
Automatic Detection Of Vaccine Adverse Reactions By Incorporating Historical Medical Conditions

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 Keller Hall

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 11-007

Automatic Detection Of Vaccine Adverse Reactions By Incorporating

Historical Medical Conditions

Zhonghua Jiang and George Karypis

March 21, 2011

Automatic Detection Of Vaccine Adverse Reactions By
Incorporating Historical Medical Conditions

Zhonghua Jiang
Computer Science & Engineering

University of Minnesota, Twin Cities
zjiang@cs.umn.edu

George Karypis
Computer Science & Engineering

University of Minnesota, Twin Cities
karypis@cs.umn.edu

Abstract

Identifying medical conditions that are correlated with vac-
cine adverse reactions can not only provide better under-
standing of how adverse reactions are triggered but also have
the potential of detecting new adverse reactions that are
otherwise hidden. We formulate this problem as mining fre-
quent patterns with constraints. The major constraint we
use is called the minimum dual-lift constraint, where dual-
lift is a novel measure we propose to evaluate correlations
in a pattern. We also introduce the notation of minimum
improvement constraint to remove redundancy in generated
pattern set. We come up with a novel approach to upper
bound the dual-lift measure which helps to prune the search
space. Experimental results show that our algorithm works
significantly better than the baseline on dense datasets. Our
algorithm is also tested on the real world VAERS database.
Some interesting vaccine adverse reactions identified are pre-
sented.

1. INTRODUCTION
The Vaccine Adverse Event Reporting System (VAERS) is a
passive post-marketing surveillance system to monitor vac-
cine safety and is co-managed by the Food and Drug Admin-
istration (FDA) and the Centers for Disease Control and
Prevention (CDC) [1]. Adverse reactions that occur after
the administration of vaccines are reported. Each report
also contains historical medical conditions under which the
vaccine adverse reactions are developed, such as, medica-
tions the vaccine recipient was taking, pre-existing physician
diagnosed allergies and birth defects, and any illness at the
time of vaccination, etc.

Detecting vaccine adverse reactions in VAERS is a well known
challenging task due to the inherent limitations of sponta-
neous reporting system. For example, the number of doses of
administered vaccine (the “denominator data”) is not avail-
able, which is necessary for calculating reporting rates; the

reported incidences are not verified which partially contributes
to the wide range of data quality; the unvaccinated control
groups are missing. Under reporting is a well known issue
for spontaneous reporting systems. The reporting rates are
different from vaccine to vaccine and from adverse reaction
to adverse reaction. The seriousness of an adverse reaction
is also affecting reporting rates [2].

Traditional usage of VAERS is to identify evidences that
suggest an adverse reaction might be caused by vaccina-
tion and warrant further investigation [3]-[4]. We extend
the state of art by bringing historical medical conditions
into the picture, that is, to identify evidences that suggest
certain vaccines might cause adverse reactions for patients
with specific medical conditions. The solution to the ex-
tended problem is a set of patterns, each of which is a triplet
〈medical conditions, vaccines, adverse reactions〉 satisfying
additional constraints.

The main contribution of this work is two folded. Firstly,
we introduce a novel measure called dual-lift to capture cor-
relations between vaccines, adverse reactions and medical
conditions. The main constraint a pattern needs to satisfy
is called minimum dual-lift constraint which says its dual-lift
is larger or equal to some user specified threshold. Secondly,
we come up with an efficient algorithm DLiftMiner (which
stands for Dual-Lift Miner) for mining constraint patterns in
VAERS database. The ability to push constraints into pat-
tern mining may lead to substantial performance improve-
ment. Different strategies are needed for different types of
constraints. Well studied constraints include monotone and
anti-monotone constraints, succinct constraint, convertible
constraint, boundable constraint, and loose monotone con-
straint [5]-[6]. Our DLiftMiner algorithm shows that the
minimum dual-lift constraint is boundable, so the branch
and bound algorithm can be applied successfully.

The remaining of this paper is organized as follows. In Sec-
tion 2, related works to adverse reaction detection and con-
straint pattern mining are briefly discussed. In Section 3, we
introduce notations and definitions that are used through
out the rest of the paper. In Section 4, we discuss dual-
lift measure in detail. In Section 5, the constraint pattern
mining problem is formulated. The DLiftMiner algorithm is
explained in Section 6. Especially, we focus on a novel ap-
proach to upper bound the dual-lift measure. Experimental
results with both synthetic and real world datasets are in-
cluded in Section 7. And finally Section 8 concludes.

2. RELATED WORK
Various techniques have been developed to help uncover po-
tential adverse reactions without the incorporation of his-
torical medical conditions. The proportional reporting ra-
tio (PRR) was first described by Finney [3]. For the con-
tingency Table illustrated in Table 1, PRR is PRRij =
[a/(a + b)]/[c/(c + d)]. Evans et al [7] extend it to screened
proportional reporting ratio (SPPR): a ≥ 3, PRR ≥ 2, and
Yates-corrected chi-square≥ 4. Empirical Bayes geometric
mean (EBGM) [8] calculates the expected value of the base
2 logarithm of the ratio between the estimated reporting ra-
tio and that under the assumption of no causal relationship,
given the observed count of reports. EB05 [9] uses the lower-
bound of the 90% confidence interval of EBGM. Reporting
odds ratio (ROR) [10]-[11] is defined as product of the expo-
sure odds among the cases with respect to the exposure odds
among the non-cases and is calculated by ROR = (ad)/(bc).
Bate et al uses information component (IC) as the mea-
sure of associations and a Bayesian confidence propagation
neural network (BCPNN) [12] is developed. Similar to [12],
the multi-item gamma Poisson shrinker (MGPS) [13]-[4] also
utilizes Bayesian inference to adjust for data variance.

Table 1: Contingency Table for Vaccine Reaction

Pair.
Reaction j Other Reactions

Vaccine i a b
Other Vaccines c d

In recent years, there are several works conducted to mine
association rules directly and effectively from input database
without the costly feature selection step. Many of these pa-
pers involve implementing certain pruning strategies. Har-
mony [14] is an instance centric algorithm which mines di-
rectly for each instance a covering rule with the highest con-
fidence. A method to discover top-k covering rules for the
input gene expression data is in [15]. In [16], the branch-
and-bound algorithm is applied to discriminative measure
information gain (IG). Cheng et al [16] introduce a feature
centered approach which eliminates training instances on a
progressively shrinking FP-tree. In TAPER algorithm [17],
an upper bound of Pearson’s correlation is shown to have
the conditional monotone property. LPMiner [18] utilizes
smallest valid extension (SVE) property to prune the search
space. Brin et al [19] show an upward closure property of
correlation measure: if a set of items S is correlated, so is
every super set of S. In [20], the pruning strategy is to
upper bound the support, confidence and a new measure
called improvement. In [21], an upper bound of chi-square
is derived based on convexity of chi-square function.

3. DEFINITIONS AND NOTATION
A vaccine-adverse reaction database DB is a set of records
of the form 〈tid , M, V, R〉, where tid is a unique record id.
Each record can be interpreted as that an individual with
historical medical conditions M developed adverse reactions
R after vaccination of V . We will refer to the sets of items
in M , V , and R as the m-items, v-items and r-items, re-
spectively.

A record 〈tid , M, V, R〉 is said to contain itemset I if I ⊆

M∪V ∪R. The support of I in DB , denoted by supp(I|DB),
is the total number of records in DB that contain I. The
transaction count of I in DB , denoted by tcnt(I|DB), is the
number of records for which I = M ∪V ∪R. An association
rule is of the form I → r, where I is the prefix itemset and
r is the suffix itemset. The confidence of I → r is defined as

conf (I → r|DB) =
supp(I ∪ r|DB)

supp(I|DB)
. (1)

The lift of I → r is defined as

lift(I → r|DB) =
conf (I → r|DB)

conf (∅ → r|DB)
, (2)

where ∅ is the null set.

A conditional database DB |A is a set of records from DB
which contain itemset A. A projected database DBB is
formed by projecting all records from DB onto itemset B,
that is, removing all items which are not in B from each
record in DB . A projected conditional database DBB|A is
defined as projected database from DB |A on itemset B. Let

set DB (d) contain all itemsets whose transaction counts in
DB are non-zero, and similarly DB

(d)
B (DB

(d)

B|A) contain all

itemsets whose transaction counts in DBB (DBB|A) are non-
zero.

4. DUAL-LIFT MEASURE
Our objective is to identify all patterns of the form 〈M, V, R〉
such that there are evidences to suggest adverse reactions
R are likely to be developed if individuals with historical
medical conditions M are vaccinated with V . The first step
is to develop a measure to capture correlations among M ,
V , and R. And patterns whose values of the measure are
larger than or equal to user specified threshold are selected
into the solution set.

One may consider to use lift(M ∪ V → R|DB) as the mea-
sure. However, this measure has the weakness that M and
V are not distinguished from each other, so that the corre-
lation may be introducted by one of them, say V , but not
the other one, say M . Another possibility is

L =
P (M ∪ V ∪R|DB)

P (M |DB)P (V |DB)P (R|DB)
, (3)

where P (I|DB) (I is M , V , R or M ∪ V ∪ R) is the prob-
ability of I estimated in DB (for example, P (I|DB) can
be estimated by conf (∅ → I|DB)). The problem with this
measure is that L can be high if any two of the three sets are
correlated. In fact, it is easy to see that L = lift(M ∪ V →
R|DB)lift(M → V |DB). So L can be high if only M and
V are highly correlated.

Instead, let us consider quantity lift(V → R|DB|M). Intu-
itively, it detects vaccine adverse reaction pairs 〈V, R〉 in a
subset of records containing medical conditions M . It makes
sense because if individuals with medical conditions M are
susceptible to 〈V, R〉, we should be able to detect 〈V, R〉 in
DB|M . Another advantage of this measure is that we can
uncover potentially important vaccine adverse reaction pairs
〈V, R〉 (lift(V → R|DB|M) is high), which are difficult to de-
tect by looking at the whole database (lift(V → R|DB) is
low). However, there is a limitation of this measure if used

alone. That is, 〈V, R〉 may not be correlated with M at
all. To overcome this limitation, we propose to combine this
quantity with lift(M → R|DB|V). Intuitively, lift(M →
R|DB|V) is high meaning that conf (M ∪ V → R|DB) is
much larger than conf (V → R|DB), so individuals with
medical conditions M have much higher chance of develop-
ing R when vaccinated with V . Based on this analysis, we
define:

Definition 4.1 (dual-lift). The dual-lift of a pattern
〈M, V, R〉, denoted by

dual lift(〈M, V, R〉|DB), (4)

is defined as

min(lift(V → R|DB |M), lift(M → R|DB |V)). (5)

5. PROBLEM FORMULATION
In this section, we formulate the problem of detecting vac-
cine adverse reactions with historical medical conditions in
the framework of constraint pattern mining. In our formula-
tion, there are three components that define the interesting
patterns: (1) minimum dual-lift constraint, which utilizes
the dual-lift measure developed in Section 4, (2) minimum
improvement constraint, which aims to remove redundent
patterns, and (3) minimum support constraint, which de-
fines the set of frequent patterns. We define them formally
in the following:

Definition 5.1 (Minimum dual-lift Constraint). The
pattern 〈M, V, R〉 satisfies minimum dual-lift constraint in
database DB if its dual-lift is larger or equal to the user
specified lift threshold l0.

Definition 5.2 (improvement). The improvement of pat-
tern 〈M, V, R〉 is defined as the minimum of

dual lift(〈M, V, R〉|DB)− dual lift(〈M ′, V ′, R′〉|DB). (6)

for any of its proper sub-pattern 〈M ′, V ′, R′〉, that is, M ′ ⊆
M ∧ V ′ ⊆ V ∧ R′ ⊆ R and M ′ ∪ V ′ ∪ R′ 6= M ∪ V ∪ R,
satisfying minimum dual-lift constraint.

Definition 5.3 (Minimum improvement constraint).
A pattern 〈M, V, R〉 satisfies minimum improvement con-
straint if its improvement is larger or equal to user specified
improvement threshold m0. A pattern which does not satisfy
minimum improvement constraint is said to be redundant.

Definition 5.4 (Minimum support Constraint). The
pattern 〈M, V, R〉 satisfies minimum support constraint if

supp(M ∪ V ∪R|DB) ≥ s0, (7)

where s0 is the user specified minimum support. A pattern
satisfying minimum support constraint is called a frequent
pattern.

In this paper, we only consider the case when R contains
a single reaction. With the aid of above definitions, our
problem can be stated as:

Problem 5.5. Given database DB, the goal is to search
for all possible non-redundant frequent patterns 〈M, V, r〉 sat-
isfying minimum dual-lift constraint, where M is a set of
m-items, V is a set of v-items, and r is a set containing a
single r-item.

6. DLIFTMINER ALGORITHM

6.1 Branch and Bound Algorithm

Algorithm 1 DLiftMiner

Input: An input vaccine adverse reaction database DB0

1: read records in DB0; count frequencies of m-items and
v-items.

2: read records again and construct database DB as a FP-
Tree, where m-items and v-items are internal nodes and
r-items are leaves. m-items and v-items are sorted based
on their frequencies from large to small along the tree
from top to bottom.

3: remove infrequent items in database DB .
4: Let M1, V1, R1 be sets of m-items, v-items, r-items in

DB .
5: DBm ← DBM1∪R1

; DBv ← DBV1∪R1

6: for r in R1 do

7: l[r]← l0
8: end for

9: M0 ← ∅; V0 ← ∅
10: branch and bound(DB , DBm, DBv, l, M0, V0)

Our DLiftMiner algorithm is described in algorithm 1, where
the most important part branch and bound is described in
algorithm 2. The DLiftMiner algorithm sets proper initial
values for parameters, then passes the control to algorithm
branch and bound. Input parameters of branch and bound
can be interpreted as the following. l contains the cur-
rent dual-lift threshold for each r-item. M0, and V0 are
sets of m-items and v-items that have been searched. DB
can be understood as DB0

|M0∪V0
with infrequent items re-

moved (lines 14, 31, 32); DBm can be understood as the
projected database from DB0

|M0
onto m-items and r-items

in DB (lines 17, 20, 33); DBv can be understood as the pro-
jected database from DB0

|V0
onto v-items and r-items in DB

(lines 17, 20, 34).

The branch and bound algorithm starts with calculating dual-
lift for current pattern 〈M0, V0, r〉 for each r-item r of DB
(lines 2-6). Lm

r (Lv
r) is the quantity lift(V0 → |DB0

|M0
)

(lift(M0 → |DB0
|V0

)). To see why lines 2-6 are correct, con-
sider:

lift(V0 → r|DB0
|M0

)

=
conf (V0 → r|DB0

|M0
)

conf (∅ → r|DB0
|M0

)

=
conf (∅ → r|DB0

|M0∪V0
)

conf (∅ → r|DB0
|M0

)

=
conf (∅ → r|DB)

conf (∅ → r|DBm)

=
supp(r|DB)/|DB |

supp(r|DBm)/|DBm|
, (8)

Algorithm 2 branch and bound(DB , DBm, DBv, l, M0,
V0)

1: for r in all r-items of DB do

2: Sr ← supp(r|DB)/|DB |
3: Sm

r ← supp(r|DBm)/|DBm |
4: Sv

r ← supp(r|DBv)/|DBv |
5: Lm

r ← Sr/Sm
r , Lv

r ← Sr/Sv
r

6: dual-liftr = min(Lm
r , Lv

r)
7: if dual-liftr ≥ l[r] then

8: print 〈M0, V0, r〉.
9: l[r]← dual-liftr + m0.

10: end if

11: end for

12: while DB has more m-items or v-items do

13: i← next m-item or v-item of DB
14: DB ′ ← DB |i

15: if i is m-item then

16: M ′
0 ←M0 ∪ i, V ′

0 ← V0

17: DB ′m ← DBm
|i , DB ′v ← DBv

18: else

19: V ′
0 ← V0 ∪ i, M ′

0 ←M0

20: DB ′m ← DBm, DB ′v ← DBv
|i

21: end if

22: let R be the set of frequent r-items in DB ′

23: for r in R do

24: bndm
r ← bu

r|DB′/bl
r|DB′m , bndv

r ← bu
r|DB′/bl

r|DB′v

25: dual-lift-bndr = min(bndm
r , bndv

r)
26: if dual-lift-bndr < l[r] then

27: remove r from R
28: end if

29: end for

30: if |R| > 0 then

31: construct DB′; i and r-items not in R are not
copied

32: remove infrequent items in DB′

33: construct DB′m; remove items that are not in DB′

34: construct DB′v; remove items that are not in DB′

35: branch and bound(DB ′, DB ′m, DB ′v, l, M ′
0, V ′

0)
36: end if

37: remove i from DB
38: if i is m-item then

39: remove i from DBm

40: else

41: remove i from DBv

42: end if

43: end while

and similarly,

lift(M0 → r|DB0
|V0

) =
supp(r|DB)/|DB |

supp(r|DBv)/|DBv|
. (9)

If the calculated dual-lift is larger or equal to its threshold
for the corresponding r-item, l[r] is updated (line 9). Then
it determines whether the next item i should be projected
on by finding the set R which contains frequent r-items in
DB ′ (or DB |i) whose dual-lift upper bound is larger than or
equal to current threshold. dual-lift upper bounds are cal-
culated in lines 24, 25 as dual-lift-bndr, where bndm

r (bndv
r)

is upper bound of lift(V ′
0 ∪ V → r|DB0

|M′

0
∪M) (lift(M ′

0 ∪

M → r|DB0
|V ′

0
∪V)) for any frequent patterns 〈M, V, r〉 in

DB ′. Line 24 will be explained in more detail later. If
R is not empty, new databases DB ′, DB ′m, DB ′v are con-
structed with necessary items removed (lines 30-36), and
branch and bound is called with updated parameters (line
35). Note that there is no need to actually construct DB ′,
DB ′m and DB ′v in lines 14-20; we can operate on original
databases DB , DBm and DBv to evaluate lift upper bounds
in line 24. Finally, item i is removed and the next round of
loop starts (lines 38-42).

6.2 Support Based Pruning
Support based pruning can be derived from minimum sup-
port constraint in definition 5.4. Our algorithm applies sup-
port based pruning in line 3 of DLiftMiner and lines 32-34 of
branch and bound, where infrequent items are removed, and
line 22 of branch and bound, where only frequent r-items
are considered. Any r-item is infrequent if its support is
less than s0. In our formulation, every interesting pattern is
associated with an r-item. For any m-item or v-item i we de-
fine its maximum support per class as maxr supp(i ∪ r|DB).
Any m-item or v-item whose maximum support per class is
less than s0 is considered infrequent and thus removed.

6.3 Improvement Based Pruning
For any r-item r, patterns to be explored by the branch and
bound algorithm are super-patterns of 〈M0, V0, r〉. From the
definition of minimum improvement constraint, the dual-lift
thresholds for patterns to be explored should be no less than
m0 plus the maximum dual-lift values for any proper sub-
patterns of 〈M0, V0, r〉 that branch and bound has discov-
ered. These dual-lift thresholds are saved in l. When a new
pattern is discovered, its dual-lift has to be no less than
current dual-lift threshold. That means, this new pattern
must have largest dual-lift value among its discovered sub-
patterns. So updating corresponding dual-lift threshold is
straightforward: simply add m0 to dual-lift value of the new
pattern (line 9).

However, it should be made clear that our algorithm does
not take into account all redundancy defined in definition
5.3. This is due to that not all sub-patterns of 〈M0, V0, r〉
were processed before pattern 〈M0, V0, r〉. For example, as-
sume M0 = {m1, m2} and V0 = {v1} and assume these
three items were added to M0 ∪ V0 in the order of m1, v1,
m2, then sub-patterns processed before 〈{m1, m2}, v1, r〉 are
〈∅, ∅, r〉, 〈m1, ∅, r〉, and 〈m1, v1, r〉. Other sub-patterns (for
example, 〈m2, v1, r〉) are processed after 〈{m1, m2}, v1, r〉.
Solving this issue is out of scope of this paper and is left as
future research.

6.4 Lift Based Pruning
From line 24 in branch and bound algorithm, we need to
find upper bounds for quantities lift(V ′

0 ∪V → r|DB0
|M′

0
∪M)

and lift(M ′
0 ∪M → r|DB0

|V ′

0
∪V) for any frequent patterns

〈M, V, r〉 in DB ′.

This problem can be tackled by observing that lift is the
ratio of two confidences. In fact,

lift(V ′
0 ∪ V → r|DB0

|M′

0
∪M)

=
conf (V ′

0 ∪ V → r|DB0
|M′

0
∪M)

conf (∅ → r|DB0
|M′

0
∪M)

=
conf (M ∪ V → r|DB0

|M′

0
∪V ′

0

)

conf (M → r|DB0
|M′

0

)
, (10)

and similarly,

lift(M ′
0∪M → r|DB0

|V ′

0
∪V) =

conf (M ∪ V → r|DB0
|M′

0
∪V ′

0

)

conf (V → r|DB0
|V ′

0

)
.

(11)
Because DB ′ is DB0

|M′

0
∪V ′

0

with some items removed, DB ′m

(DB ′v) is DB0
|M′

0

(DB0
|V ′

0

) with some items removed, and

〈M, V, r〉 is from DB ′, it is not hard to see that DB0
|M′

0
∪V ′

0

,

DB0
|M′

0

, and DB0
|V ′

0

can be replaced by DB ′, DB ′m and DB ′v

in equations 10 and 11. So we have

lift(V ′
0∪V → r|DB0

|M′

0
∪M) =

conf (M ∪ V → r|DB ′)

conf (M → r|DB ′m)
, (12)

and

lift(M ′
0 ∪M → r|DB0

|V ′

0
∪V) =

conf (M ∪ V → r|DB ′)

conf (V → r|DB ′v)
.

(13)

Equations 12 and 13 suggest that, to find upper bound of
lift, we can find the upper bound of the numerator and lower
bound of denominator. So, line 24 should be correct if we
introduce

◦ bndu
r|DB′ be upper bound of conf (M ∪V → r|DB ′) for

any frequent patterns 〈M, V, r〉 in DB ′,
◦ bnd l

r|DB′m be lower bound of conf (M → r|DB ′m) for

any frequent patterns 〈M, ∅, r〉 in DB ′m,
◦ bnd l

r|DB′v be lower bound of conf (V → r|DB ′v) for

any frequent patterns 〈∅, V, r〉 in DB ′v.

6.5 Bound the Confidence
The above analysis translates the problem of bounding the
lift into the problem of bounding the confidence, which can
be defined as:

Problem 6.1 (Bounding the Confidence). For the
database DB, itemsets I0, and r, the problem of bounding the
confidence is to find upper and lower bound for the quantity
conf (I → r|DB) for any I ⊆ I0 such that supp(I ∪ r|DB) ≥
s0.

Note that, I0’s for bndu
r|DB′ , bnd l

r|DB′m , and bnd l
r|DB′v dis-

cussed above are implicitly defined as all non-r-items of cor-
responding databases.

There is a simple solution to this problem. The upper bound
of conf (I → r|DB) can be chosen as 1. The lower bound
can be derived as

conf (I → r|DB) =
supp(I ∪ r|DB)

supp(I|DB)
≥ s0/|DB |. (14)

However, our goal is to come up with an approach which
works significant better than this naive solution.

We introduce the following two lemmas (see appendix for
proofs):

Lemma 6.2. Given database DB, itemsets I0, and r, for
any I ⊆ I0, define vector VI whose x-component VI,x is
supp(I|DBI0) and y-component VI,y is supp(I|DBI0|r). We
have conf (I → r|DB) is equal to slope of VI and supp(I ∪
r|DB) is equal to y-component of VI .

Lemma 6.3. Following the settings in lemma 6.2, for any
itemset A, we define vector vA whose x-component vA,x is
tcnt(A|DBI0) and y-component vA,y is tcnt(A|DBI0|r). Let

set AI = {A|A ∈ DB
(d)
I0
∧ I ⊆ A}, then

VI =
X

A∈AI

vA. (15)

�

�

�

� � � �

�

Figure 1: Bound the Confidence

Based on lemmas 6.2 and 6.3, Figure 1 illustrates how we can
find an efficient solution to problem 6.1. Let us define F be

the set of vectors vA for all A in DB
(d)
I0

. Sorting vectors in F
by slope from large to small and connecting them head to tail
gives piece-wise linear curve OBP . Similarly, sorting vectors
in set F by slope from small to large and connecting them
head to tail gives piece-wise linear curve OCP . If we define
another set P which contains sum of all possible subsets of
vectors in F , it can be proven that any vectors in set P are
inside the region enclosed by OBP and OCP . Lemma 6.3
suggests that VI is also equal to sum of a subset of vectors
from F . So we should have VI ∈ P and VI is inside region
OBPCO. Line y = s0 cuts this region into two parts (we
assume that the y-coordinate of point P is larger or equal to
s0). All vectors in P whose y-component are larger or equal
to s0 are inside the top region BCPB. From lemma 6.2,
any association rule I → r (I ⊆ I0) whose supp(I∪r|DB) is

larger or equal to s0 is associated with a vector VI in region
BCPB whose slope is exactly conf (I → r|DB). And it can
be easily seen that slopes of all vectors inside region BCPB
are upper bounded by slope of OB and lower bounded by
slope of OC. This leads to the conclusion that slopes of OB
and OC are upper and lower bounds of conf (I → r|DB).

This result is summarized into the following theorem:

Theorem 6.4. Following the settings in lemma 6.3, de-

fine F = {vA|A ∈ DB
(d)
I0
} and sort vectors in F based on

their slopes from small to large, and label them as f1, f2, . . . , fn,
where n is the total number of vectors. Define,

◦ bl
I0→r|DB

as slope of the following vector

bl = f1 + f2 + · · ·+ fil−1 + α ∗ fil
, (16)

where 0 < α ≤ 1, 1 ≤ il ≤ n are chosen such that
y-component of bl is equal to s0.
◦ bu

I0→r|DB
as slope of the following vector

bu = fn + fn−1 + · · ·+ fiu+1 + β ∗ fiu
, (17)

where 0 < β ≤ 1, 1 ≤ iu ≤ n are chosen such that
y-component of bu is equal to s0.

Then we have, bl
I0→r|DB

≤ conf (I → r|DB) ≤ bu
I0→r|DB

, for
any I ⊆ I0 such that supp(I ∪ r|DB) ≥ s0.

We can combine the bounding approach of theorem 6.4 with
the naive approach (slopes of OA and OD in Figure 1) pro-
posed earlier. This leads to different versions of DLiftMiner
algorithms that are summarized in Table 2.

Table 2: Different versions of DLiftMiner algo-

rithms.

DLiftMiner
applies theorem 6.4 for both

upper and lower bounds of confidences

DLiftMiner-U
identical to DLiftMiner

except confidence upper bound is replaced by 1

DLiftMiner-N
identical to DLiftMiner except confidence

lower bound is replaced by the naive approach
that is, bl

r|DB = s0/|DB|

DLiftMiner-UN
identical to DLiftMiner except confidence

upper bound is replaced by 1, and confidence
lower bound is replaced by the naive approach

DLiftMiner-L
identical to DLiftMiner except confidence

lower bound is replaced by zero
that is, no lift pruning is applied

6.6 Implementations

Table 3: An example database

tid m-items v-items r-items
1 m1, m2 v1, v2 r1, r3

2 m1, m3 v1, v3 r1, r2

3 m1, m4 v2, v3 r3, r4

4 m2, m3 v2, v3 r1, r3

5 m2, m3 v1, v4 r2, r4

6 m2, m4 v3, v4 r3

Our implementation of DLiftMiner algorithm utilizes a mod-
ified FPTree data structure. And the bounding approach
proposed in theorem 6.4 can be easily applied. This is

mainly because each itemset A in DB
(d)
I0

is mapped to a
path along the tree excluding leaf nodes. We illustrate this
by an example below.

Consider a mini-database in table 3 as an example. After
this database is parsed, three FPTree like data structures
DB, DBm, DBv are initialized (see figure 2). Note that the
same m-items, v-items and r-items are maintained in a dou-
ble linked list, which is not shown in the figure. There are
some modifications made to the standard FPTree. First,
m-items and v-items are stored as internal nodes of the tree,
while r-items are leaves of the tree. m-items and v-items are
sorted by total frequency from large to small. Second, be-
tween m-items (or v-items) and r-items, we insert a sequence
of separators, which are linked together just like any other
items. Separators facilitate the calculation of bounds as will
be explained later. Each separator node and leaf node is
associated with a support count, which is the support of
itemset from root to itself along the tree. Because each
record can contain multiple r-items, the support count on a
separator is not necessarily equal to sum of support counts
of its r-item children. Fourth, for each m-item and v-item,
the maximum support per class is maintained instead of the
total support. For each r-item the total support is stored
as usual. We have selected minimum support s0 to be 2,
the only infrequent item is v4, which has been removed from
DB and DBv.

�
�

�
�

�

�

�

�

�

�

�
�

��

� �

Figure 2: Databases after initialization

Let us select l0 = 1.5. branch and bound starts by evaluat-
ing two dual-lift measure for each r-item in lines 2-6. In our
example ,due to M0 and V0 are empty, the dual-lift values
have to be equal to 1 for all r-items. In a more general sce-
nario, the size of databases |DB|, |DBm|, and |DBv| can be
calculated as sum of support counts stored in all separators.
The support values of r-items can be calculated as sum of
support counts stored in corresponding r-item nodes. How-
ever, these values are pre-computed and readily available. If
the calculated dual-lift is larger or equal to dual-lift thresh-
old, the pattern is saved and dual-lift thresholds need to be
updated (line 9).

In our implementation, the next item i in line 13 of the
branch and bound is the m-item or v-item at the bottom of
FPTree DB . For this example, it is m4. branch and bound
estimates dual-lift upper bound based on databases DB ′,
DB ′m, and DB ′v. When i is m-item, DB ′v is just DBv,
DB ′m is DBm

|i and DB ′ is DB |i (line 17) where the latter two

are shown in figure 3. Note that at this step, DB ′ and DB ′m

do not need to be constructed explicitly (figure 3 is only
for illustration’s purpose). We can simply fetch separator
nodes and leaf nodes under m4 in DB and DBm for our
computation. There are two r-items in DB ′, namely, r3 and

�

�

�

�

Figure 3: Databases conditional on next item i = m4

r4. Since r4 is infrequent (supp(r4|DB ′) = 1), we only need
to compute lift upper bounds for r3.

�

�

�

�

�

�

�
� �

�

Figure 4: Databases in the second round

Next, we explain in detail how bu
r3|DB′ can be easily cal-

culated. Following notations in theorem 6.4 , I0 contains
all m-items and v-items in DB ′. There are two itemsets in
DB

(d)

I0|i
, each of them is represented as a path from root to

separator nodes on tree DB ′. Let A1 = {m2, v3, m4} and
A2 = {v3, m1, v2, m4}. tcnt(A1|DB ′

I0) = 1 which is stored
in the separator node following A1; tcnt(A2|DB ′

I0) = 1
which is stored in the separator node following A2. And
tcnt(A1|DB ′

I0|r3
) = 1 which is stored in node r3 following

A1; tcnt(A2|DB ′
I0|r3

) = 1 which is stored in node r3 fol-
lowing A2. According to theorem 6.4, F = {(1, 1), (1, 1)}.
Then, we need to sort vectors in F by slope from large to
small and add them sequentially until the y-component of
added vector is equal to s0. This computation is straight-
forward and finally the slope of summed vector is bu

r3|DB′ =

1. Similarly, the set F for calculating bl
r|DB′v is given by

{(1, 0), (2, 2), (1, 1), (1, 1), (1, 0)}. We need to sort them by
slope from small to large and finally bl

r|DB′v = 0.5. Simi-

larly, bl
r|DB′m = 1. So, bndm

r3
= 1 and bndv

r3
= 2. This tells

us that the dual-lift for r3 is 1, and the dual-lift threshold is
violated. Set R is empty, and lines 30-36 are skipped. We
remove m4 from DB and DBm and continue to next round
of the loop.

The next item i to be considered is v2. Three databases used
for estimating lift upper bounds are shown in figure 4. We
omit the details and simply present the results: bndm

r1
= 2.5,

bndv
r1

= 1.5, bndm
r3

= 2, bndv
r3

= 1. r4 is infrequent in DB ′

and thus not considered. So finally the R set contains one
r-item r1. Lines between 26 and 32 are executed. First, DB′

is construct from DB|v2
where v2 and r3, r4 are not copied.

Then, infrequent items v1 and m3 are removed from DB′.
Finally, projecting DBm and DBv

|v2
onto DB′ gives DB′m

and DB′v. Note that some branches in DB′m and DB′v are

�

�

�

� �

�
� � �

�������	
�����
��	����� ���������
�
�
�

��

Figure 5: Projected databases in the second round

merged. DB′, DB′m and DB′v are input to recursively call
branch and bound.

7. EXPERIMENTAL RESULTS
7.1 Performance Study with Synthetic Data

Table 4: Parameters for synthetic dataset.
ntrans number of transactions 10k
nitems number of items 500
npats number of maximal potentially large itemsets 100
patlen average size of the maximal potentially large itemsets 30
tlen average size of transactions 30

To evaluate the performance and scalability of our algo-
rithm, we use the IBM Quest market-basket synthetic data
generator [22] to generate a series of datasets. The genera-
tor program takes the parameters described in Table 4. We
split the generated items into m-items, v-items and r-items
from small id ’s to large id ’s so that m-items cover 57%, v-
items cover 33% and r-items cover the rest 10%. We keep
only transactions containing all three types of items in the
dataset. The parameters for the first synthetic dataset are
also in Table 4 and the actual size of dataset is 7401.

In our experiment, we set s0 = 100, m0 = 0 and l0 takes
value 2, 3, 4 and 5. Another parameter controlling the run-
ning is called pattern length L, which is defined to be the
sum of sizes of current sets of m-items and v-items, that
is, L = |M0| + |V0|. We specify a maximum pattern length
L0 = 8, and DLiftMiner stops when L > L0. The experi-
mental results are summarized in Table 5 and Figure 6.

Table 5: Running time for the first synthetic

dataset.
dual-lift \model DLiftMiner-L DLiftMiner-UN DLiftMiner-N DLiftMiner-U DLiftMiner

2 87.50 30.93 31.28 2.67 2.63
3 87.50 18.22 18.08 1.15 1.10
4 87.50 9.97 10.10 0.88 0.83
5 87.50 8.73 8.50 0.63 0.63

*All times are in minutes

Table 5 shows the running times for different models with
different dual-lift parameters. From this Table, one can
see the dramatic improvements made by our pruning ap-
proach. Our best algorithm DLiftMiner takes only 3.0%,
1.3%, 0.99%, and 0.72% of the running time compared to the
baseline approach DLiftMiner-L when dual-lift takes values
2, 3, 4 and 5, respectively. Even compared with DLiftMiner-
UN, where only naive pruning is applied, DLiftMiner takes
only about 7% of its running time.

Table 5 also shows how the different pruning methods im-
pact the performance of DLiftMiner. It can be seen that

1 2 3 4 5 6 7 8

0
5

10
15

20
25

dual−lift=2

pattern length

lo
g2

(n
pa

tte
rn

+
1)

1 2 3 4 5 6 7 8

0
5

10
15

20
25

dual−lift=3

pattern length

lo
g2

(n
pa

tte
rn

+
1)

1 2 3 4 5 6 7 8

0
5

10
15

20
25

dual−lift=4

pattern length

lo
g2

(n
pa

tte
rn

+
1)

1 2 3 4 5 6 7 8

0
5

10
15

20
25

dual−lift=5

pattern length

lo
g2

(n
pa

tte
rn

+
1)

DLiftMiner DLiftMiner−U DLiftMiner−N DLiftMiner−UN DLiftMiner−L

Figure 6: pruning effects with synthetic dataset

there are dramatic performance improvements when the con-
fidence lower bound is improved (see DLiftMiner-L versus
DLiftMiner-UN and DLiftMiner-N versus DLiftMiner-U).
However the upper bound of confidence does not seem to
play much role in reducing the running time, so that DLift-
Miner and DLiftMiner-U (DLiftMiner-N and DLiftMiner-
UN) have almost the same results.

Figure 6 plots the number of patterns processed (npattern)
versus different pattern length for different versions of the
algorithms. The vertical axis has been scaled to log scale
(log2 (npattern + 1)). It can be clearly seen that including
confidence upper bound does not help much in pruning more
patterns away.

20 40 60 80 100

0
2

4
6

8

ntrans (k)

ru
nn

in
g

tim
e

(m
in

s)

dual−lift=2
dual−lift=3
dual−lift=4
dual−lift=5

Figure 7: scalability of DLiftMiner

The scalability study of DLiftMiner algorithm is illustrated
in Figure 7. We generate another 5 datasets by setting
ntrans to be 20k, 40k, 60k, 80k and 100k (the other pa-
rameters are the same as in Table 4). Due to that only
transactions with all three types of items are kept, the ac-
tual sizes of these datasets are 14824, 29536, 44301, 59036
and 73729. For these datasets, we set corresponding mini-
mum support s0 to be 200, 400, 600, 800 and 1000. Figure
7 shows the running time of DLiftMiner algorithm versus
different ntrans for four different dual-lift values. It can be
seen that our DLiftMiner algorithm scales linearly with the
size of input dataset.

Table 6: Number of patterns generated by DLift-

Miner.
dual-lift\improvement NONE 0 0.5 1.0

2 79355 40517 20558 19171
3 6772 4329 3271 3049

In the above experiments, we set the improvement measure
m0 to be 0. To evaluate how different values of m0 im-
pact the DLiftMiner algorithm, we calculated the numbers
of patterns generated by DLiftMiner for different choices of
improvements when dual-lift takes values 2 and 3. These
results are summarized in Table 6, in which, NONE means
no redundancy is taken into account. One can see that a
large fraction of redundant patterns are removed during the
mining process when m0 = 0, but setting m0 higher does
not reduce as many patterns. However, we are not able to
observe significant extra pruning by incorporating the im-
provement measure. This may partially due to the fact that
our DLiftMiner algorithm does not take into account all re-
dundancy defined in definition 5.3.

7.2 VAERS dataset
To evaluate the ability of the dual-lift measure to identify in-
teresting patterns, we applied our DLiftMiner algorithm to
VAERS [1] dataset. At the point of this paper, VAERS con-
tains 21 years (from 1990 to 2010) of vaccination reports plus
an additional non-domestic dataset. And we downloaded all
of them.

The fields that are used as historical medical conditions
or m-items include: OTHER MEDS, CUR ILL, HISTORY,
and PRIOR VAX. These are observables that are available
before vaccination is given. OTHER MEDS contains narra-
tive about prescription or non-prescription drugs the vaccine
recipient was taking at the time of vaccination. CUR ILL
contains narrative about any illness at the time of vaccina-
tion. HISTORY contains narrative about any pre-existing
physician-diagnosed allergies, birth defects, medical condi-
tions that existed at the time of vaccination. PRIOR VAX
provides prior vaccination event information. The set of
vaccines or v-items is given by the VAX TYPE field. The
adverse reactions, or r-items, are called symptoms in this
dataset. The Medical Dictionary for Regulatory Activities
(MedDRA) coding system is used for symptoms. We remove
those symptoms which do not appear very informative, for
example, “Unevaluable event”, “Accidental overdose”, “Com-
puterised tomogram normal”, “Drug exposure during preg-
nancy” and so on. Also we remove all “injection site” symp-
toms and all symptoms containing word“negative”. Further-

Table 7: Subset of vaccine-symptom associations with medical conditions in S3.

Symptom vaccine code(s) medical condition(s) dual-lift
Autism MMR history-“fever” 4.7

C-reactive protein increased PNC history-“Pregnancy” 9.3
Drug toxicity HEP history-“Pregnancy” 7.8

Febrile convulsion DTPHIB history-“seizure” 3.3
Influenza like illness LYME history-“Anxiety” 3.4

Injected limb mobility decreased PPV cur ill-“allergy” 3.6
Irritability HIBV other meds-“prevacid” 5.2

Otitis media

(MMR,OPV)

cur ill-“Ear infection”

3.0
(DTP,MMR) 3.4
(HIBV,MMR,OPV) 3.5
(DTP,HIBV,MMR) 3.6
(DTP,MMR,OPV) 3.9

Rash vesicular VARZOS cur ill-“Hypothyroidism” 3.3
Swelling (IPV,MMR) prior sym-“Swelling” 3.8

Throat tightness FLU (history-“Asthma”,history-“allergy”) 3.7
Urine human chorionic gonadotropin positive HPV4 history-“Pregnancy” 8.8

Varicella VARCEL cur ill-“Asthma” 4.2

more we include some outcomes as r-items as well: DIED,
DISABLE (disability), ER VISIT, HOSPITAL (hospital-
ized), L THREAT (life threatening), RECOVD (recovered)
and X STAY (prolonged hospitalization).

One challenge we face is that fields we extract for histori-
cal medical conditions or m-items are free text and thus not
coded. We split the free text into a bag of words (unigrams).
To capture some important terms with more than one word,
we also split the text by different delimiters: space, comma,
semicolon, period and combinations of them. Among the
set of all terms generated, only those with frequency greater
than or equal to 100 are kept. Furthermore we remove those
terms that are obviously non-medical related. When we
observe several terms apparently have the same meaning,
we map them to a normalized term. For example, “allergy
codeine”, “allergy to codeine” and “allergic to codeine” are
mapped to “codeine allergy”. Following this simple proce-
dure the total number of terms we get is 1187. For each
record and field, the identified terms that are contained in
the textual description are included as m-items.

For our experiment, we set s0 = 15, l0 = 3 and m0 = 0.
And we generated the following sets of patterns:

◦ S1 contains all non-redundant frequent patterns 〈V, r〉
such that lift(V → r|DB) ≥ l0. Note that since only
one lift measure is involved, the concept of redundancy
here should be re-defined accordingly. S1 is the solu-
tion to the traditional adverse reaction detection prob-
lem, where historical medical conditions are not taken
into account. In our experiment, we found 3617 pat-
terns in S1.

◦ S2 contains all non-redundant frequent patterns 〈M, V, r〉
satisfying minimum dual-lift constraint. S2 is the solu-
tion to problem 5.5. Experiments show that our idea of
combining two lift measures with redundancy is quite
selective. Only 169 patterns are found in S2.

◦ S3 is the set of patterns in S2 whose vaccine reaction
pairs 〈V, r〉 also appear in S1. S3 contains the identified
medical conditions under which adverse reactions are
more likely to be developed for a subset of patterns in
S1. We got the size of S3 is 91.

◦ S4 contains the rest of patterns in S2. S4 is the set of
new vaccine adverse reactions that cannot be discov-
ered without incorporation of historical medical con-
ditions. In our experiment, S4 has 78 patterns.

Due to limited space, we include only some of the patterns
and the associated dual-lift values from S3 and S4 into Ta-
bles 7 and 8. For each vaccine set V , we present the pat-
tern with the highest dual-lift. Note that in Tables 7, 8
(and Tables 10, 11) parenthesis implies vaccine or medical
condition interaction, “history” is extracted from HISTORY
field, “cur ill” is extracted from CUR ILL field, “other meds”
is extracted from OTHER MEDS field, and “prior sym” is
symptom developed for prior vaccination and is extracted
from PRIOR VAX field. Vaccine adverse reactions listed
in these two Tables can be interpreted easily. However,
whether there are truly any causality involved in these pat-
terns has to be determined by domain experts.

The Vaccine Injury Table is a list of vaccine-adverse reac-
tion associations that the Institute of Medicine has deter-
mined are causal [23]-[24] (see Table 9). The Vaccine In-
jury Table we are using is from [24] with coding system for
symptoms changing from Coding Symbols for a Thesaurus
of Adverse Reaction Terms (COSTART) to MedDRA. Only
four of eight symptoms are listed in Table 9 because no pat-
terns were detected for another four (Arthritis, Encephalitis,
Brachial plexopathy and Poliomyelitis).

Table 10 contains patterns in set S1 whose symptoms are in
Table 9 and vaccine sets have at least one of the reported
vaccines for corresponding symptoms. Our results in Table
10 suggests that vaccine-vaccine interactions play important

Table 8: Subset of vaccine-symptom associations with medical conditions in S4.

Symptom vaccine code(s) medical condition(s) dual-lift

hospital-“Y”
HPV4 other meds-“estradiol” 3.6
PNC history-“diabetes” 3.2

Drug ineffective RAB other meds-“Hepatitis” 7.5
Erythema VARCEL (cur ill-“allergy”,history-“allergy”) 3.6

Herpes zoster (MMR,VARCEL) history-“Otitis media” 4.6
Hypotension TD other meds-“purified protein derivative” 3.3

Joint range of motion decreased FLU history-“deficit” 3.8
Lymphadenopathy MMR other meds-“premarin” 5.5

Nervous system disorder HEP history-“Pregnancy” 6.3
Otitis media (DTP,HIBV,OPV) prior sym-“fever” 3.2

Rash (HIBV,OPV) history-“penicillin” 3.2

Swelling
IPV

prior sym-“Swelling”
3.6

(DTAP,MMR) 3.2
Urticaria (DTAP,IPV,MMR) history-“premature” 3.4

Vasodilatation
DTP (history-“Asthma”,history-“allergy”) 4.5
OPV (history-“allergy”,history-“ceclor”) 4.2

Wheezing DTAP (history-“allergy”,other meds-“albuterol”) 3.0
White blood cell count increased PPV history-“Anxiety” 3.8

Table 9: Vaccine-Symptom associations from vac-

cine injury Table.

Symptom Reported vaccine code(s)

Anaphylactic reaction
DT,DTAP,DTAPH,DTP
HEP,IPV,MMR,TD

Encephalopathy
DTAP,DTAPH
DTP,MMR

Intussusception RV
Thrombocytopenic purpura Ma ,MMa ,MMR,MRa

a Vaccines excluded from analysis due to low or zero
frequencies

role when developing these symptoms. Rotavirus vaccine
(RV) was licensed on August 31 1998 for routine use in in-
fants in a three-dose series given at two, four and six months
of age. In mid-May 1999, nine reports were submitted. On
October 14 1999, the vaccine manufacturer voluntarily with-
drew its product from the market [25]. Our result in Table
10 shows RV-intussusception can be detected, and it also
shows RV can interact with other vaccines and develop in-
tussusception together. Table 11 contains patterns in set
S2 whose symptoms and at least one of the vaccines appear
in Vaccine Injury Table. Only two patterns are detected,
both of which also appear in set S4. This suggests that by
incorporating historical medical conditions, we are likely to
identify new patterns other than existing well known ones.

8. CONCLUSIONS
In summary, we formulate the problem of detecting vaccine
adverse reactions by incorporating historical medical condi-
tions as a constraint frequent pattern mining problem. We
propose to use a novel measure called dual-lift to evaluate
the significance of patterns. A novel bounding approach is
developed for confidence and lift. Experimental results show

Table 10: Vaccine-Symptom associations from vac-

cine injury Table found in S1.

Symptom Vaccine code(s) Lift

Encephalopathy
(DTAP, HIBV) 3.2
(HIBV, MMR) 3.1

Intussusception

RV 85.2
(IPV, RV) 95.5

(HIBV, RV) 86.4
(DTAP, RV) 88.2

(HIBV, IPV, RV) 105.0
(DTAP, IPV, RV) 101.8

(DTAP, HIBV, RV) 95.5
(DTAP, HIBV, IPV, RV) 110.1

Thrombocytopenic purpura (HIBV , MMR) 4.5

that the pruning method is effective on dense datasets. We
also presented some interesting vaccine adverse reactions dis-
covered from VAERS database.

9. REFERENCES
[1] C. RT, R. SC, M. JR, and et al, “The vaccine adverse

event reporting system (vaers),” Vaccine, vol. 12,
pp. 542–550, 1994.

[2] R. S and C. R, “The reporting sensitivities of two
passive surveillance systems for vaccine adverse
events,” Am J Public Health, vol. 85, pp. 1706–1709,
1995.

[3] F. DJ, “Systemic signalling of adverse reactions to
drugs,” Methods Inf Med, vol. 13, pp. 1–10, 1974.

[4] S. A, M. SG, and O. R, “Use of screening algorithms
and computer systems to efficiently signal higher-than
expected combinations of drugs and events in the us
fda’s spontaneous reports database,” Drug Saf, vol. 25
(6), pp. 381–92, 2002.

[5] J. Pei and J. Han, “Can we push more constraints into
frequent pattern mining?,” In Proceedings of ACM
SIGKDD’00, 2000.

Table 11: Vaccine-Symptom associations from vaccine injury Table

found in S2 and S4.

Symptom Vaccine code(s) Medical Conditions dual-lift

Anaphylactic reaction
MMR cur ill-“allergy” 3.9
(MMR, VARCEL) history-“allergy” 3.0

[6] F. Bonchi and C. Lucchese, “Pushing tougher
constraints in frequent pattern mining,” In Proc. of
PAKDD, 2005.

[7] E. SJ, W. PC, and D. S, “Use of proportional
reporting ratios (prrs) for signal from spontaneous
adverse drug reaction reports,” Pharmacoepidemiol
Drug Safe, vol. 10, pp. 483–486, 2001.

[8] D. W, “Bayesian data mining in large frequency tables,
with an application to the fda spontaneous reporting
system,” Am Statistician, vol. 53, pp. 177–190, 1999.

[9] D. W. and P. D, “Empirical bayes screening for
multi-item associations,” Proceedings of the Seventh
ACM SIGKDD international Conference on
Knowledge Discovery and Data Mining, pp. 67–76,
2001.

[10] V. P. E, D. W, and van Groothest K, “Application of
quantitative signal detection in the dutch spontaneous
reporting system for adverse drug reactions,” Drug
Saf, vol. 26 (5), pp. 293–301, 2003.

[11] V. der Heijden P, van Puijenbroek E, and van Buuren
S et al, “On the assessment of adverse drug reactions
from spontaneous reporting systems: the influence of
under-reporting on odds ratios,” Stat Med, vol. 21,
pp. 2027–44, 2002.

[12] B. A, L. M, and E. I. et al, “A bayesian neural network
method for adverse drug reaction signal generation,”
Eur J Clin Pharmacol, vol. 54, pp. 315–21, 1998.

[13] D. W, “Bayesian data mining in large frequency tables,
with an application to the fda spontaneous reporting
system,” Am Stat, vol. 53 (3), pp. 170–90, 1999.

[14] J. Wang and G. Karypis, “On mining instance-centric
classification rules,” IEEE Trans. Knowl. Data Eng.,
vol. 18(11), pp. 1497–1511, 2006.

[15] G. Cong, K.-L. Tan, A. K. H. Tung, and X. Xu,
“Mining top-k covering rule groups for gene expression
data,” In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Baltimore, Maryland, USA. ACM, pp. 670–681, 2005.

[16] H. Cheng, X. Yan, J. Han, and P. S. Yu, “Direct
discriminative pattern mining for effective
classification,” In Proceedings of the 24th International
Conference on Data Engineering, Cancun, Mexico.
IEEE, pp. 169–178, 2008.

[17] H. Xiong, S. Shekhar, P.-N. Tan, and V. Kumar.,
“Exploiting a support-based upper bound of pearson’s
correlation coefficient for efficiently identifying
strongly correlated pairs,” KDD’04, August, Seattle,
Washington, USA. ACM, pp. 22–25, 2004.

[18] M. Seno and G. Karypis, “Lpminer: An algorithm for
finding frequent itemsets using length-decreasing
support constraint,” ICDM’01, Nov, 2001.

[19] S. Brin, R. Motwani, and C. Silverstein, “Beyond

market basket: Generalizing association rules to
correlations,” In Proc. of SIGMOD’97, pp. 265–276,
1997.

[20] R. J. B. Jr., R. Agrawal, and D. Gunopulos,
“Constraint-based rule mining in large, dense
databases,” In Proc. of the 15th Int’l Conf. on Data
Engineering, pp. 188–197, 1999.

[21] S. Morishita and J. Sese, “Traversing itemset lattices
with statistical metric pruning,” POD, Dallas, T X
USA. ACM, 2000.

[22] R. Agrawal and R. Srikant, “Fast algorithms for
mining association rules,” Proceedings of the 20th
VLDB Conference, Santiago, Chile, 1994.

[23] S. KR, H. CJ, and J. R. (eds), Adverse Events
Associated with Childhood Vaccines: Evidence Bearing
on Casuality. Vaccine Safety Committee, Institute of
Medicine: National Academy Press: Washington, DC,
1994.

[24] D. Banks, E. J. Woo, and et al, “Comparing data
mining methods on the vaers database,”
Pharmacoepidemiology and Drug Safety, vol. 14,
pp. 601–609, 2005.

[25] M. T. Niu, D. E. Erwin, and M. M. Braun, “Data
mining in the us vaccine adverse event reporting
system (vaers): early detection of intussusception and
other events after rotavirus vaccination,” Vaccine,
vol. 19, pp. 4627–4634, 2001.

APPENDIX

A. PROOF OF LEMMA 6.2
We only need to prove the following two equations:

supp(I ∪ r|DB) = supp(I|DBI0|r), (18)

and,

conf (I → r|DB) =
supp(I|DBI0|r)

supp(I|DBI0)
. (19)

For any record A ∈ DB that contains I ∪ r, apparently
A ∈ B|r. Let A′ ∈ DBI0|r be the record after projecting
A onto I0. Because I ⊆ I0, A′ should also contain I. For
the opposite direction, let B ∈ DBI0|r containing I. Its
corresponding record B′ ∈ DB |r also contains I. So B′ ∈
DB contains I ∪ r. The conclusion is that there is a one to
one correspondence between records containing I ∪ r in DB
and records containing I in DBI0|r. So supp(I ∪ r|DB) =
supp(I|DBI0|r).

Follow similar proof in previous part, we have supp(I|DB) =

supp(I|DBI0). From the definition of confidence, we get

conf (I → r|DB) =
supp(I ∪ r|DB)

supp(I|DB)
=

supp(I|DBI0|r)

supp(I|DBI0)
.

(20)

B. PROOF OF LEMMA 6.3
It can be seen that lemma 6.3 is equivalent to the following:

supp(I|DBI0) =
X

A∈AI

tcnt(A|DBI0), (21)

supp(I|DBI0|r) =
X

A∈AI

tcnt(A|DBI0|r), (22)

What equation 21 says is nothing more than that the number
of records containing I in DBI0 is equal to sum of transac-

tion counts of each itemset containing I in DB
(d)
I0

. The proof
is easy and omitted.

If in equation 22, AI is replaced by A′
I = {A|A ∈ DB

(d)

I0|r
∧

I ⊆ A}, the proof would be identical to equation 21. Extra
attention is needed for those itemsets thatAI andA′

I do not
share. Because DBI0|r ⊆ DBI0 , we have DB

(d)

I0|r
⊆ DB

(d)
I0

,

and consequently, A′
I ⊆ AI . Let B be an arbitrary itemset

in AI but not in A′
I , then B /∈ DB

(d)

I0|r
. So we must have

tcnt(B|DBI0|r) = 0. We conclude that all itemsets in AI

but not in A′
I do not contribute to the sum in equation 22,

so equation 22 is valid.

C. PROOF OF THEOREM 6.4
The proof of the second part of theorem 6.4 is very similar
to the first part and are omitted.

Let us introduce notation ||f || to denote slope of vector f

for any vector whose x-component is positive. The following
lemma is applied repeatedly.

Lemma C.1. For n ≥ 2, let f1, f2, . . . , fn be a set of
2-D vectors satisfying fi,x > 0 for i = 1, 2, . . . , n. Assume
||f1|| ≤ ||f2|| ≤ · · · ≤ ||fn||. We have

1) ||
Pn

i=1 fi|| ≤ ||fn||,

2) ||
Pn

i=1 fi|| ≥ ||f1||.

Proof. 1) If n = 2, we need to prove (f1,y +f2,y)/(f1,x +
f2,x) ≤ f2,y/f2,x, which is equivalent to f1,y ∗ f2,x ≤ f2,y ∗
f1,x, or f1,y/f1,x ≤ f2,y/f2,x. The last inequality is just
||f1|| ≤ ||f2||, which is assumed to be correct. If n > 2,
let us assume the conclusion is correct for n − 1 ≥ 2. Let
Fn−1 =

Pn−1
i=1 fi. So, ||Fn−1|| ≤ ||fn−1|| ≤ ||fn||. So we

can have ||Fn−1 + fn|| ≤ ||fn|| due to the proof for the case
n = 2. We have just shown the conclusion is also correct for
n.

2) similar to 1) and thus omitted.

Let q be an arbitrary vector in P whose y-component is
larger or equal to s0, and,

q = fj1 + · · ·+ fja
+ γ ∗ fil

+ fk1
+ · · ·+ fkb

, (23)

Figure 8: proof of theorem 6.4

where 1 ≤ j1 < · · · < ja < il < k1 < · · · < kb ≤ n, and
γ = 0 or 1. Our goal is to prove ||q|| ≥ ||bl||.

Let c = fj1 + · · ·+ fja
+γα∗ fil

and q′ = γ(1−α)∗ fil
+ fk1

+
· · ·+fkb

, so q = c+q′. Let us introduce b′ so that bl = c+b′;
this is possible because 1 ≤ j1 < · · · < ja ≤ il − 1. Based
on lemma C.1, we can get: if q′x > 0, then ||q′|| ≥ ||fil

||; if
cx > 0, then ||c|| ≤ ||fil

||; if b′x > 0, then ||b′|| ≤ ||fil
||.

Let us rule out some special cases. If q′x = 0, then cx = s0

and b′x = 0. So bl = c = q and ||q|| ≥ ||bl|| is certainly
correct. If cx = 0, then q′x > 0 and b′x > 0, so ||q′|| ≥ ||fil

|| ≥
||b′||, thus ||q|| ≥ ||bl||. If q′x > 0, cx > 0, but b′x = 0, then
||q|| = ||c + q′|| ≥ ||c|| = ||bl||.

The only case left is q′x > 0, cx > 0 and b′x > 0. We already
know ||q′|| ≥ ||b′||, ||q′|| ≥ ||c|| and q′x ≥ b′x. Since q′x ≥ b′x,
there exists 0 < δ ≤ 1, such that δ ∗ q′x = b′x. Define q′′ =
c + δ ∗ q′. Then q′′x = bl,x. Because ||q′|| ≥ ||b′||, we have
δ ∗ q′y ≥ b′y, or, q′′y ≥ bl,y, which leads to ||q′′|| ≥ ||bl||. From
lemma C.1, due to ||q′|| ≥ ||c||, we get ||q′′|| ≤ ||δ ∗ q′|| =
||q′||. So, finally, ||q|| = ||q′′ + (1− δ)q′|| ≥ ||q′′|| ≥ ||bl||.

