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ABSTRACT

Protein subcellular localization prediction is the problem of
predicting where a protein functions within a living cell. In
this paper, we apply associative classifications (CMAR, and
CPAR) and multi-class Support Vector Machines to tackle
the problem of protein subcellular localization prediction.
We use classification feature sources generated from a pro-
tein’s SwissProt annotation record. We visualize the applied
classification rules in an explain graph for domain experts to
interpret. We compare the performance of our approaches
to those of Proteome Analyst 3.0, using the same set of
classification features; we find that all three classification
algorithms outperform Proteome Analyst. Multi-class SVM
achieves overall F-measures [0.934 ~ 0.991], while CPAR
and CMAR achieve overall F-measures [0.922 ~ 0.989] and
[0.880 ~ 0.989], respectively. Our result shows that despite
multi-class SVM is still the most accurate prediction algo-
rithm with overall F-measures, CPAR and CMAR achieve
very similar accuracy. In most cases, CPAR outperforms
CMAR, especially when the feature space is large. Our re-
sult indicates that associative classification algorithms, es-
pecially CPAR, is a good alternative to SVM with simi-
lar accuracy but much better transparency in classification
models.
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1. INTRODUCTION

Predicting the location (subcell label) where a protein
functions within a living cell is essential for elucidating its
functions. In the past two decades, researchers tackled the
problem of protein subcellular localization prediction using
machine learning algorithms with such classification features
as N-terminal sorting signals, amino acid composition and
textual annotation features [8]. Subcell label prediction is
a hard problem due to the scarcity of training data, an-
notation errors and difficulties inherited from the intricate
cell structures. To date, there are on-going efforts in the
field of bioinformatics to improve prediction accuracy, re-
fine localization subcategories, and broaden the category of
applicable organisms for subcell label prediction.

In recent years, SVM gained popularity as the dominat-
ing algorithm for subcell label prediction, thanks to its high
accuracy and ability to handle a large collection of classifica-
tion features [8]. Despite its high accuracy, the trained mod-
els and predicted results obtained using SVM are hard to ex-
plain due to the cryptic nature of the classification algorithm
and the resulting models. Associative Classification (AC) is
a novel classification approach that combines both associ-
ation rule mining and supervised classification [6]. Given
labelled training data, an associative classifier finds the fea-
tures that often co-occur with class labels, and generates
classification rules mapping features to class labels using
techniques in association rule mining. An association rule
takes the form of {fi,f2... fm} — L. The left hand side
{fi,f2... fm} of the rule is called antecedent, which is a
vector of m features; the right hand side of the rule is called
consequent, which is a single class label L. Each association
rule is a deduction from antecedent (features) to consequent
(class label). The collection of discovered association rules
forms a model for supervised classification. These discovered
association rules may be pruned to reduce the model size
and to increase prediction accuracy. Support and confidence
are two parameters that are often used in rule discovery,
rule pruning and prediction. Once trained, an associative
classifier is capable of using the discovered rules to predict
class labels for unseen test cases. AC is a promising classifi-
cation approach thanks to its high accuracy, efficiency and
transparency.

We show that in this paper, AC is as accurate as SVM,
but the resulting models are much more transparent and
easier to understand. Our work focuses on applying associa-
tion classification methods to protein subcellular localization
prediction; we also experiment with multi-class SVM with
various kernels. Given a query protein, we generate features



Table 1: Statistics for the PA datasets
Organism Type | Class | Instances | Features
Animal 9 15,515 3,861
Plant 9 4,574 1,663
Fungi 9 2,873 2,460
Gram+ Bacteria 3 2,969 1,280
Gram— Bacteria 5 6,168 2,311

from the query protein’s SwissProt annotation record [3],
then we train associative classifiers and multi-class SVM and
compare their performances with Proteome Analyst 3.0 [8],
which uses a collection of binary SVM. Finally, we visualize
the predictions in an explain graph for each AC prediction
to help them determine the reliability of a particular predic-
tion.

2. METHODOLOGIES

We evaluate our approach using the publicly available Pro-
teome Analyst datasets [2]. Table 1 shows important statis-
tics for the PA datasets generated with proteins from five
different organism types (animal, plant, fungi, gram-positive
bacteria and gram-negative bacteria). Similar to Proteome
Analyst, we retrieve a query protein’s top three homologues
using BLAST [4], and extract the keyword, Subcellular Lo-
calization and InterPro fields from these homologues’ Swis-
sProt annotation record. These three record fields have been
selected in Proteome Analyst’s previous experiments, and
they are reported to be the most relevant fields for subcell
label prediction [8]. We purposefully use only these selected
fields to ensure our performances are directly comparable to
those of PA.

We evaluate all supervised classifiers using stratified 5-
fold cross validations for direct comparison with the perfor-
mance of Proteome Analyst 3.0. We report the classifica-
tion accuracy as precision, recall and F-measure We exper-
iment with two different types of associative classification
algorithms: CMAR (Classification based on Multiple Asso-
ciation Rules) [7] and CPAR (Classification based on Pre-
dictive Association Rules) [9]. For associative classification
with CMAR and CPAR, we use the LUCS-KDD software
library [1] with modifications to perform 5-fold cross valida-
tion and to extract classification rules for each prediction.
For multi-class SVM, we use the LIBSVM package [5]. We
optimize the performance of all classifiers within our limit of
computational resources. We run multi-class SVM with lin-
ear, polynomial and RBF kernels; we also optimize CMAR
by varying support and confidence parameter, and CPAR by
varying minimum best gain and gain similarity ration.

Finally, we transform the applied rules for each prediction
into a graphical representation (called ezplain graph) auto-
matically using an in-house computer program written in the
Python programming language with the GraphViz plotting
program. Figure 2 shows such a graph as an example.

3. RESULTS AND DISCUSSIONS

In this section, we present our results and discuss interest-
ing issues. Overall precision, recall and F-measure for each
classifier using SwissProt annotation features are shown in
Table 2 and Figure 1 with comparison to PA 3.0 [8]. We
also experiment with feature generated from a protein’s ref-
erencing PubMed abstracts and amino acid compositions;

SwissProt annotation features
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Figure 1: Overall F-measures with various features.

however the results with these additional features are consis-
tently worse than those with SwissProt annotation features
and are omitted due to space limitations.

Both CMAR and CPAR outperform Proteome Analyst
or at least achieve competitive performance. However, nei-
ther CMAR or CPAR significantly outperform PA. Multi-
class SVM achieves the best performance for all organism
types, but the differences between multi-class SVM and any
other predictors are not significant. CMAR and CPAR are
both slightly worse than multi-class SVM in Animal, Plant
and much worse in Fungi. The performances of CMAR and
CPAR are almost indistinguishable, except CPAR. outper-
forms CMAR by roughly 4% in Fungi. The differences be-
tween CMAR and CPAR are not significant. In summary,
all classification methods in our approach outperform or per-
form competitively well with Proteome Analyst 3.0 using the
same set of features.

While AC and SVM are two totally different types of al-
gorithms, we can still compare them in terms of prediction
accuracy, efficiency and transparency. First of all, associa-
tive classification is more transparent than SVM, in the sense
that AC is capable of showing the classification rules used
for each prediction and the strength of each rule; AC could
also be modified to allow users to manually edit the trained
classification model. On the contrary, SVM can only provide
the user a cryptic probability score derived from decision hy-
perplanes, which are very difficult to visualize. Second, AC
is as efficient and accurate as SVM. For example, CPAR
only generates a small set of highly selective rules, but it
achieves similar accuracy as both binary SVM (as in PA 3.0)
and multi-class SVM with SwissProt features. However, a
principle drawback of AC is its inefficiency in handling a
very large feature space.

Our result shows that multi-class SVM performs univer-
sally better than Proteome Analyst 3.0, which is a collec-
tion of binary SVM. PA trains a collection of Binary SVM
for each organism type, dedicating each binary SVM to each
class label. As a result, to predict the most probable sub-
cell label for a single query protein, PA needs to train one
model (binary SVM) for each class label. Conversely, with
multi-class SVM, we only need to train one model for each
organism type (with all class labels), thus saving time in



Table 2: Performance comparison for all classifiers. Best results are shown in bold.

coiled coil

label: cytoplasm

label: nucleus

Precision Recall F-measure

Organism PA | SVM | CMAR | CPAR | PA | SVM | CMAR | CPAR | PA | SVM | CMAR | CPAR
Animal 0.970 | 0.983 0.963 0.972 0.956 | 0.983 0.945 0.972 0.963 | 0.983 0.954 0.972
Plant 0.968 | 0.986 0.981 0.979 | 0.945 | 0.986 0.972 0.979 0.956 | 0.986 0.976 0.979
Fugni 0.857 | 0.934 0.913 0.922 | 0.765 | 0.934 0.849 0.922 0.817 | 0.934 0.880 0.922
Gram+ Bac | 0.980 | 0.991 0.991 0.989 | 0.959 | 0.991 0.988 0.989 0.969 | 0.991 0.989 0.989
Gram— Bac | 0.984 | 0.991 0.990 0.987 | 0.960 | 0.991 0.984 0.987 | 0.972 | 0.991 0.987 0.987

Class : nucleus

Prediction: nucleus

Features : polymorphism, glycoprotein, coiled coil,
cytoplasm, nuclear protein, nucleus,

ipr010978, ipr009053, ipr006933

Classification Rules:

Rule 1: {coiled coil, nuclear protein} -> nucleus (90.45%)
Rule 2: {polymorphism, nuclear protein} -> nucleus (93.97%)
Rule 3: {polymorphism, nucleus} -> nucleus (94.86%)
Rule 4: {polymorphism, nuclear protein, nucleus}

-> nucleus (95.68%)
Rule 5: {nuclear protein} -> nucleus (95.91%)
Rule 6: {nucleus} -> nucleus (96.06%)
Rule 7: {nuclear protein, nucleus} -> nucleus (96.7%)
Rule 8: {polymorphism, cytoplasm} -> cytoplasm (86.2%)
Rule 9: {cytoplasm} -> cytoplasm (89.7%)

Figure 2: An explain graph visualizing the applicable rules for an animal protein ith SwissProt annotation
features. Confidence for each rule is shown in arenthesis.

both training and prediction, while achieving a higher pre-
diction accuracy.

We found that CPAR is more efficient and more accu-
rate than CMAR in most cases. CPAR greedily generates a
highly selective set of rules while CMAR generates all rules
above the support and confidence thresholds before filtering
them. As a result, we observe that CPAR generates far less
rules than CMAR in our experiments, yet achieving higher
prediction accuracy.

4. CONCLUSION

In this paper, we apply two associative classification al-
gorithms (CMAR and CPAR) and multi-class SVM for pre-
dicting protein subcellular localizations using classification
features generated from SwissProt annotation records. Our
result shows that both multi-class SVM and CPAR outper-
form Proteome Analyst 3.0 [8]. Multi-class SVM is still the
most accurate classification algorithm; however CPAR is as
accurate as multi-class SVM in most cases, and in some cases
more robust to noise in the feature sets. CPAR is therefore
a good alternative to SVM in protein subcell label predic-
tion. In addition to our effort in optimizing the performance
of CMAR and CPAR, we also focus on explaining the pre-
dictions of association classifications. We propose a frame-
work of explaining subcell label predictions with associative
classification by visualizing the classification rules to help
domain expert better interpreting the classification process.
We conclude that associative classification has the potential
to achieve similar accuracy as SVM, but with much better
prediction transparency.
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