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Abstract

Parallel computing on clusters of workstations and personal computers has very high
potential, since it leverages existing hardware and software. Parallel programming environ-
ments offer the user a convenient way to express parallel computation and communication.
In fact, recently, a Message Passing Interface (MPI) has been proposed as an industrial
standard for writing “portable” message-passing parallel programs. The communication
part of MPI consists of the usual point-to-point communication as well as collective com-
munication. However, existing implementations of programming environments for clusters
are built on top of a point-to-point communication layer (send and receive) over local
area networks (LANs) and, as a result, suffer from poor performance in the collective
communication part.

In this paper, we present an efficient design and implementation of the collective com-
munication part in MPI that is optimized for clusters of workstations. Our system consists
of two main components: the MPI-CCL layer that includes the collective communication
functionality of MPI and a User-level Reliable Transport Protocol (URTP) that interfaces
with the LAN Data-link layer and leverages the fact that the LAN is a broadcast medium.
Our system is integrated with the operating system via an efficient kernel extension mech-
anism that we developed. The kernel extension significantly improves the performance of
our implementation as it can handle part of the communication overhead without involving
user space.

We have implemented our system on a collection of IBM RS/6000 workstations con-
nected via a 10Mbit Ethernet LAN. Our performance measurements are taken from typical
scientific programs that run in a parallel mode by means of the MPI. The hypothesis behind
our design is that system’s performance will be bounded by interactions between the kernel
and user space rather than by the bandwidth delivered by the LAN Data-Link Layer. Our
results indicate that the performance of our MPI Broadcast (on top of Ethernet) is about
twice as fast as a recently published software implementation of broadcast on top of ATM.



1 Introduction

Recently, a Message Passing Interface (MPI) [16] has been proposed as an industrial standard
for writing “portable” message-passing parallel programs. The MPI standardization effort
involved about 60 people from 40 organizations including universities, national laboratories,
and most MPP vendors. Version 1 of MPI was released in May 1994. MPI adopts most, if
not all, common practices from existing communication libraries. One of the key components
of MPI is the collective communication subset that allows users to conveniently call library
routines for various “global” communication operations, like broadcast, scatter and gather. All
MPI collective communication routines are implicitly defined with respect to a process group
[3] which specifies an ordered set of processors within which the collective communication will
be performed. For example, a multicast is specified as a broadcast to a particular process
group. The performance of a parallel program depends on an efficient implementation of
point-to-point as well as collective communication.

In existing parallel programming environments, such as PVM, EXPRESS and IBM’s MPL
[12, 20, 2], for Local Area Networks (LANSs), collective communication routines are imple-
mented on top of point-to-point communication. As a result, these environments suffer from
poor collective communication performance. For example, a broadcast that is implemented
using a TCP or point-to-point UDP over a LAN is obviously inefficient as it is not utilizing
the fact that most LANs are based on a broadcast medium.

In this paper, we present an efficient design and implementation of the Collective Com-
munication Library in MPI (MPI-CCL) that is optimized for clusters of workstations. In
particular, we demonstrate the implementation on a traditional 10Mbit Ethernet-based LAN.
We note here that the ideas presented in this paper can be easily extended to any Network of
Workstations (NOW) [21] that provides an unreliable broadcast transport protocol (such as
to an ATM network where the ATM switches have broadcast capability as provided by many
vendors nowadays).

Our main contributions in this paper are:

e We have designed and implemented a system that consists of two main components: the
MPI-CCL layer that delivers the collective communication functionality of MPI and a
User-level Reliable Transport Protocol (URTP) that interfaces with the LAN Data-link
layer.

e We provide a formal specification of the semantics of the user parallel program that is
required for the correctness of our MPI implementation. This property is essentially
that a parallel program can be described as a single global program running on multiple
processors. The implementation of MPI-CCL and URTP makes use of the global program
semantics.

e We have incorporated a number of novelties in our protocols. Our URTP is based on a
sliding window protocol with efficient acknowledgement and also makes use of a novel
(pessimistic) immediate request protocol. Our request protocol is the only place where
we actively retry to provide reliable communication. The global program semantics
makes this new approach sufficient.

e Our system is integrated with the operating system via an efficient kernel extension



mechanism that we developed. The kernel extension significantly improves the perfor-
mance of our implementation as it can discard unnecessary request messages without
involving user space. It also discards broadcast messages for which the local processor
is not in the intended multicast target.

o We provide performance measurements of our prototype implementation. The measure-
ments are taken from typical scientific programs that run in a parallel mode by means
of the MPI. Thus, they can be directly compared with performance measurements taken
from other implementations of the MPI. Since our emphasis is on collective communica-
tion, we measured programs that make heavy use of collective operations, including, (1)
straightforward matrix-matrix multiplication, and (2) iterated multiplication of a vector
by a sparse matrix. The latter is part of the differential equation solver of a computer
aided engineering application.

e The hypothesis behind our design is that performance will be bounded by interactions
between kernel and user space rather than by the bandwidth delivered by the LAN
Data-Link Layer. The validity of this hypothesis clearly depends on both the reliability
of the LAN Data-Link Layer and the patterns of communication generated by parallel
applications. Our results indicate that the performance of our MPI Broadcast (on top
of Ethernet) is about twice as fast as the software implementation of broadcast on top
of ATM that is presented in [14]. For example, a broadcast of a 4Kbyte message on
8 machines takes about 6 msecs in our implementation compared to 15 msecs in the
implementation in [14].

We note there have been many existing systems, such as [4, 23, 1], that provide a reli-
able transport protocol and other services for distributed computing. Our URTP protocol
distinguishes itself from previous ones because it is targeted for supporting parallel computing
using MPI programs and can take advantage of the global program semantics derived from
our MPI-CCL implementation.

Note also that there have been various works in improving communication latency and
bandwidth by modifying message passing protocols to facilitate efficient system implementa-
tion. Examples are the Active Message project by Culler et al. [9], the Fast Message project by
Chien et al. [19], and the Shrimp project by Li et al. [15]. In this paper, we address the same
issue using a different orthorgonal approach. Thus, we do not claim that our approach should
replace any work in this area. Rather, our approach can be integrated with many proposed
system designs in improving message passing protocols on networks of workstations.

The rest of the paper is organized as follows. In Section 2 we describe our system ar-
chitecture. In Section 3 we present the design, prototype implementation and performance
measurement of our URTP protocol. In Section 4 we describe our design, implementation and
performance measurement of our MPI-CCL layer. We then present performance measurements
of two MPI programs in Section 5. Finally, Section 6 concludes the paper. We also include
pseudocode for some key parts of the URTP protocol in the appendix.



2 The System Architecture

In this section we will overview our system architecture. We are interested in efficient MPI
implementation on a LAN. The system consists of an MPI program, typically SPMD (Single
Program Multiple Data) style, running on a cluster of processing elements, each with its
own local memory. Processors communicate with each other via asynchronous and unreliable
point-to-point or broadcast packets, as supported by the LAN Data-Link layer. Although we
expect that some packets might be lost, we assume that the content of a received packet is not
corrupted beyond the tolerance of standard error correction.

2.1 The Software Layers

A process has four logical layers of software (see Figure 1). The lowest layer is a LAN Data-
Link Layer (typically Ethernet) that interfaces the LAN. The second layer (from the bottom)
is our URTP protocol layer which guarantees reliable point-to-point and reliable multicast to
the upper layer. The third layer is our MPI-CCL layer which maps all MPI-CCL routines
into the interface supported by URTP. It also deals with packetization of user messages and
scheduling of packets. The highest layer is the MPI application program layer. In this paper
we provide efficient design, implementation, and performance measurement of the two middle
layers (URTP and MPI-CCL). Note that in the MPI-CCL layer, we focus on the collective
communication subset of MPI only. For MPI point-to-point communication routines, they
can be easily mapped to reliable point-to-point communication provided by URTP or similar
protocols (e.g. [11]).

For clarity, here we define a few terms that are used throughout this paper. A message,
which has no upper bound on size, is the unit of communication at the MPI applications
layer. A packet, which has an upper bound of about 1.5 KBytes, is the unit of communication
at the MPI-CCL layer or URTP layer. Specifically, multicast, send, receive and multireceive
calls, issued from MPI-CCL layer to URTP layer, are all with respect to packets. (Note that
multireceive is defined as receiving the “next” packet from each processor in a specified set, in
arbitrary order.) We sometimes refer to the packets at the URTP layer as URTP packets for
clarity. A URTP packet is either a data packet or a control packet.

2.2 The Global Program

Here we provide a formal specification of the semantics of user parallel programs that is
required for the correctness of our MPI implementation. This property is essentially that a
parallel program can be described as a single global program running on multiple processors.
The implementation of MPI-CCL and URTP makes use of the global program semantics.
There are two main properties guaranteed by the global program semantics. First, each
node knows the ordering of expected packets from every other node. Second, it also guarantees
freedom from deadlock due to lack of system buffer space. We will now describe the semantics
of the global program that is generated by our MPI-CCL layer. The global program can be
viewed as a function, taking a pid and an instruction counter as parameters, mapping to one
of the 3 possible calls: multicast, receive and skip. A multicast call takes as argument a set
of destination processors called the target set. (For simplicity, we treat a point-to-point send
as a multicast with one destination in the target set. This is only for specification purposes



and does not determine the implementation.) A receive takes as argument one explicit source
processor.!  In the most strict definition, we say a global program is correct if, for each
instruction counter, there is at most one multicast and exactly the processors in the target
set issue receive with the source matching the multicast source. (See [6] for a more formal
and detailed definition.) Note that the skip call, the instruction counter and the restriction
to one multicast call per instruction call are all introduced for the purpose of specification. In
particular, each processor will execute its program in an asynchronous and greedy manner.
Note that having a correct global program (and the fact that multicast/send and receive always
match) reduces dependency on the number of buffers in the system, and avoids deadlock due
to exhaustion of resources.

For performance reasons, we will relax and generalize our definition of correct global pro-
gram as follows: A global program is k-buffer correct if (i) there exists a uniform grouping
of instructions such that every group spans at most k instructions and (ii) within each group
all multicast and receive calls are matched completely and consistently. Clearly, our original
semantics of correct global program becomes I-buffer correct in the generalized semantics. If
we assume (for the moment) that the LAN Data-Link Layer is completely reliable, then it is
easy to provide a deadlock free implementation for any k-buffer correct program using system
buffers for k packets per processor.

As an example, consider an implementation of all-to-all broadcast among p processors.
With the 1-buffer correct semantics, multicast must be called by the p processors in a round-
robin manner. With the p-buffer correct semantics, each of the p processors can issue a
multicast followed by p — 1 appropriate receive calls in arbitrary order. Clearly, p buffers for p
packets at each processor are sufficient for this purpose.

It should be noted that the users do not need to worry about whether their MPI programs
are k-buffer correct or not. Our MPI-CCL layer, which takes MPI programs with collective
communication calls, is implemented to generate k-buffer correct global programs for some
carefully chosen k. Note also that we do not change any semantics of MPI point-to-point
communication calls by users. For instance, wildcard receives are still allowed by users. This
is because implementation of our MPI-CCL layer can be made “disjoint” from that of MPI
point-to-point communication routines.

3 The URTP Protocol

Present LANs have a very low packet loss rate due to media errors. The sender side provides a
highly reliable data transfer path to the communication medium. The vast majority of packet
loss is due to the lack of buffers at the receiver side(s). URTP was designed to provide a reliable
transport protocol with point-to-point and multicast capabilities and with performance as close
as possible to that of the hardware it is running on.

In this section we present our key approaches to this problem. Briefly, they are:

1. Build URTP on top of the lowest available layer (LAN Data-Link Layer in our case).

2. Take advantage of the multicast/broadcast capabilities offered by the lower layers.

'That is, the wildcard source is not allowed. See [3] for details.



3. Move the packets from kernel buffers into user level buffers and free kernel buffers as
soon as possible. This minimizes the chances that packets are dropped due to the
lack of free kernel buffers. There are two main differences between kernel and user
buffers. First, kernel buffers occupy physical (non-pageable) memory and user buffers
occupy virtual (pageable) memory. Second, kernel buffers are a shared resource for
the communication needs of all processes on a machine; user buffers are managed by
individual user’s application.

4. Drop unwanted packets as soon as possible and with a minimum overhead.

As a result URTP is implemented as a combination of a kernel extension and a user-
level library. Most of the protocol code is in the user-level library. This decision made the
implementation easier without a significant performance degradation (see [17]). The kernel
extension part enables fast processing (dropping) of multicast packets at processors that are not
part of the target set? and also reduces the inter-processor communication overhead between
processes.

3.1 Protocol Description

The issues and requirements that we consider while designing the protocol are as follows:

1. Packet ordering properties: we require reliable point-to-point and multicast FIFO. Point-
to-point and multicast packets respect the same order. The fact that a packet was sent
by a point-to-point send or a multicast is invisible to the layers above URTP3; the same
call is used to receive it.

2. Buffer management on the sender side: since the broadcast domain in the LAN Data-Link
layer is not reliable, the sender keeps a copy of each packet sent, until every processor in
the target set has (implicitly) acknowledged its receipt.

3. Buffer management on the receiver side: since the broadcast domain is not reliable, some
packets may be lost. For performance reasons we buffer all “useful” data packets at the
receiving side, even when a gap is detected.

4. Detection of packet loss on the receiver side: given the semantics of the global program
we can detect a packet loss (or delay) when a receive is issued from the MPI-CCL layer.
In addition, packet loss can be detected by violation of FIFO ordering at the receiver.

URTP uses a modified version of the sliding-window protocol. Since we expect to have
many groups of varying sizes it is important to have sequence number management associated
with every pair of processors. Namely, every sender-receiver pair has a counter associated
with it. Because every processor can act as a sender and receiver there will be two counters
for every processor pair. Point-to-point packets will contain the current value of the counter
associated with the (sender, receiver) pair. Multicast packets will contain a counter value for

2URTP multicast is implemented using the underlying LAN broadcast and multicast capabilities. For reasons
to be explained later, a processor not in a target group might also receive packets for the group.

®For instance, URTP uses a point-to-point send to resend a multicast packet upon getting REQ from some
processor in the target set.



every processor in the target set. These numbers correspond to the pairs (sender, receiver;)
for each receiver; in the target set. After a packet is sent all the counters whose values were
used in the packet are incremented by one. As a result, the numbers used for point-to-point
and multicast packets sent from processor 7 to processor j are generated by the same counter.
All the necessary packetization is handled by the upper (MPI-CCL) layer; a URTP packet
always translates into exactly one LAN packet.

The MPI-CCL layer manages the sending buffers. URTP is passed a pointer to the buffer
containing the packet to be sent/multicast together with a call-back function. The function
will be called (to free the buffer) when acknowledgements for the packet are received from all
the destination processors in the target set (point-to-point packets have only one destination);
the address of the buffer is passed as a parameter. For a good performance, the recommended
size of the sending buffer pool in MPI-CCL is (p — 1)W, where p is the number of machines
in the configuration and W is the window size. This guarantees that the sender won’t ever
run out of sending buffers. All those buffers are in user space (pageable memory) and layers
using URTP can implement their own buffer management policies. To prevent deadlock, each
processor must be able to increase its sending buffer pool to the recommended size.

The receiving buffers are managed by URTP. For simplicity, current URTP implementation
allocates (p — 1)W + ¢ buffers, where p and W are defined as before and c is a small constant.
Among the buffers, (p — 1)W are required for the URTP data packets and ¢ are used for
the URTP control packets (e.g. ACK, REQ). (Other implementations using fewer buffers are
possible, such as having a “reserved buffer” for the critical packet from each processor.) A
pointer to the received packet and a call-back function are passed to the MPI-CCL layer as
the result of a receive call from MPI-CCL. The call-back function must be called by MPI-
CCL layer after it finishes using the buffer (i.e., processing the packet). The buffers are all
in user space (pageable memory) and are the size of the maximum LAN packet. A packet
can be acknowledged as soon as it reaches a URTP buffer. If the number of received and
unacknowledged packets reaches a threshold then an ACK packet will be sent to the sender
(as in [5]). As already evident, the receive call has a rather unusual semantics: data is not
returned in a buffer supplied by the MPI-CCL layer. A pointer to a buffer in the receiving
buffer pool is returned instead. The packet is copied twice before it reaches the URTP buffer:
first from the network adapter card memory into a kernel buffer and second from the kernel
buffer to the URTP buffer. (The assembled message will be further copied from URTP buffers
into the user’s buffer in the MPI program by the MPI-CCL layer.) A protocol using an average
of little more than one data copy per message is described in [7] but it works only for large
data transfers. URTP is intended to be used for both small and large data transfers.

In addition, URTP has the following mechanisms:

1. A REQ packet is a point-to-point communication requesting a specific packet from a
source. It implicitly acknowledges all previous packets.

2. When a processor receives a REQ packet for a data packet which has been sent earlier,
it sends the requested data packet again using point-to-point send (even if the original
data packet was sent through multicast). When the REQ refers to an unsent data packet
(in which case the receiver is ahead of the sender) the REQ is simply ignored.

3. A timeout mechanism is used to ensure the delivery of a REQ packet and of the requested
data packet. The timeout process stops when the requested packet arrives.



4. ACKs and REQs are sent using point-to-point communication.

5. Security is guaranteed (within the limits imposed by the LAN). URTP packets cannot
be received or sent by processors that are not in the process group defined for the “MPI
world”. Because URTP is intended for parallel applications running over local (and rel-
atively secure) networks no additional security enforcing mechanisms were implemented.

In what follows we include some of the details of the implementation and optimizations
related to the URTP protocol.

3.2 Implementation and Optimizations

The system architecture of URTP is both simple and efficient. It is built on top of a LAN
protocol (Ethernet) and it is entirely software based. It consists of two separate modules: a
kernel extension and a library that needs to be linked to every application using the protocol
(see Figure 2).

We consider that current LANs are almost completely reliable and that most instances of
packet loss are due to a lack of free buffers at the receiving end. In the following subsections
we present our implementation and optimization of URTP, a reliable transport layer with very
little performance degradation.

3.2.1 The Kernel Extension

The kernel extension module contains a customized device driver (an extension to the existing
one) and code that implements a number of new system calls. The device driver is modified
in order to minimize the overhead of dropping unwanted packets. The new system calls are
used by the user level library to transfer data between the kernel and the user process.

There are two sources of unwanted packets. One is that a URTP multicast is implemented
using a LAN multicast to a superset of the target set so that any processor in this superset
receive the packet whether it is a packet destination or not. The other is that when the user
application issues a receive and the corresponding packet is not waiting in a user buffer, our
pessimistic request protocol assumes that the packet may have been lost and sends a REQ
packet to the source. If the source is behind the receiver or has just sent the desired packet,
then the REQ packet is unwanted.

We implement multicasts as LAN multicast to a superset of the target set because of the
limited number of multicast addresses a network interface can listen to (about a dozen). In
an MPI program, a processor can be a member of many more groups. Moreover, there is
significant overhead associated with the creation of a hardware group containing multicast
target set. This operation involves selecting an acceptable multicast address, adding it to the
set of addresses recognized by each member of the new group, and acknowledging the success of
the operation. About the same overhead is necessary for group removal. While this overhead
might be acceptable for heavily used groups (with a lot of packets targeted to that group) it
is not acceptable for groups that are rarely used.

The header of a multicast packet contains a sequence number for every processor in the
hardware group (which contains the target set). Entries corresponding to machines in the
target set contain valid sequence numbers. Entries corresponding to machines in the hardware



group but not in the target set contain an invalid sequence number. When a multicast packet
is received, the processor checks the validity of the sequence number corresponding to its rank
in the target group. If an invalid value is found the packet is dropped (and the kernel buffer
is freed). Otherwise the packet is put into a kernel queue. Because the overhead is small the
above action can be executed in the interrupt handler.

The other source of unwanted packets is the receive call. When a receive is posted from the
upper layer at processor j for the next packet from processor ¢, and the packet has not been
received by the URTP at processor 7, a REQ is sent to processor ¢ and a timeout mechanism
is initiated. The response at processor i, upon receiving a REQ from processor 7, has a few
possible cases:

1. The requested packet was sent more than ¢ milliseconds ago. The sender ¢ assumes that
the packet was lost and sends it again. The REQ is not considered an unwanted packet.
We selected a value of 1 for é based on our experiment in optimizing all-to-all broadcast.

2. The packet was sent less than ¢ milliseconds ago. The sender assumes that the packet
is on its way and considers the REQ an unwanted packet.

3. The packet has not been sent or multicast from the upper layer yet (the sender is behind
the receiver). The REQ is considered an unwanted packet.

For case 3, the REQ is ignored and treated as a unwanted packet and dropped while still
in a kernel buffer. The kernel extension has a local copy of the sequence number of the last
packet sent to each destination. This copy is updated only when a new packet is sent. Using it
the device driver can detect with very little overhead when a REQ packet refers to an unsent
packet (case 3 above). When this case is detected the packet is dropped (and the kernel buffer
is freed). This action is done in the interrupt handler.

Case 2 is rare. When it occurs the REQ packet is referred to user space where the time
comparison is performed and the packet dropped.

In case 1, the REQ packet is also referred to user space where the requested packet resides.
There the REQ is treated as an implicit ACK of all previous packets from the same source.
Then the requested packet is resent.

The Ethernet implementation of the device driver is presented next. The device driver
interfaces with the network interface card and it is extended to handle packets of a special
type (that we defined) called URTP. Those URTP Ethernet packets are identified by the type
field in the header of the Ethernet packet that is set to a specific value. This value is different
from that used by IP, ARP, etc.

Every packet with an Ethernet address (unicast, multicast or broadcast) recognized by
the interface hardware is copied from the network interface memory into a kernel buffer. We
note here that URTP packets have the same structure as IP packets: data is preceded by the
header.

The received packet is processed as follows:

1. Non-URTP packets (IP, ARP, etc.) are handled as usual.

2. For URTP type packets the driver checks the URTP header. ACK and point-to-point
packets are always linked into a kernel queue. Based on the content of their header, mul-
ticast and broadcast packets are either considered unwanted and dropped (as explained



above) or linked into the same kernel queue. REQ packets that are not dropped are
linked into the same queue.

3. Whenever a packet is linked into an empty queue, a signal is sent to the destination
process. The signal handler, part of the user level library, uses one of the new system
calls to transfer all the packets from the kernel address space into the destination process
address space. All the packets are transferred in one system call (only one context switch
to kernel mode and one back to user mode).

4. The queue is accessed by the device driver (to enqueue packets) and by the new system
call (to dequeue packets). In order to minimize the overhead of the synchronization,
two queues are used; one for queuing packets and one for dequeuing packets. When the
first queue is non-empty and the second one is empty the queues are interchanged. The
interrupt level associated with the Ethernet card is disabled only during the switch.

5. When a receive is posted the packet is either already in user space (and a pointer to the
buffer is returned) or it was not received yet; in this case the user’s process sends a REQ
and blocks. It is not possible for the packet to be in kernel space for the following reason:
after the interrupt handler returns, the control returns to a user process. If there are any
packets in the kernel queue to be delivered to a process then a signal has already been
sent to the process. The first code that will be executed when the process is scheduled
is the signal handler that will transfer the packet into user buffers.

We do not implement any CRC checking mechanism. This relieves both the sender and
receiver from an unnecessary effort. Because every URTP packet is transferred using exactly
one Ethernet packet we silently use the Ethernet CRC check. The advantage of this approach
is that both CRC computations are done by the network interface card.

The process of sending a packet is even simpler. The kernel extension contains new system
calls for each packet type: new point-to-point packet, retransmission of a previous packet,
multicast packet and control packet (ACK, REQ, etc.). Each of them allocate a kernel buffer,
build the Ethernet header, copy the data from user space and place the buffer in the send
queue of the driver. At this point it is evident that our protocol does much more work at
packet reception than at packet transmission.

3.2.2 The User Level Library

The kernel extension presented above implements an unreliable transport layer. In addition,
it efficiently drops unnecessary packets. The main goal of the library is to make it reliable
by implementing the modified sliding-window protocol. In addition, we have the following
mechanism related to REQ packets.

1. After sending a REQ packet the receive routine goes to sleep for a determined period.
When it wakes up another REQ packet will be sent if the packet was not received. Signals
generated by incoming packets wake up the receive routine. When the desired packet
arrives, the routine returns.

2. REQ packets also act as implicit ACK packets. A request for packet n means that all
unacknowledged packets up to n — 1 were safely received.

10



3. The above scheme seems to use a lot of REQ packets. During the same receive call the
time-out period is increased exponentially. This reduces the number of REQ packets and
consequently, the load on the net.

4. The copy of the sequence number of the last packet sent to every destination maintained
inside the kernel extension facilitates the dropping of almost all unnecessary REQ packets
at the driver level. As a result, the overhead at the destination of an unnecessary REQ
packet is very small.

Since we assume that packet loss is primarily due to lack of free receiver buffers, our kernel
extension attempts to free kernel buffers as soon as possible. It also attempts to minimize the
number of context switches required to transfer packets from the kernel to user space. We
considered the alternative of changing the kernel buffers (mbufs) management or using special
buffers that can be switched from the pageable to non-pageable state; but we believe that the
architecture presented above is superior because the packets must be eventually transferred to
user space in any case.

3.3 Performance of URTP

The main objectives of our design and implementation of URTP with respect to performance
are low processor overhead, low latency and high effective bandwidth. To reduce the overhead
at the sender side, we drop the too-early REQ packet in kernel space (case 3 described in
Section 3.2.1). To reduce the overhead at the receiver side, we drop the unnecessary multicast
packets (for which the receiver is not in the target group) in kernel space. Figure 3 shows
the overhead in dropping an unnecessary packet at the receiving side as a function of packet
size. The URTP header is accounted for in the packet size. Note that there is a jump in the
figure for the following reason. For every Ethernet packet received, the kernel allocates an
mbuf to store it. The size of an mbuf is 256 bytes but only about half of it is used to store
incoming data. When packets are too large to fit into an mbuf, an extension (a page of 4K
bytes) is allocated and linked to the mbuf. We also measured the overhead to receive a UDP
packet up to the user level to be between 400 and 600 psecs. The overhead to receive a URTP
packet decreases if many packets are transferred from kernel buffers to user space in the same
system call. Even for the worst case, where only one packet is transferred in a system call, the
overhead (not including the processing associated with the sliding window protocol) is about
100 psecs less than that of UDP (which is unreliable transport). Figure 4 shows the one-way
latency of a packet between two processors, measured at the user level.

We aim to keep the number of control packets low, for instance, by using block ACKs and
by using REQs for implicit ACKs of earlier packets. For a message of size 1MBytes or more,
we have measured an effective URTP bandwidth of around 8.8 Mbits/sec, which is quite high
for a reliable transport protocol, compared to the 10 Mbits/sec raw Ethernet bandwidth as an
unreliable transport protocol. The bandwidth of the protocol was measured by transferring
a large amount of data between two processors, say ¢ and j, and back. We divide the total
amount of data transferred (both ways) by the elapsed time between the time we send out
the first packet from processor 7 and the time the last packet was received by processor . We
use URTP point-to-point transfer with maximum size packets. The data used to compute the
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effective bandwidth does not include any Ethernet or URTP overhead; it is the “effective” user
data only.

The discrepancy of effective URTP bandwidth from raw Ethernet bandwidth (around 10
Mbits/sec) mainly comes from three sources: (i) the need of certain control packet (such as
ACK and REQ) in order to build a reliable transport protocol; (ii) the additional header
information of URTP packet carrying data (such as the URTP type, counters, etc.); and (iii)
the overhead from Ethernet packet (such as the sync bits, Ethernet header and trailer, etc.).

4 MPI-CCL

In this section, we describe the algorithms and implementation of selected MPI-CCL routines
on URTP. We also present performance results of our implementation.

We have implemented on URTP a selected subset of MPI-CCL routines: MPI_Bcast (one-
to-all broadcast within a group), MPI_Allgather (each node broadcasts a message to all nodes
within a group), MPI_Gather (gather generally distinct messages from all nodes to one node
in a group), MPI Scatter (scatter generally distinct messages from one node to all nodes in
a group) and MPI Barrier (barrier synchronization within a group). We also implemented
MPI_Init and MPI_Finalize to initialize and terminate our URTP environment properly. The
general goal of this MPI-CCL layer is to map MPI-CCL routines onto the URTP interface in
an efficient way, and to break (or sometimes pack) messages into packets. For the interface
to URTP, we use multicast, send and receive, as defined before. In addition, we also use
multireceive in which a processor blocks until the next packet from each processor in a specified
set is received.

Throughout this section, we let M be the message size of the send buffer or receive buffer,
whichever is smaller. For instance, M is the size of the user send buffer for MPI_Allgather
and MPI_Gather, and is the size of the user receive buffer for MPI_Scatter. We let m be the
maximum MPI-CCL packet size (which is the data size a maximum URTP packet can hold)
and p be the number of processors in the processor group.

4.1 The Environment

All timing measurements are averaged over all processors that call the MPI routine and over a
few runs. For each run, we further take the average of at least 10 iterations of the considered
MPI routine. For MPI_Bcast, MPI_Scatter and MPI_Gather, we round-robin the root for
different iterations. The 8 workstations that we used for our experiments are IBM RS/6000
workstations: 3 with model 320 (20MHz clock), 2 with 530H (33 MHz clock), 1 with 375 (62.5
MHz), and 2 with 250 (66 MHz clock). They are all on the same sub-network with 10Mbit
Ethernet. Whenever we use fewer than 8 workstations, choosing the slow subset (respectively,
fast subset) means choosing the required number of workstations starting from the slowest
(respectively, fastest) one.

4.2 MPI_Bcast

The mapping of MPI_Bcast to URTP interface is straightforward. The root calls multicast
[M/m] times, while all other processors in the processor group call receive [M/m] times.
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Figure 5 shows the measured times of MPI_Bcast as a function of the message size. Note
that once the message size is greater than 1 Kbyte, doubling the message size roughly doubles
the number of packets, and hence the broadcast time. From the figure, broadcasting one
packet takes about 1 to 4 msecs.

The performance of our MPI Broadcast (on top of Ethernet) is about twice as fast as the
software implementation of broadcast on top of ATM that is presented in [14]. For example,
a broadcast of a 4Kbyte message on 8 machines takes about 6 msecs in our implementation
compared to 15 msecs in the implementation in [14]. The hardware implementation of [14]
is faster than ours as would be expected from the higher bandwidth of the ATM equipment.
As another comparison, our broadcast of a 1 Kbyte message on 8 processors takes about 3.87
msecs as compared to 8.9 msecs based on TCP/IP measured in [6].

4.3 MPI_Allgather

Let ¢ = [M/m] be the number of packets, per processor, that need to be multicast. There
are two possible algorithms for MPI_Allgather described as follows.

Algorithm 1: Round-robin multicast.

1 = mypid,;

srcsl = {0,1,---,¢— 1};

sres2 = {t+1,i+2,---,p— 1};

dests = sresl U sres2;

for (j =0; j < g¢; j++) {
multireceive (srcsl, recvbufs, 7);
multicast (dests, sendbuf, 7);
multireceive (srcs2, recvbufs, 7);

Algorithm 2: k-concurrency multicast.
dests = {0,1,---,p — 1} — {mypid};
j1=0;
J2=0;
for ( =0; 7 <[q/k]; j++) {
for (1=0; I < k; I4++) {
if (j1 < q) {
multicast (dests, sendbuf, j1);
Jl++;
}
}
for (1=0; I <k; I++) {
if (72 < q) {
multireceive (dests, recvbufs, j2);
72++;
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In Algorithm 1, each processor takes turn as a broadcaster for each packet while all other
processors receive. Successive receives are combined into a multireceive call. In Algorithm 2,
each processor issues k multicast calls followed by k multireceive calls. Here, k is a carefully
chosen positive integer. Algorithm 2 is kp-buffer correct. Thus, at least a buffer of kp packets
in the URTP is required to avoid possible deadlock.

We have implemented both algorithms and observed that Algorithm 2 (with k& = 1) gener-
ally performs better than Algorithm 1 by a factor of around 1.5 to 2. This is mainly because
Algorithm 2 has less synchronization points than Algorithm 1 and, therefore, has less chance
of being in a processor idle state. Figure 6 shows the measured times of MPI_Allgather as a
function of the message size based on Algorithm 2 with £ = 1. Note that on 8 workstations,
MPI_Allgather runs about 6.1 msecs and 12.7 msecs, for 32 bytes and 1K byte messages, re-
spectively. As a comparison, a hand-coded all-to-all broadcast based on the PCODE protocol
in [6] runs about 9.0 msecs and 16.7 msecs for 20 bytes and 1 Kbyte messages, respectively,
on faster (100 MHz clock) workstations. Figure 7 shows the times of MPI_Allgather of a 64
Kbyte message as a function of the number of workstations using slow subset.

Figure 8 shows the times of MPI_Allgather of a 64 Kbyte message as a function of k (defined
earlier) on 4 workstations. It can be seen from the figure that the optimal value of k is around
4, and there is a significant improvement by increasing k from 1 to 2. We also observed from
our experiment that the optimal value of & generally decreases as the number of processors
increases, as expected. We expect to further reduce MPI_Allgather time by fine tuning k.

4.4 MPI_Scatter and MPI_Gather

MPI_Scatter and MPI_Gather are the dual operations of each other. Assume p is the number
of processors in the given processor group. In MPI_Scatter, the root has an array of p blocks
of data of the same size initially and wishes to distribute the 2-th block of data to the i-th
processor in the group. In MPI_Gather, each node in the group has a block of data, all of the
same size, initially. The goal is to collect (concatenate without reduction) all p blocks into
the root. On most parallel systems, they are implemented with similar algorithms, running
in reverse of each other. Since we have a multicast interface, MPI_Scatter for small messages
is implemented by packing them into one packet and multicasting the packet to all related
processors. MPI Scatter for large messages is implemented by sending multiple point-to-point
packets to each node. The exception is that the last point-to-point packet for each node can
be packed together and be multicast to all related processors.

Figure 9 shows the measured times of MPI_Scatter on 4 and 8 workstations as a function
of the message size. Note that for small message sizes, MPI_Scatter is implemented by packing
them into one packet and multicasting the packet. Thus, the measured times stay pretty flat
for small message sizes, and grow exponentially for large message sizes when they are doubled
the size. Figure 10 shows the measured times of MPI_Gather on 4 workstations as a function
of the message size.

Intuitively, one would expect MPI_Scatter to perform better than MPI_Gather for small
message sizes. This is because for small message sizes, the total number of packets put on
the LAN by MPI_Scatter is less than that by MPI_Gather. However, our experiments show
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that MPI_Gather performs better than MPI_Scatter for small message sizes. This is because
a processor in repeated MPI_Gather calls does not need to wait for any other processors to
complete when it is not the root. On the other hand, a processor in repeated MPI Scatter
calls needs to wait for the message from the root.

4.5 MPI_Barrier

MPI _Barrier is implemented by MPI_Gather with 0-byte message to processor 0 followed by
MPI_Bcast with 0-byte message from processor 0. Figure 11 shows the measured times of
MPI_Barrier as a function of the number of workstations. In the figure, the slow subset uses
the slowest processor as processor 0, while the fast subset uses the fastest processor as processor
0. It is evident that, with our implementation, the processing speed of the root (processor 0)
affects the timings mostly. The timing is very flat for up to 8 processors.

4.6 MPI Initialization and Termination

According to MPI specification, MPI Init() must be called before any MPI routines and
MPI Finalize() must be called after any MPI routines. Also, a system-defined communica-
tor (see [16] for details) called MPI.COMM_WORLD is defined after MPI_Init call. From
MPI_COMM_WORLD, one can derive the processor group of the “MPI world”, denoted
MPI_GROUP_WORLD in the paper. Our MPI-CCL layer has to implement MPI_Init and
MPI_Finalize to handle MPI initialization and termination properly.

MPI Init is implemented in our MPI-CCL layer as follows. First, a fixed number of pro-
cessors p, specified by the user, is chosen from a set of “pre-registered” workstations and
each processor in the MPI.GROUP_WORLD agrees on their pids and the value p from a
common file. Then, each processor sleeps for p seconds and calls MPI_Barrier within the
MPI_GROUP_WORLD using the URTP protocol. Note that the MPI_Barrier call in MPI_Init
is the first time we use the URTP protocol. The purpose of the sleep is to minimize the loss
of initial URTP packets at receivers that are not yet ready.

To implement MPI Finalize, we first issue an MPI_Barrier call within the
MPI_GROUP_WORLD in the MPI-CCL layer. Then, each processor sleeps for p seconds
and terminates itself. Note that as long as one processor finishes (i.e., returns from) the
MPI_Barrier call in MPI-CCL, we can conclude that all other processors have at least reached
(not necessarily finished) the same MPI Barrier call. However, for all processors to terminate
normally, each processor needs to “know” that all its URTP data packets (generated from
MPI_Barrier) have reached their destinations safely before it terminates the process. This
termination problem is a variant of the well-known Two Generals Problem, which is unsolv-
able in the presence of the possibility of message loss [13, 22]. In fact the problem is harder
than the consensus problem because it cannot be solved, even when it is guaranteed that no
process will fail (cf. [10]). Fortunately, we do not need to solve this problem because we are
assured that all the useful work of the application has been performed if only one processor
successfully returns from the MPI_Barrier call.

In practice, we have observed that having each processor sleep for p seconds after MPI_Barrier
is sufficiently long to provide a very high probability of normal termination for all processors.
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5 Performance of MPI Applications

There have been lots of activities in porting real sequential applications as well as porting
existing parallel applications written on various message passing libraries onto MPI. Some such
existing and non-standard message passing libraries include Express, PVM, p4, PARMACS,
TCGMSG, Chamelion, Zipcode and various machine-specific ones, such as the Intel NX (for
Paragon), TMC CMMD (for CM-5) and IBM MPL (for SP-2). We have ported two sequential
programs into parallel programs written in MPI. The first one is PolyFEM, a simulation and
modeling program that uses p-type finite-element-method algorithms for elasticity modeling
[18]. We have isolated and parallelized the portion of the PolyFEM solver that takes most
of the running time on large problems. This subapplication involves iteratively multiplying a
vector by a large sparse matrix. A typical PolyFEM problem has a vector length about 110000
elements and the sparsity of the matrix is about 0.02%.

Since the minimal required memory to run PolyFEM is too large for our available envi-
ronment, we have reduced the vector length by factors of 25 and 100, respectively, for our
experiments. Figure 12 shows the running times of one iteration (taken from the average of
100 iterations) on 1, 2 and 4 processors, respectively, for two different problem sizes. Figure 13
shows the corresponding speedups. It is expected for this problem that as the problem size
increases, the percentage of communication decreases and therefore the speedup increases.
Note that the timing for one processor is for the original sequential code (not the parallel code
running on one processor).

The second application is a dense matrix-matrix multiplication: C + A x B. We assume
that the two input matrices A and B are partitioned into p column blocks (where p is the
number of processors) and the i-th block is allocated to processor 7 initially. Also, the final
matrix should be distributed in a similar manner. In order for processor 7 to compute its final
submatrix, the i-th column block of C, it needs the entire matrix A. Thus, an MPI_Allgather
is required among the p processors.

Figure 14 compares the measured times of the dense matrix-matrix multiplication using two
implementations: one is written in MPI and runs on our MPI-CCL/URTP/LAN environment,
and another is written in IBM MPL and runs on UDP/LAN environment. Due to some
practical constraint, the former was measured on a set of slower and heterogeneous IBM
RS/6000’s while the latter was measured on a set of faster and homogeneous IBM RS/6000’s.
The difference in the raw processor speed is evident from the one processor case from the figure.
However, even with the disadvantage of processor speeds and heterogeneity, the timings on 2
and 4 processors based on our new URTP protocol are still faster than their corresponding
timings based on IBM MPL using UDP.

Figure 15 shows the running times (taken from the average of 100 runs) on 1, 2 and 4
processors, respectively, for three different matrix sizes. Figure 16 shows the corresponding
speedups. As before, the one processor case is measured from the original sequential code.
Note that for N x N matrices, the communication cost per processor grows as O(N?) and
the total computation cost grows as O(N?3). Clearly, the speedup increases as the matrix
size increases. In fact, some data points in the speedup figure are better than linear speedup
probably due to substantially fewer cache misses and page faults with more processors.
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6 Conclusion

We have described a way to perform parallel computation using the MPI over a reliable soft-
ware package that allows us to take advantage of an underlying broadcast medium. Our
performance measurements demonstrate the feasibility of such an approach and show reason-
ably effective bandwidth utilization for patterns of communication required by representative
parallel programs.

Our approach is not limited to clusters of workstations running AIX (IBM’s version of
UNIX). Most modern OS kernels, including commercial variants of UNIX like SunOS and So-
laris, are made extensible (mainly to accommodate dynamically loadable device drivers). Most
of these kernels can also be dynamically extended with other kind of modules, for instance,
modules that implement additional system calls. Implementing URTP on such an operating
system is relatively easy; if the networking code of the target system is based on mbufs, as
most BSD-based UNIX systems are, only minor changes are necessary.

We will concentrate on improving URTP performance in the future. The first target is
improving the latency for packets of all sizes. The new architecture will not be based on the
signal mechanism we use now. Possible improvements include using DMA for transferring data
from kernel to user space, using a better management for the sending buffer pool, and, finally,
moving more of the protocol into the kernel. The URTP interface may experience some small
extension. One possible improvement is to integrate user sending buffers into URTP. In order
for URTP to be used as a stand alone tool, packetization and reassembling need to be included
into URTP.

Other extensions of this work include dealing with processor failure, using all available
Ethernet hardware multicast groups in an efficient way (we have used only one hardware
group in our implementation), supporting multiple MPI applications (at the same time) in the
implementation, and supporting the complete MPI in the implementation.
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A Pseudocode of URTP
Define InWindow(%,7) as
(0 <i—j < WINDOW) or (0 < i + RANGE — j < WINDOW).

Define Inc(z,7) = (2 + 1) mod r. Define Dec(z,r) = (¢ — 1) mod . We maintain a buffer
pool Bufs that is organized as a subpool FreeBufs and, for each source m, an indexed subpool
Received(m, i) where

ReceivedWindowBase(m) < i < (ReceivedWindowBase(m) + WINDOW) mod RANGE.

We also maintain a pool of minibuffers Unacks that is organized into a subpool FreeUnacks
and a subpool with each element the target of some number of the indexed family of pointers
Sent(m, i), where

SentWindowBase(m) < 7 < (SentWindowBase(m) + WINDOW) mod RANGE.

The system call SysRecv(FreeBufs,msg) moves one of the buffers from FreeBufs to msg, if
successful. Free(Received(m, 1)) returns the buffer in Received(m,¢) to FreeBufs and sets
Received(m, i) to NULL. Free(Sent(m, ¢)) decrements the count of required acknowledgements
in the minibuffer to which Sent(m, ) points. If the count becomes zero, then the minibuffer
is returned to the FreeUnacks subpool and the buffer to which it points is freed. In any case,
Free(Sent(m, 1)) sets Sent(m, ) to NULL.

For simplicity we have suppressed the locking code necessary to protect data structuresin a
reentrant environment. We have also suppressed the details of the routines we put in our kernel
extension. Our code is responsive to signals as well as calls from the application. We have
suppressed the methods by which we solved the problem of data structure sharing between
application and signal handler without signal masking. Also we have suppressed some of the
delays involved, except as applied to buffer management, where we illustrate exponentially
growing delay (see Figure 17).

In Figure 21 we indicate the action of the signal handler that is called by the interrupt
handler in the kernel that processes new packets as they arrive. Here the pseudocode is written
as if exactly one packet were transferred from kernel space to user space. Actually SysRecv
can transfer an unknown but bounded number of packets into user space, provided there are
sufficiently many buffers in FreeBufs. Thus the number of context switches from user to kernel
is minimized.

The variable MinReqGap of Figure 23 is the § mentioned in Section 3.2.1.
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WaitAndDouble(d, x)

{
wait(d);
d + min(x, 2d);
return;

}

Figure 17: WaitAndDouble (exponentially growing delay with upper bound).

mcastprep(destinations, bp)
{
delay <+ MinSendWait;
do while (FreeUnacks subpool of Unacks is empty)
WaitAndDouble(delay, MaxSendWait);
delay <+ MinSendWait;
u ¢ dequeue(FreeUnacks);
u.count « 0;
u.buf < bp;
for (0 < m < MACHINES)
{

if (m is in destinations) then

do while

(not InWindow(ToBeSent(m),SentWindowBase(m)))
WaitAndDouble(delay, MaxSendWait);

d(m) < ToBeSent(m);

Sent(m, ToBeSent(m)) « address(u);

u.count <+ Inc(u.count);

}
else d(m) + RANGE;

}

return(d);

Figure 18: mcastprep (called by Mcast).
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Mcast(destinations, bp)
{
d + mcastprep(destinations, bp);
timestamp(time);
for (m in destinations)
LastSendMoment(m, ToBeSent(m)) <« time;
SysBsend(d, bp);
for (m in destinations)
ToBeSent(m) «+ Inc(ToBeSent(m));

return;
}
Figure 19: Application Call: Mcast.
recv(m)
{
done « 0;

delay <+ MinRecvWait;
do while (done = 0)
{
i + ReceivedWindowBase(m);
if (Received(m, i) # NULL) then
{
bp + Received(m, i);
Received(m, i) + NULL;
i + Inc(i, RANGE);
ReceivedWindowBase(m) « i;
done « 1;

else

SysSendCtrl(REQ, m, i);
WaitAndDouble(delay, MaxRecvWait);

}
}

return(bp);

Figure 20: Application Call: Recv.
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handle()

{
do until (no more packets)
{
SysRecv(FreeBufs, msg);
switch(msg.type)
case PT_TO_PT:
case BCAST:
HandleSND(msg); break;
case REQ:
HandleREQ(msg); break;
case ACK:
HandleACK(msg); break;
}
}
return;
}
Figure 21: Signal Handler: handle.
HandleACK(msg)
{
m ¢ IMSg.SOUICE;
i ¢ msg.count;
j + SentWindowBase(m);
if (InWindow(i,j)) then
{
ii « Inc(i, RANGE);
FreeSendBuf(m, j, ii);
SentWindowBase(m) <+ Dec(ii, RANGE);
}
Free(msg); return;
}

Figure 22: HandleACK (called by handle).

29



HandleREQ(msg)
{
m ¢ msg.sIC;
i ¢ msg.cnt;
j ¢+ SentWindowBase(m);
if (notInWindow(i,j)) then { Free(msg); return; }
timestamp(time)
if (time-LastSendMoment(m, i) < MinReqGap) then
{ Free(msg); return; }
SysSendOld(m, i);
FreeSendBuf(m, j, i);
SentWindowBase(m) < Dec(i, RANGE);
Free(msg); return;

Figure 23: HandleREQ (called by handle).

HandleExpected(m, j, )
{
do while (InWindow(e,j) and (Received(m, e) # NULL))
e + Inc(e, RANGE);
ee «+ Inc(e, RANGE);
if (InWindow (e,j) and (Received(m, ee) # NULL)) then
SysSendCtrl(REQ, m, e);
la «+ LastAcked(m);
if ((e — la > AckWindow) or (RANGE > RANGE + e — la > AckWindow)) then
{
ea «+ Dec(e, RANGE);
SysSendCtrl(ACK, m, ea);
LastAcked(m) + ea;
}
TooEarly(m) «+ 0;
Expected(m) ¢+ e;
return;

Figure 24: HandleExpected (called by HandleSND).

30



HandleSND(msg)
{
m ¢ msg.Source;
i ¢ msg.count;
j ¢ ReceivedWindowBase(m);
if (InWindow(i,j) and (Received(m, i) = NULL)) then
{
Received(m, i) < address(msg);
e + Expected(m);
if (e=i) then HandleExpected(m, j, e);
else
{
TooEarly(m) « Inc(TooEarly(m), REQDelay);
if (TooEarly(m) = 0) then
{
SysSendCtrl(REQ, m, e);
LastAcked(m) < Dec(e, RANGE);

}
}

else Free(msg);
return;

Figure 25: HandleSND (called by handle).

FreeSendBuf(m, j, ii)

{ do while (j # ii)
{ Free(Sent(m, j));
j ¢+ Inc(j, RANGE);
}
return;
}

Figure 26: FreeSendBuf (frees buffers).
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