
Ranking Docked Models of Protein-Protein Complexes Using 
Predicted Partner-Specific Protein-Protein Interfaces: A 
Preliminary Study

Li C. Xue1, Rafael A. Jordan3,4, Yasser EL-Manzalawy3,5, Drena Dobbs1,2, and Vasant 
Honavar1,3

Li C. Xue: lixue@iastate.edu; Rafael A. Jordan: rjordan@iastate.edu; Yasser EL-Manzalawy: yasser@iastate.edu; Drena 
Dobbs: ddobbs@iastate.edu; Vasant Honavar: honavar@iastate.edu
1Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, 50011, 
USA

2Department of Genetics, Development and Cell Biology, Iowa State University, Ames, 50011, 
USA

3Department of Computer Science, Iowa State University, Ames, IA, 50011, USA

4Department of Computer Science, Pontificia Universidad Javeriana, Cali, Colombia

5Department of Systems and Computer Engineering, AI-Azhar University, Cairo, Egypt

Abstract

Computational protein-protein docking is a valuable tool for determining the conformation of 

complexes formed by interacting proteins. Selecting near-native conformations from the large 

number of possible models generated by docking software presents a significant challenge in 

practice.

We introduce a novel method for ranking docked conformations based on the degree of overlap 

between the interface residues of a docked conformation formed by a pair of proteins with the set 

of predicted interface residues between them. Our approach relies on a method, called PS-

HomPPI, for reliably predicting protein-protein interface residues by taking into account 

information derived from both interacting proteins. PS-HomPPI infers the residues of a query 

protein that are likely to interact with a partner protein based on known interface residues of the 

homo-interologs of the query-partner protein pair, i.e., pairs of interacting proteins that are 

homologous to the query protein and partner protein. Our results on Docking Benchmark 3.0 show 

that the quality of the ranking of docked conformations using our method is consistently superior 

to that produced using ClusPro cluster-size-based and energy-based criteria for 61 out of the 64 

docking complexes for which PS-HomPPI produces interface predictions. An implementation of 

our method for ranking docked models is freely available at: http://einstein.cs.iastate.edu/

DockRank/.
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1. Introduction

Protein-protein interactions play an important role in many biological systems, forming the 

physical basis for formation of complexes and pathways that carry out different cellular 

processes. The 3D structures of interacting proteins can provide valuable residue and atomic 

level information regarding the details of protein-protein interface. Because of the expense 

and effort associated with X-ray crystallography or NMR experiments to determine 3D 

structures of protein complexes, there is significant interest in computational tools, such as 

docking methods that can reliably predict the 3D configuration of two or more interacting 

proteins. Docking is often used to gain insights into the structural and biophysical bases of 

protein-protein interactions, to validate protein-protein interactions determined using high 

throughput methods such as yeast-2-hybrid assays, and to identify and prioritize drug targets 

in computational drug design. The computational cost of exploring the large potential 

conformation space of complexes formed by a pair of proteins is high, and the development 

of an accurate universal scoring function to select near-native conformations is still 

challenging [1]. Recently, there has been increasing interest in exploiting knowledge of the 

actual or predicted interface residues between a pair of proteins to constrain the search space 

of docked configurations to those that are consistent with the predicted interfaces (thus 

improving the computational efficiency of docking) [2]. In this study, we test whether 

knowledge of predicted interface residues can also improve the reliability of the ranking of 

conformations obtained using docking software.

Given a pair of protein structures to be docked, widely used docking methods, such as 

ClusPro [3-6], generate hundreds of candidate conformations. Selecting near-native 

conformations from the large number of possible models generated by docking software 

presents a significant challenge in practice. Current approaches to identifying near-native 

conformations typically rely on energy-based criteria (e.g., lowest energy, center 

energy).However, such energy-based rankings of conformations often fail to rank native 

conformations above most others, for a majority of complexes included in the Docking 

Benchmark 3.0 [7]. Hence, there is a compelling need for computationally efficient methods 

capable of reliably distinguishing near-native docked conformations from the large number 

of candidate conformations typically produced by docking software.

Against this background, we introduce a novel method for ranking docked conformations 

based on the degree of overlap between the set of interface residues defined by a docked 

conformation of a pair of proteins with the set of computationally predicted interface 

residues between them. This approach requires a simple and robust method for predicting 

the interface residues between a pair of proteins. We used our recently developed method, 

PS-HomPPI [8], for predicting interface residues for a pair of interacting proteins. While a 

broad range of computational methods for prediction of protein-protein interfaces have been 

proposed in the literature (see [9] for a review) barring a few exceptions [10-12] the vast 

majority of such methods focus on predicting the protein-protein interface residues of a 
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query protein, without taking into account its specific interacting partner(s). Given a set of 

docked models, our method utilizes a scoring function based on the overlap between the 

interface residues predicted by PS-HomPPI and the interface residues in the corresponding 

docked conformations. Intuitively, the docked model with the greatest overlap of interface 

residues with the predicted interface residues is assigned the highest score and consequently 

the top rank. Using the Docking Benchmark 3.0, we show that the performance of this 

method is superior to the use of ClusPro cluster-size-based and energy-based criteria for 

ranking docked conformations.

2. Methods

2.1 Dataset

Docking Benchmark 3.0 consists of a set of non-redundant transient complexes (3.25 Å or 

better resolution, determined using X-ray crystallography) from three biochemical 

categories: enzyme-inhibitor, antibody-antigen, and “others”. This dataset includes 

complexes that are categorized into three difficulty groups for benchmarking docking 

algorithms: Rigid-body (88 complexes), Medium (19), and Difficult (17), based on the 

conformational change upon binding. There are 108, 25, and 21 interacting pairs of proteins 

in the three groups, respectively. 2VIS (rigid-body) cannot be processed by Cluspro and was 

deleted. 1K4C (rigid-body), 1FC2 (rigid-body), 1N8O (rigid-body) were deleted because the 

bound complexes and the corresponding unbound complexes have different number of 

chains. 1K74 (rigid-body) was deleted because the sequence of chain D in the bound 

complex is different from the corresponding unbound chain 1ZGY_B. There are finally 119 

docking complexes: Rigid-body (83 complexes), Medium (19), and Difficult (17).

Surface residues are defined as residues that have a relative solvent accessible area (RASA) 

of at least 5% [13]. Interface residues are defined as surface residues that have at least one 

atom that is within 4 Å distance from any of the atoms of residues in another chain. Interface 

information is extracted from ProtInDB http://protInDB.cs.iastate.edu. Out of 119 docking 

complexes, we used 64 complexes for which PS-HomPPI returns predicted interfaces for at 

least one chain.

2.2 Ranking Protein-Protein Docking Models

PDB files of unbound proteins in Docking Benchmark 3.0 were submitted to Cluspro 2.0 [3, 

4, 6, 14], which is one of the best – performing docking servers based on the results of a 

recent CAPRI prediction competition. For each docking case1, ClusPro typically outputs 

20-30 representative docking models. Each representative model is chosen from a cluster of 

docked models. Given the docked models of a pair of proteins, A and B, we use PS-HomPPI 

[8] to predict the interface residues between A and B. We then compare the interface 

residues between A and B predicted by PS-HomPPI2 with the interface residues between A 

and B in each of the conformations of the complex A-B produced by the docking program. 

1Each docking case in Docking Benchmark 3.0 consists of one bound complex, one receptor (unbound) and one ligand (unbound).
2To objectively assess our method, if both sides of a homologous pair share ≥ 95% sequence identity and are from the same species as 
the query protein pair, these proteins are removed from the homologous protein pairs used to infer interfaces of the query protein 
pairs.
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The docked conformation with the greatest overlap of interface residues with the predicted 

interface residues is assigned the top rank.

2.2.1 Interface Similarity—Given a docked conformation A:B returned by ClusPro, we 

calculated: (1) the similarity between the predicted interface residues of A with B and the 

interface residues of A with B in the docked conformation, and (2) the similarity between the 

predicted interface residues of B with A and the interface residues of B with A in the docked 

conformation. Their average was used as the similarity between the predicted interface of A 

with B and the interface of A with B in the docked model (see below for details). We encode 

the interfaces of A as a binary sequence where 1 denotes an interface residue, and 0 denotes 

a non-interface residue. Many similarity measures for binary vectors have been proposed 

(See [15] for a review). Among these, only Russell-Rao, SoKal-Michener and Rogers-

Tanmoto(-a) measures are defined in the case when both sequences consist of all 0 elements 

(which is the case when there are no interface residues observed between the corresponding 

protein chains, and both PS-HomPPI and the docking model correctly predict no interface 

residues). Because the numbers of interface and non-interface residues are highly 

unbalanced, we used weighted SoKal-Michener metric to measure the similarity between the 

interface and non-interface residues in a protein chain A (with chain B) encoded in the form 

of binary sequences AB
P and AB

D based on PS-HomPPI predictions and the docked 

conformation, respectively,

where S11 and S00 are the numbers of positions where the two sequences match with respect 

to interface residues and non-interface residues, respectively, and β is a weighting factor, 0 ≤ 

β ≤ 1, that is used to balance the number of matching interface residues against the number 

of matching non-interface residues, and N is the total number of residues of protein A When 

a protein consists of multiple chains, the interface similarities were calculated and averaged 

by pairing each chain of the first protein with each chain of the second protein. We 

calculated the weighting factor β for each docking case. For example, for docking a protein 

consisting of a single chain A with a protein consisting of two chains, B and C:

where “# int of A|A:B” denotes the number of interface residues in chain A computed from 

the interaction between A with B.

2.2.2 Performance Evaluation—We used the experimentally-determined structures of 

bound complexes as the “gold standard” to evaluate our ranking of docked models. The 

similarity between interfaces of a bound complex and the interfaces of docking models was 

used to produce the Gold Ranking score3. For each docking case we compute five different 
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rankings: Gold Rank, PS-HomPPI based rank (both computed using the procedure described 

above), lowest energy rank (which ranks conformations by assigning higher ranks to lower 

energy conformations), center energy rank, and ClusPro rank (computed by ClusPro). The 

last three ranking scores were obtained from the ClusPro Server. ClusPro ranks each 

docking model based on the size of the cluster of conformations to which the model belongs. 

ClusPro also provides two types of docking energies: the lowest energy among the 

conformations within a cluster of conformations, and the center energy of a cluster of 

conformations.

We denote each ranking of a set of conformations by a vector of integers in which the 

positions of the vector are indexed by the conformations and the corresponding element of 

the vector denotes the rank of the conformation (ranging from 1 to the number of docked 

models or conformations being ranked). One way to compare rankings is to generate scatter 

plots of one ranking against another. A scatter plot with most of the points along the 

diagonal would correspond to the case in which two different ranking methods for a given 

set of conformations largely agree. Scatter plots for all docking cases considered in this 

study are available as supplementary materials at: http://einstein.cs.iastate.edu/DockRank/

supplementaryData/scatterPlots.pdf From these plots, we observed that the ranking of 

predicted interfaces by PS-HomPPI (our proposed ranking method) is highly correlated with 

the ranking based on the actual interfaces of the bound complex (Gold Rank), whereas the 

ranking based on the lowest energy or the center energy returned by ClusPro shows little 

correlation with Gold Rank.

An alternative measure for quantitatively evaluating the similarity between two rankings is 

the correlation coefficient of two ranking vectors or R2 of the regression of the scatter plot. 

However, this measure suffers from a serious limitation because it does not distinguish 

between incorrect ordering of top-ranking models as opposed to incorrect ordering of 

bottom-ranking models. Consider a docking case with a total of 30 docked models. Suppose 

a model with rank 1 has the greatest similarity of interface residues to the actual bound 

complex, and a model with rank 30 has the most dissimilar interface. In this case, correctly 

selecting (ranking) the top ranking models (ranks 1, 2, 3…) is more important than correctly 

ranking the bottom ranking models (ranks 28, 29, 30…).

To deal with this limitation, we used a normalized Chi-square statistic to quantitatively 

measure the similarity between two rankings. Normalized Chi-square is defined as:

where m is the number of models to be ranked for a given docking case.

χ2 follows the conventional definition:

3Note that when a pair of chains in a bound complex has no interface residues between them, any docked model that has interface 
residues between the corresponding chains is assigned a lower rank than the conformations that do not have interface residues between 
the corresponding chains.
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where Ei is the Gold Rank associated with the ith conformation, Oi is the rank assigned to 

the same conformation by a ranking scheme that we want to compare with the Gold Ranking 

scheme. χ2 offers a natural measure of the similarity of rankings. Its denominator Ei 

provides a means of assigning higher weight to conformations that are ranked close to the 

top of the list according to the Gold Ranking scheme (corresponding to small values of Ei) 

compared to those that are ranked close to the bottom of the list according to the Gold 

Ranking scheme (corresponding to larger values of Ei ). Because different docking 

complexes have different numbers of docked models, we normalize χ2 by the number of 

models to obtain norm_χ2. The smaller the value of norm_χ2, the more similar the ranking 

under consideration is to the ranking produced by the Gold Rank.

For each docking case, we calculated four norm_χ2 for the rankings from PS-HomPPI, 

Lowest Energy, Center Energy, and ClusPro (Figure 1). We compared these four ranking 

schemes using the respective values of norm_χ2. The best ranking scheme corresponds to 

that with the smallest value of norm_χ2, and the worst ranking scheme has the largest value 

of norm_χ2 (relative to the Gold Ranking scheme).

3. Results and Discussion

3.1 Ranking of Docked Models

Figure 2 shows a plot of the ranking of norm_χ2 (relative to Gold Ranking) value for PS-

HomPPI, Lowest Energy, Center Energy based and ClusPro's cluster size based rankings for 

each dockingcase. We observe that the PS-HomPPI based ranking scheme consistently 

yields the lowest norm_χ2 in 95% of the docking cases for which whose interface residues 

can be predicted by PS-HomPPI (61 out of 64). In other words, the PS-HomPPI based 

ranking of docked models is consistently superior to ranking of docked models based on 

Lowest Energy, Center Energy and model cluster size (schemes used by ClusPro).

To determine whether our proposed PS-HomPPI based scoring function significantly 

outperforms other scoring functions considered in this study, we chose to apply a multiple 

hypothesis non-parametric test [16] using the normalized Chi-square value as the 

performance metric. First, the scoring methods being compared were ranked on the basis of 

their observed normalized Chi-square on each case (see Figure 1). The overall performance 

of each method was defined as the average rank over all of the docking cases. Figure 3 

shows that PS-HomPPI based method for ranking docked models has the best average rank 

of 1.11 while Center Energy, Lowest Energy, and ClusPro scoring methods have average 

ranks 3.17, 2.94, and 2.78 (respectively). As noted by Demsar [16], the average ranks by 

themselves provide a reasonably fair comparison of scoring methods. We applied the 

Friedman test to determine whether the measured average ranks are significantly different 

from the mean rank under the null hypothesis. Our analysis shows that the null hypothesis 

could be rejected with high confidence (p < 0.0001). We also applied the Nemenyi test to 
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determine whether the observed differences in the ranks of any given pair of ranking 

schemes are statistically significant. The critical difference determined by Nemenyi test at a 

significance level of 0.05 is 0.59. Hence, the difference between any pair of docking scoring 

methods is statistically significant provided the difference between their corresponding 

average ranks is more than 0.59. Figure 3 summarizes the results of Nemenyi pairwise 

comparison of the different docking scoring methods considered in our experiments using 

the Nemenyi test. The results suggest that at a significance level of 0.05 there is no observed 

difference between the performance of Center Energy, Lowest Energy, and ClusPro scoring 

methods. However, the difference in performance of the PS-HomPPI based scoring method 

and each of the other methods is statistically significant. We conclude that the performance 

of the PS-HomPPI based method for scoring docking models is superior to that of the other 

scoring methods considered in this study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of ranking schemes. The numbers between parentheses in the bottom table are 

the ranks of normalized Chi-square values computed for each docking case
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Figure 2. The ranking of norm_χ2 from PS-HomPPI, Lowest Energy, Center Energy, and 
ClusPro for 61 docking cases
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Figure 3. 
Pair-wise comparisons of different docking scoring methods using Nemenyi test. Methods 

that are not significantly different (at significant level α=0.05) are grouped together (via 

connecting lines). The average “rank” of each method over docking cases is shown in the 

table (and also on the x-axis of the plot).
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