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Abstract

The full integration of information retrieval (IR) features into a

database management system (DBMS) has long been recognized

as both a significant goal and a challenging undertaking. By full

integration we mean: i) support for document storage, indexing,

retrieval, and update, ii) transaction semantics, thus all database

operations on documents have the ACID properties of atomicity,

consistency, isolation, and durability, iii) concurrent addition,

update, and retrieval of documents, and iv) database query

language extensions to provide ranking for document retrieval

operations. It is also necessary for the integrated offering to

exhibit scaleable performance for document indexing and

retrieval processes, To identify the implementation requirements

imposed by the desired level of integration, we layered a

representative IR application on Oracle Rdb and then conducted

a number of database load and document retrieval experiments.

The results of these experiments suggest that infrastructural

extensions are necessary to obtain both the desired level of IR

integration and scaleable performance. With the insight gained

from our initial experiments, we developed an approach, called

cooperative indexing, that provides a framework to achieve both

scalability and full integration of IR and RDBMS technology.

Prototype implementations of system-level extensions to support

cooperative indexing were evaluated with a modified version of

Oracle Rdb. Our experimental findings validate the cooperative

indexing scheme and suggest alternatives to further improve

performance.

1 Introduction
Providing information retrieval (IR) features within a database

management system (DBMS) framework is a highly desirable

goal. Many (if not most) of the applications involving text

databases also have a major component involving structured data

and require the types of guarantees about concurrency control

and recovery that are provided in commercial database systems.

There are a number of technical challenges associated with the

integration of IR and database systems, Of these, the most

significant obstacles include supporting transaction semantics for

IR operations, providing scaleable indexing and query processing
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for large text databases, and extending database query languages

to accommodate ranking. Providing transaction semantics for IR

systems in a database environment involves enabling the DBMS

to handle document storage, update, indexing, and retrieval.

Some current “integrated” systems actually consist of a complete

IR system and a DBMS with the integration mainly occurring in

a common interface. In this approach, the IR system maintains

completely separate index structures on the text components of

the database and the IR portion of a query is evaluated using

these indices. The separate text indices are very difficult to

coordinate with documents stored in the database system, and

guaranteeing concurrency control and recovery is virtually

impossible. The alternative is to store text indices in the

database itself [BLAIR88, CROFT85, HARPER92, LYNCH88,

MCLEOD83]. Under this approach, performance is a problem

when the indexing mechanisms provided by the DBMS do not

satisfy the requirements of full-text IR systems. This is generally

the case when any commercial relational database management

system (RDBMS) is used. In the work reported by [LYNCH88]

and [HARPER92], the DBMS-provided indexing features seem

to more closely satisfy IR system requirements, However, we are

not aware of any studies that discuss either the performance or

scalability of these approaches,

To accommodate large collections of text, database systems that

provide IR functionality must deliver scaleable performance for

indexing and retrieval transactions. Thus, the initial focus of our

work is scalability, as opposed to raw performance. Tuning

andlor additional hardware (which continues to decrease in cost

dramatically) can frequently be used to improve any performance

metric of interest. However, scalability for DBMS products is

directly related to system-level capabilities and algorithm design.

Extending database systems to support document retrieval

predicates has major implications with respect to query language

design and query evaluation. The incorporation of uncertainty

(e.g., probabilities) into database query languages results in a

more general information system and is essential for effective

information retrieval. It is difficult, however, to change current

database systems. Despite some proposals in this area

[FUHR90], most integration efforts impose a Boolean filter on

the ranked results of IR queries before incorporating those results

in the standard database query processing. An example of this

would be. to treat the top N ranked text objects as the retrieved

set. Emerging database standards such as SQL/Multimedia

[SQLMM], while acknowledging the importance of ranking, are

oriented towards the Boolean logic view of retrieval. Although

extending SQL to handle IR query semantics is important, it is

outside our current focus and will not be discussed further,
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The overall goal of our work is to develop a general DBMS

framework that enables an efficient and effective integration of

IR technology. This paper concentrates on identifying the

system-level extensions that enable RDBMS products to provide

transaction semantics for IR operations including document

stolage, update, indexing, and retrieval along with scaleable

performance. We are particularly interested in formulating

RDBMS extensions to provide a generic approach for supporting

different types of IR systems. A simplistic viewpoint would be

that the RDBMS provides support for inverted text indices, since

this is the overwhelming choice of IR system implementors.

However, since different IR systems have specific approaches to

the extraction of index terms from documents and the type of

data stored in a text index, it is important that the indexing

support provided by database systems not be defined too

narrowly. We describe an approach called cooperative indexing,

where the IR components of the system define what is extracted

from documents along with the related index structure, and the

database system provides efficient access to the index.

The cooperative approach 1s important not only for the initial

indexing of the text, but also for maintaining consistency as the

text is updated. The update problem has been largely overlooked

in traditional IR, with the emphasis being on periodically adding

batches of new documents. Document modification and deletion

are rarely mentioned. In a number of important applications

involving collaborative authoring, the situation is significantly

more dynamic. Parts of documents will be added, modified and

deleted very rapidly, and there will be a significant need for real-

time updates to the text indices associated with these documents.

The following section describes the experimental approach that

we employed to study the integration of IR technology into

Oracle Rdb[ORACLERdb]. In Section 3, we discuss our initial

database load and query experiments using a representative El

system that is layered on Oracle Rdb. The lessons learned from

this study led to the cooperative indexing approach, which is

described in Section 4. In Section 5, we present the

experimental findings for the prototype implementation of

cooperative indexing and discuss the implications.

2 Experimental Approach
To help identify the system-level extensions that facilitate the

integration of RDBMS and IR technology, the following

experimental approach was employed:

● Characterize the IR Workload. Using Oracle Rdb Version

6.1, we conducted experiments to characterize the

workload generated by indexing and retrieval transactions.

These experiments were driven with SQL-based

application programs that load the database and execute

queries. For this study, the text index structure was

mapped to an Oracle Rdb table.
● Develop an Experimental Version of Oracle Rdb. An

experimental version of Oracle Rdb was developed that

contains extensions to improve the scalability of indexing

and retrieval transactions, and reduce the secondary

storage requirements for text indices. This version of Rdb

is not production quality software, and served essentially

as a mechanism to help validate the extensions under

consideration.

● Evaluate the Extensions. Using the modified version of

Rdb, we again ran the database load and retrieval

experiments. The resulting workload characteristics were

compared to the initial experiments to evaluate the

proposed extensions.

It should be noted that minimal effort was extended to “tune”

Oracle Rdb or the application software. As such, our

experimental findings do not reflect the actual performance

properties of Oracle Rdb for IR applications. Given this, the

transaction times presented below are expressed in relative units

of measure. The intent of these experiments was simply to

characterize the workload and evaluate the proposed extensions.

During subsequent work, we plan to measure the performance of

Oracle Rdb for IR applications using published benchmark

specifications [DEFAZI093].

2.1 Test Data
The data for our experiments was extracted from the News

collection ~OMASIC93]. In Table 1, we present some of the

statistical properties for this corpus. It should be noted that the

News collection exhibits typical word usage properties. That is,

the word usage patterns can be characterized with a Zipf

[ZIPF49] distribution.

Table 1: Statistical Properties of the News Collection

Total Raw Text 686 Mbytes

Total Documents 138,578

Average Document Size 4,950 Bytes

Total Unique Words 788,256

Total Word Occurrences 48.526,577

Average Occurrences per Word 61

Frequent Words 39,413

Infrequent Words 748,843

Frequent Word Occurrences 93,6%

Infrequent Word Occurrences 6.4%

2.2 Database Schema
The database design we employ for our experiments is

representative of the table-based schemes that are used with

RDBMS products to build IR systems. This database design

supports the probabilistic IR approach [CALLAN92] and consists

of the following two tables:

DOCUMENTS. This table contains the News articles and

the related descriptive (meta) data. Each row represents one

article and has the following attributes:

●

●

●

●

text - varying length character string (64,000 byte

maximum) containing the content of one News article.

ID - four byte integer containing a unique identifier

for the News article.

maxfreq - two byte integer containing the maximum

word usage frequency for the article. This value is

used as the normalizing factor for the probabilistic Et

scheme being modeled. Note that we could have

selected some other normalizing factor such as the

length of the News article.

unqwords - two byte integer containing the number of

unique words in the News article



DOCINDEX. This table contains an inverted index for the

database. Each row represents one index entry and is

composed of the following attributes:

● token - fixed character string (20 characters m length)

containing the token itself.

● ID - four byte integer containing a unique identifier for

the News article.

● frequency - two byte integer containing the frequency of

the token within the News article.

● occlist - varying length character string (512 byte

maximum size) containing the occurrence data that

corresponds to this token within the associated News

article.

Observe that for the DOCINDEX table, the scope of each index

entry is a single document, as opposed to the entire database.

This design reflects our desire to model data structures that

support document-level update and delete operations. That is to

say, documents can be deleted or updated without rebuilding the

entire index structure. Notice also that the occurrence list is

stored in a varying length character string with a maximum size

of 512 bytes. This may seem very small, however, 512 bytes

easily handles the occurrences for one word within a single News

article. For other collections of text, additional storage may be

required. In such cases, the string length could be increased to

64 Kbytes, or even larger (i.e., multiple terabytes) by using an

Oracle Rdb Binary Large Object (BLOB).

To improve data retrieval performance, Oracle Rdb provides both

SORTED (B-tree) and HASHED indices that may be defined on

one or more attributes of a table. Indices that include multiple

attributes are termed multi-segment. An index defined for only

one attribute is called single-segment. For the experiments

discussed below, we employ both single and multl-segment

indices on the database tables.

2.3 Driver Software
The experiments that we conducted were driven with two SQL

Module Language [ORACLERdb] programs that are

representative of existing software for integrating IR and

RDBMS technology. One of these programs, called TextLoad,

builds the experimental database. This program reads News

articles from disk, tokenizes the text, and builds the set of index

entries for the DOCINDEX table. Using calls to SQL Module

procedures, a single insert action adds the text and related

attributes to one row of the DOCUMENTS table. Before

insertion into the database, the text attribute is compressed using

a Huffman [HUFFMAN52] encoding scheme. After a document

is tokenized, the resulting words are filtered through a stop word

list and stemmed to generate the text index entries, One or more

inserts are performed to load these index entries into the

DOCINDEX table. Prior to insertion the text index entries are

sorted. This sorting improves insert performance by increasing

the locality of database write operations. Also, the occlist

attribute of the DOCINDEX table is compressed using a simple

variable length encoding scheme.

The other SQL Module Language program, TextRetrieval, is

designed to be representative of software that selects documents

of interest from the database. A query is presented to this

software as a list of words. For each word, the corresponding

entries m the DOCINDEX table are selected using SQL Module

Language procedures. To model a probabilistic IR system in a

dynamic environment, documents are indexed as separate

entities independent of the collection. That is, the unit of

inversion is a document, not the entire News collection. Term

frequency and maximum term frequency within the document are

pre-computed and stored in the database tables. At search time,

the other statistics required to generate ranked output (e.g. IDFs)

are computed.

2.4 Computing Environment
The experiments that we conducted were performed on a

dedicated DEC Alpha 7000, Model 720 machine operating under

OpenVMS Version 6.1. The hardware configuration included

one 275 mhz Alpha processor, 1,024 Mbytes of memory, and

approximately 10 Gbytes of disk storage. Oracle Rdb operated

with an I/O size of 8 Kbytes, a database buffer cache of 128

Mbytes, and a maximum process address space of 256 Mbytes,

Our experimental database was striped across three DEC RZ28

disks, each having 2 Gbytes of capacity and mean access time of

about 10 milliseconds. The driver software for our experiments

was written in DEC C Language.

3 Initial Experiments
To characterize the workload for our IR application, we

conducted multiple database load and retrieval experiments. The

load experiments build the database, and can be viewed

conceptually as a sequence of large batch transactions. Each load

transaction inserts 100 News articles into the database. This

mode of operation was selected to model the operation of an

incremental “batch” update program. Clearly, the selection of

100 articles per load transaction is an arbitrary choice on our

part. This choice, however, does represent a compromise

between loading each article under a distinct transaction, and

loading all the articles as one transaction.

The retrieval experiments select documents from the database

using a set of sample queries. Each query is processed as a

distinct transaction and consists of 6 tokens that were selected

from the database vocabulmy. The query tokens include high,

medium, and low use words, where each word is assumed to

have equal weight. The TextRetrieval program located all

documents containing one or more of the query tokens, and

produced a ranked answer set. Each retrieval experiment

executed the same 10 queries, and started with an empty

database buffer. For this set of queries, we measured the elapsed

times with and without retrieving the occlist attribute of the

DOCINDEX table.

One set of load and retrieval experiments operated with a single-

segment index, called TokenInd, defined on the token attribute of

the DOCINDEX table. The other set of experiments had a multi-

segment index, termed TokenIdFreqInd, defined for the

DOCINDEX table. This index includes the token, ID, and

frequency attributes. The multi-segment index configuration was

employed to study the performance implications of storing the

data required for ranking as part of the key for each B-tree entry.

For both sets of retrieval experiments, a single-segment index,

MaxFreqInd was defined on the maxfreq attribute of the

DOCUMENTS table.

86



3.1 Database Scaling
The load and retrieval experiments are focused on determining

the scaling properties for the related transactions. For database

systems, batch scaleup is usually defined as executing the same

transaction on a database that grows in size by a factor of N

[DEWIT92]. The batch scaleup for a transaction is said to be

hnear whenever the database size and processing time increase

by a factor of N while holding the computing resources constant.

For example, when the amount of database text doubles in size,

the load transaction would scaleup linearly only if the processing

time on the same computer system increased exactly by a factor

of F!vo.

Whm transactions use a B-tree index to retrieve data, one

expects sublinear batch scaleup. This IS because the number of

B-tree levels equals the log of the number of keys. If we assume

that doubling the amount of text increases the number of index

entries approximately two fold, then the growth in levels for the

corresponding B-tree index will be substantially less. Thus, one

would expect to observe sublinear batch scaleup properties for

our retrieval transactions.

3.2 Initial Experimental Findings
Summary statistics for the initial database experiments are given

in the following table.

Table 2: Summary Statistics for Each Initial Case—

Total Documents 30,000

Total Raw Text 156 Mbytes

Total Unique Words 199,433

Total Word Occurrences 7,639,928

Total Load Transachons 300

Total Retrieval Transactions 120

Figure 1 displays the load transaction times versus the amount of

source text indexed under both single and multi-segment indices

on the DOCINDEX table.

I

250-

203-

3.-
.

: lw-
g

~ ,~.
~
w

50- /
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .

01
10 30 50 110 im

N&i of Scurc:Text
1s3 I

Figure 1. Initial Load Transaction Times.

Notice that in Figure 1 the transaction times for the single and

mu] ti-segment index cases are nearly identical for data sizes less

than 30 Mbytes. When the amount of text exceeds 110 Mbytes

in size, elapsed times for the multi-segment load transactions

begin to increase much more rapidly. Observe that in both cases,

the load transactions exhibit sublinear scaleup when the amount

of source text loaded is less than 100 Mbytes. However, in the

multi-segment case the load transaction exhibits an epoch of

nonlinear behavior after the data size exceeds 110 Mbytes, and

then returns to a more uniform growth pattern. This behavior

can be explained by considering the structure of an Oracle Rdb

B’ tree [GRAY93]~

As shown in Figure 2, the B“ tree structure used by Oracle Rdb

has duplicate nodes to handle multiple occurrences of the same

token.

Figure 2. Logical Structure of an Oracle Rdb B* tree.

For the multi-segment case, the B* tree bas many more interior

and leaf nodes, and no duplicate nodes. Each of the load

transactions accessesmany of the related index pages. At some

point, the amount of buffer space is exhausted, and performance

degrades rapidly. After the buffer management algorithm adjusts

to this situation, the growth in load transaction times seems to

stabilize. However, by this point the load transaction times have

increased by nearly an order of magnitude. In effect, this

behavior occurs because as the B* tree grows, an increasing

number of nodes must be flushed from the buffer per transaction.

In the single-segment case, after the database reaches a certain

size, most of the B* tree growth occurs in the duplicate nodes.

As such, the database buffer pool can accommodate the interior

and leaf nodes far longer than for the multi-segment case.

Clearly, as the database grows, at some point the single-segment

B* tree size must also exceed the amount of available buffer

space. However, after the database reaches a certain size, the

introduction of new vocabulary for most text sources tends to

decrease significantly [CHAPMAN90]. Thus, we have reason to

believe that the sublinear scalability exhibited by the load

transaction under single-segment indexing will hold for much

larger databases.

The storage requirements for the experimental database are

shown in Table 3. Notice that the total storage requirement for

the database is roughly 3 times the source text size. As

expected, the multi-segment ]ndex configuration requires more

storage than single-segment index case. This follows since the

multi-segment index entries are much larger m size than for the

single-segment case.

87



Table 3: Initial Storage Requirements

Total Source (text) 156 Mbytes

DOCUMENTS (table) 86 Mbytes

MaxFreqInd (index) 0.5 Mbytes

DOCINDEX (table) 231 Mbytes

TokenInd (index) 101 Mbytes

TokenIdFreqInd (index) 160 Mbytes

Figure 3 shows the average elapsed time required for retrieval

transactions at various database sizes.
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Figure 3. Initial Retrieval Transaction Times.

Without returning the occlist attribute, the retrieval transactions

execute much faster in the multi-segment case. In fact, this is

the only case where the retrieval transaction times exhibit the

expected sublinear scaleup properties. The large difference in

time among the cases is a consequence of accessing the

DOCINDEX table to satisfy the query. That is, in the multi-

segment case, the data attributes required for computing ranks;

namely, token, document identifier, and token frequency reside

in the B-tree. Thus, an index-only retrieval is sufficient. For the

single-segment index, after the B-tree is searched the related

records must be fetched from the DOCINDEX table.

Notice that when the occlist attribute, which resides only in the

DOCINDEX table, is returned to the TextRetrieval program, we

obtain relatively equivalent performance for the single and multi-

segment cases, For this experiment, even with a multi-segment

index, the DOCINDEX table must be accessed and the related

performance penalty is significant.

3.3 Discussion of Initial Results
Based on our initial experimentation we make the following

observations:

● Using a physical table to store the text index does not

yield scaleable performance for both load and retrieval

transactions. As the database grows, load transaction

times increases nonlinearly in the multi-segment case, and

sublinearly when a single-segment index is employed.

With multi-segment indexing, we observed the lowest

retrieval transaction times and sublinear scalability when

the occlist attribute was not selected. As such, the best

overall performance occurs with a single-segment index

for loading, and multi-segment indexing for retrieval

when the occlisf attribute is not selected. Thus, our goal

is to develop an indexing mechanism for Oracle Rdb that

combines the best of these schemes, and is also capable of

returning occurrence data to retrieval transactions with the

minimum possible penalty.

● Being about three times the size of the source text, the

amount of storage required for a table-based text index is

high. By storing the text index structures entirely within a

B-tree (analogous to the multi-segment case including the

occlist attribute), we could eliminate the need for a

physical DOCINDEX table and reduce storage costs

significantly.

In the following section, we introduce the notion of cooperative

indexing. The implementation that we propose for cooperative

indexing contains a set of RDBMS extensions that are designed

to enable highly scaleable load and retrieval transactions. These

extensions also reduce the storage demand by eliminating the

need for a physical text index table. As we shall see, however,

the total storage required for our prototype remains larger than

the space overhead for efficient file-based IR systems.

4 Cooperative Indexing
For simple data types such as integers and small strings, all

aspects of indexing can easily be handled by the DBMS. This is

not the case for content-based indexing of documents, images,

video clips, and other complex forms of data, The essential

reason is that complex data types have application-specific

formats and indexing requirements. For the DBMS to effectively

accommodate complex data objects, it is necessary to support

application-specific indexing techniques. The approach we

employ to satisfy this requirement is termed cooperative

indexing. For cooperative indexing, an application and the

DBMS share the responsibility for building and interpreting the

index structures. In this scheme:

● Each index entry logically consists of a key along with

application-defined referent and data attributes. The

referent is a unique value by which the DBMS identifies the

related database record. The data attributes contain

application-specific indexing values.
● The application builds and interprets the index records,

while the database system provides access to the index

entries.

In effect, the application controls semantic content of the index,

and the database system handles the physical storage of the

related data structures. Notice that the cooperative indexing

model assumes that the content for any index entry can be

represented as a tuple. More specifically, a cooperative index is

modeled as a table. The data elements for such tables define the

structure of the related index entries,

To illustrate this concept, consider the DOCINDEX table

described above. The attributes of this table could be mapped

into a cooperative index as follows:
● token is the key attribute,

● ID is the referent attribute, and

● frequency and occlist are the data attributes.

For database updates, the IR indexing software parses the text,

builds the index entries, and modifies the cooperative index. On

retrieval, the IR query processing software obtains the index
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entries for the given query terms, interprets the content, and

determines the documents that satisfy the selection criteria. The

resulting set of IDs is used to retrieve and possibly rank the

matching documents.

Under the cooperative indexing model, the application software

controls updating the index structures. Notice that this differs

significantly from most DBMS provided indexing mechanisms.

That is, when an index is defined on some database attribute, the

DE\MS updates the related structures as a side-effect of record

addition, deletion, or modification. For cooperative indexing, the

application assumes this responsibility.

The cooperative indexing scheme has the foIlowing important

prc)perties:

ID Data Integrity. Updates to the index structures occur

under transaction control. Thus, the level of data

integrity provided by the cooperative indexing scheme is

analogous to that associated with typical DBMS indexing

mechanisms.

!0 Data Concurrency. Using a table to model an IR index

requires two data structures. That is, inverted list entries

are stored as rows in a table, and the DBMS maintains an

index on one or more of the related table attributes, With

cooperative indexing, the IR index resides in one data

structure that is managed by the DBMS. This reduces the

amount of locking during IR index updates and, therefore,

enables the DBMS to provide increased levels of data

concurrency,

(D Data Consistency. The cooperative indexing scheme

enables the application to select the desired level of data

consistency. For example, an application may update a

cooperative index at some point in time after textual

content is added, deleted, or modified. In such cases the

index becomes inconsistent, and full-text queries may not

cover portions of the database. Some applications may

require the IR indices to always be logically consistent

with the associated database content. In this case, an

application can elect to operate in a manner analogous to

the typical DBMS indexing mechanisms. That is, modify

database content and the cooperative index within the

context of one update transaction. Notice that in either

case, the index is updated under transaction control and

database integrity is guaranteed by the DBMS.

In addition to the properties mentioned above, the cooperative

indexing approach benefits from operating completely within a

database framework. Thus, under this model of integration, Et

applications can benefit fully from database system features

such as integrated backup and recovery, security, replication, and

so on.

4.1 RDBMS Extensions for Cooperative Indexing
Given the generality of our cooperative indexing model, there are

many possible implementations. We have selected an approach

that M based on the following assumptions:

0 The DBMS must provide type-specific access methods for

supporting cooperative indexing. That is to say, indexing

based on typical B-tree or hashing schemes are incapable

of handling content-based selection of complex objects

such as documents, images, video clips, and so on.

● The native application programming interface for the

DBMS must include support for cooperative indexing.

Working under these assumptions, we developed a proto~pe

implementation of Oracle Rdb that has the following extensions:

● New Sorted Access Method. This new access method is

modeled after a B+ tree [GRAY93]. That is, the referent

and data attributes are stored in the B-tree. The primary

goals of this access method are to more efficiently handle

the occurrence lists associated with IR indexing

technology, and eliminate the need to use physical tables

for storing IR index structures.

● INDEX ONLY Tables. This feature permits the user to

define a table that represents the structure of an index

record. For such tables, the attributes are stored entirely

within the physical data structures for the index. In effect,

an INDEX ONLY table is a logical construct for defining

and accessing index content with SQL statements.

It is worth noting that our implementation of cooperative

indexing is very general. More specifically, the scope and

content of each index entry is not restricted. Thus, we could

design a cooperative index where the occurrence data for each

key spans the entire database (much like typical inverted files).

In the experiments discussed below, each index entry represents

the token occurrences on a per document basis. The reason for

selecting this level of granularity is to model data structures

where the access method can directly support document deletion

and updating. For example, using an INDEX ONLY table

analogous to DOCINDEX, we could directly delete all entries

having a given ID value.

5 Prototype Experiments
Our prototype implementation of cooperative indexing was

evaluated using the extended version of Oracle Rdb discussed

above. Unfortunately, the development of prototype software to

support index delete and modification operations was beyond the

scope of this effort. These features will be included in the

production implementation of cooperative indexing for Oracle

Rdb,

To ensure an equivalent evaluation of our extensions, the load

and retrieval experiments described in Section 2 were employed.

This time, however, we used the modified SORTED access

method along with an INDEX ONLY table for indexing the text.

The INDEX ONLY table definition for the database is described

in Section 4.0. The results of these experiments along with a

comparative performance analysis are presented below.

5.1 Prototype Experimental Findings
Summary statistics for the database experiments using the

prototype version of Oracle Rdb are the same as those presented

above in Table 2. Figure 4 displays the load transaction times

versus the amount of source text for the prototype version of

Oracle Rdb and the initial single-segment index experiment.

Notice that after the source data size exceeds 60 Mbytes, the

prototype load transaction times begin to increase rapidly, Then,

after about 90 Mbytes of text is loaded, elapsed times for the

prototype load transactions stabilize. This behavior is similar to

what we observed in the initial experiments for the multi-

segment load transactions. The major difference is that the

elapsed time increased much less for the prototypes as compared

to the multi-segment case. As with the multi-segment load
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experiments, this behavior occurs when it is no longer possible to

cache the entire index structure in database buffers. However, in

this case the situation is somewhat different.

For a B+ tree, growth tends to occur mostly in the leaf nodes, and

each load transaction accesses a large number of these nodes.

The load transactions adds index entries in sorted order. As the

transaction proceeds, pages are flushed from the buffer under a

least recently used (LRU) replacement algorithm. After one load

transaction completes, most of the B+ tree pages required to

access entries that occur early in the alphabet have been flushed.

In the following transaction, many of these pages must be

reloaded from disk. Thus, as the B+ tree grows, more 1/0s are

required per load transaction. Fortunately, this cyclic sequential

reference behavior is well understood [HAWTHORN79]. Also,

there are known extensions to the LRU buffer replacement

algorithm to address this behavior [GRAY93].
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Figure 4 Load Transaction Times.

Notice that the tx-ototyue load transactions scale linearly or better

for most regio& of ‘the curve shown in Figure 4. ‘Generally

speaking, this result is encouraging. With enhancements to the

buffer replacement algorithm, we expect to see significant

improvements for load transaction times. Also, there are other

performance improvement opportunities for the prototype load

transactions, the most important of which is I/O reduction. In

Table 5, we show the average I/O per load transaction across the

experiments. As shown in Table 5, on average the prototype

generates significantly more database writes per load transaction

than the initial single-segment case. This additional 1/0 is

directly related to the large number of B+ tree pages that must be

written per transaction, It is worth noting that adding the same

amount of text index entries to the physical DOCINDEX table

causes far fewer database pages to be modified. This is because

writing records to a physical table typically appends data to the

end of a contiguous storage area. However, adding the same

amount of data to a B+ tree causes more discontinuous pages to

be modified. As with the buffer replacement problem, there are

known clustering techniques for reducing the amount of

discontinuous allocations for related nodes in the B+ tree

[GRAY93, TOMASIC93]. Also, the higher read rate for the

prototype load transactions can be reduced by employing an

enhanced buffer replacement algorithm as discussed above.

Table 5: Average Database I/O per Load Transaction

Single-segment Prototype
Average Reads 157 1816

Average Writes 3290 4420

For various source data sizes, Figure 5 shows the average

elaused time rectuired for retrieval transactions from the

pro~otype implem&station and the initial multi-segment case.
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From the curves in Figure 5 we find that when the occlist

attribute is not selected, the prototype exhibits nearly identical

retrieval transaction times as compared to the multi-segment

case. When the occlist attribute is selected, the prototype

retrieval transactions require much less time than for the multi-

segment case. Notice that in all cases, the prototype retrieval

transactions exhibit sublinear scaleup properties.

The storage requirements for the experimental database

constructed with the prototype version of Oracle Rdb are shown

in the following table.

Table 6: Prototype Database Storage Requirements

Total Source (text) 156 Mbytes

DOCUMENTS (table) 86 Mbytes

MaxFreqInd (index) 0.5 Mbytes

Cooperative (index) 200 Mbytes (estimate)

From Table 6, notice that the total storage requirement for our

cooperative indexing scheme is roughly 2 times the source text

size. This storage savings, as compared to the initial case,

results from eliminating the need to redundantly store tokens in

the DOCINDEX table.

Considering the results of our prototype collectively, we are

encouraged. Although we did not achieve the desired

performance for the load transactions, it is only because the

necessary changes to Oracle Rdb are beyond the scope of our

prototype efforts. In terms of retrieval transactions, we clearly

demonstrated that the new access method exhibits highly
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desirable scalability properties. Also, the performance penalty

for selecting occurrence data is much more reasonable than for

the multi-segment case.

5.2 Lessons Learned
In the process of building our Oracle Rdb prototype system, we

made significant progress toward gaimng the understanding

recpired toeffectively integrate IRand RDBMS technology. The

mc,st important lessons learned from this undertaking include:

● The text workload differs considerably from that

generated by traditional RDBMS operations. Existing

RDBMS technology has been highly optimized to handle

tables and the related operations. The set of operations

for text impose considerably different demands on the

database system. Forexample, the B*tree indexing used

by Oracle Rdb exhibits excellent performance properties

forvery large relational databases. However, we observed

that this isnotthe case for text. Thereason being one of

scale. That is, documents generate about two orders of

magmtude more index keys per byte of data. To obtain

scaleable performance, access method enhancements are

required. We have found that by using a B+ tree, it is

possible toobtain scaleable performance, This is because

the tree grows essentially at the leaf nodes. Thus, after

the arrival of new vocabulary begins to fall off as the

database grows, the number of B+ tree operations for

indexing and retrieval increases at asublinear rate.

● Enhanced buffer management algorithms are essential.

The LRU buffer management scheme used by most

RDBMS products must be enhanced to handle the cyclic

sequential access patterns for index pages that result from

a series of document load transactions. This behavior is

generally handled by RDBMS products for operations on

tables that require multiple scans (e.g., non-key join).

However, this behavior is not typically associated with

accessing RDBMS index structures.

● Pe~ormance improvements will come with time. Naively,

one may claim that some IR-specific tree can be used to

obtain highly desirable performance for text operations.

This is simply not the case for RDBMS products, The

interaction between RDBMS access methods, concurrency

control, and recovery is highly complex [LOMET91 ]. It

has taken years to understand this interaction, and only for

a limited number of indexing methods such as B-trees and

hashing. Thus, it M necessary to evolve the current

RDBMS access methods to accommodate text and,

consequently, we can expect to see continual performance

improvement over time.

As one final observation, we mention that this work has been

very challenging. Most of this challenge is directly related to

developing RDBMS kernel level support for a significantly

different indexing paradigm.

6 (conclusions

Commercial RDBMS products available today do not provide

highly integrated support for IR technology. In addition to this,

many of the existing IR systems do not efficiently support

document update operations. We have developed a prototype
version of Oracle Rdb that implements a generic framework,

called cooperative indexmg, that enables the effective integration

on IR technology and scaleable performance. The performance

studies that we conducted with an “untuned” prototype version of

Oracle Rdb yielded scaleable performance for database load and

retrieval transactions. Although these studies were conducted

with a relatively small collection of text, we expect similar

performance for much larger databases.

Historically, IR system design has concentrated heavily on

reducing storage requirements. This work has yielded numerous

techniques for building highly compressed index structures. The

use of such data structures, however, makes the integration of IR

and DBMS nearly impossible. The primary problem derives

from the fact that any modification to the source text typically

forces a complete rebuild of compressed index structures. In a

dynamic database environment, the overhead of a complete index

rebuild and the impact on concurrent data access are

unacceptable. With the rapidly decreasing costs for magnetic

disks, we claim that IR systems can handle “reasonable”

increases in secondary storage demand in order to obtain the

benefits of database functionality.

Thus far, we have not addressed the extension of database query

languages to include the notion of uncertainty. The evolving

SQL/MM standard [SQLMM] m woefully lacking in this regard.

To properly export IR functionality in a RDBMS context, SQL

and the database infrastructure must be appropriately extended.

Given that our work has demonstrated the viability of physically

integrating IR and RDBMS, we will now begin addressing the

RDBMS extensions that are required to adequately support

uncertainty in query processing.
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