa, M. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480--D484.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kanehisa, M. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354--357.Google ScholarGoogle ScholarCross RefCross Ref
  19. KEGG: 2000. Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27--30.Google ScholarGoogle ScholarCross RefCross Ref
  20. Simon, I., Barnett, J., Hannett, N., Harbison, C. T., Rinaldi, N. J., Volkert, T. L., Wyrick, J. J., Zeitlinger, J., Gifford, D. K., Jaakkola, T. S., Young, R. A. 2001. Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle. Cell. 106, 697--708.Google ScholarGoogle ScholarCross RefCross Ref
  21. http://www.yeastract.com. (last accessed 15/03/2011)Google ScholarGoogle Scholar
  22. Breitkreutz, B. J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, M., Oughtred, R., Lackner, D. H., Bähler, J., Wood, V., Dolinski, K., and Tyers, M. 2008. The BioGRID Interaction Database: 2008 update. Nucleic Acids Res. D637--640.Google ScholarGoogle Scholar
  23. Han J. D. 2008. Understanding biological functions through molecular networks. Cell Res. 18,224--237.Google ScholarGoogle ScholarCross RefCross Ref
  24. Murphy, K. P. 2002. Bayes Net Toolbox, Technical Report MIT Artificial Intelligence laboratory, Cambridge, USA.Google ScholarGoogle Scholar
  25. http://www.r-project.org/. (last accessed 15/03/2011)Google ScholarGoogle Scholar
  26. de Lichtenberg, U., Jensen, L. J., Fausboll, A., Jensen, T. S., Bork, P., and Brunak, S. 2005. Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics, 21, 1164--1171. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A scalable approach for inferring transcriptional regulation in the yeast cell cycle

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      BCB '11: Proceedings of the 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine
      August 2011
      688 pages
      ISBN:9781450307963
      DOI:10.1145/2147805
      • General Chairs:
      • Robert Grossman,
      • Andrey Rzhetsky,
      • Program Chairs:
      • Sun Kim,
      • Wei Wang

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 August 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • short-paper

      Acceptance Rates

      Overall Acceptance Rate254of885submissions,29%
    • Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader