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Abstract. We present approximation algorithms for almost all variants of the multi-
criteria traveling salesman problem (TSP), whose performances are independent of the
number k of criteria and come close to the approximation ratios obtained for TSP with a
single objective function.

We present randomized approximation algorithms for multi-criteria maximum traveling
salesman problems (Max-TSP). For multi-criteria Max-STSP, where the edge weights have
to be symmetric, we devise an algorithm that achieves an approximation ratio of 2/3 − ε.
For multi-criteria Max-ATSP, where the edge weights may be asymmetric, we present an
algorithm with an approximation ratio of 1/2 − ε. Our algorithms work for any fixed
number k of objectives. To get these ratios, we introduce a decomposition technique for
cycle covers. These decompositions are optimal in the sense that no decomposition can
always yield more than a fraction of 2/3 and 1/2, respectively, of the weight of a cycle
cover. Furthermore, we present a deterministic algorithm for bi-criteria Max-STSP that
achieves an approximation ratio of 61/243 ≈ 1/4.

Finally, we present a randomized approximation algorithm for the asymmetric multi-
criteria minimum TSP with triangle inequality (Min-ATSP). This algorithm achieves a
ratio of log n + ε. For this variant of multi-criteria TSP, this is the first approximation
algorithm we are aware of. If the distances fulfil the γ-triangle inequality, its ratio is
1/(1 − γ) + ε.

1. Multi-Criteria Traveling Salesman Problem

Traveling Salesman Problem. The traveling salesman problem (TSP) is one of the most
famous combinatorial optimization problems. Given a graph, the goal is to find a Hamil-
tonian cycle (also called a tour) of maximum or minimum weight (Max-TSP or Min-TSP).
An instance of Max-TSP is a complete graph G = (V,E) with edge weights w : E → Q+.
The goal is to find a Hamiltonian cycle of maximum weight. The weight of a Hamiltonian
cycle (or, more general, of any set of edges) is the sum of the weights of its edges. If G is
undirected, we have Max-STSP (symmetric TSP). If G is directed, we obtain Max-ATSP
(asymmetric TSP). An instance of Min-TSP is also a complete graph G with edge weights
w that fulfil the triangle inequality: w(u, v) ≤ w(u, x)+w(x, v) for all u, v, x ∈ V . The goal
is to find a tour of minimum weight. We have Min-STSP if G is undirected and Min-ATSP
if G is directed. In this paper, we only consider the latter. If we restrict the instances to
fulfil the γ-triangle inequality (w(u, v) ≤ γ · (w(u, x) + w(x, v)) for all distinct u, v, x ∈ V
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and γ ∈ [12 , 1)), then we obtain Min-γ-ATSP. All variants introduced are NP-hard and

APX-hard (Min-γ-ATSP is hard for γ > 1
2 ). Thus, we have to content ourselves with

approximate solutions. The currently best approximation algorithms for Max-STSP and
Max-ATSP achieve approximation ratios of 61/81 [7] and 2/3 [14]. Min-ATSP can be ap-
proximated with a factor of 2

3 · log2 n, where n is the number of vertices of the instance [11].

Min-γ-ATSP allows for an approximation ratio of min{ γ
1−γ , 1+γ

2−γ−γ3 } [5, 6].

Cycle covers are often used for designing approximation algorithms for the TSP [5, 14,
11, 6, 15, 7]. A cycle cover is a set of vertex-disjoint cycles such that every vertex is part
of exactly one cycle. The idea is to compute an initial cycle cover and then to join the
cycles to obtain a Hamiltonian cycle. This is called subtour patching [13]. Hamiltonian
cycles are special cases of cycle covers that consist of a single cycle. Thus, the weight of
a maximum-weight cycle cover bounds the weight of a maximum-weight Hamiltonian cycle
from above, and the weight of a minimum-weight cycle cover is a lower bound for the weight
of a minimum-weight Hamiltonian cycle. In contrast to Hamiltonian cycles, cycle covers of
optimal weight can be computed efficiently by reduction to matching problems [1].

Multi-Criteria Optimization. In many optimization problems, there is more than one
objective function. This is also the case for the TSP: We might want to minimize travel
time, expenses, number of flight changes, etc., while maximizing, e.g., the number of sights
along the way. This leads to k-criteria variants of the TSP (k-C-Max-STSP, k-C-Max-
ATSP, k-C-Min-STSP, k-C-Min-ATSP for short; if the number of criteria does not matter,
we will also speak of MC-Max-STSP etc.). With respect to a single criterion, the term
“optimal solution” is well-defined. However, if several criteria are involved, there is no
natural notion of a best choice, and we have to be content with trade-off solutions. The
goal of multi-criteria optimization is to cope with this dilemma. To transfer the concept
of optimal solutions to multi-criteria problems, the notion of Pareto curves was introduced
(cf. Ehrgott [9]). A Pareto curve is a set of solutions that can be considered optimal.

We introduce the following terms only for maximization problems. After that, we briefly
state the differences for minimization problems. An instance of k-C-Max-TSP is a complete
graph G with edge weights w1, . . . , wk : E → Q+. A tour H dominates another tour H ′ if
wi(H) ≥ wi(H

′) for all i ∈ [k] = {1, . . . , k} and wi(H) > wi(H
′) for at least one i. This

means that H is strictly preferable to H ′. A Pareto curve of solutions contains all solutions
that are not dominated by another solution. For other maximization problems, k-criteria
variants are defined analogously.

Unfortunately, Pareto curves cannot be computed efficiently in many cases: First, they
are often of exponential size. Second, they are often NP-hard to compute even for otherwise
easy optimization problems. Third, the TSP is NP-hard already with one objective function,
and optimization problems do not become easier with more objectives involved. Therefore,
we have to be satisfied with approximate Pareto curves.

For simpler notation, let w(H) = (w1(H), . . . , wk(H)). Inequalities are meant compo-
nent-wise. A set P of Hamiltonian cycles of V is called an α approximate Pareto curve
for (G,w) if the following holds: For every tour H ′, there exists a tour H ∈ P with
w(H) ≥ αw(H ′). We have α ≤ 1, and a 1 approximate Pareto curve is a Pareto curve.
(This is not precisely true if there are several solutions whose objective values agree. But
this is inconsequential here, and we will not elaborate on it for the sake of clarity.)

An algorithm is called an α approximation algorithm if, given G and w, it computes
an α approximate Pareto curve. It is called a randomized α approximation if its success
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probability is at least 1/2. This success probability can be amplified to 1−2−m by executing
the algorithm m times and taking the union of all sets of solutions. (We can also remove
solutions from this union that are dominated by other solutions in the union, but this is
not required by the definition of an approximate Pareto curve.) Again, the concepts can be
transfered easily to other maximization problems.

Papadimitriou and Yannakakis [18] showed that (1−ε) approximate Pareto curves of size
polynomial in the instance size and 1/ε exist. The technical requirement for the existence
is that the objective values of all solutions for an instance X are bounded from above by
2p(N) for some polynomial p, where N is the size of X. This is fulfilled in most optimization
problems and in particular in our case. However, they only prove the existence, and for
many optimization problems it is unclear how to actually find an approximate Pareto curve.

A fully polynomial time approximation scheme (FPTAS) for a multi-criteria optimiza-
tion problem computes (1 − ε) approximate Pareto curves in time polynomial in the size
of the instance and 1/ε for all ε > 0. Multi-criteria maximum-weight matching admits a
randomized FPTAS [18], i.e., the algorithm succeeds in computing a (1 − ε) approximate
Pareto curve with constant probability. This randomized FPTAS yields also a randomized
FPTAS for the multi-criteria maximum-weight cycle cover problem [17].

To define Pareto curves and approximate Pareto curves also for minimization problems,
in particular for MC-Min-STSP and MC-Min-ATSP, we have to replace all “≥” and “>”
above by “≤” and “<”. Furthermore, α approximate Pareto curves are now defined for
α ≥ 1, and an FPTAS has to achieve an approximation ratio of 1 + ε. There also exists a
randomized FPTAS for the multi-criteria minimum-weight cycle cover problem.

Related Work. For an overview of the literature about multi-criteria optimization, in-
cluding multi-criteria TSP, we refer to Ehrgott and Gandibleux [10]. Angel et al. [2, 3]
considered Min-STSP restricted to edge weights 1 and 2. They analyzed a local search
heuristic and proved that it achieves an approximation ratio of 3/2 for k = 2 and of 2k

k−1 for

k ≥ 3. Ehrgott [8] considered a variant of MC-Min-STSP, where all objectives are encoded
into a single objective by using some norm. He proved approximation ratios between 3/2
and 2 for this problem, where the ratio depends on the norm used.

Manthey and Ram [17] designed a (2 + ε) approximation algorithm for MC-Min-STSP
and an approximation algorithm for MC-Min-γ-ATSP, which achieves a constant ratio but
works only for γ < 1/

√
3 ≈ 0.58. They left open the existence of approximation algorithms

for MC-Max-STSP, MC-Max-ATSP, and MC-Min-ATSP.
Bläser et al. [4] devised the first randomized approximation algorithms for MC-Max-

STSP and MC-Max-ATSP. Their algorithms achieve ratios of 1
k + ε for k-C-Max-STSP and

1
k+1 +ε for k-C-Max-ATSP. They argue that with their approach, only approximation ratios

of 1
k±O(1) can be achieved, but they conjectured that ratios of Ω(1/ log k) are possible.

New Results. We devise approximation algorithms for MC-Max-STSP, MC-Max-ATSP,
and MC-Min-ATSP. The approximation ratios achieved by our algorithms are independent
of the number k of criteria, and they come close to the best approximation ratios known
for Max-STSP, Max-ATSP, and Min-ATSP with only a single objective function. Our
algorithms work for any number k of criteria.

First, we solve the conjecture of Bläser et al. [4] affirmatively. We even prove a stronger
result: For MC-Max-STSP, we achieve a ratio of 2/3 − ε, while for MC-Max-ATSP, we
achieve a ratio of 1/2 − ε (Section 4). Already for k = 2, this is an improvement from
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1
2 − ε to 2

3 − ε for 2-C-Max-STSP and from 1
3 − ε to 1

2 − ε for 2-C-Max-ATSP. The general
idea of these algorithms is sketched in Section 2. After that, we introduce a decomposition
technique in Section 3 that will lead to our algorithms. The running-time of our algorithms
is polynomial in the input size for any fixed ε > 0 and any fixed number k of criteria.

Furthermore, we devise a deterministic approximation algorithm for 2-C-Max-STSP
that achieves a ratio of 61/243 > 1/4. As a side effect, this proves that for 2-C-Max-STSP,
there always exists a single tour that already is a 1/3 approximate Pareto curve.

Finally, we devise the first approximation algorithm for MC-Min-ATSP (Section 6). In
addition, our algorithm improves on the algorithm for MC-Min-γ-ATSP by Manthey and
Ram [17] for γ > 0.55, and it is the first approximation algorithm for MC-Min-γ-ATSP
for γ ∈ [1/

√
3, 1). The approximation ratio of our algorithm is log n + ε for MC-Min-

ATSP, where n is the number of vertices. Furthermore, it is a 1
1−γ + ε approximation for

MC-Min-γ-ATSP for γ ∈ [12 , 1). Our algorithm is randomized.
Due to lack of space, most proofs are omitted. For complete proofs, we refer to the full

version of this paper [16].

2. Outline and Idea for MC-Max-TSP

For Max-ATSP, we can easily get a 1/2 approximation: We compute a maximum-weight
cycle cover, and remove the lightest edge of each cycle. In this way, we obtain a collection
of paths. Then we add edges to connect the paths, which yields a Hamiltonian cycle. For
Max-STSP, this approach yields a ratio of 2/3.

Unfortunately, this does not generalize to multi-criteria Max-TSP, even though (1− ε)
approximate Pareto curves of cycle covers can be computed in polynomial time. The reason
is that the term “lightest edge” is usually not well defined: An edge that has little weight
with respect to one objective might have a huge weight with respect to another objective.
Based on this observation, the basic idea behind our algorithms is the following case dis-
tinction: First, if every edge of a cycle cover is a light-weight edge, i.e., it contributes only
little to the overall weight, then removing one edge does not decrease the total weight by
too much. We can choose the edges for removal carefully to get an approximate tour.

Second, if there is one edge that is very heavy with respect to one objective (a heavy-
weight edge), then we contract this edge. We repeat this process until either we have
obtained a cycle cover that contains only light-weight edges or we have enough weight for
one objective. In the former case, we can use decomposition. In the latter case, we proceed
recursively on the remaining graph with k − 1 objectives.

In Section 3, we deal with the first case. This includes the definition of when we call
an edge a light-weight edge. In Section 4, we present our algorithms, which includes the
recursion in case of a heavy-weight edge. The approximation ratios that we achieve come
close, i.e., up to an arbitrarily small additive ε > 0, to the 1/2 and 2/3 mentioned above
for mono-criterion Max-ATSP and Max-STSP.

3. Decompositions

From any collection P of paths, we obtain a Hamiltonian cycle just by connecting
the endpoints of the paths appropriately. Assume that we are given a cycle cover C. If
we can find a collection of paths P ⊆ C (by removing one edge of every cycle of C) with
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w(P ) ≥ α ·w(C) for some α ∈ (0, 1], then this would yield an approximate solution for Max-
TSP. We call these paths P an α-decomposition of C for some α ∈ (0, 1] if w(P ) ≥ αw(C).
Not every cycle cover possesses an α-decomposition for every α. Let k ≥ 1 be the number
of criteria. Bläser et al. defined αd

k ∈ [0, 1] to be the maximum number such that the
following holds: every directed cycle cover C with edge weights w = (w1, . . . , wk) that
satisfies w(e) ≤ αd

k ·w(C) for all e ∈ C possesses an αd
k-decomposition. The value αu

k ∈ [0, 1]

is analogously defined for undirected cycle covers. We have αd
1 = 1

2 and αu
1 = 2

3 . We also

have αu
k ≥ αd

k and αu
k ≤ αu

k−1 as well as αd
k ≤ αd

k−1.

Bläser et al. [4] proved αd
k ≥ 1

k+1 and αu
k ≥ 1

k . Furthermore, they proved the existence

of Ω(1/ log k)-decompositions, i.e., αd
k, α

u
k ∈ Ω(1/ log k), which led to their conjecture that

Ω(1/ log k) approximation algorithms might exist. However, their approximation algorithms
do not make use of the Ω(1/ log k) decompositions, and they only achieve ratios of 1

k − ε for

k-C-Max-STSP and 1
k+1 − ε for k-C-Max-ATSP. In fact, they indicate that approximation

ratios of 1
k+O(1) are the best that can be proved using their approach. For completeness,

we make their decomposition result more precise with the next theorem. In particular,
we show that αd

k, α
u
k ∈ Θ(1/ log k), which proves that better approximations require a

different decomposition technique. The new decompositions will be introduced later on in
this section.

Theorem 3.1. For all 1 ≤ k ∈ N, we have
1

0.78·log2 k+ 3
2

≈ 1
9
8
·lnk+ 3

2

≤ αu
k ≤ 1

⌊log3 k⌋+1 ≈ 1
0.63·log2 k+1 and

1
1.39·log2 k+4 ≈ 1

2·lnk+4 ≤ αd
k ≤ 1

⌊log2 k⌋+2 .

In order to obtain constant approximation ratios, independent of k, we have to gener-
alize the concept of decompositions. Let C be a cycle cover, and let w = (w1, . . . , wk) be
edge weights. We say that the pair (C,w) is γ-light for some γ ≥ 1 if w(e) ≤ w(C)/γ for

all e ∈ C. In the following, let ηk,ε = ε2

2 lnk .

Theorem 3.2. Let ε be arbitrary with 0 < ε < 1/2, and let k ≥ 2 be arbitrary. Let C be a
cycle cover, and let w = (w1, . . . , wk) be edge weights such that (C,w) is 1/ηk,ε-light. If C

is directed, then there exists a collection P ⊆ C of paths with w(P ) ≥ (1
2 − ε) · w(C). If C

is undirected, then there exists a collection P ⊆ C of paths with w(P ) ≥ (2
3 − ε) · w(C).

We know that decompositions exist due to Theorem 3.2. But, in order to use them in
approximation algorithms, we have to find them efficiently. In the remainder of this section,
we devise devise a simple randomized algorithm for this job. There is also a deterministic
algorithm that we call Decompose with parameters C, w, and ε: C is a cycle cover (directed
or undirected), w = (w1, . . . , wk) are k edge weights, and ε > 0. Then Decompose(C,w, ε)
returns a (1

2 −ε)- or (2
3 −ε)-decomposition P ⊆ C, provided that (C,w) is 1/ηk,ε-light. Due

to lack of space, we do not describe Decompose here.
The randomized algorithm exploits Theorem 3.2: Assume that we have a cycle cover

C with edge weights w such that (C,w) is 1/ηk,ε-light. We randomly select one edge of
every cycle of C for removal and put all remaining edges into P . The probability that P is
not a (1

2 − ε)- or (2
3 − ε)-decomposition (depending on whether C is directed or undirected)

is bounded from above by 1/k ≤ 1/2. Thus, we obtain a decomposition with constant
probability. We iterate this process until a feasible decomposition has been found. In this
way, we get a Las Vegas algorithm with expected linear running-time.
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4. Approximation Algorithms for MC-Max-TSP

In this section, MaxCC-Approx denotes the randomized FPTAS for cycle covers.
More precisely, let G be a graph (directed or undirected), w = (w1, . . . , wk) be edge weights,
ε > 0 and p ∈ (0, 1]. Then MaxCC-Approx(G,w, k, ε, p) yields a (1 − ε)-approximate
Pareto curve of cycle covers of G with weights w with a success probability of at least 1−p.

4.1. Multi-Criteria Max-ATSP

Our goal is now either to use decomposition or to reduce the k-criteria instance to a
(k−1)-criteria instance. To this aim, we put the cart before the horse: Instead of computing
Hamiltonian cycles, we assume that they are given. Then we show how to force an algorithm
to find approximations to them. To obtain a 1/2− ε approximate Pareto curve, we have to

make sure that for every tour H̃, we have a tour H in our set with w(H) ≥ (1
2 − ε) ·w(H̃).

Fix ε with 0 < ε < 1
2 lnk , let H̃ be any tour, and let βi = max{wi(e) | e ∈ H̃} be the weight

of the heaviest edge with respect to the ith objective. Let β = β(H̃) = (β1, . . . , βk). We
will distinguish two cases.

In the first case, we assume that β ≤ (ηk,ε − ε3) · w(H̃), i.e., H̃ does not contain any

heavy-weight edges. We modify our edge weights w to wβ as follows:

wβ(e) =

{

w(e) if w(e) ≤ β and

0 if wi(e) > βi for some i.

This means that we set all edge weights exceeding β to 0. Since H̃ does not contain any
edges whose weight has been set to 0, we have w(H̃) = wβ(H̃). Furthermore, for all subsets
C of edges, we have wβ(C) ≤ w(C). The advantage of wβ is that, if we compute a (1 − ε)
approximate Pareto curve Cβ of cycle covers with edge weights wβ , we obtain a cycle cover
to which we can apply decomposition to obtain a collection P of paths. Then P yields a
tour H that approximates H̃. This is stated in the following lemma.

Lemma 4.1. Let ε > 0 be arbitrary. Let H̃ be a directed tour with w(e) ≤ (ηk,ε−ε3) ·w(H̃)

for all e ∈ H̃. Let β = β(H̃), and let Cβ be a (1 − ε) approximate Pareto curve of cycle
covers with respect to wβ .

Then Cβ contains a cycle cover C that yields a decomposition P ⊆ C with w(P ) ≥
(1
2 − 2ε) · w(H̃).

In the second case, we assume that there exists an edge e = (u, v) ∈ H̃ and an i ∈ [k]

with wi(e) > (ηk,ε−ε3) ·w(H̃). We put this edge into a set K of edges that we want to have
in our cycle cover no matter what. Then we contract the edge e by removing all outgoing
edges of u and all incoming edges of v and identifying u and v. In this way, we obtain a
slightly smaller tour H̃ ′ = H̃ \ {e}. Again, there might be an edge e′ ∈ H̃ ′ and an i′ ∈ [k]

with wi′(e
′) > (ηk,ε − ε3) · wi′(H̃

′). (Since w(H̃ ′) ≤ w(H̃), edges that have not been heavy

can now be heavy with respect to H̃ ′.) We put e′ into K, contract e′ and recurse. How long
can this process go on? There are two cases that can bring it to an end: First, we might get
a tour H ′ that does not have any more heavy-weight edges, i.e., w(e) ≤ (ηk,ε − ε3) · w(H ′)
for all e ∈ H ′. In this case, we can apply Lemma 4.1 with decomposition. Second, we might
get an i ∈ [k] with wi(K) ≥ (1

2 − ε) · wi(H̃), where H̃ is our original tour. Then we have
collected enough weight with respect to the ith objective, and we can continue with only
k − 1 objectives. The next lemma bounds the number of edges in K from above.
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PTSP ←MaxATSP-Approx(G,w, k, ε, p)
input: directed complete graph G = (V,E), k ≥ 1, edge weights w : E → Nk, ε > 0
output: (1

2 − ε) approximate Pareto curve PTSP for k-C-Max-ATSP with a success prob-
ability of at least 1− p

1: if k = 1 then

2: compute a 2/3 approximation PTSP

3: else

4: for all subsets K ⊆ E with |K| ≤ f(k, ε/2) such that K is a path cover do

5: contract all edges of K to obtain GK

6: for all bounds β of (GK , w) do

7: CK,β ←MaxCC-Approx
(

GK , wβ , k, ε
2 , p

2n2k+2f(k,ε/2)

)

8: for all C ∈ CK,β with wβ(e) ≤ ηk,ε/2 · wβ(C) for all e ∈ C do

9: P ← Decompose(C,wβ , ε/2)
10: add edges to K ∪ P to obtain a tour H; add H to PTSP

11: for all i← 1 to k do

12: remove the ith objective from w to obtain w′

13: PK,i
TSP ←MaxATSP-Approx(GK , w′, k − 1, ε

2 , p
2n2k+2f(k,ε/2) )

14: for all H ′ ∈ PK,i
TSP do

15: H ← K ∪H ′; add H to PTSP

Algorithm 1: Approximation algorithm for MC-Max-ATSP.

Lemma 4.2. After at most f(k, ε) = k ·
⌈ log(1/2+ε)

log(1−ηk,ε+ε3)

⌉

iterations, the procedure described

above halts.

To obtain an algorithm, we have to find β and K. So far, we have assumed that we
already know the Hamiltonian cycles that we aim for. But there is only a polynomial
number of possibilities for β and K: For all β, we can assume that for all i there is an edge
with wi(e) = βi. Thus, for every i there are at most O(n2) choices for βi, hence at most
O(n2k) in total. The cardinality of K is bounded in terms of f(k, ε). For fixed k and ε,
there is only a polynomial number of subsets of cardinality at most f(k, ε). We can even
restrict ourselves to the subsets K that are path covers: A path cover is a subset K of edges
such that K does not contain cycles and both the indegree and outdegree of every vertex
is at most one. We obtain MaxATSP-Approx (Alg. 1) and the following theorem.

Theorem 4.3. For every k ≥ 1, ε > 0, MaxATSP-Approx is a randomized 1
2 − ε

approximation for k-criteria Max-ATSP whose running-time for a success probability of at
least 1− p is polynomial in the input size and log(1/p).

Proof. We have to estimate three things: approximation ratio, running-time, and success
probability. The proof is by induction on k. For k = 1, the theorem holds since there is
a deterministic, polynomial-time 2/3 approximation for mono-criterion Max-ATSP. In the
following, we assume that the theorem is correct for k − 1.

Let us focus on the approximation ratio, the other aspects are omitted for lack of space.
For this purpose, we assume that all randomized computations are successful. Let H̃ be an
arbitrary tour. For a subset K ⊆ H̃, let H̃K be H̃ with all edges in K being contracted.
Then, by Lemma 4.2, there exists a (possibly empty) set K ⊆ H̃ of edges of cardinality at
most f(k, ε/2) with one of the two following properties:
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(1) There exists an i with wi(K) ≥ (1
2 − ε

2) · wi(H̃).

(2) For all e ∈ H̃K , we have w(e) ≤ (ηk,ε/2 − ( ε
2 )3) · w(H̃K).

In the first case, there exists an H ′ ∈ PK,i
TSP (see line 13) with wj(H

′) ≥ (1
2− ε

2) ·wj(H̃K)

for all j ∈ [k]\{i}. H ′ combined with K yields a tour H that satisfies w(H) ≥ (1
2− ε

2)·w(H̃):

First, we have wi(H) ≥ wi(K) ≥
(

1
2 − ε

2

)

· wi(H̃). Second, for j 6= i, we have wj(H) =

wj(K) + wj(H
′) ≥ wj(K) +

(

1
2 − ε

2

)

· wj(H̃K) =
(

1
2 − ε

2

)

· wj(H̃).

In the second case, let βi = max{wi(e) | e ∈ H̃K} ≤
(

ηk,ε/2 − ( ε
2 )3

)

· wi(H̃K). Then

CK,β contains a cycle cover C with w(C) ≥ (1 − ε
2) · w(H̃K) and wβ(e) ≤ ηk,ε/2 · w(H̃K)

(Lemma 4.1). Thus, C can be decomposed into a collection P of paths with w(P ) ≥
(1
2 − ε

2) · w(C) (Lemma 4.1). Together with K, this yields a tour H with

w(H) ≥ w(P ) + w(K) ≥
(

1
2 − ε

2

)

· w(C) + w(K) ≥
(

1
2 − ε

2

)

·
(

1− ε
2

)

· w(H̃K) + w(K)

=
(

1
2 − 3ε

4 + ε2

4

)

· w(H̃K) + w(K) ≥
(

1
2 − ε

)

· w(H̃).

4.2. Multi-Criteria Max-STSP

The approximation for MC-Max-ATSP works of course also for MC-Max-STSP. Our
goal, however, is a ratio of (2

3 − ε). As a first attempt, one might just replace the (1
2 −

ε)-decompositions by (2
3 − ε)-decompositions. Unfortunately, this is not sufficient since

contracting the heavy-weight edges in undirected graphs is not as easy as it is for directed
graphs: First, both statements “remove all incoming” and “remove all outgoing” edges are
not well-defined in an undirected graph. Second, if we just consider all edges of one vertex
as the incoming edges and all edges of the other vertex as the outgoing edges, we obtain a
directed graph, which allows only for a ratio of 1

2 − ε. To circumvent these problems, we
do not contract edges e = {u, v}. Instead, we set the weight of all edges incident to u or v
to 0. This allows us to add the edge e to any tour H ′ without decreasing the weight: We
remove all edges incident to u or v from H ′, and then we add e. The result is a collection of
paths. Then we add edges to connect these paths to a Hamiltonian cycle. The only edges
that we have removed are edges incident to u or v, which have weight 0 anyway.

However, by setting the weight of edges adjacent to u or v to 0, we might destroy a lot
of weight with respect to some objective. To solve this problem as well, we consider larger
neighborhoods of the edges in K. In this way, we can add our heavy-weight edge (plus some
more edges of its neighborhood) to the Hamiltonian cycle without losing too much weight
from removing other edges. The function h in Alg. 2 depends only on k and ε and plays
a similar role as f in Section 4.1. We omit the details and obtain MaxSTSP-Approx

(Alg. 2) and the following theorem.

Theorem 4.4. For every k ≥ 1, ε > 0, MaxSTSP-Approx is a randomized 2
3 −ε approx-

imation for k-criteria Max-STSP whose running-time for a success probability of at least
1− p is polynomial in the input size and log(1/p).
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PTSP ←MaxSTSP-Approx(G,w, k, ε, p)
input: undirected complete graph G = (V,E), k ≥ 1, edge weights w : E → Nk, ε > 0
output: (2

3 − ε) approximate Pareto curve PTSP for k-C-Max-ATSP with a success prob-
ability of at least 1− p

1: if k = 1 then

2: compute a 61/81 approximation PTSP

3: else

4: for all subsets K ⊆ E with |K| ≤ h(k, ε/3) such that K is a path cover do

5: let L be the set of vertices incident to K
6: obtain wL from w by setting the weight of all edges incident to L to 0
7: for all bounds β of (G,wL) do

8: CL,β ←MaxCC-Approx
(

G,wLβ , k, ε
3 , p

2n2k+2h(k,ε/3)

)

9: for all C ∈ CL,β with wLβ(e) ≤ ηk,ε/3 · wLβ(C) for all e ∈ C do

10: P ← Decompose(C,wLβ , ε/3); remove edges of weight 0 from P
11: add edges to K ∪ P to obtain a tour H; add H to PTSP

12: for all i← 1 to k do

13: remove the ith objective from wL to obtain w′L

14: PL,i
TSP ←MaxATSP-Approx(G,w′L, k − 1, ε

3 , p
2n2k+2h(k,ε/3) )

15: for all H ′ ∈ PL,i
TSP do

16: remove edges of weight 0 from H ′

17: add edges to H ′ ∪K to obtain a tour H; add H to PTSP

Algorithm 2: Approximation algorithm for MC-Max-STSP.

5. Deterministic Approximations for 2-C-Max-STSP

The algorithms presented in the previous section are randomized due to the computa-
tion of approximate Pareto curves of cycles covers. So are most approximation algorithms
for multi-criteria TSP. As a first step towards deterministic approximation algorithms for
MC-Max-TSP, we present a deterministic 61/243 ≈ 0.251 approximation for 2-C-Max-
STSP. The key insight for the results of this section is the following lemma, which yields
tight bounds for the existence of approximate Pareto curves with only a single element
(Theorem 5.2). For completeness, we note that single-element approximate Pareto curves
exist for no other variant of multi-criteria TSP than 2-C-Max-STSP.

Lemma 5.1. Let M be a matching, let H be a collection of paths or a Hamiltonian cycle,
and let w be edge weights. Then there exists a subset P ⊆ H such that P∪M is a collection of
paths or a Hamiltonian cycle (we call P in this case an M -feasible set) and w(P ) ≥ w(H)/3.

Theorem 5.2. For every undirected complete graph G with edge weights w1 and w2, there
exists a tour H such that {H} is a 1/3 approximate Pareto curve for 2-C-Max-STSP. This
is tight: There exists a graph G with edge weights w1 and w2 such that, for all ε > 0, no
single Hamiltonian tour of G is a (1/3 + ε) approximate Pareto curve.

Lemma 5.1 and Theorem 5.2 are constructive in the sense that, given a tour H2 that
maximizes w2, the tour H can be computed in polynomial time. A matching M with
w1(M) ≥ w1(H1)/3 can be computed in cubic time. However, since we cannot compute an
optimal H2 efficiently, the results cannot be exploited directly to get an algorithm. Instead,
we use an approximation algorithm for finding a tour with as much weight with respect
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PTSP ← BiMaxSTSP-Approx(G,w1, w2)
input: undirected complete graph G = (V,E), edge weights w1, w2 : E → Nk

output: a 61/243 approximate Pareto curve H
1: compute a maximum-weight matching M with respect to w1

2: compute a 61/81 approximate tour H2 with respect to w2

3: P ← H2 ∩M ; M ′ ←M ; H2 ← H2 \ P
4: while H2 6= ∅ do

5: e← argmax{w2(e
′) | e′ ∈ H2}

6: extend e to a path e1, . . . , eq ∈ H2 such that only e1 and eq are incident to edges
z1, z2 ∈M ′ or the path cannot be extended anymore

7: P ← P ∪ {e1, . . . , eq}; H2 ← H2 \ {e1, . . . , eq}
8: if z1 or z2 exists then

9: let f1, f2 ∈ H2 be the two edges extending the path if they exist
10: H2 ← H2 \ {f1, f2}
11: if both z1 and z2 exist then contract z1 and z2 to z; M ′ ← (M ′ \ {z1, z2})∪ {z}
12: let H be a tour obtained from P ∪M

Algorithm 3: Approximation algorithm for 2-C-Max-STSP.

to w2 as possible. Using the 61/81 approximation algorithm for Max-STSP [7], we obtain
Alg. 3 and the following theorem.

Theorem 5.3. BiMaxSTSP-Approx is a deterministic 61/243 approximation algorithm
with running-time O(n3) for 2-C-Max-STSP.

For metric 2-C-Max-STSP, i.e., the edge weights have to fulfil the triangle inequality,
we obtain the an approximation ratio of 7/24 > 0.29 if we replace the 61/81 approximation
with the 7/8 approximation for metric Max-STSP by Kowalik and Mucha [15].

6. Approximation Algorithm for MC-Min-ATSP

Now we turn to MC-Min-ATSP and MC-Min-γ-ATSP, i.e., tours of minimum weight
are sought in directed graphs. Alg. 4 is an adaptation of the algorithm of Frieze et al. [12]
to multi-criteria ATSP. Therefore, we briefly describe their algorithm: We compute a cycle
cover of minimum weight. If this cycle cover is already a Hamiltonian cycle, then we
are done. Otherwise, we choose an arbitrary vertex from every cycle. Then we proceed
recursively on the subset of vertices thus chosen to obtain a tour that contains all these
vertices. The cycle cover plus this tour form an Eulerian graph. We traverse the Eulerian
cycle and take shortcuts whenever we visit vertices more than once. The approximation ratio
achieved by this algorithm is log2 n for Min-ATSP [12] and 1/(1 − γ) for Min-γ-ATSP [5].

MinATSP-Approx (Alg. 4) for MC-Min-ATSP proceeds as follows: MinCC-Approx

computes an approximate Pareto curve of cycle covers. (MinCC-Approx(G,w, k, ε, p)
computes a (1 + ε) approximate Pareto curve of cycle covers of G with weights w with a
success probability of at least 1−p in time polynomial in the input size, 1/ε, and log(1/p).)
Then we iterate by computing approximate Pareto curves of cycle covers on vertex sets V ′

for every cycle cover C in the previous set. The set V ′ contains exactly one vertex of every
cycle of C. Unfortunately, it can happen that we construct a super-polynomial number of
solutions in this way. To cope with this, we remove some intermediate solutions if there are
other intermediate solutions whose weight is close by. We call this process sparsification.
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PTSP ←MinATSP-Approx(G,w, k, ε)
input: directed complete graph G = (V,E) with n = |V |, k ≥ 1, w : E → Nk, ε > 0
output: (log n+ε) approximate Pareto curve for k-C-Min-ATSP or ( 1

1−γ +ε) approximate

Pareto curve for k-C-Min-γ-ATSP with a probability of at least 1/2
1: ε′ ← ε2/ log3 n; F ← ∅; j ← 1
2: C ←MinCC-Approx

(

G,w, k, ε′, 1
2Q log n

)

3: P0 ← {(C,w(C), V,⊥) | C ∈ C}
4: while Pj−1 6= ∅ do

5: Pj ← ∅
6: for all π = (C ′, w′, V ′, π′) ∈ Pj−1 do

7: if (V ′, C ′) is connected then F ← F ∪ {(C ′, w′, V ′, π′)}
8: else

9: select one vertex of every component of (V ′, C ′) to obtain Ṽ
10: C ←MinCC-Approx

(

G,w, k, ε′, 1
2Q log n

)

11: Pj ← Pj ∪ {(C̃, w̃, Ṽ , π) | C̃ ∈ C, w̃ = w′ + γj · w(C̃)}
12: while there are π′, π′′ ∈ Pj with equal ε′-signature do remove one of them
13: j ← j + 1
14: PTSP ← ∅
15: for all (C ′, w′, V ′, π′) ∈ F do

16: H ← C ′

17: while π′ = (C ′′, w′′, V ′′, π′′) 6= ⊥ do

18: construct tour H ′ on V ′′ from H ∪C ′′ by taking shortcuts such that H ∩H ′ = ∅
19: π′ ← π′′; H ← H ′

20: PTSP ← PTSP ∪ {H}
Algorithm 4: Approximation algorithm for MC-Min-ATSP and MC-Min-γ-ATSP.

It is based on the following observation: Let ε > 0, and consider H of weight w(H) ∈ Nk.
For every i ∈ {1, . . . , k}, there is a unique ℓi ∈ N such that wi(H) ∈ [(1 + ε)ℓi , (1 + ε)ℓi+1).

We call the vector ℓ = (ℓ1, . . . , ℓk) the ε-signature of H and of w(H). Since w(H) ≤ 2p(N),
there are at most qk different ε-signatures for some polynomial k, which is polynomial for
fixed k. To get an approximate Pareto curve, we can restrict ourselves to have at most one
solution with any specific ε-signature.

In the loop in lines 4 to 13, MinATSP-Approx computes iteratively Pareto curves of
cycle covers. The set Pj contains configurations π = (C ′, w′, V ′, π′), where C ′ is a cycle
cover on V ′, π′ is the predecessor configuration, and w′ is the weight of C ′ plus the weight
of its predecessor cycle covers, each weighted with an appropriate power of γ. (We define
the ε′-signature of π = (C ′, w′, V ′, π′) to be the ε′-signature of w′.) These weights are
needed for the analysis of the approximation ratio. If, in the course of this computation, we
obtain Hamiltonian cycles, these are put into F (line 7). In line 12, the sparsification takes
place. Finally, in lines 14 to 20, Hamiltonian cycles are constructed from the cycle covers
computed. In the algorithm, Q = Q(N, 1/ε′) is a two-variable polynomial that bounds the
number of different ε′-signatures of solutions for instances of size at most N .

MinATSP-Approx is the first approximation algorithm for MC-Min-ATSP and for
MC-Min-γ-ATSP for γ ≥

√

1/3 ≈ 0.58. For γ > 0.55, it improves over the previously known

algorithm [17], which achieves a ratio of 1
2 + γ3

1−3γ2 and works only for γ <
√

1/3 ≈ 0.58.
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Theorem 6.1. For every ε > 0, Alg. 4 is a randomized (log n + ε) approximation for MC-
Min-ATSP and a randomized ( 1

1−γ + ε) approximation for MC-Min-γ-ATSP for γ ∈ [12 , 1).

Its running-time is polynomial in the input size and 1/ε.

7. Open Problems

Most approximation algorithms for multi-criteria TSP use randomness for computing
approximate Pareto curves of cycle covers. This raises the question if there are algorithms for
multi-criteria TSP that are faster, deterministic, and achieve better approximation ratios.
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