
COMPUTING PRACTICES 

Edgar H. Sibley 
Panel Editor 

A general-purpose data-compression routine-implemented on the IMS 
database system--makes use of context to achieve better compression than 
Huffman’s method applied character by character. It demonstrates that a 
wide variety of data can be compressed effectively using a single, fixed 
compression routine with almost no working storage. 

DATA COlWfRESS:ION ON 
A DA?ABASE SYSTEM 

GORDON V. CORMACK 

Compressing information in a database system is attrac- 
tive for two major reasons: storage saving and perfor- 
mance improvement. Storage saving is a direct and ob- 
vious benefit, whereas performance improvement de- 
rives from the fact that less physical data need be 
moved for any particular operation on the database. 

To achieve these benefits, general data-compression 
and expansion programs were added to IBM’s “lnforma- 
tion Management System” (IMS). These routines are 
currently in use in production databases at many in- 
stallations (see footnote, page 1342). This article pro- 
vides a description of the design, implementation, and 
use of these methods that should be of use to anyone 
wishing to add a compression utility to a similar system. 

SYSTEM CONSTRAINTS 
Data in an IMS database are stored as a set of segments 
(records). Although any particular database may con- 

This work was supported by the Natural Sciences and Engineering Research 
Council of Canada under Grant A5485. 

(c. 1985 ACM 0001.0782/85/1200-133G 7.50 

tain segments of many different formats, in general, a 
segment is the concatenation of one or more fields of 
information, with each field having a specific data type. 

The IMS system makes provision for a data- 
compression exit to be invoked whenever a segment is 
stored [3], and for a complementary expansion exit to 
be called whenever a segment is retrieved. Thus, com- 
pression and expansion exits become an integral part of 
the IMS system and are therefore heavily constrained. 
In this scenario, it is inconvenient for exit routines to 
have to determine any information about the format of 
a segment being processed. such as where the field 
boundaries are or what type of data the fields contain. 
It is also prohibitively expensive for the exits to obtain 
any local storage other than the 18-word save area 
passed by IBM linkage conventions. Furthermore, seg- 
ments may be presented by the system in any order. so 
that any adaptive coding scheme that builds a compres- 
sion strategy dynamically 11, i’] can use only the infor- 
mation contained in a single segment. The fact that, in 
IMS, segments tend to be short (less than 100 charac- 

1336 Commu~iicaticw Cf fhe ACM December 1985 Volume 28 Number 12 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F214956.214963&domain=pdf&date_stamp=1985-12-01


Computing Practices 

ters). coupled with the lack of local memory, effectively 
precludes the use of such schemes. 

Finally, because the exit routines become part of the 
IMS system and are loaded into common storage, a pro- 
liferation of different exits is undesirable: One pair of 
exits must apply to a very wide variety of data. Indeed, 
each exit should be able to handle all possible charac- 
ter sequences. Although many ad hoc compression 
methods take advantage of unused characters in the 
collating sequence, an assumption that some characters 
are unused is unacceptable for a built-in routine. 

All in all, these constraints are not unusual; they are 
similar to those that would be encountered when at- 
tempting to provide compression within any I/O 
system. 

THE METHOD OF COMPRESSION 
The compression methods appearing in the literature 
(surveyed by Reghbati [4], Schuegraf [5], and Severance 
[6]) range from ad hoc techniques, like replacing strings 
of blanks by a single character, to general techniques 
like Huffman’s [2] that, subject to some constraints, 
finds the optimal coding for an arbitrary string. As a 
rule. the ad hoc techniques perform badly on data not 
anticipated by their creators, whereas the more general 
techniques adapt better. provided the variable informa- 
tion used for compression can be re-created. 

The method presented here is based on modified 
Huffman codes. In general, Huffman’s algorithm, ap- 
plied character by character, gives the best possible 
compression subject to the following constraint: that 
each character of the text has a unique compressed 
code, and that the compressed version of a string is 
constructed as the concatenation of these codes. 

In Huffman’s algorithm, the Huffman code for a par- 
ticular character is selected so that its length is as close 
as possible to -log,p, where p is the probability of oc- 
currence of that character in the text. However, this 
choice cannot be made appropriately if p varies radi- 
cally depending on the position of the character in the 
text, and such a situation often exists in the segments 
to be compressed here: That is, the probability of occur- 
rence of a character depends on the data type of the 
field in which the character occurs. It is therefore im- 
portant to use a different set of character probabilities 
for each different type offield that may appear in the 
database. 

Determining Field Types 
As mentioned earlier, in the IMS system it is difficult to 
determine any information about the format of the data 
to be compressed: Gleaning this information would re- 
quire passing it to the system via the programmer, a 
tedious and error-prone process. However, it is possible 
to take a broad sample of the data to be compressed 
in advance and base the compression method on this 
sample. 

However, Huffman coding is adversely affected by 
this approach in that compression deteriorates as more 

data types occur in the sample. The best that can be 
done is to provide a compromise coding scheme, 
weighted by the fraction of each data type found in the 
sample. Such a compromise achieves suboptimal com- 
pression, which deteriorates further if the mixture of 
types differs from that in the sample. 

It therefore becomes desirable to be able to identify 
fields of differing types, and to provide a different 
Huffman coding for each type of field. In addition to 
programmer-defined fields, there are also implicit fields 
in database records. For example, in a mailing address, 
there are strings of alphabetic text as well as numbers, 
which can be regarded as separate fields. When fixed- 
length fields are padded using a fill character (typically 
a blank), the filled portion may also be regarded as a 
separate field. 

Because field-type information was not readily avail- 
able in our case, an automatic method of detecting 
fields had to be devised. To do this, we assume that the 
sets of frequent characters for different field types have 
small intersections, and then guess the type of field by 
examining a single character. Since fields tend to be 
several characters long, we assume that the subsequent 
character also belongs to a field of the same type and 
compress it accordingly. When a character appears that 
is uncommon for the current field type, but common 
for another type. we assume that a new field has been 
encountered and begin compressing according to this 
new type. 

This automatic field detection is easily implemented 
by first partitioning the set of possible characters ac- 
cording to the type to which each character belongs. In 
the IMS system, we chose as sets letters of the alphabet, 
numeric digits, packed decimal digit pairs, blank, and other. 
For each set of characters, the frequency distribution of 
all characters following a member of that set is deter- 
mined, and a (modified) set of Huffman codes is con- 
structed for each frequency distribution. 

Once the automatic-field-detection scheme is in 
place, the compression of a record proceeds as follows: 
The first character of the segment is compressed using 
one of the sets of codes [the choice is arbitrary); then 
we select the set of codes corresponding to the type of 
character just compressed, using this set to compress 
the next character. At all times, the current character 
determines the coding scheme to be applied to the 
next. 

Expansion is accomplished by decoding the first 
character using the same set of codes chosen during 
compression. The type of this decoded character is used 
to determine the expansion scheme for the next char- 
acter, and so on. 

An Example 
Storing the following data record using one byte (8 bits) 
per character will require 29 X 8 or 232 bits: 

0187080~GORDON~V~CORMACK/3~@3~ 

(The symbol p is used to denote a blank.) The fre- 

December 1985 Volume 28 Number 12 Communications of the ACM 1337 



Computing Practices 

quency of each. character in this data segment and their 
respective codes are given in Table I. No code has been 
assigned to any character that does not appear in the 
sample. Ordinarily, all 256 possible characters would 
have a representation. 

When the codes given in Table I are substituted for 
the characters in the data sample, the record appears as 

010 11110 1010 11111 010 1010 010 00 11000 011 
1000 11001 011 11010 00 11011 00 1001 011 100 
11100 11101 1001 1011 00 00 00 00 00. 

The length of the compressed record is now 102 bits 
(3.42 bits per character], or 43 percent of the uncom- 
pressed length. 

Dividing the set of symbols into the five types men- 
tioned earlier, Iof which only three occur-alphabetic 
(A, C. D, G, K, M, N, 0, R, V), numeric (0, 1, 7, 8), and 
blank (P)-we then determine the frequencies with 
which each character follows a character of a given 
type and assign a code for that character in that context 
(Table II). It is arbitrarily assumed here that at the be- 
ginning of the record the context is alphabetic. 

To compress the data segment using Table II, we start 
in the alphabetic context, compressing the first charac- 
ter (0) to 100. Since 0 is of type numeric, the next char- 
acter (1) is compressed using the second set of codes, 
yielding 110. All subsequent digits are compressed us- 
ing the numeri’: context. Note that the remalining zeros 
in this field receive a shorter code (00) than did the 
original. When the blank is encountered, it too is com- 
pressed using tlhe numeric context, producing the code 
111. The next character (G) is compressed using the 
blank context. Subsequent characters up to and includ- 
ing the following blank are compressed using the alpha- 
betic context. Note that the first of the string of trailing 
blanks receives a code of 00, whereas subsequent 
blanks receive the shorter code 0. The compressed 
string that results is 

TABLE I. Optimal Codes for Example(single data type) 

7 
0 
A 
C 
D 
G 
K 
M 
N 
0 
R 
V 

1 
2 
1 
2 
1 
1 
1 
1 
1 
3 
2 
1 

100 110 01 10 00 01 00 111 10 010 011 0011 010 
100 00 110 00 111 010 011 1101 1110 1010 1111 00 
0 0 0 0. 

This representation requires 76 bits (2.62 bits per char- 
acter), or 33.5 percent of the original size. 

THE IMPLEMENTATION 
The installation and use of the compression routines 
described above involve four steps. First, the character 
set is partitioned (manually) into the anticipated data 
types. Second, a data sample is gathered, and statistics 
computed based on this sample. Third, using these sta- 
tistics, sets of codes representing each character are 
computed, and the actual compression and expansion 
programs containing the representations are generated. 
The fourth and final step involves installing the pro- 
grams in the IMS system where they are called, as nec- 
essary, to compress and expand data segments. 

Partitioning into Data Types 
For the IMS system, the set of data types was fairly easy 
to select as the main types were those manipulated by 
the underlying IBM architecture. In addition, charac- 
ters that make up implicit fields (e.g., digits and the 
space character) were treated as separate data types. In 
some applications, the separation of other data types 
may be desirable: for example, upper- and lowercase 
letters or other fill characters like the null. Experimen- 
tation in our case showed that, in the IMS system, there 
was little to be gained from partitioning into more than 
these five or six basic data types. 

Finding the optimal automatic partitioning based on 
a sample of data, as in step 2, is, in general, an intracta- 
ble problem. We had limited success in applying a 
number of heuristics, but were unable to achieve the 
performance of hand-selected partitionings. 

One such heuristic starts with 256 different types, 
one for each character. Although using 256 different 
sets of codes cannot possibly yield worse compression 
than a smaller number of types, it is very wasteful of 
storage. Since many of the sets of codes are presumably 
similar and could be combined, our heuristic deter- 
mines which sets should be combined in order to yield 
the best t sets for a given t. First, the 256 different sets 
of codes are computed and then, for every possible pair 
from the 256 different types, the cost of combination is 
computed. A straightforward but expensive way of 
measuring this cost is building a set of codes for the 
combined frequencies and computing the resulting deg- 
radation in compression. The pair having the least cost 
of combination is then replaced by the combined repre- 
sentation. This process continues until the number of 
types has been reduced from 256 to t. The results of 
this heuristic are compared with hand selection in 
Table IV (page 1341). 

Gathering Statistics 
To generate the compression codes, the probability 
with which each character follows one of a given type 

1338 Communications of the ACM December 1985 Volume 28 Number 12 



Conrputillg Practices 

TABLE II. Optimal Codes for Example (multiple data types) 

P 3 00 P 1 111 P 4 0 
0 1 100 0 2 00 G 1 10 
A 1 1110 1 1 110 c 1 111 
C 1 1010 7 1 10 V 1 110 
D 1 1011 8 2 01 
K 1 1111 
M 1 1101 
N 1 1100 
0 3 010 
r-3 2 011 

has to be estimated. To this end, we compute a table of 
character counts (as in Table II), where the size of this 
table is t by 256; t is the number of types, and 256 is the 
number of possible characters. The table can be used 
directly in the construction algorithm and need not be 
normalized to a table of probabilities. However, each 
row of the table must contain a representative distribu- 
tion of counts. To ensure this is the case, care must be 
taken that there is a significant quantity of each possi- 
ble type in the sample data. The exact ratios are not 
critical, as the relative overall weights of the rows of 
the table do not affect code selection. 

Modifications to Huffman Codes 
To facilitate implementation, the sets of codes used for 
compression were not those yielded by Huffman’s algo- 
rithm. Two modifications were effected: The assign- 
ment of codes to represent characters was different, and 
the codes were constrained so that no code would ex- 
ceed 15 bits in length. 

There are a large number of codings that yield the 
same compression as Huffman’s. but cannot be pro- 
duced by his construction algorithm. For example, any 
assignment of codes to characters such that the lengths 
of the assigned codes are identical to the Huffman 
codes is as good as a Huffman code. 

The particular assignment of codes used in our case 
is as follows: First it is determined (perhaps using Huff- 
man’s construction algorithm) what code length li is to 
be assigned to each character c,. The character c, with 
the largest I, is assigned the code 111 . . 111 (a 
string of I, ones). Note that I, 2 8. The character c, with 
the next largest li is assigned the code 111 . . 110 
(lj - 1 ones followed by a zero). This assignment con- 
tinues in order of li; at each step the character Cj is as- 
signed a code constructed by taking the binary number 
formed by the first I, bits of the previous code and 
subtracting 1. 

This code assignment technique allows the com- 
pressed text to be padded on the right with up to seven 
ones in order to fill an integral number of bytes. Since 
the IMS system manipulates the length of the com- 
pressed data in bytes anyway. this padding removes the 

necessity for storing the length in bits. On expansion, 
the compressed string is processed one byte at a time 
until it is exhausted. We know the padding cannot pos- 
sibly generate a spurious character since the extra 
characters are the prefix to a code that is at least eight 
bits long (the code with the longest li). Any processing 
of such a prefix is merely discarded when the com- 
pressed string is exhausted. 

The alternate assignment of codes we initiated also 
facilitates constraining the largest 1, from exceeding 
15-a length constraint occasioned by implementation 
considerations. The compression is done by extracting 
the codes from a table. In order to have fixed-sized 
entries in this table, it is necessary to bound the maxi- 
mum length of any entry. Fifteen bits was determined 
to be a convenient length as it allowed each entry to be 
two bytes long, reserving one bit in each entry for a 
length indicator. 

As it is unclear how to modify Huffman’s construc- 
tion algorithm to meet the length constraint, since the 
algorithm constructs a coding tree from the bottom up, 
a top-down construction algorithm was used instead. 
Although much slower than Huffman’s, this algorithm 
was acceptably fast and allows the maximum code 
length to be constrained. Using the top-down algorithm, 
code lengths are first selected using a recursive algo- 
rithm that examines all feasible choices, and then ac- 
tual codes are assigned using the method described 
above. 

The Compression and Expansion Programs 
Because the compression and expansion routines are 
built into IMS, we attempted to minimize the amount 
of time and storage they consume by designing the data 
structures and algorithms with this constraint in mind. 
Particular attention was paid to the time required to 
expand the compressed data. Expansion time was given 
the greatest priority because data expansion is required 
whenever data are retrieved, whereas compression is 
required only when a segment is updated or added, a 
much less frequent operation. The only time a large 
amount of compression is done is during a complete 
reloading of the database. Knowing that expansion time 

December 1985 Voluwle 28 Number 12 Communications of the ACM 1339 



Conrputiq Practices 

is commonly considered the biggest drawback of Huff- 
man coding gave us an additional impetus to optimize 
that operation. 

The size of the compression routines is significant 
because they reside in common storage and therefore 
compete with every application program for available 
memory. A size of approximately 10K bytes was de- 
cided upon for the compression routine: This size al- 
lowed the compression information to be stored in a 
reasonable fashion without excessive packing, yet does 
not allow the multiple redundancy that would be re- 
quired by some speed optimizations. 

Separate representations were decided upon for the 
compression and expansion codes: Compression infor- 
mation is represented as a table, and the expansion 
information as a graph. Both the compression and ex- 
pansion routines consist of the appropriate data struc- 
ture-which is generated by the third step as an 
assembly-language program-coupled with a small 
assembly-language program that uses the data struc- 
ture. 

The Compression Program. The data structure used for 
compression consists oft tables, named ctab& through 
ctable,-*. The first character to be compressed is en- 
coded using ctableo, and subsequent characters are 
compressed using ctable,,,,,,,, where z is the previous 
character compressed. A particular ctablei is indexed by 
the character to be compressed and yields a Is-bit 
string. The appropriate code is contained in the right- 
most bits of this string. Immediately preceding this code 
is a single bit with the value one. The remaining bits to 
the left of this bit are zeros. 

The length of the code is computed by linear search. 
Initially, the bit string 10 is loaded into a register. Next, 
a single add, test, and branch instruction is used to dou- 
ble this number (add it to itself) and compare it to the 
ctllble entry. The number of times that this single- 
instruction loop executes determines the number of 
bits in the code. The appropriate shift instructions are 
then used to copy the code to an output buffer. 

Although a linear search may at first seem inappro- 
priate in this case, one must consider that the average 
compressed length for a character is about 2.5 bits and 
that, as a resuli, this small loop will iterate only 2.5 
times on average. Any method that stored the length 
explicitly would have complicated the indexing and 
format of ctable sufficiently that more instructions 
would have been executed. 

Using this format, each ctable occupies 51:! bytes. For 
t = 5, the entire compression routine is smaller than 3K 
bytes. CPU time consumed is 2.4 /IS per byte on an 
Amdahl 5850. 

The Expansion Program. Expansion information is not 
amenable to representation as a table because, when a 
code is to be expanded, it is not known in advance how 
long the code will be: instead, the code must be pro- 
cessed bit by bit until its end is detected, and then the 
corresponding character is produced. To facjlitate ex- 

pansion, it is common to represent Huffman codes as 
trees. Using this method, a code is expanded by exam- 
ining it one bit at a time, and moving to the left in the 
tree if the bit is zero and to the right if the bit is one. 
When a leaf is encountered, the end of the code has 
been reached. Associated with each leaf is the charac- 
ter represented by the code. 

Once again, there are t expansion trees, etreeo 
through etree,-1. Each tree is represented programmati- 
tally in the following manner: A node in the tree occu- 
pies 16 bits. For interior nodes, these 16 bits are a 
(slightly convoluted) offset pointer to the right subtree. 
The root of the left subtree immediately follows this 
node, and therefore no left pointer is required. For leaf 
nodes, the second byte is the character represented by 
the code that terminates at this node. The first bit of 
the first byte is one-a flag indicating that this is a leaf. 
The remaining 7 bits of the first byte contain the data 
type of the character in the second byte. 

This representation not only saves space, but also 
facilitates a very fast expansion algorithm. Expansion 
using the tree method is often slow because the com- 
pressed data must be handled one bit at a time, rather 
than one byte at a time. Therefore, every effort was 
made to minimize the number of instructions executed 
per bit. 

Conceptually, the expansion algorithm we developed 
is as follows: 

p +- root of etreeo 
for every byte B in compressed data do 

for every bit b in B do 
if b then p t right link of node at p 

else p t left link of node at p 
if node at p is a leaf then 

place character represented by node at p in 
buffer 

p + root of etreetypelcharocrprj 

The outer loop is synchronized in bytes, rather than 
bits, and because of the code-assignment process de- 
scribed earlier in Modifications to Huffman Codes (page 
1339), there is no need to perform end-of-data checking 
in the inner loop. Furthermore, because the inner loop 
iterates exactly eight times, it is written as a macro and 
therefore expands at assembly time. The processing re- 
quired for every bit is merely the body of the inner 
loop. 

One further optimization was applied: removing the 
e/se clause on the first if statement. This removal saves 
time whether or not the test is true: if the test is false, 
there is no else clause to execute; if true, no branch is 
necessary to bypass the else code. The optimization 
takes advantage of the fact that there is no left link in 
the data structure; and therefore no work is done at 
execution time to follow this link. 

For internal nodes, the expansion algorithm executes 
4.5 instructions per bit. Since the average compressed 
text is 2.5 bits per character, the total overhead for 
processing the compressed text bit by bit is about 12.0 

1340 Conlnlurrications of fhe ACM Decelnber 1985 Volume 28 Number 12 



Computing Practices 

TABLE III. Size of Compressed Data 

1 None 3.55 
2 Blank, other 3.23 
3 Blank, alphanumeric, other 2.92 
4 Blank, alphabetic, numeric, other 2.66 
5 Blank, alphabetic, numeric, packed, other 2.62 
8 Blank, vowels, consonants, 0, 1-9. null, packed, other 2.56 

TABLE IV. Automatic versus Manual Type Selection 

Automatic 3.52 3.24 3.18 3.14 3.12 2.79 2.68 2.54 2.44 2.30 2.38 
Manual 3.52 3.23 2.92 2.66 2.62 2.56 - - - - - 

instructions per byte. The remaining cost of compres- 
sion is that of moving the compressed and expanded 
data byte by byte. 

Using this data representation, each graph consumes 
1K bytes. Thus, for t = 5, the expansion routine occu- 
pies slightly over 5K bytes. On an Amdahl 5850, the 
expansion routine consumes 2.2 ps per character, some- 
what less than the compression routine. 

COMPRESSION RESULTS 
The results reported below were derived from the 
student-records database at the University of Manitoba. 
First, we present the results of applying the compres- 
sion method to data extracted from this database and 
then describe the in situ performance of the routines. 

The compression program was generated using from 
1 to 8 manually selected data types. The size of the 
compressed data for each value oft is presented in 
Table III. In addition, the automatic partitioning heuris- 
tic was used to select from 1 to 256 data types. The 
compression achieved is shown in Table IV; for pur- 
poses of comparison, the results of Table III are dupli- 
cated here as well. 

It can be seen from these results that a carefully 
handpicked set of types can achieve much better com- 
pression for the same t than the automatic method. 
Indeed, the automatic method requires t = 16 to match 
the compression oft = 4 achieved using the manual 
method. Other heuristics were tried, but most yielded 
comparable results. 

Table IV also shows that the best possible compres- 
sion using the automatic technique yields 2.38 bits per 
character. The manual scheme using t = 5 exceeds this 
optimum by less than 10 percent. Note also that the 
compressed size of 3.52 bits per character for t = 1 is 
equivalent to Huffman’s method applied character by 
character. 

To compare the automatic method with a competing 
compression technique, digram coding, a single optimal 

coding was constructed for each possible character pair, 
or digram. The digram-coding method, which takes ad- 
vantage of the correlation between adjacent characters, 
yielded a compressed size of 2.85 bits per character, a 
somewhat worse compression than that described 
above using t = 4. Moreover, the size of the digram 
table is as large as all the tables using t = 256. Encoding 
only a subset of the digrams, or using a different coding 
scheme, would yield poorer results. 

In Situ Results 
Based on the above results, it was decided that a com- 
pression and expansion program should be generated 
and installed using t = 5. Although the choice oft = 4 
yielded similar compression on this particular sample, 
it was felt that the choice of f= 5 would make the 
program perform better if it were used on a database 
with a large amount of packed and binary data. 

After installing this program, the student-records 
database was loaded on an Amdahl V7 computer. The 
statistics for this installation (Table V) show that the 
overall size of the database was reduced by 42.1 per- 
cent, somewhat less than the 65.0 percent reduction 
that might have been expected from examining the re- 
sults shown in Tables III and IV. This shortfall is ac- 
counted for by the fact that an IMS database contains a 
considerable amount of information that is not eligible 
for compression-internal pointers, length fields, in- 
dexes, and key fields. Nonetheless, the compression 
program does save a considerable amount of space. 

TABLE V. Compression Results on the Student-Records Database 

Without compression 2205K 1022 32.0 s 
With compression 1275K 681 37.5 s 
Ratio 57.9% 67.3% 117.2% 

December 1985 Volume 28 Number 12 Communications of the ACM 1341 



Computing Practices 

As a consequence of this decreased size, 32.7 percent 
fewer disk operations were required to load the data- 
base. Although compression added 17.2 percent to the 
total CPU time required to load the database, the in- 
crease in CPU time is less than that actually consumed 
by the compression process because, measured inde- 
pendently, the compression routines required 11 .O s to 
compress the same data. (The V7 time is roughly twice 
as long as the 5850 time reported on page 1340.) The 
net increase of only 5.5 s results from the fact that the 
IMS system consumes CPU time in copying the data. 

Other statist its on the performance of the compres- 
sion program could not be determined reliably. The 
real time required to load the database, for example, 
could not be measured with any degree of consistency 
since this is a function of CPU time, the number of disk 
operations, and system load. In general, however, the 
time needed to load the database was found to be less 
with compression than without. It was also :impossible 
to measure the amount of CPU time consumed on re- 
trieval: Some retrieval programs ran faster with com- 
pression, and some were faster without. In either case, 
the difference in CPU time was not significant. 

Other Databases 
The compression routines described here have allowed 
the University of Manitoba to store all of its administra- 
tive data on nine 3350 disk volumes, instead. of four- 
teen. Other sites have installed the compression rou- 
tines with simiilar results.’ 

Most databases compress well with the routines origi- 
nally generated from the student-records database. 
Typically, users report that an additional savings of be- 
tween one and three percent can be realized1 by gener- 
ating custom routines. However, in the case of the 
employee-records database, which contained a fair 
amount of binary and packed information th.at was vir- 
tually absent in the original sample (Le., there were 
only unsigned numbers), new routines were able to 
double the compression. Common routines could have 
been generated from a more representative s.ample with 
similar results, but this was not done due to the com- 
plexity of converting the many existing databases using 
the original compression routines. 

CONCLUSIONS 
The methods presented here achieve signific:ant savings 
in disk storage and disk activity. On average, the com- 
pression method can be expected to reduce the size of 
the raw data by approximately a factor of three, result- 
ing in an overall reduction in database size approaching 
a factor of two. 

The speed of the routines seems more than adequate, 
particularly on a large mainframe computer, and at 

’ The author has beer involved directly with 5 sites and has received corre- 
spondence from approximately 50. The routines have been distributed freely. 
so it is virtually impossible to count the actual number of installations. Read- 
ers interested in acquiring a copy should contact Computer Services Dept.. 
University of Manitoba. Winnipeg. Canada. R3T 2N2. 

least part of the cost of compression is recovered by 
savings in data movement. This performance is 
achieved, and the synchronization problem due to 
variable-length bit strings solved, through the design of 
special data structures and algorithms. These tech- 
niques can be applied on any CPU to any method based 
on Huffman’s, thus overcoming a major objection to 
this method. 

Acknowledgments. The author thanks University of 
Manitoba Computer Services for providing the live data 
and computer resources with which to experiment. 

REFERENCES 

1. Cormack, G.. and Horspool, R. Algorithms for adaptive Huffman 
codes. Inf Process. Left. 18. 3 (Mar. 1984). 159-166. Contains algo- 
rithms that alter a set of Huffman codes to reflect changing the 
probability of one symbol, as well as adaptive coding schemes based 
on these algorithms. 

2. Huffman, D. A method for the construction of minimum- 
redundancy codes. Proc. 1.R.E. 40. 9 (Sept. 1952). 1098-1101. This 
original paper on Huffman’s compression method contains a proof 
that the method is optimal. 

3. IBM. Information management system: Programming reference man- 
ual. 9th ed. SHZO-9027-8. IBM. 1981. pp. 3.3-3.38. Describes the IMS 
system from the system programmer’s point of view. including the 
implementation and use of the data-compression exit facility: Con- 
tains a sample compression routine that implements run-length en- 
coding. 

4. Reghbati, H. An overview of data compression techniques. Compufer 
14.4 (May 1981). 71-75. Surveys briefly a number of cnmmnn data- 
compression methods. 

5. Schuegraf, E.J. A survey of data compression methods for non- 
numeric records. Can. 1. In/. Sci. 2, I [May 1977), 93-105. Provides an 
abstract overview of the information theory behind data compres- 
siop, and a presentation of several classes of compression methods. 

6. Severance, D. A practitioner’s guide to data base compression. If. 
Syst. 8, 1 (1983). 51-62. Covers in detail a large number of data- 
compression methods that may be applicable to database systems: 
Includes a comprehensive list of ao references to the literature. 

7. Ziv. J,, and Lempel, A. A universal algorithm for sequential data 
compression. IEEE Trans. tnf Theory 23,3 (May 1977), 337-343. De- 
scribes an adaptive coding scheme that encodes progressively longer 
input strings as integers. 

CR Categories and Subject Descriptors: E.4 [Coding and Information 
Theory]: data compaction and compression: H.0 [General]: IMS: H.l.l 
[Models and Principles]: Systems and Information Theory-information 
theory 

General Terms: Algorithms, Experimentation 
Additional Key Words and Phrases: database. data compression. 

Huffman code 
Received z/84; accepted 3/85 

Author’s Present Address: Gordon V. Cormack. Dept. of Computer Sci- 
ence. University of Waierloo, Waterloo, Ontario. NZL 3Gl. Canada. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear. and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish. requires a fee and/or specific permission. 

1342 Communications oj the ACM December 1985 Volume 28 Number 12 


