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Abstract

In his PEPM’93 paper Mogensen introduced a new off-line

specialisation technique, constructor specialisation. What

differentiates constructor specialisation from conventiomd

specialisation techniques is the ability to specialise construc-

tors. Like functions, constructors are specialised with re-

spect to their static arguments. As these constructors are

also part of a program’s type declaration, the effect of con-

structor specialisation is no longer limited to the algorith-

mic part of a program. Specializing constructors requires

introducing new type definitions, specialised variants of the

original definitions. The effect of constructor specialisation

is, therefore, best understood as a combination of speciali-

sation and a retyping transformation (changing the types of

a program).

In this paper we develop a new constructor specialiser

that solves some of the remaining problems in [Mog93]. More-

over, we show that this specialiser provides an alternative

solution for a problem in [Lau91b], where a mix-style [JSS89]

specialiser failed to remove the projection-injection overhead

from specialised versions of the specialiser.

1 Introduction

Meta-programming, partial evaluation and program manip-

ulation in general has been mainly studied in the context

of dynamically typed languages. Very few attempts have

been made to carry these results over to the world of stat-

ically typed languages. The reason is that statically typed

languages lack the flexibility with which dynamically typed

languages handle situations where values of different types

are used interchangedly. The only way to achieve the same

effect in statically typed languages is by introducing alge-

braic data types (a.k.a. sum types or disjoint unions): this

involves introducing construct ors or tags for distinguishing

between the different types. This corresponds to mimicing

dynamic typing at the program level. The effect on met a-

programs, such as interpreters and specialisers, is that in the

case where they have to deal with values of more than one

type, values will have to be represented as part of a universal

data type. This has severe effects on the size of values and

hence also on the memory consumption of the interpreters

and specialisers. But more importantly this encoding intro-

duces an extra layer of interpretational overhead: values will

have to be projected from and injected back into this univer-

SSJ domain. What is more, most existing specialiser fail to

remove this overhead. The size problem has been dealt with

in [L au9 lb] and [DNBDV9 1], where delayed evaluation is
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used for keeping data structures from growing beyond man-

ageable size. These solutions, however, do not tackle the

interpretational overhead problem. The handwritten com-

piler generator approach from [HL91], on the other hand,

addresses both problems in the limited case of specialised

versions of the specialiser. Compiler generators never eval-

uate code and, therefore, need not represent values. But

those derived by self-application do so! The solution in this

particular case is simple: write the compiler generator by

hand. But since most handwritten compiler generators still

rely on mix-style technology, they are unable to cope with

projection-injection overhead part of the input program (e.g.

when generating a compiler from an interpreter: see the ex-

ample in section 3).

This should raise some fundamental questions about the

limits of mix-style specialisers. One major objection is the

inherent difficulty of exploiting properties beyond the stat-

icness, dynamicness or partial st aticness of an expression.

There are cases when an expression has to be classified dy-

namic according to the binding-time rules, but where this

expression has some specific structure, e.g. an application of

a constructor with some static arguments. According to the

mix-style binding-t ime rules, these static arguments need to

be coerced to dynamic expressions. Constructor specialisa-

tion liberalises this rule by allowing static arguments as part

of dynamic constructor applications. A constructor spe-

cialiser will generate a new constructor, in which the static

arguments have been incorporated. This single transforma-

tion can be viewed as a retyping transformation. Moreover,

this retyping induces further changes in the residual program

and requires the specialiser to propagate type information

(i.e. the constructor plus its static arguments and the corre-

sponding newly introduced constructor). One such induced

change is the retyping of residual inspection-expressions: in

order to reflect the type changes, residual case-expressions

have to retyped as well. Because the type information in-

cludes static values, retyping a case-expression includes spe-

cializing the case-branches with respect to these static val-

ues. This means that constructor specialisation is capable of

performing deeper specialisation. Because constructor spe-

cialisation is done off-line, it shows that deeper specialisation

is not necessarily beyond the off-line framework. Further-

more, because of the ability to propagate type information

constructor specialisation provides a way to remove some of

the projection-injection attributed to interpreters and spe-

cialisers implemented in statically typed languages.

1.1 Overview

In section 1.2 we relate our work with that of Mogensen and

others. Section 2 introduces the language of interest. Sec-
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tion 3 discusses s~ecialisation of a simrde meta-circular inter-

pret er for an extended version of the language of section 2.

In section 4 we develop a new binding-time analysis (BZ’A

for short) which improves upon the analysis in [Mog93]. In

section 5 we develop a highly modular specialiser, which in

section 6 we apply to the meta-circular interpreter from sec-

tion 3 in section 6.

1.2 Related Work

This work is based on [Mog93], where a constructor spe-

cialiser for a first-order subset of St andard ML with monomor-

phic data type declarations is developed. We address some

of the remaining problems and weaknesses mentioned in the

further work section of [Mog93]. Mogensen’s specialiser is

a specialiser in the mix tradition [JSS89], an off-line spe-

cialiser, which relies on a BTA for deciding between residu-

alisation and specialisation. The quality of Mogensen’s spe-

cialiser is, therefore, governed by the quality of its analysis.

A first weakness of Mogensen’s specialiser is certainly its

analysis: all calls to the same function and all expressions

having type T, where T is an algebraic type share the same

binding-time property. This results in an analysis which is

monovariant over different uses of the same function and

constructor. The analysis developed in section 4 enhances

Mogensen’s by allowing a single constructor to have multiple

binding-time properties (M-properties for short ), depending

on the context it is used in. For the moment, functions are

still treated monovariantlyl .

Constructor specialisation enhances specialisation in that

it is able to exploit static argument information of dynamic

constructor applications. Tracking constructor argument in-

formation paves the path to specializing or re-typing dy-

namic operations on algebraic data types (e.g., the case ex-

pressions). The result is deeper specialisation. However,

it does not come for free and relies on the precision of the

propagated types. The more precise this type information,

the better residual programs and the less specialisation-time

errors will occur. Mogensen’s specialiser, however, performs

some crude type approximations: all expression having type

T, where T is an algebraic data type, share the same prop-

erty or type. This facilitates later type definition genera-

tion a great deal: all specialised constructors from one and

the same original type end up in one and the same spe-

cialised type. For this reason Mogensen’s specialiser can be

qualified as being monovariant over type definitions. Mo-

gensen himself argues that his approximation may lead his

specialiser to generate dead case branches, and even worse,

to commit specialisation-time errors. Our solution to this

precision problem is to combine specialisation with abstract

interpretation. This gives us more precision, leads to better

residual programs, and allows us to generate more than one

specialised version for one and the same type definition.

The use of abstract interpretation in partial evaluation

is certainly nothing new. Haraldson’s Redfun [Har77] al-

ready included an abstract interpreter. Haraldson’s work

was later generalised and formalised in Consel and Khoo’s

work on parameterised partial evaluation [CK91]. Param-

eterised partial evaluation is a very general framework for

reasoning about and describing the interaction of a set of

abstract interpreters and a specialiser. Constructor special-

isation, however, cannot be formulated in this framework as

1Including function polyvariance in the typed-based analysis ap-
proach is still ongoing research.

it requires abstract properties to be returned from residual

function calls. Parametrised Dartial evaluation onlv com-

putes facets (here abstract properties) for expressions that

will be unfolded at specialisation-time2. An advantage of

this rest riction is that fixed point computation is avoided.

Other work that comes close to oursz, is Ruf and Weise’s

on avoiding redundant specialisation [RW9 I] by means of a

non-standard type system (here fixed point computation is

needed).

2 The language

The subject language for the BTA in section 4 is an explicitly

monomorphically typed (i. e., expressions carry extra type

information) first-order functional language: see figure 1. A

program is a sequence of recursive functions. Polymorphism

can be added at the cost of some extra bookkeeping in both

the specialiser and analysis. The language can be considered

an explicitly typed variant of the one in [Mog93]. Note that

explicit typing alleviates the need for type declarations.

An expression is either a constant (an integer, boolean or

string), a variable, a primitive operation (e.g., integer addi-

tion), a function application, an application of a constructor

or a case-expression.

For legibility reasons all example and residual program

are written in a sugared version of the language in figure 1.

All programs are written down as a sequence o,f type dec-

larations followed by a sequence of function definition. The

reader, familiar with ML or Haskell, should feel pretty at

ease.

3 Specializing a Mets-circular Interpreter

One of the sole qualitive measures for specialisers is the so-

called meta-circular interpreter test. In this t,est we spe-

cialise a meta-circular interrmeter with resDect to an input

program and we expect the specialiser to remove all inter-

pretational overhead. The closer the residual program to

the input program the better the specialiser. In this section

we will be specializing the met a-circular interpreter from fig-

ure 2 (an interpreter for a sugared version of the language

in figure 1) with respect to a program for computing the

length of an integer list: see figure 3.

A characteristic feature of all interpreters (including ours)

and specialisers, operating on values of more than one type

and written in a statically typed languages is the uae of a

universal type for values. In the case of our interpreter the

universal type is “univ”, a combination of boo,leans, inte-

gers, strings, algebraic values, etc. In order to implement

the basic operations, we need coercions (so-called projec-

tions/injections) to and from this universal data type. See

for example the code for interpreting an integer addition:

the values returned from the recursive calls to int are first

projected from “univ” to int, added together andl afterwards

injected into “univ”. Because we specialize the interpreter

wit h respect to a static program and a list of dynamic in-

put values (the spine of the list is known), all operations

on values turn out to be dynamic. And this includes the

projection-injection operations. In other words, the corre-

sponding residual program is a program operating on values

of type “univ” and performing the necessary projections and

‘Thanks to the PEPM-referee who pointed this out to us!
3with ~~ ML.like type system
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c C Const

z 6 Var

P E Prim

f E Fnames

con E Cnames
t c Types

e c Expr

t ::= int I bool I string \ (tl*...*tn)[conl tl+. ..+corImtm Itl +t~ Ipm.t

e ;:= c:tlz:t lp(e~,..., en): tlf(ei, en), en) :tlcon(e~,..., en):t

case eoofcon~(z~, . . ..zn) +e~; . . ..mnm(z~. zn), zn) *em:t
PrOg ::= {fl(~l: t,. ... zn:t)=el. . .jm(q:t,. ... zn:t)= em}

(where fl is the main function)

Figure 1: The Syntactic Domains

ata univ = Bool bool I Int int I String string I
Constr string [univ] I Error

ata expr = BoolConst bool I Int Const int I StringConst string I
Var string I Plus expr expr I ConstrApp string [expr] I
Case expr [branch] I Fcall string [expr] I . . .

It (progr,input) =

let (types,funs) = progr

in case funs of

[] * Error;
(ffs) a let (name,args,e) = f

in int .expr(e,zip(args,input ) ,funs)

It.expr(e,env,funs) =
case e of

(BoolConst const) ~ Bool const;

(IntConst const) ~ Int const;
(StringCOnst const) * String const;

(Var v) ~ lookup(v,env);
(Plus el e2) * case (int-expr(el,env,funs)) of

(Int il) ~ case (int-expr(e2,env,funs)) of

(Int i2) +. Int (il+i2);

(ConstrApp c es) > Constr c (int.exprs(es,env,funs));
(Case e brs) > int.branches(int-expr(e,env,funs),brs,env,frms);

(Fcall fname es) ~ let vals = int-exprs(es,env,funs)
in let (fname ,vars,e) = find(fname,funs)

in int .expr(e,zip(vars, wds) ,funs)

. . .

It -branches (val,brs ,env ,fum.) =
case brs of

H * Error;
(b:brs) ~ let (constrl ,vars,e) = b

in case val of
(Comtr c0nstr2 vals) *

if constrl == constr2 then
int _expr(e ,ext end-env(vers,vals, env) ,fims)

else int_branches(val,brs, env,funs)

Figure 2: Excerpts of a meta-circular interpreter

injections. The result after arity-raising can be found in fig-

ure 4. This program shares not that much resemblance with

the original length program and is, therefore, not the pro-

gram we had hoped for! Most, if not all, projection/injection

overhead is still part of the residual program. We conclude

data IntList = Nil I Cons Irrt IntList

data Nat = Zero \ Succ Nat

length(x.) =

case xs of
(Nil) +. Zero;
(Cons x m) a Succ(length(xs))

Figure 3: Length Program

Iata univ = Bool bool I Int int I String string I
Constr string [univ] I Error

ntJength(inp) =
case inp of

(Constr str vs) *
if str== “Nil” then Constr “Zero” D
else if str== “Cons” then

Constr “SUCC” [(intJength(let [VI ,v2] = vs in v2))
else Error

Figure 4: Specialised version of the interpreter

that the used specialiser is not optimal! What exactly went

wrong? The length program’s input is dynamic, which au-

tomatically implies that the result of the function int_expr

is dynamic and hence also all expressions operating on the

values returned from recursive calls to this function. From a

type perspective, making an input dynamic means that the

residual program can take any element of the original type,

here the universal type, as input value. This is definitely

too general a statement! Can we fix it? Yes, a more precise

statement about the residual program is that its input, inp,

is confined to integer lists, expressed in terms of the type

“univ”. This property can be expressed by means of the

following inductive definition or grammar, where i has to be

read as a placeholder for an arbitrary integer:

intlist ::= Constr “Nil” H I Constr “Cons” [Int i,intlist]

In what follows we shall refer to this kind of properties as

subdomain properties. The above subdomain property for

inp allows us to optimise the residual program. First of all

we are able to transform the case-expression. We can split
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the pattern into two separate cases: one for the “Nil” ar-

gument case and one for the “Cons” argument case. What

is more, because the string arguments of Constr are known,

the string comparison and hence also the choice of an if-

branch can be performed at optimisation-time. The result

is the program from figure 54. This new residual program is

data univ = B.ol bool I Int int I String string I

Constr string [univ] I Error

int.length(inp) =

case inp of
(Ccmstr “Nil” u) ~

Constr “Zero” B

(Constr ‘(Cons” [i,val]) ~
Constr “SUCC” [int_length(val)]

Figure 5: Specialised version of the interpreter (after opti-

misation)

very close to the original program, but cent ains some min-

imal amount of interpretational overhead: st ring mat thing.

Fortunately, this can be avoided by introducing new con-

structors and corresponding type definitions. This whole

process has been coined type specialisation by Launchbury

in [Lau9 lb]. The program after type specialisation, see fig-

ure 6, and the original length program are equal (modulo

renaming). Not ice that two specialised versions of the origi-

nal type “univ” have been introduced. Semantically the in-

put/output behaviour of the residual programs has changed.

This is not a problem because, if desired, we could always

introduce wrappers that translate values from one represen-

t ation to another.

data univl = Constr.Nil I Constr-Cons int univl

data univ2 = Constr-Zero ] Constr-Succ univ2

I
int.length(inp) =

case inp of

(Constr-Nil) s
COnstr-ZerO

(COnstr_COns i val) *

Constr-Succ (int_length(val))

Figure 6: Specialised version of the interpreter (after type

specialisation)

Constructor specialisation combines all of the above steps:

at specialisation-time subdomain properties (in the form of

grammars) are computed for each expression in the program.

Then these grammars are used to specialise the dynamic

case-expression (see for example figure 5). And finally they

are used to generate the new type definitions.

4 Generalizing from this example, the reader might be tempted to
conclude that the very same program can be extracted by a simple
post-processor. For reasons, that will become apparent in section 5

this seemingly simple optimisation requires cleverness beyond most

post-processors.

4 Binding-time analysis

In the previous section it was shown that by enriching the

partial evaluation value domain with subdomain properties

we are able to achieve deeper specialisation. Hem, a subdo-

main property has to be interpreted as an extra constraint

on the set of possible input values. In this section we develop

a BTA which captures the use of subdomain properties in

the specialiser.

Bt-time properties are decorated standard types and are

inductively defined by the grammar in figure Ir. At first

BTType ~ Type

[ Type

I ~Type * . . . * BTType)

I pTuar.BTType

I Tvar

Type

~ El

I Stl+ng

I CI BTType + . . . + cmBTType

Figure 7: Binding-time types

sight the bt-properties from figure 7 correspond to Launch-

bury’s projections in [Lau91a]. The correspondence is, how-

ever, only cosmetic. All Launchbury’s projection can be

translated to the bt-properties of figure 7. The projection

ABSENTT, where ~ is a base type is simply our Z, and his

IDT is our -r. The translation carries through for projec-

tions corresponding to partially static values (i.e. products

and recursive or non-recursive algebraic data types). On the

other hand, Launchbury’s projection ABSENT=,., +,,,+=..=

is translated into an underlined algebraic type in which also

all the subcomponents ~i (and their subcompormnts and so

on) are underlined. In our BTA, however, we also allow un-

derlined binding-time types in which not all oft he subcom-

ponents are underlined: thk covers the case of a dynamic

constructor application wit h static arguments. These kind

of properties clearly cannot be interpreted as projections.

An example of such a bt-property or type is that of a the

dynamic list of integers represented as an element of type

%niv” (refer to figure 2 for the definition of “univ” ):

wuniv. Bool ~+

Int int+
-
String string+

COnstr string [univ]+

~

This bt-property has to be read as follows: at specialisation-

time the corresponding values are completely unknown, but

a constraint on the set of possible run-time values is given in

the form a subdomain property. In this subdoma,in property

all first arguments for C.onstr will be known. Let us stress

the fact that this kind of property is considered incorrect in

most conventional BTA’s. The corresponding conventional

bt-property would look like:

5This representation expresses better the intent of Launchbury’s

property than ABSENT, see the analysis of the case expression in

[Lau91a].
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/.411niV. Bool b~+

Int @+

String string+

Constr string [nniv]+

&

where all subcomponents have been underlined.

The BTA is specified as a non-standard type system.

The set of inference rules from figure 8 is a sound approx-

imate ion to the set of requirements that a well-annotated

program should satisfy, in order to guarantee binding-time

error free construct or specialisation. We adopt Nielson style

annotation [Nie88] for distinguishing bet ween specialisation-

time and run-time expressions: specialisation-time expres-

sions are overlined whereas the others are underlined.

In all inference rules two environments are used, A binds

function names to the function’s respective bt-property (since

the analysis is monovariant over different uses of the same

function, each function is only attributed one single prop-

erty) and r maps variable names to bt-property for the cor-

responding variables.

The most interesting inference rule is that for dynamic

constructor applications: even t bough the application is clas-

sified dynamic there is no constraint on the arguments (they

may be static although the complete structure is dynamic).

Other seemingly uncommon rules, are those for fold and

unfold. By means of the fold rule uniformity for recursive

data structures can be enforced: all components of a recur-

sive data structure must have the same bt-property. Inten-

tionally, the fold rule enforces equality of those bt-properties

for which the underlying types have to be equal in the un-

derlying type system. In fact, one of the main reasons for

choosing the intentional approach was the ease with which

such constraints can be specified. Unfold simply unfolds

the recursive bt-property one level. Both the fold and un-

fold rules are the logical counterparts of the rules for recur-

sive data structures in [Lau91a]. For determinacy reasons

folds will always be lined up with the dynamic constructor

application and unfold with case-expressions.

Note that there is only one single rule for functions and

function applications. No call or function annotations are

provided during BTA. In our perspective, classifying func-

tions as unfoldable or residual is best left to a separate phase.

For what follows we will assume that this phase, which has

been left out for space reasons, annotates functions and calls

in some consistent way: a function is either residual or un-

foldable and all calls to it are marked accordingly.

The main difference with Mogensen’s analysis is that

this one operates on explicitly typed programs, whereas Mo-

gensen’s operates on implicitly typed programs. We obtain

construct or polyvariance through type copying, each expres-

sion of type T has its own copy of the definition for T. In

Mogensen’s analysis this definition is shared.

The inference rules from fismre 8 can be given ahzorithmic

meaning by observing that th~y induce cons~raints ~equality-

inequality constraints) on binding-time types. Binding-time

analysis is the process, of finding a minimal decoration (a

decoration with the least underlined parts) of the standard

type inference tree given a set of assumptions, inp, for the

6 On the other hand treating functions polyvariantly seems a lot
easier in the extensional approach: see [Mog89]. We are currently
investigating how the use of either conjunctim types or parametric
polymorphism could help us with incorporating function polyvariance
in the intentional approach.

input parameters of the main function, ~o!l. In terms of

constraints, binding-time analysis is the process of finding

a minimal solution, i.e. a substitution, over the domain of

bt-properties that satisfies the set of inequations and equa-

tions. This work extends Henglein’s in [Hen91] for algebraic

data types.

5 The Specialiser

Constructor specialisation comprises specialisation and ab-

stract interpret ation. In this section we will see that this

combination poses some extra problems. Because the results

of the abstract interpretation affect specialisation and vice

versa, and because of the recursive nature of our language

some of the subdomain properties, can only be computed

by means of fixed-point computation. A naive way to per-

form this fixed-point computation is to re-iterate the whole

specialisation process until a fixed-point is reached and a

valid program is generated. This approach is expensive for

the simple reason that it leads to the generation of useless

code, code that may become obsolete in one of the next iter-

ations. In [Mog93] Mogensen suggests that re-iteration can

be avoided by backpat thing; however no algorithmic details

are provided. Our solution is to factor the specialisation pro-

cess into separate phases. Phase one performs the abstract

interpretation part (or abstract specialisation) over the do-

main of values and subdomain properties. The fixed-point is

computed by means of a minimal function graph computa-

tion [JM86]. If this phase terminates, the resulting minimal

function graph contains the set of needed argument/result

pairs for each program function. Phase two traverses the

minimal function graph and generates for each of the argu-

ment /result pairs for residual functions a specialised variant.

Phase three finally performs a union ffind-based analysis to

compute the set of needed type definitions for the newly

introduced constructors.

5.1 Fixed-Point Computation

In the case of constructor specialisation an expression ei-

ther partially evaluates to a value or to a piece of code and

a subdomain property (the part of the domain the result

may vary over at run-time). Like in conventional specialis-

ers residual and unfoldable are treated differently. Calls to

functions classified as unfoldable, are irdined and calls to

residual functions will be specialised. The generation of du-

plicate specialised version is avoided by means of memoising

(or caching) all argument descriptions a function has been

specialised with. This only ensures termination in the sit-

uation the possibly infinite call tree can be represented by

means of a finite call graph. Matters become more com-

plicated in the constructor specialisation case, where a call

to a residual function yields a specialised function plus a

sub domain property for the function’s result. To avoid hav-

ing to recompute this property for all calls with the same

call pattern, the specialiser caches both call pattern and

results. Where does fixed-point computation enter the pic-

ture? Imagine we specialise a residual call to a recursive

function. In the process of specializing the body of the func-

tion we encounter a recursive call with exactly the same set

of argument descriptions as those for the top-level call –

in other words both calls will be replaced with a call to

one and the same function and more importantly the sub-

domain property for the second call is in fact the one we
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A;r Feo :Cl (1311, . . ..@ Inl)+C~( &I. (, fhZ~m)fhZ~m)

A;r U{(zil :@il),. ... (Zi~, , ~i~;)} F ei : ~ (Vi,l < i <m)

w eo of

A;r F Cl(zll , . . ..wnl)+el.
:0. . .

%(%1> . . . . Wnrlm )*em

A; r 1- e : t[z/pz.t] A; r F e : t[z/pz.tJ
A;r b fold e : jm.t A;17kf~e:~x.g

A;rl-e:pz.t A;r F.:px.&

A; r E unfold e : t[z/pm.t] A; r E unfold e : t[z//m.tJ

Figure 8: Binding Time Inference System

are still trying to compute! The only way to stop the spe-

cialiser from looping infinitely is to approximate this value

and compute better approximations through a fixed-point

process. In this section we develop an abstract specialiser

(or interpreter) for computing these properties. The ab-

stract interpreter manipulates ordinary values (completely

static values), part ially static values and sub domain proper-

ties. We represent all of them with grammars, see figure 9.

A grammar is a (possibly empty) sequence of production

rules, with as left-hand side non-terminal symbols and as

right -hand sides base values (terminals), symbols (terminal

or non-terminal), a constructor followed by a production, a

tuple of productions, or a tagged sum of productions. We

represent base values by grammars with a single production

I Gram ::= {q ::= p~ . . .Sn ::= pm}

(where s, is the start svmbol).
P

;:= Vlslcpl(pl, . . .. Pn)lcl Pi+. U.+cnpn

Figure 9: The Domain of Grammars

rule { 9 I ::= v } and dynamic base values by the grammars



{ s, ::= h }, where h is a terminal symbol (placeholder) -

this terminal symbol is an abbreviation of the set of possi-

ble values. A constructor followed by a production is used

for partially static (or completely static) non-base values or

subdomain properties. A sum of productions on the other

hand is always used for subdomain properties. For our pur-

poses the domain of grammars is a complete partial order,

with < defined as G1 < GZ iff L(G1 ) ~ L(G7, ), where L(G)

is the set of values generated by grammar G. The bottom

element is the empty grammar. G1 u GZ is defined as the

smallest grammar describing the values of L(GI ) U L(Gz ).

For example {s1 ::= Constr “Cons” [(Int i,sl)]} u {s1 ::=

Constr “Nil” o } = {s1 ::= Constr “Cons” [(Int i,sl)] +

Constr “Nil” D }.

In step one we develop the notion of an abstract special-

isation semantics. In step two we derive from this semantics

a corresponding minimal function graph semantics, that will

be used for computing the fixed-points. The abstract spe-

cialiser operates on two-level programs, a sequence of resid-

ual and/or unfoldable functions, with two-level expressions

for function bodies. The syntax for two-level expressions

can be found in figure 8, as part of the binding-time infer-

ence rules7. For convenience we abbreviate grammars by

[G ::= p], which reads as “the grammar with start symbol G

and starting production p“. The rest of the production rules

remain hidden. Furthermore, we use as notation for envi-

ronment extensions, [z1 = w, . . . . z~ ~ v~]p. As a matter

of notational convenience we assume all functions and con-

structors to take the same number of arguments (this has to

be relaxed for practical purposes). The rest of the notation

should be pretty standard.

The abstract specialisation semantics in figure 10 uses

two valuation functions, one for two-level programs $!rog

and one for two-level expressions SX. The abstract mean-

ing of a two-level program is defined as the least fixed-point

of a set of equations. The meaning of a constant is a gram-

mar consisting of a single production rule and with the con-

stant’s standard semantics as production. The denotation

of a lifted expression is a grammar with one production rule

and a placeholder as production. Note, that the analysis

specifies the grammar for e is computed and never used.

This is simply because this definition is used as the basis for

a minimal function graph semantics. The denotation of a

static primitive application is the grammar with as produc-

tion the result of the application in the standard semantics
— note that v’s in the grammars for the argument expression

are also values in the standard semantics. The denotation

for both a static and dynamic constructor application is a

grammar built from the grammars for the arguments. So

the treatment of static and dynamic constructor applica-

tions is the same. However, different are the ways in which

the results are used: properties generated by a dynamic ap-

plication can be subjected to a lub operation, while those

generated by a static application never will. The difference

between the denotation of a static and dynamic case expres-

sion lies in the denotation of the case’s argument expression

eo. For a static case the denotation will always be a grammar

with a production consisting of a single constructor applied

to some other grammars. The constructor is then used to de-

cide which branch to take. The argument of a dynamic case

may evaluate to a sum of productions. This sum contains O

or more entries for each constructor. For each of these sum

7T0 simplify later code generation all two-level expression carry

their respective bt-property.

elements the corresponding branch is abstractly specialised.

The final result is the lub of all these denotations. Both

residual and unfoldable function applications are treated in

the same way by the abstract specialiser, as applications of

the abstract version of the functions.

From this abstract specialisation semantics one can de-

rive the corresponding abstract minimal function graph se-

mantics along the lines of [JM86] – the derivation and se-

mantics is fairly standard and omitted here for space con-

siderations. This semantics is then used for computing ar-

gument/result pairs for each of the two-level functions (both

residual and unfoldable) – those pairs that are actually needed

during the abstract specialisation process.

This brings us to the issues of termination and gener-

alisation. It should not come as a surprise that in some

cases the minimal function graphs corresponding to a given

two-level program and a set of input descriptions is infinite.

In other words for these two-level program and those argu-

ment descriptions specialisation will not terminate. This is

not only a problem that is solely related to constructor spe-

cialisation as conventional specialisers also suffer from this

non-termination disease. Because in constructor sDecialisa-

tion more static information is preserved, the problem oc-

curs more frequently. Non-termination of a specialisation

is generally solved in off-line specialisation by going back

to the original program and manually inserting generalizing

coercions (operations that force the specialiser to lose static

information ) into the program. The same technique applies

for constructor specialisation. It is, however, not always

necessary to use as drastic an approach. Some situations

can be handled within the tight constraints imposed by the

annotations. It is often the case that the grammars for sub-

domain properties grow beyond control, e.g. grammars for

dynamic recursive data structures. Generalisation can be

of help here. We therefore introduce the notion of approx-

imation for grammars. Grammar G1 is an approximation

for grammar Gz, iff Gz < G1. The above definition of ap-

proximation is, however, not adequate for off-line speciali-

sation: the set of approximations for a given grammar in-

cludes grammars that are not valid given a fixed bt-property.

We therefore, introduce the notion of approximation under

binding-time preservation. A grammar GI approximates Gz

with binding-time preservation, iff G1 approximates Gz and

the bt-properties corresponding to G1 and GZ are equal. Ap-

proximation may have positive effects on the convergence of

the fixed-point iteration but may not be applied unwieldy in

the case of constructor specialisation: approximation equals

loss of precision, precision which is crucial for generating

correct code. Therefore, approximation may lead to the

generation of dead code and, even worse, to specialisation-

time errors8. An approximation we have found to be use-

ful is the approximation of grammars for dynamic recursive

data structure with some degree of redundancy, by means

of flat grammars. A flat grammar is a grammar without

nested recursive levels. For inst ante {s 1 ::= Const r “Cons”

[(Int 1,9Z)], 9Z ::= Constr “Cons” [(Int I,ss)], ss ::= Constr

“Cons” [(Int 2,s4 )], 94 ::= Constr “Nil” U } is approximated

by the flat grammar {s1 ::= Constr “Cons” [(Int 1,sl )] +

Constr “Cons” [(Int 2,s1)] + Constr “Nil” U }. In this

particular example the original grammar cent ains some re-

dundancy because 1 occurs twice as list element. We should

8The reason Mogensen’s specialiser generates dead code or

commits specialisation-time errors is simply because it uses poor

approximations.
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Semantic Domains

e E TwoLExpr

v ~ Value

G ~ Grammar

P c Env = Var -t Grammar
~ c FnEnv = FnId -+ Grammar” -i Grammar

Valuation Functions

~#
Prog

: TwoLProg + FnId

s# : TwoLExpr + FnEnv + Env -+ Grammar

S:rogu{fl (W : 911) . . ..zn. @ln)=el: fll... jm(zl:@ml, zn., zn :Pmn)=em:fk}]

fixA&{ ~1 w A(G1, . . . . G~).S#[el : @l]+{zl ++ Gl,. . .,z~ w Gn)},. . . .

jmHA(G1,..., G~).S# [em : fh]~{q H G1,. . . . Zn w G~)}}

S$ [c : ~]~p = [G ::= [c]]

S# [kfi e : D]dp = let G1 = S# [e : @]@P—

in [G ::= h] (where h is a place holder)

s# [z : p]dp = p(m)

sx~(el :01,... ,e~ : fl~) : @]@p = let [G, ::= w] = S#[el : PI]OP

[Gn ::= vn] = S# [en : A]dp

in[G ::= ~](vl, . . . ,v~)]

S#~(e~:@l, . . ..en : L%) : @4P= let G1 = S# [el : A]h—

G. = S# [en : &]rjp

in[G ::= h] (where h is a place holder)

S#[c~(e~ :f3~, . . ..en :%) : 914P= let G1 = S#Kel : AldV

Gm = S# [en : (3n]@p

in [G ::= ci(G1, . . . ,Gn)]

S#[(=eO: @OOfcl(zl,. ... *n)> el:B; . . ..cm(zl . . . ..zn)*em.9).9]@p=

let [G ::=c; (G1,..., Gn)] = S# [eo : ~o]~p

in S#[ei : P]c$([z1 H Gl, . . . ,zn ++ Gn]P)

S#~(geo: @oofcl(zl,. ... zn)*el: P;c~(=l~(=l~ . . ..zm)*em. LJ):@]~p=

let [G::= Cl(Glll, . . .. Gain) +...+ cl(Glrll, . . .. Glrl~) +...+

cm(Grnll, . . .. Gmln)+. ..+cm(Grnr~l, . . ..G ~rmn)] = S# [eo : @o]f#JP

izlj=l

S#[$; (el :@l,. ... en: @n) : P]4P = let G =s# [el : @l]@

G. = S# [e. : &]I#p

in#(f; )(@, . . ..G)

Figure 10: Abstract Specialisation Semantics

be aware of the fact that precision is lost by going to the flat duced at the program points where grammars for recursive

representation, and might lead to specialisation-time errors data structures are built from existing components, i.e., at

(e.g., if the code manipulating the above list relies on the the dynamic constructor application points. To avoid hav-

first list element being 1). Redundancy checks are best intro- ing to check at each constructor application, including the
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non-recursive cases, the checks are best introduced at the

~ (see figure 8), since they are always lined up with the

dynamic recursive constructor applications.

5.2 Code Generation

In the first phase we have computed the minimal function

graph for a given two-level program and a set of input de-

scriptions. When restricted to activation/result pairs for the

residual functions, the minimal function graph is the final

cache computed in the corresponding naive constructor spe-

cialiser. The difference with a naive constructor specialiser

is that we have avoided code generation during cache com-

putation. Since we know the complete cache, specialisation

is reduced to generating a specialised version for each of

the activation/result pairs for the residual functions in the

graph. A simple graph traversal suffices (see figure 11: for

each activation (GI, . . . . G~) of ~; c Dom(M) a specialised

version is generated).

In the specification we make great use of auxiliary func-

tions. Since most of them are pretty common in the partial

evaluation literature they are not formally specified. Stat

and d yn are functions that convert partially static values

into their static, respectively dynamic part. The result of

stat is used for generating new names for specialised func-

tions and constructors in (residual) applications. The re-

sult of dyn (which is in general a list) makes up the list of

arguments for the specialised function and constructor ap-

plications. StatG does essentially the same as stat, but for

grammars instead of partially static values. It is used in the

generation of new constructor names in the (left hand sides

of) case branches and of new function names for the (resid-

ual) function definitions. Finally stat+var is a function that

replaces all dynamic parts by new variables, and also re-

turns the list of newly introduced variables. Both results are

needed in the construction of specialised case branches and

specialised function definitions. More details can be found in

[Lau91a], where exactly the same factorisation is described.

Only the factorisation for a dynamic property with static

subcomponents (to which no projection corresponds) must

be treated specially. Such a property is considered to be

completely dynamic in our factorisation. We use a function

for generating new constructor names (gen-constr) from a

given constructor and a set of static values, and a func-

tion for generating new function names (gen-fnid) from a

given function name and a set of static arguments. Fur-

thermore, there are functions for generating residual func-

tion definitions, gen-fundef, and functions for generating

residuaJ expressions: gen-const (converts base values into

constants), gen-primap (generates primitive applications),

gen-constrap (generates constructor applications), gen-case

(generates case-expression), gen-funap (generates function

applications) and gen-branch (generates case-branches).
In the specification for ~ in figure 11 and figure 12 we

use three environments, # a function environment, 0 an en-
vironment that binds variables to grammars and p an en-

vironment that binds the same set of variables to two-level

values. The point of having the extra 6’ environment is to

propagate the subdomain properties. For example at the

point of a dynamic case-expression we need the subdomain

property for the expression e.. This, basically, means we

have to rerun the abstract specialiser, S~f ~g, in this envi-

ronment 0. In order to reflect environment changes it also

9~#~fg is the version of S# that is used in the minimal function

means that we shall have to rerun the abstract specialiser

for the arguments of an unfoldable function call. This def-

init ely requires some recomputation! But the point is that

it is only very local, since we have computed the minimal

function graph, M, in a previous step.

Because of the resemblance with the specification in fig-

ure 10 we only discuss the interesting parts of the specifi-

cation in figure 11 and figure 12. For example, handling

the application of a dynamic primitive p involves generating

code for the arguments and building a new application of p.

For a dynamic constructor application we first specialise the

arguments, then we generate from the static part and the

constructor a new constructor. Finally, we build a new con-

structor application with the dynamic parts of the argument

as new arguments. The most interesting case is the dynamic

case-expression. First we specialise the case’s argument, and

compute the corresponding sub domain property with S: ~~.

For each of the sum elements of this property we generate a

new case-branch, that matches against the new constructor

associated with this sum element, and in which the body

is specialised with respect to the static parts of the sub-

domain property. These branches are then combined into a

new case-expression. The treatment of both residual and un-

foldable function calls corresponds to this found in existing

specialisers with that difference that subdomain properties

are generated for the arguments.

After the minimal function graph is traversed we end up

with a specialised version of the original program, a program

without type definitions.

5.3 Generating Type Definitions

The programs generated by the code generators cannot be

type checked by a standard ML-type checker. The residual

programs lack type definitions. These definitions can be gen-

erated by inspecting the residual program and the grammars

and dividing the set of of newly introduced constructors into

equivalence classes by means of a union/find based analysis.

The starting assumption is that all new constructors end up

in seDarate equivalence classes. Two equivalence classes will

be j&ed int~ one equivalence class if we can proof that the

type checker will need a type consisting of elements of both

classes (e.g., take the example in figure 4 where one branch of

the case-expression evaluates to Zero and the other to SUCC

followed by a set of arguments). Further algorithmic details

of the analysis are left out of the paper for space reasons.

They will be included in an extended version. It should be

investigated whether the use of Mishra and Reddy ’s decla-

ration free type checker [MR85] on program generated by

the code generator alleviates the need for type definition

generation!

6 Example revisited

The ability to propagate and exploit subdomain properties

about dynamic values is what makes constructor special-

isation superior to conventional techniques. In section 3

we saw that a mix-style specialiser failed to remove any of

the projection-injection overhead from a specialised met a-

circular interpreter. We also discussed how subdomairr prop-

erties could be used to optimise the specialised interpreter.

In this section we will show that the program from figure 6

can be obtained by the specialiser from section 5.

graph computation.
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Semantic Domains
—

e c TwoLExpr
v, w c TwoLValue = Value+ Expr

M c MFGraph = FnId ~ Grammarn -+ Grammar
G c Grammar

6 Env = Var ~ TwoLValue

$ c FnEnv = FnId ~ (TwoLValue” * Grammar”) -+ Grammar
b’ E Envl = Var ~ Grammar

Auxiliary Functions

stat : (BTType * TwoLVal.e) ~ Value
dyn : (BTType * TwoLVal.e) - TwoLValue

.?.tatG : (BTType * Grammar) ~ Value
stat+var : (BTType * Grammar) ~ (TwoLValue * [Symbol])
gen-constr : (Cname * Value) e Cname
gen-fnid : (FnId * Value) 4 FnId
gen-fundef : (FnId . [Symbol] * Expr) -t Function

gen-const : Value ~ Const

gen-primap : (Prim* Exprn) ~ Expr
gen-constrap : (Cname * Exprn) ~ Expr

gen-case : (Expr * Branch”) a Expr
gen-funap : (FnId . Exprn) -i Expr
gen-branch : (Cname * Symboln * Expr) ~ Branch

Valuation Functions

‘Prog : TwoLProg 4 MFGraph ~ Prog

G : TwoLExpr ~ FnEnv ~ Envl N Env ~ TwoLValue
‘@fg : TwoLExpr ~ Envl ~ MFGraph ~ Grammar

Gprog[{fl(zl : B1l , . . . ,~n : Pln)=ei: Pi... fm(zl:@ml, zn:@mn) =em:~m}]M=}]M=

{gen-fundef(fid, vars; , ~(~)(vl,. . . . tJ~)(GI,. . . . Gn)) \ VA E Dom(M), V(Gl, . . . . Gn) E Dom(M(&))}

where @ =fixk$.{ fl H A((vl, . . ..v~). (Gl, . . .. Gfi)).

G[el:@l]d{zl ~Gl,. ... zn*Gn}{zl Hvl, znHu~}, u,},...,

fmHA((vl,... ,vn), (G1, . . . ,Gn)).

G[e~:e~]d{zl *Gl,. ... z~w Gn}{zl+ vl, zn~v~}}v~}}

statparti = StatG((@il, . . . ,@in), (Gl, . . . . Gn))

((v,,..., vn), varsi) = stat+v~((~;l, . . .,6in)j(Gl, . . . ,Gn))

fid = gen-fnid(f; , statparti )

G[c : d]dep = [c]

~[kft e : @]&p= gen-const(g[e : fJ]@3p)

g[z : ~]gwp = p(z)

Gb(el : pi,... ,en : d~) : E%MP = kl(~[el : fJll@A . . . ,~lIen : 6nl@P)

G@(el :Lh,..., en : @n) : P]dep = gen-primap(p, ~[el : @l]48P,..., G[en : L?n]dop)

C[z(el :~l,..., en: i%) : B]48P = [c;](G[el : fJl]@3p,..., ~[en : Pn]dep)

—

Figure 11: Code Generator Part I

The interpreter from figure 2 is first subjected to the

BTA from figure 8 with a completely static description for

the program and the example bt-property from section 4.

The most interesting part of the annotated version of the in-

terpreter can be found in figure 1310. Notice, that both the

equality test and the if expression are overlined, static opera-

tions, and can be executed at specialisation-time. The sub-

domain property for val allows re-t yping the case-expression.

For each of the grammar elements a branch will be gener-

10 int ~ranche~ is the most interesting part because it handles the

case-expression

at ed. Aft er the introduction of type definitions we obtain

the residual program from figure 6. Contrast this program

with the residual program generated by Mogensen’s spe-

cialiser in figure 14. Its type definition is overly general,

as it allows natural numbers, integer lists and other arti-

facts – objects that do not correspond to elements in the

original type definition. Notice also that the case expres-

sion contains three dead branches. This stems from the fact

that Mogensen uses one single subdomain praperty for all

program expressions of type nniv – hence a very general

property.

In the case, where all specialised expressions of the orig-
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Wn = G[en :@n]q$@p
cid = gen-comstr(c; ,stat((~l, . . .,@n), (WI, . ,Wn )))

in gen-constra~cid, dyn((~l, . . .,@n), (toI, . . . ,wn )))

~[=eo :~oofcl(~l,...,~n)=el :@;. ..; cm(~l, . ..)zn)~em. ~):~]~~p =

let Ci(tJl, . . ..un) =G[eo :j30]@’P

[G,,= ci(G1,..., Ga)l=~~jglIeo :Bo]e~

in G[ei :/3]~([zI H GI, . . ..zn H Gn]O)([zl H Vl, . . ..zn H vn]p)

G[(~eO: @O Ofcl(al,. ... )zn)>el:~; . . ..cm(zl ,.. .,zn hem: P) : 0148P=

let u=c[eo :@o]@9p

[G::= cl(Glll,..., GM~)+cl (Glr,l,r, Glr, n)+lr, n)+ . ..+

cm(Gmll, . . .. Gmln)+ ...+c~(G~,~l,...,Gm,~~ )1= s~fgileo : Pol@M

{

(cl(PIll, . . . ,plln), varsll) = stat+ varOJo, cl(Gul,... ,Glln))
Clvll = statG(~O, cl(Glll, . . .. Glln))

ell =G[el :@]@([al ~Glll,...,z~~Gll~]8)([z1 HpIII, . . ..wtHPll&)

CII =gen-constr(cl, v~~)

brll =gen-branch(cll, varsll, en)

G. = S~fg[e. : L?n]@M

wn = L7[en : fJn]@p

in @(.fi)(W1 , . . ..wn)(Gl . . . ..Gn)

~Ul(el :Bl,..., en : @n) :gl]@9p=

let wl = g[el : &]@p

Wn = G[en : %]dep

fid = gen-fnid(f; ,stat((fll, . . . ,Pn), (w, . . . ,~n)))

in gen-funa~fid, dyn((~l, . . . . fJ~), (WI, . . . . wn)))

Figure 12: Code Generator Part II

inal type T should have the same residual type, as is the that resulted in the generation of dead code or, even worse,

case with the parser example from [Mogg3], Mogensen’s spe- in specialisation-time errors. And last but not least we have

cialiser performs equally well. shown that constructor specialisation provides a general so-

lution to the projection-injection problem in [Lau~lb], a so-

lution which is also useful in the context of a handwritten
7 Conclusion compiler generator. More philosophically, constructor sPe-

With this work we have addressed some of the weak points of
cialisation shows that type information is simply too impor-

Mogensen’s specialiser in [Mog93]. First of all we enhanced
tant information to neglect in the program transformation

business. Types deserve first class status!
the BTA, bv allowing constructors to have more than one.-
single property for the whole program. Section 5 describes

a new constructor specialiser. This specialiser is factored

over different phases. Furthermore, it addresses an impor-

t ant issue of Mogensen’s specialiser: the lack of precision
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[DNBDV91] A. De Niel, E. Bevers, and K. De Vlaminck. Partial

int .branches( val ,brs ,env ,funs) =

= brs of

lJ+~L

(b:brs) + let (constrl,vars,e) = b

in ~ val of

(Constr constr2 val.) +.

~ constrl ~ constr2 then

int .expr(e ,ext end_env(vars,vals, env) ,funs

else int .branches(val,brs ,env,fuus)

Figure 13: Excerpts of the annotated meta-circular inter-

preter

data spec-univ = Constr_Nil I Constr-Cons int spec_uuiv I
Constr_ZerO I COnstr_Succ spec-univ I

Constr-Error

int .length(inp) =
case inp of

(Constr-Nil) %
COnstr_ZerO

(Constr-Cons i val) =$.
Constr.Succ (int-length(val))

(Constr-Zero) ~ Constr-Error

(Constr-Succ) > Constr-Error
(Constr-Error) +. Constr-Error

Figure 14: Program obtained by Mogensen’s specialiser

8 Further Work

We are currently extending constructor specialisation to the

higher-order case. The BTA is a simple generrdisation of the

one found in the paper. The abstract specialiser is currently

set up as a non-standard type system requiring full conjunc-

tion to model the polyvariant specialisation. It is worrisome

that higher-order control forces one to use a control-flow

analyser. As for now, we are investigating whether other

techniques apply. Another topic which we will be investi-

gating in the near future is function polyvariance as part of

the BTA.
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