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• HW performance counter measurement technology for 
NVIDIA CUDA platform

• Access to HW counters inside the GPUs

• Based on CUPTI (CUDA Performance Tool Interface) (CUDA 4.0)

• In any environment with CUPTI, PAPI CUDA component can provide 
detailed performance counter info regarding execution of GPU kernel

• Initialization, device management and context management is enabled 
by CUDA driver API

• Domain and event management is enabled by CUPTI 

• Name of events is established by the following hierarchy:
Component.Device.Domain.Event

EXPERIMENT MAGMA vs. CUBLAS LIBRARY
• We ran experiments using CUBLAS_dsymv (general, means NO 

symmetry exploitation) and MAGMA_dsymv (exploits symmetry) to 
observe the effects of cache behavior on Tesla S2050 (Fermi) GPU

• As one example, from the PAPI measurements we were able to detect 
shared cache bank con�icts in the MAGMA kernel

• Those are due to addresses for two or more shared memory requests 
that fall in the same memory bank

• To address those con�icts, we applied array padding which causes 
cache lines to be placed in different cache locations 

As a Result:

• We were able to completely eliminate the shared cache bank con�icts

• This minor change to the kernel code also gives us a performance 
improvement of 1G�op/s for larger matrix sizes

NOTE: Poor performance of CUBLAS_dsymv is due to lack of symmetry exploitation

LEFT: # of L1 shared bank conflicts in the MAGMA_dsymv kernel for medium to large matrix sizes

RIGHT: Performance of MAGMA_dsymv kernel with and without shared bank conflicts

EXPERIMENT SHOC BENCHMARKS – STENCIL2D

• The VAMPIR display shows the timeline of a portion of a Stencil2D 
execution on 4 MPI processes with 4 GPUs, with CPU-GPU memory 
transfers and CPU-CPU communication

• The CPU and GPU counters were accessed via PAPI at each event 
and recorded here

• So here we show 3 different CUDA events for Process 0, CUDA[0]

 

           AND THE BOLD CLOUD COMPUTING FUTURE
• Much work is being done to investigate the practicality of moving 

High Performance Computing to the “cloud”

• Before such a move is made, the tradeoffs of moving to a cloud 
environment must be investigated

• PAPI is the ideal tool for making such measurements, but it will 
need enhancements before it works in a virtualized cloud 
environment

OBSTACLES WITH PAPI AND VIRTUALIZATION
• Virtualization makes time measurements dif�cult; virtualized time 

can run faster or slower than wall-clock time in unpredictable 
ways

• Hardware performance counter readings require the co-operation 
of both the operating system and hypervisor.  Support for this is 
still under development.

• Virtualized hardware (such as network cards and disk) may require 
new PAPI components to be written

MOTIVATION FOR USER-DEFINED EVENTS
• Derived metrics are needed for performance analysis and modeling

• Sums and ratios of native and preset events

• Combinations of events with system constants

• Higher level tools (e.g., TAU and Scalasca) leave it to the user to 
select relevant events.

• Desirable to be able to de�ne new metrics at run-time, rather than at 
PAPI installation time

• Enable performance modelers to publish metric de�nitions in a 
well-de�ned way

PAPI USER-DEFINED EVENT MECHANISM
• Allows users to de�ne their own metrics

• User can combine events and constants in an expression to de�ne and name a new 
metric, in a post�x notation 

• Maps the new metric to events available on a platform without the need to re-install PAPI

• User-de�ned event names can be used in PAPI library calls the same 
way as preset and native events.

• User-de�ned events can be used with end-user performance tools 
such as TAU and Scalasca without modifying those tools. 

EXAMPLE 1 PERFEXPERT METRICS
• M. Burtscher et. al., PerfExpert: An easy-to-use performance 

diagnosis tool for HPC applications, in SC10, New Orleans, 2010

• Methodology combines hardware counter measurements with 
architectural parameters to compute upper bounds on local 
cycle-per-instruction (LCPI) contributions of various instruction 
categories:
• branches

• data memory access

• instruction memory access

• data TLB access

• instruction TLB access

• �oating-point operations

EXAMPLE 2 MEMORY BANDWIDTH
• Memory bandwidth actually achieved can be measured by 

performance counters on most platforms.  

For example, on AMD Opteron:

DRAM_ACCESSES | 64 | * | core_frequency | * | PAPI_TOT_CYC | /

Note:  DRAM_ACCESSES may be a combination of native events with masks.

On Intel Core2:

BUS_TRANS:SELF | 64 | * | core_frequency | * | PAPI_TOT_CYC | /

• Currently validating counter results using variations of the STREAM 
benchmark

Reasonable agreement with STREAM output on Intel Core2:

and on AMD Opteron 8358:
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                FUTURE PLANS
• Support for enhanced timing support, including access to real wall-clock time (if available)

• Provide components for collecting performance of virtualized hardware, such as virtual network, in�niband, GPU, and disk devices

• Provide transparent access to virtualized hardware performance counters

OTHER COMPONENTS

ACPI
Advanced Con�guration and Power Interface Component

CoreTemp
Access hardware sensors through the coretemp sysfs interface

Infiniband
In�niband Network Component

Lm-sensors
Component interface for lm-sensors system health measurement

Lustre
Measure performance data on a Lustre �lesystem

Other PAPI components are available from the PAPI Component 
Repository (http://icl.eecs.utk.edu/projects/papi/repository/) including:

NEW FEATURES OF THE            HARDWARE COUNTER LIBRARY
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The PAPI specification and library have evolved from a cross-platform 

interface for accessing processor hardware performance counters to 

a component-based library for simultaneously accessing hardware 

monitoring information from various components of a computer 

system, including processors, memory controllers, network switches 

and interface cards, I/O subsystem, temperature sensors and 

power meters, and GPU counters. An illustration of the PAPI CUDA 

component used with NVIDIA hardware is shown to the left. A list 

of currently available PAPI components and a 3rd party component 

repository is shown below.

A new feature called user-defined events adds a layer of 

abstraction above native and preset events that allows users to 

define new metrics consisting of a combination of previously defined 

events and machine constants and to share those metrics with other 

users. This is illustrated on the right.

One current effort is the development of a PAPI interface for virtual 

machines, called PAPI-V, that will allow users to access processor 

and component hardware performance information from applications 

running within virtual machines. PAPI-V is discussed in further detail 

above.

PAPI continues to be widely used by application developers and 

by higher level performance analysis tools such as TAU, PerfSuite, 

Scalasca, IPM, HPCtoolkit, Vampir, and CrayPat.
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PAPI Software Architecture

CUDA COMPONENT USER EVENTS

PAPI 4.2.0 is now available for download from the software
page of the PAPI website. This release uses the libpfm4 and 
perf_events counter interface by default on linux systems. 
Documentation has been uni�ed, reviewed, and updated with 
doxygen-driven man pages. Several components, particularly the 
CUDA component, have been updated, and a test environment 
for component tests has been implemented. Two new utilities 
have been added: papi_error_codes and papi_component_avail. 
A host of bug �xes and code clean-ups have also been 
implemented.

NEW PLATFORMS SUPPORTED
• AMD Family14h (Bobcat) and Family15h (Bulldozer)

• Intel Sandybridge, Westmere

• ARM Cortex A8, Cortex A9

• AIX Power7

           4.2
NEW

 RELEASE

http://icl.eecs.utk.edu/papi/


