
Parallel Text Retrieval On A High Performance

Supercomputer Using The Vector Space Model

Efrainliclis P., Glynliclakis C., Manlalis B.

Spirakis P. and Tanlpakas B.

Conlputer Teclmology Institute

Department of Conlputer Engineering and

Infornlation, University of Patras
Box 1122, GR-2611O, Patras, Greece

Abstract

This paperl discusses the efi-iciency of a parallel text retrieval

system that is based on the Vector Space Model. Specifical-

ly, we describe a general parallel retrieval algorithm for use

with this model, the application of the algorithm in the FIRE

system [I], and its implementation on the high performance

GCe131512 Parsytec parallel machine [2]. The use of this

machine’s t we-dimensional grid of processors provides an ef-

ficient baais for the virtual tree that lies at the heart of our

retrieval algorithm. Analytical and experimental evidence is

presented to demonstrate the efficiency of the algorithm.

1. Introduction

Parallel processing has the potential to provide fast, cost-
effective access and management of large amount of data.

The rapid growth in the power of parallel machines over the

last few years had led to a proliferation of interest in the

use of parallel processing techniques, where some or many

processors operate together so as to reduce the elapsed time

required for a computational task. Consequently, many at-

tempts have been made to apply such techniques to the text

retrieval systems. These attempts vary concerning the text

processing model they use (signatures, inverted file struc-

tures) and the type of parallel environment they adopt.

With regard to the text processing model, initial parallel

implementations were based on overlap-encoded signatures

([3], [4], [5], [6]). Other attempts have been made using frame-

sliced part it ioning on signature files ([7]). However, the vari-

ous limitations of these methods (i.e. constrained interactive

access for large signature files - [10]; only binary document

weights supported - [5]) led to stu’dies and implementations

1This research was partirdl y funded by the EC Project No.

9072 ((.; EF’F’(.:OM)

Permission to make digital/l]ard copies of :111or pat-l of’ this material
without fee is granted provided Lhot the copies are not mode or
distributed for profit or comtnei-ci:ll :,dvont~ge, the ACM copyrig]lt/
server notice, the title of the public:ltion and its dzte ~ppelr, and

notice is given that copyright is by permission of the Association for

Computing Machinery, Inc. (ACM). To copy olhcrwise, to republish,
to post on servers or [0 rcxiistribute tn lists, requires specific permission

rtndlor fee.
SIGIR’95 Seattle WA USA(’) 1995 ACN4 O-8979 1-714-6/95/07.$3,50

of parallel inverted file structures ([8], [9]). These attempts

using the inverted file model, showed considerable perfor-

mance, even under the above limitations and the limited

power parallel environment they used.

Concerning the type of parallelism, we can distinguish

between the SIMD and MIMD environments (due to Flyn,

[11]). Most parallel text retrieval systems ([3], [8],[9]), have

been implemented on the Connection Machine, which is a

classical type of SIMD architecture using pipelined vector

processors. However the last few years have seen increasing

int crest in retrieval systems for use in MIMD environments,

mainly using microprocessor networks where each proces-

sor had its own local memory ([6] ,[12]). High performance

transputer networks with message passing communication

mechanisms have been used and they have led to very efi-

cient implementations ([12]).

Our work, following the latter direction is aimed at build-

ing an efficient multiprocessor system on a transputer net-

work, which will meet all the requirements that such a sys-

tem must satisfy, including :

1. Low total communication times.

Z. High retrieval effectiveness (in terms of recall & pre-

cision).

3. Interactive response times within a friendly user inter-

face environment.

4. Significant response-time improvements compared to

serial machines.

In order to satisfy the above requirements the design and

implementation of our system makes use of the advantages

offered by our integrated parallel machine (the GCe13/512

Parsytec machine, [2]). Considerable efficiency (low total

communication times) is achieved via the use of virtual tree

topologies over the physical network of512 high performance

transputers. Our work demonstrates how tree–topologies

are appropriate for the document scoring and ranking task,

when multiple processors are available. Additionally, the

retrieval task is based clearly on the Vector Space Model

(use of FIRE system, [1]) as opposed to the signature and
inverted file parallel implementations that have been studied
previously. The high capacity of the local memory of each
transputer allows convenient management of the demands of

58

http://crossmark.crossref.org/dialog/?doi=10.1145%2F215206.215332&domain=pdf&date_stamp=1995-07-01

the Vector Space Model, which makes the parallel algorithm

quite simple.

In the following two sections the FIRE system and the

GCe13/512 machine (the two basic tools of our work) are

briefly presented. In section 4, we demonstrate a simple

algorithm that can be used for parallelizing almost any in-

formation retrieval system based on the Vector Space Mod-

el. This algorithm is partially used in the design and im-

plementation of our system. In section 5, the virtual tree

topologies that are used over the two-dimensional grid in-

terconnection network of the GCe13/512 machine are pre-

sented. The behaviour of such topologies with the parallel

retrieval algorithm, is discussed and analytically evaluated in

this section. Finally, in section 6, the performance of search-

ing obtained from our parallel implementation is discussed.

Various evaluation results are demonstrated in this section,

in order to validate the eficiency provided by using specif-

ic tree topologies for text searching in a high performance

parallel machine.

2. The FIRE System

FIRE ([1]) is an information retrieval system whose design

and implementation is based on the Vector Space Model

([13]) plus the use of an automatically constructed thesaurus.

Thus, each document D, is represented by a unique term

vector expanded by the corresponding thesaurus classes:

D, = (dl,l , ril,z, ..d1t~,d2~l,d2:2,.,d2:m)

where dl stancis for the weighted terms of D, and J2 s-

tands for the weighted thesaurus classes of D,. The the-

saurus classes are constructed via a specific method (based

on a connected components evaluation algorithm, [I]), that

is very close to the relevant method stated in [14].

DATABASE
(document vectors exparrded by tbesumrs classes)

* \

I’J I

Interactive

Phase

user-intetface ~ USERS I

documents

Figure 1: The operational model of FIRE s~stem

The user queries are represented in the same way leading

to one vector for each query. Thus, the retrieval task of the

FIRE system (fig. 1) involves comparing the user query vec-

tor to all document vectors. This comparison is performed

by computing a similarity measure based on the cosine func-

tion ([15]). Then the documents’ scores are ranked and the

most relevant documents to the query, are presented to the

user.

Additionally, FIRE is supported by a well-designed X-

Windows user interface. This interface also supports the

parallel implementation of FIRE leading to a quite friendly

multiprocessor information retrieval system. Finally, FIRE

provides significant retrieval effectiveness (in terms of recall

& precision, see [1]) which is fully preserved by the multi-

processor version that is presented in this paper.

3. The GCe13/512 Supercomputer

The hardware that we use in our implementation is the
Parsytec GCe13/512 machine which belongs to the MIMD
class of parallel computers. It is a massively parallel nla-

chine consisted of 512 processor–units formed in a two di-

mensional grid interconnection network with dimensions 32

x 16. More precisely each processor–unit is an Inmos T80.5

transputer, a member of the well–known transputer family.

3.1 The ‘l?ransputer

A transputer is a high performance processor, especially de-
veloped for use in multiprocessor systems. Each transputer

consists of a processor, a cache memory and four links which
support the transputers’ interconnections on the grid net-
work. These features are integrated on a single chip. Menl-
bers of the family of transputers are the T400,.. ,T805,.. The

T805 that is used in the GCe13/512 machine has the follow-

ing characteristics:

●

●

●

32 bit RISC processor with frequency 30 MHz and

peak performance 4.3 MFLOPS, 30 MIPS

4 I{ Bytes on–chip cache memory and 4 MBytes exter-

nal DRAM local memory

4 bidirectional high speed links of max data rate: 20

Mbits/see (unidirectional) and 18.8 Mbits/see (bidi-

rectional)

3.2 Hierarchy - Partitions

The 512 transputer processors of the GCe13/512 conlput-
er are organized in a hierarchical structure (fig. 2). Each
transputer is a processing unit. Eight processing units for-
m a. processing board. Two processing boards compose a
cluster. A cluster contains 16 transputers: it is the atom
of the GCe13/512 machine and is the smallest unit that can
be accessed by a user. Four clusters make a Gig,aCube and
eight gigacubes make the whole GCe13/512 machine. From
the user’s point of view the whole 512–transputer network

is split up in partitions of varying sizes. Each partition con-

sists of one or more clusters. A partition may contain parts

of other partitions.

3.3 Hosts

The two–dimensional grid network of transputers is connect-

ed to the outside world through 2 external hosts which pro-

vide 12 high speed links (20 Mbits/see). The hosts are two

Sun/SPARC stations running the PARIX operating system.
PARIX (PARallel extensions to unIX) is a UNIX-based op-
erating system with extensions (tools and programs) that

59

support the transputers’ communications with each other.

PARIX is responsible for the eficient usage of the transput-

ers’ grid network. The PARIX programming model is based

on:

● Assigning a specific ID to each processor and running

identical program code on each processor.

● Execution of the code segments depending on the pro-

cessor ID

Transputers communicate with each other using virtual links

which reside on the physical links. The user can define his

own virtual topologies, by specifying the appropriate virtual

links. The most common topologies (like the Ring or Tree

structures) are implemented in a library which is available to

the user. This library gives reliable, flexible and completely

tested topologies, which are mapped in the best way on the

physical transputer network and they can scale up as the

partition size increases.

Internal

r
External

tol)olou: tODO10!2V:
2-dimensional 2-dimensional

array
1 array

de

& \ Ememal

link

~ L processor

F@re 2: The hierarchical structureofGCel3/512 machine

4. The General Algorithm

In this section, a general algorithm is presented for paral-

lelizing an information retrieval system based on the Vector

Space Model. In order to develop such an algorithm sever-

al assumptions have to be considered, concerning both the

retrieval techniques and the parallel environment that are

used. Consequently, our work is based on the following as-

sumptions:

1. Each document is represented by a term vector (D,) in

the form stated by section 2. The user queries are also

represented by a term vector (q,) of the same type.

2. The retrieval task consists of the classical scoring and

ranking sub tasks ([15]). The scoring sub task is per-

formed by computing the inner product between the

query vector and all the document vectors.

3. The parallel environment that is used provides a host

processor F’k and a specific number P of working pro-

cessors P, (i = 1... P). Each of the working processors

4.

has its own local memory of size M (Mbytes), where-

as ph is linked to all P, via a specific interconnection

network. We also assume that one of the working pro-

cessors (P,,) serves as the “root” of the other working

processors.

All the processors have access to a common disk space

(DISK). All the document vectors (D : total # of

dot-vectors, C : total space of doe-vectors in MBytes)

are stored in this common space.

An efficient parallelization of an information retrieval sys-

tem that meets the above assumptions can be achieved via

the following simple algorithm:

1:

2:

3:

4:

5:

6:

7:

8:

9:

1:

2:

3:

4:

1:

2:

3:

4:

5:

6:

Algorithm GNR (V processor P,, i = 1... P)

Read specification file SF,

Determine (based on SF,) which N, doe-vectors of

total space $ must be read from DI.$K.
Read the first N,o (of total N,) dot-vectors of total
size M — d.

Receive query–vector ~i from P,..

Compute inner products between q, and each of the

IV,O dot-vectors.

Rank the results (keeping the X high-score

dot-vectors’ IDs) in set RD,.

DiskReadingTimes (DRT) := 1 ;

WHILE (DRT < ~M_~)XP) DO

Read the next N,DRT dot-vectors of total size

M – d from DISK.

Compute the relevant inner products.

Rank the results and merge the X high-score

ones in set RD,.

DRT := DRT + 1 ;

Send RDt toP,,.

ph (host processor)

Formulate query-vector qi

Send q, to P,.

Receive ranked results (X dots) in RDh

Present the X most relevant documents

P,, (root working processor)

Receive q, from Ph

Send q, toall Pi
Behave as a common

Receive P – 1 ranked

other P — 1 Pt.

P, (without step 9)

sets RD, from the

Merge your own RD,, with all others

Send the final RD,~ to ph

The above algorithm implies that the total amount of da-

ta (document vectors) is shared almost equally between the

P working processors (steps 1,2). This is achieved by the

use of one specification file (S F,) for each processor. This

file is constructed off-line and describes the specific docu-

ment vectors corresponding to each processor. This file may

contain multiple entries, one for each possible value of P (#

of processors used). Then each processor iteratively read-

60

s an amount M — d (d stands for the other main memory

needs of P,, i.e. virtual links) of data which correspond to

a specific number of N;~ ~~ dot-vectors that fit in the main

memory of the P, processor (steps 3,8). Consequently, the

scoring and ranking subtasks (steps 5,6) are performed for

these N,~ RT dot-vectors. File ,5’F, also stores the informa-

tion about which N,DRT dot-vectors each processor has to

read each time. The result consists of the X highest–scored

dot–vectors (set RI),) whose identity numbers are then sent

to the root processor P,r.

The host processor (Ph) should normally have to perform

a) the user–interface tasks (query formulation and presen-

tation of results) and b) the communication task over the

transputer network (query transmission and collection of the

results). However, it is preferable if the latter is given to one

of the working processors so that all of the processing re-

quired for the information-retrieval task is carried out by

the working processors P, (t G I... P), whereas Pk is com-

pletely dedicated to the user interface task. Additionally,

the above selection allows the construction of a virtual tree

network structure over the P working transputers. Through

this tree network (see section 6 for detailed description and

analysis), the transmission of the query and the collection

and merging of the ranked results are distributed to the h

levels (h = log P, for a binary tree) of the tree, providing

high communication efl-lciency.

There are several problems concerning the above gener-

al algorithm. &t, it is diilicult to achieve the near–equal

sharing of data amongst the processors that is required for

the proper synchronization of the system. Secon~ the num-

ber of times (

from D15’~ ~~~jx~tilne

s) that each processor has to read

,~~T ocument vectors of total size M – d,

is critical and it dominates the performance of the system.

In the best case (each processor has to read from DISK

only once during the system’s start-up) the whole system

can manage a total of P x (M — d) Mbytes of data. ~d,

the communication times due to query transmission (step 2

of P,. and collection of results (step 4 of P,.) seem to be

quite ineffective for large values of P, since there is a sig-

nificant communication overhead on the links of the root

processor (P,,). For simplicity, the algorithm does not in-

corporate clustering mechanisms and corresponding cluster-

based search techniques which would lead to several addi-

tional problems (i.e. the MDAP problem, see [16] ,[17]). Such

cluster based search techniques (i.e. centroid mechanisms,

[15]) could help in the case of very large collections that

don’t fit in main memory. In this case, an appropriate clus-

tering algorithm could lead to a final document set (for each

query) that fits properly in main memory. Thus, the total

time spent for the retrieval of relev&nt documents in response

to a specific query (see evaluation results in section 6) would

be overloaded by only one DI,SK access cycle, and it would

be independent of the total size of the collection.

In our implementation we partially overcome the above

problems by adopting the assumptions that a) the docu-

ment vectors are shared equally among all the processors

and b) each processor accesses the DZS K for reading only

once during the start–up of the system. However, the latter

implies (concerning the GCe13/5 I z machine) that the whole

system can manage efficiently a total of almost 2 ~TBytes of

data, which is quite satisfactory. Thus, we focus our effort-

s on the minimization of the communication overhead over

the two–dimensional grid interconnection network of the G-

Ce13/512 machine. This is achieved by the use of virtual tree

topologies that connect all the working processors P, to the

root processor P,,. This is discussed in the following section.

Moreover, in section 6 we discuss the problem of the size of

the exchanged messages (i.e. the query-vector q, message

and the message RD, of the ranked document vectors).

5. The Implementation

5.1 Virtual Tree Topologies

Tree structures have been widely used in parallel processing

systems. They have the potential to parallelize a computa-

tional task efficiently, while keeping the total comnlunica-

tion times low by distributing them all over the levels of the

tree (i.e. a complete binary tree–structure of P processors

implies only log P communication steps that are performed

in parallel). In our implementation we use complete tree

structures which maximize the performance of the underly-

ing parallelism.

As mentioned in section 3, the physical network of the

GCe13/512 machine consists of a two-dimensional grid. The

way that a virtual complete tree structure resides on this

network of transputers is of great interest. In fig. 3 the

complete binary tree (degree d = 2) topology of P = 15 pro-

cessors is indicated as an example (h = log(~ + 1) – 1 = 3

communication levels).

Figure 3: The binary tree structure over the 2-D grid

Fig.3 also indicates a communication overhead (called

“jump”). A jump is the execution of one communication step

between two adjacent nodes of the virtual tree, through two

or more communication steps on the physical network. How-

ever the architecture of the GCe13/512 machine guarantees

that this overhead is not proportional to the number of phys-

ical tomrnunication steps that one jump needs. In fact, the

overhead is strictly minimized because the processors that

are included in a j“ump serve only as communication switch-

es without performing any computational task. Thus a high

communication efficiency is preserved, especially when the

binary tree structure is used.

5.2 Modification of the GNR Algorithm

Applying such a tree structure (of degree d) over the physi-

cal network that connects P,, with the other P, processors,

the GNR algorithm can be modified as follows:

Algorithm MoGNR (’d processor P,, z = 1... P, P = 2h – 1)

1: IF (not Root) THEN

Receive query vector q, from the parent node

61

2:

3:

4:

5:

6:

IF (not Leaf) THEN

Send query vector q, to the d children nodes

Compute the inner products between q, and the

local ~ dot-vectors

Rank the results into the local RD, set (keeping

the X high-scored clocs)

IF (not Leaf) THEN

s.1: Receive the d RD sets from the corresponding

children

5.2: Merge the above sets into the local RD,

set (keeping the X high scored ones)

IF (not Root) THEN

Send the local R1’), set to parent node

ELSE Send the local RD, set to host processor Ph.

Each node–processor (starting from P,,) sends the query–

vector q, to its d children till q, arrives at the leaf–processors.

Then all the processors compute the similarities between

q, and their ~ dot–vectors. Consequently, each processor

ranks the results into its RD~ set. Finally the merging is

performed distributively on the h levels of the tree. Each

node–processor collects the RD sets from its d children and

it merges them into its RD, set which is then sent to the

corresponding parent node. This step is repeated once for

each level of the tree until the final RD set is constructed

on the root P~~.

5.3 Performance Analysis of the Modified GNR Al-

gorithm

In this section we’ll try to show how the above tree-
structured algorithm is appropriate to the retrieval task.
This is done by analytically measuring the total time Ttotal
that is spent by the root working processor P,r. Tt~t~t, con-
sists of the following intervals:

1.

2.

3.

4.

5.

Thus,

The time for delivering the query-vector qi (steps 1,2)

to every processor (Tq).

The time for scoring (step 3) in every processor (T,).

The time for local rankhg (step 4) in every processor

(z?.).

The time for the transmission of the results (steps 5.1,

6) to the parent nodes (’i%).

The time for merging the results (step 5.2) in every

level of the tree (T~~).

T’tota[= Tq + T, + Tir + Tt. + Tmr. Since there are P
processors, virtually organised in a complete tree structure

of h levels and degree d (# of childr.% for each node), in the

following we compute each of the ~bove times.

Tq consists of the communication times spent by each

node–processor in order to submit the query q, to its d chil-

dren. This task is executed in parallel for all the processors

at the same level. Thus, the query vector arrives at the

leaves of the tree in h – 1 steps. We assume that the time

that one node needs in order to submit qi to one of its chil-

dren (one query-submission step) is tq.We also accept that

there is a constant time overhead in each step equal to c,
caused by the ‘~umps” of the virtual tree and by the broad-
casting overhead of the information from node P, to its d

62

children. This means that

Tq=c(h–l)tq (1)

Making the same assumptions we can say that

T,r = C (h – 1) t,, (2)

where t~~ is the transmission time of the ranked results from

node P, to its parent node.

T, is equivalent to the time that the leaf processors need

to compute their documents’ scores. The corresponding time

that the nod~processors need is not envolved in the calcula-

tion because the node processors start their work before the

levels do so. Thus, sin~e the leaf-processors work in parallel,

T, is equal to the work time of one leaf processor. Conse-

quently, supposing that the whole scoring work needs time

t. for serial processing, T, becomes:

T,=+ts (3)

T[, can be analysed in the same way as (3). Thus, suppos-

ing that the whole ranking work needs time t~. for serial

processing, Tlr becomes:

(4)

Finally, T~, represents a work task (merging of d ranked

RD sets) which is performed in parallel on the nodes of each

one of the levels of the tree. Thus, assuming that the time

spent at each processor M t~~,T~r becomes:

T mr = (h – 1) tmr (5)

From equations (l)-(5),

,
T~O~ai = C (h–l) (tq+ tt.)+ ; (t.+ tir)+ (h-l) trnr

(6)

5.4 Discussion

With regard to the local - for each node – computational

tasks (scoring and ranking), equation (6) implies that they

are properly shared between all processors. Thus, the total

time required for them is minimized almost perfectly (divid-

ed by P). The only overhead is the time required for merging

((h ~ l)Tmr. However this overhead is not significant since

merging is performed over ranked sets of very small size.

In fact, each node–processor has to merge d ranked sets of

size X where X (# of relevant retrieved documents) usually

ranges from 10 to 100. Since the merging algorithm takes

time proportional to the sum of the sizes of the ranked frets

that are to be merged, the reader can see that Tmr becomes

too low compared to Ts and T[r.
“jump” , ~ 12

-\\ o“””o””-qllll--

5 6 78 9 10 11 12 13 6Q. -5(

Figure 4 The tree structure of degree 3 over the 2-D grid

Concerning the communication times (T~, T,r), equation (6)

clearly implies that they are proportional to the height (h)

of the tree. This is an acceptable performance since h be-

comes equal to log P, for a complete binary tree structure

(fig. 3). Thus, as P increases, the communication times

grow very slowly (linearly on /3 and logarithmically on P s-

ince h = log~(n), where d is the degree of the tree and 71is
the # of the leaves). Consequently, we shall focus on the
influence of the factors c, tg, tt..

The coefi-icient c is affected by a) the “jumps” of the vir-

tual tree structure over the physical transputer network and

b) the “crowd” that is caused around the links of the pro-

cessors. Although the former is not significant (as discussed

in the begining of this section) a comparison between fig. 3

and fig. 4 indicates that the influence of the corresponding

time overhead grows as d increases. 2 However the latter rea-

son, (b), is more critical. In fact, as the value of d increases

the corresponding overhead increases proportionally, leading

to undesired communication traffic. Consequently, the be-

haviour of the coeilicient c over the communication tasks of

the processors leads to the intuitive conclusion that the total

performance is better for low values of d (i.e. d = 2, binary

tree), although the value of h decreases as d increases.3

Finally, it’s obvious that the size of the message of the

query vector g, influences the time t~ almost proportionally.

Also, the size of the RD sets messages (equal to X) influ-

ences the time ttr in the same manner. Evaluation results

that indicate the performance of the system are presented in

the following section. All the above critical values (h, d, size

of q,, size of RI) sets) are varied to ascertain their effect on

performance.

6. Efficiency of Searching

In this section, the performance of our system is measured

experimentally. Probably the most widely used performance

measurement for parallel systems is an application depen-

dent one, the so-called speed up measurement ([6]). As a

derivative of the speed–up, the utdizatmn measurement can

also be directly evaluated. Specifically, having P processors

that work in parallel the speed–up ,5P and utilization (Jp

measures are defined as

where TI is the time to carry out the whole system’s work

on one processor anti TP corresponds to the time needed

when P processors are used for the same work in parallel.

Inthe ideal case, .>’r = P,andthe system issaidto exhibita

knears peed-up. It must beemph~ised that it impractically

impossible to achieve linear speed–up. The actual degree of

speed–up that can beobtainecl iscontrolled by Amdahl’slaw

([18]). This states that ifi~given problen lhaaafractionf

zlll fact a ~e~ect matciting without ‘lumps” could be cl~osen

ford =3andh =3. Thematchingi ndicatedinfig. 4,isthe result
of the corresponding PARIX algorithm used by default from tile

C;(;e13/512 machine, which is ageneralizerl algorithmfor greater

values of rl, h, F’. In this case there is an obvious and accepted

overhead caused by the “jumps”.

3Tl]e corresponding experimental results (section 6) validate

this intuitiou.

of sequential operations, then the maximum speed-up which

can be achieved with P processors is

S’p <
1

f++

This implies that, the longer the serial processing required

the smaller the speed–up that can be obtained. Moreover

the utilization[JP stands as a measure of the degree of the

speed–up that is achieved when P processors are used. In

our system the serial processing consists of the comnmni-

cation tasks, whereas the parallel processing consists of the

scoring, local ranking and merging subtasks. Therefore. the

minimization of the former and the maximization of the lat-

ter can lead to high speed-up and utilization values.

Keeping inmin~the above considerations, weexperinlen-

tally evaluate our system’s performance over the standard

CRANFIELD collection which consists of 1400 documents

in aerodynamics. As stated in section 5 the values of P

and d, the query length and the # of documents that are

retrieved, influence the system’s performance significantly,

and thus these parameters are varied in our experiments. In

addition to the speed–up and the utilization measurements,

the response time (RP) of the system is also evaluated and

presented. In our implementation the response time is the

time that is spent by the root processor from the begining

of the query submission till the end of the collection of the

RD sets and the merging of the results.

In Table 1 the three basic performance measurements (S’P,

Up in percent values and RP inunitsof64x10–6 sec.) are

presented for the complete binary tree structure (d=2). As

we will see later, this structure is the best among all of the

possible tree structures of varying degree. For each of the

above three measurements there are three different columns

forvarying query lengths (lO, 20 and 100 terms). Ifwe focus

on one column (i.e. for query length = 10) we can obtain

some general conclusions about the behaviour of the per-

formance meaaures as the # of processors increases. Each

row of the table corresponds to a specific height of the tree

structure (h = 1...9, P = 2h – 1). obviously, as the height

of the tree increases thespeed–up increases too, whereas the

response tirue decreases. Observing therate of the speed-up

increment, which is represented by the utilization measure

the reader can see that it slows down significantly for large

values of P. Naturally, the bigger the number of P, the big-

ger the number of communication levels on the correspond-

ing binary tree structure. Thus, for large values of the tree–

height (parameter h in eq. (6)), the root–processor remains

idle for more and more time until the results arrive from it-

s children. The experimental results that are presented in

table 1 imply that the use of up to 63 processors provides

quite satisfactory system utilization (almost 50?ZO), whereas

theuseof 15 processors offers theexceptional utilization val-

ue of’ 80~0. Also, the reader may notice that the speed–up

measure increases even for 255 processors with query lengths

20, 100. However the above limitations on the system’s uti-

lization concerning the number of processors that are used,

do not actually correspond to our work.

63

Speed Up - Sp Utilization - Up ResF onse Time - Rp

h P 10 20 100 10 20 100 10 20 100

1 1 1 1 1 100 100 100 6924 8873 24426

2 3 2,87 2,9 2,91 95.7 96,6 97,3 2411 3056 8366

3 7 5,96 6,12 6,57 85,2 87,4 93,9 1161 1449 3716

4 15 11,63 11,99 12,79 77 79,9 85,3 595 749 1909

5 31 18,86 19,5 21 60,8 62 68 367 455 1158

6 63 26,5 27,05 29,7 42 42.9 47 261 328 821

7 127 31,9 32,7 34,9 25 25,7 27 217 271 699

8 255 31,7 33,2 35,29 12,4 13 13,8 218 267 692

9 511 29,7 30,8 33,14 5,8 6 6,4 233 288 737

Table 1: Measurements for varying query length

Speed Up - Sp Utilization - Up Res~ onse Time - Rp
1

h P 1 5 20 1 5 20 1 5 20

1 1 1 100 - 8873 -

2 3 2,9 2,92 -- 96,66 95,57 -- 3056 14577 --

3 7 6,12 6,51 -- 87,4 93,1 -- 1449 6546 --

4 15 11,99 13,58 13,99 79,9 90,5 93,3 740 3140 12106

5 31 19,5 25.3 26,9 62 81,6 86,7 455 1686 6296

6 63 27,05 44.4 50,9 42,9 70,47 80,8 328 961 3332

7 127 32,7 68,58 87,63 25,7 54 69 271 622 1936

8 255 33,2 90 138,9 13 35,5 54,49 267 474 1221

9 511 30,8 107.2 208.17 6 20,98 40,7 288 398 815

Table 2: Measurement for varying collection size

retr Sp up Rp # retr Sp up Rp

10 11,99 79,9 740 10 12,79 85,3 1909

20 10,42 69,5 872 20 11,96 79,7 2055

50 7,22 48.18 1416 50 9,69 64,6 2642

100 5,40 36.04 2497 100 7,47 49,8 3814

Table 3: Measurements for varying # c)f retrieved documents

h P Sp up Rp h P Sp up Rp

1 1 1 100 8873 1 1 1 100 8873

2 6 5,36 89,3 1655 2 4 3,77 94,27 2353

3 31 18.1 58,5 489 3 13 10,32 79,45 859

4 156 24,17 15,49 367 “4 40 22,2 55,6 399

5 121 23,1 19 384

6 364 14,49 3,9 612

Table 4: Measurements for tree structures of degree 3 and 5

In fact the results that are presented in table 1 refer to a

very small ciocument collection (almost 2MB). This means

that for large values of P the data that are processed by each

transputer, and thus the overall computational task that is

parallelized, becomes extremely small. Therefore, Amclahl’s

law implies only a limited degree of the speed–up. In fac-

t, the maximum utilization of the system is achieved when

each processor keeps in its local memory as many data as

possible.

64

In table 2, 4 we present the results that are obtained by ap-

plying our algorithm to document collections of larger sizes.

We have produced such collections by reproducing the s-

tandard CRANFIELD collection multiple times (1, 5 and

20 times, keeping the query length on 20 terms). Certain-

4The ‘–’ in some cells means that the correspond ng x–times

CRANFIELD collection does not fit to the total memory of the

relevant # processors denoted by that specific row.

ly, concerning the main indexing features (such as distribu-

tion of term frequencies, documents lengths etc.), an x–times

CRAN collection is not expected to behave in the same way

as a unique large collection of the same size. However, an

x–times CRAN collection can effectively represent a typical

large-scale computational load which is necessary when the

communication load of the system tends to be critical (as

Amdahl’s law implies).

The reader may notice the exceptional utilization value

of 80~0 that is obtained when 63 processors are used with

the 20–tinles CRANFIELD collection. The speed–up inreas-

es continuously even for 511 processors. The 4070 utilization

that is provided when 511 processors are used is also of great

interest. Additional y, trying to achieve the maximum possi-

ble etlicient use of the GCe13/512 machine we’ve obtained an

almost 60y0 utilization over the 1000–times CRAN collection

uskg all the 512 t ransputers. However the above limitation

can be overcome if this maximum-size collection could be

shared to the processors completely uniformally. A recent

simulation study indicated that a utilization of almost 90yo
can be achieved if the 1000-tin~es CRAN collection is uni-
formally allocated to the 512 processors of the GCe13/512
machine. In conclusion, the GCe13/512 machine can offer
very eficient parallel information retrieval even when 512
processors work in parallel. The high local memory capac-

ities of the transputers and the minimization of the total

communication times via the virtual binary tree structure

make the latter possible.

Concerning the varying query lengths, table 1 indicates

thnt the performance is better (in terms of utilization mea-

sure) with long queries. This happens because an increase in

query length leads to a corresponding increase in the com-

putational task of each processor. Specifically, there is an

almost linear increase on the scoring sub task (time T,, e-

quation (3)). Thus, as Amdahl’s law implies, the speed–up

aml utilization measures normally increase too. However,

the longer queries influence significantly the query submis-

sion time Tq (eq. (l)). Eventually, as table 1 states, the

performance improvement (due to increase of query length)

is clear but substantially restricted by the communication

overheads.

‘Table 3 shows the influence on system performance of the

number of top-ranked documents that are retrieved. The re-

sults that are presented in the two tables correspond to the

binary tree structure of 15 processors with a query length

of 20 and 100 terms. The rows of each table correspond to

the varying # of retrieved documents. Again, both the com-

putational and the communication tasks are increased. As

the number of retrieved documen~~ ‘increases, the times T~~
and Ttr (eq. (2),(4)) increase too, and they adversely affect

the speed–up measure (as Amdahl’s law implies). However,

the increase in the computational task here is not significan-

t enough (ss in the case of queries length parameter) and

thus it is dominated by the corresponding communication

overhead. Eventually, as table 3 indicates there is a clear

decrease of the utilization measure when the number of re-

trieved documents grows in size.

[n order to demonstrate that the binary tree structure is

the best among the other tree structures, we present in table

4 some experimental results for tree–structures of degree 3

and 5 (keeping the query length on 20 terms). A compar-

ison of these results to the relevant ones of table 1 is quite

diflicult since the values of P are not the same. As an ex-

ample, the reader can see that for P = 31 the binary tree

structure provides a utilization of 6270, whereas the struc-

ture of a’ = 5 provides a utilization 58%. The “crowd” that

is caused around the links of each processor and the longer

“jumps” over the two–dimensional grid are responsible for

this situation.
100

90

80

70

60

50

40

30

20

10

0

n Comparison of tree degrees 2 and 3.
Utilintion and Speed Up are considered.

i

qwy20 telms

!4 doc’s:l o
CI’1111Couect,m

3163 127 255 364 511

Figure 5: Comparison of tree structures. Speed up and
Utilization crnves for varying tree degrees.

100

k

Comparison of the utilization curves

90 for different collection sizes
,..80 ‘

70

60

50

40

30

20 I
\

10 ~

o , P

3163 127 255 511

Figure 6: Comparison of utilization for varying size of
document collection

A better comparison between the tree structures of degrees

2 and 3 can be obtained from the diagram of figure 5. The

corresponding speed–up and utilization curves over the single

CRAN collection are presented in this diagram. Generally,

for each tree structure, the speed-up curve starts at ‘1’ (the

trivial case of P = 1) and it rises to higher values. The curve
tends to a straight line over a wide range of larger P values.
For some very large value of P the curve may start to go

down again meaning that the communication overhead tend-

s to dominate the parallelizable computational tasks. This

happens when the single CRANFIELD collection is used and

P >256.

The utilization curve behaves in almost the opposite way,

as the corresponding definitions imply. Specifically, figure

5 clearly indicates that the curves for the binary structure

are uniformly better than the curves which correspond to

65

d = 3. Additionally, in figure 6 the utilization curves for 1, 5

and 20-tinles CRAN collection are presented. These curves

(especially the one for 20-tinles) validate the great ei-1-iciency

that is provided when the processors are heavily utilized, as

described in table 2.

Conclusion – Further Work

(“)ur work demonstrates the worth of using a high perfor-
mance, massively parallel machine (a Parsytec GCe13/512
machine) for applying parallelism on information retrieval
tasks.

outstanding performance (in terms of the speed–up mea-
sure) is achieved for up to 64 working transputer–processors,
by organizing them into virtual binary tree structure. As
the evaluation results indicate, the binary tree structure is
the best amoug all the other tree structures of varyiug de-
gree, when the physical network is a two–dimensional grid.
Because of the logarithmic height of such a structure the
performance remains quite satisfactory even when using 256
or 512 transput ers in parallel. Also, the performance mea-
sures remain high with long queries and with large numbers

of retrieved documents. The corresponding efficiency that is
provided by the massive use of even 512 processors with 4
MBytes local memory in parallel allows the effective appli-

cation of parallelism to text retrieval systems that are based

on the Vector Space processing model. Thus, a parallel in-

formation system based on this model has been developed

which preserves both the needs for high retrieval effective-

ness (recall & precision) and for low total response times.

The incorporation of clustering mechanisms and efficien-

t document allocation algorithms on the high performance

parallel environment of the GCe13/512 machine remains to

be studied. Also the possible use of more efficient virtu-

al structures over the 2–dimensional grid processors’ net-

work is of great interest. For example }at–tree structures

(i.e. meshes of trees) could help further to minimize the

overall communication t irnes, thus leading to more etlicient

parallel implementations.

Acknowledgements

We would like to thank the unknown referees and Prof. P.

Willett for their helpful comments.

References

[1]

[2]

[3]

[4]

M. Lafazanis, B. Mamalis, P. Spirakis, B. Tampakas,

and A. Tmkzdidis, “FIRE: A Flexible Tool for Efic,ent

hforrnation l?etrieva~, RMO ’94 Conference, New

York, October 11-13, 1994 (accepted for prototype

demonstrations).

Frank Tiedt, “Parsytec GCel SuPercornputeP’, Tech-

nical Report, Parsytec Computer GnlbH, July 1992.

C. Stanfill and B. Kahle, “Parallel Free Text Search on

the Connection Machine System”, Communications of

the ACM, Vol. 29, No 12, pp. 1229–1239, 1986.

C. Pogue and P. Willett, “ Use of Text Signatures for

Document Retrieval in a Highly Parallel Environmen-

t’, Parallel Computingj VO1.4, pp. 259–268, 1987.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

G. Salton and C. Buckley, “Parallel Text Search Meth-

ods”, Communications of the ACM, Vol. 31, No 2,

February 1988, pp. 202-215.

J. Cringean, R. England, G. Manson and P. Willett,

“Parallel Text Searchtng In Serial Files Ustng A Pro-

cessor Farm”, ACM SIGIR’90, pp. 429-452, 1990.

F. Grandi, P. Tiberio and P. Zezula, “Frame Sltced

Par-titzoned Parallel Signature Files”, ACM SIGIR’92,

Denmark, pp. 286–297, June 1992.

C. Stan fill, “Partitioned Posting Files: A Parallel In-

verted File Structure for Information Retrieval”, ACM

SIGIR’90, pp. 413-428, June 1990.

C. Stanfill, R. Thau and D. Waltz, “A Parallel In-

dexed Algorithm for Information RetrtevaY, ACM SI-

GIR’89, June 1989, pp. 88-97.

H. Stone, “Parallel Querying of Large Databases: A

Case Study”, IEEE Computer, October 1987, pp. II-

21.

M. Flynn, “Some Computer Organzsataons and thew

Effectiveness”, IEEE Transactions on Computers, C-

21, pp. 948–960.

J. Cringean, M. Lynch, G. Manson and P. Willett,

“Best Match Searching in Document Retrzeval System-

s using Transputer Network”, London: British Li-

brary Research and Development Department, 1989.

G. Salton et al., “A Vector Space Model for Automatzc

Indexing”, Communications of the ACM, 18: 613-620,

1975.

C.J. Crouch, “A Cluster Based Approach to Thesaurus

Construction”, ACM SIGIR’88, pp. 309-320, June

1988.

G. Salton and McGill, “An Introduction to Informa-

tion Retmevaf” ,2nd edition, iMacGraw-Hill, c1983.

O. Frieder and H.T. Siegelmann, “On the Allocation

of Documents in Multiprocessor Information Retrieval

Systems”, ACM SIGIR’91, pp. 230–239, 1991.

R. Sharma, “A Generic Machine for Parallel Infor-

mation Retrieval”, Information Processing and Man-

agement, Pergamon Press, pp. 223–235, 1989.

G. Amdahl, “The validity of the single processor ap-

proach to achieving large scale computmg capabilities”,

AFIPS Conference Proceedings, 30, 483-485.

66

