
Abstract Interpretation and Low-Level Code Optimization *

Saumya Debray

Department of Computer Science

University of Arizona

Tucson, AZ 85715

Abstract

Abstract interpretation is widely accepted as a natu-

ral framework for semantics-based analysis of program

properties. However, most formulations of abstract in-

terpretation are in terms of high-level semantic enti-

ties that do not adequately address the needs of low-

level optimizations. In this paper we discuss the role

of abstract interpretation in low-level compiler opti-

mization, examine some of its limitations, and consider

ways in which they might be addressed.

1 Introduction

The process of compilation, by which executable code

is generated from a source program, can be thought of

as a series of transformations and translations through

a succession of languages, starting at the source lan-

guage and ending at the target language. In this pic-

ture, we can distinguish between two kinds of trans-

formations: tmnslations, which take a program in a

language and produce a program in a different (usu-

ally “lower-level”) language; and optirnizations, which

transform a program in a language to another program

in the same language. As an example, a compiler that

we have implemented for a logic programming language

called Janus [38] works by translating the input pro-

grams into C, then invoking a C compiler to generate

executable code. In this system, we can identify the fol-

lowing language levels: (1) the source language; (2) the

Janus virtual machine language; (3) C; (4) the inter-

mediate representation(s) within the C compiler; and

(5) the target machine language. In principle, optimiz-

ing transformations can be applied at each of these five

“ Thk work was supported in part by the National Science Foun-
dation under grsnt CCW9123520.

Permission to copy without fee all or parl of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or s~ecific Dermisslon.
PEPM ’95 La Jolla, CA USA
0 1995 ACM 0-89791 -720-0/95/0006 ...$3.50

language levels; our current implementation applies op-

timization at levels 2 (the Janus virtual machine), 4

(the intermediate representation(s) of the C compiler)

and 5 (the target machine code), the lad two within

the C compiler. In each case, the optirnizations can

be seen as program transformations at a particular lan-

guage level. A fundamental requirement of the compila-

tion process is that it should be “semantics-preserving”

in the sense that the “meaning,” or behavior, of the

executable code should conform to what the semantics

of the source program says it should be. For this to

happen, it is necessary in general that botlh transla-

tions and optimizations should be semantics-preserving

in this sense. Since our primary focus is on optimiza-

tion rather than translations, we will assume here that

our translations satisfy this requirement, and focus our

attention on optimizations.

It is very often the case that an optimization is not

universally applicable. In other words, in order to en-

sure that an optimization does not alter the observable

behavior of a program in unacceptable ways, we have

to ensure that certain preconditions particular to that

optimization are satisfied. As an example, consider reg-

ister allocation in a C compiler: the value of a variable

can be kept in a register only if certain conditions re-

garding aliasing are fulfilled. In general, this means that

it may be necessary to examine a program and extract

some information about its behavior, which can then

be used for optimization purposes. Further, in order to

verify that the properties so inferred describe all possi-

ble runtime behaviors of a program, it is necessary to

be able to relate the analyses to the semantics of the

language in a precise way.

Semantics-based techniques such as abstmct inter-

pretation [23, 24, 25] provide a natural framework for

such program analyses. The general idea is to rely on

the formal semantics of a program to specifi~ all of its

possible computational behaviors, and to derive finitely-
computable ckscriptions of such behaviors bY system-

atically approximating the operational behavior of the

111

http://crossmark.crossref.org/dialog/?doi=10.1145%2F215465.215571&domain=pdf&date_stamp=1995-06-23

Benchmark Execution Time (psecs) Heap Usage (words)

no-opt opt no-opt /opt n~opt opt no-opt/opt

squad 55467 20569 2.67 30884 544 0.018

bessel 12577 12364 1.02 689 452 0.656

binomial 6Q55 5720 1.06 1208 6 0.005
chebyshev 32234 8500 3.79 30002 6 0.0002
e 13713 9832 1.39 6005 6 0.001

fib 13839 4711 2.94 6389 5 0.001

log 44967 35432 1.27 28870 6 0.0002

mandelbrot 102517 23942 4.28 69533 654 0.009

muldiv 16621 12705 1.31 5 5 1.000

nrev 8525 8018 1.06 10507 10507 1.000

pi 25565 12144 2.10 20007 6 0.0003

sum 6503 1694 3.84 5 5 1.000

tak 18043 5340 3.38 7121 5 0.001

Geometric Mean : 2.02

Table 1: Performance improvements due to low-level optimizations (j c on a Sparcstation-IPC)

program. The correctness of an analysis can then be

derived from the mathematical relationships between

the actual computational domain of the program and

the domain of descriptions manipulated by the analy-

sis, and between the actual operations executed by the

program and the approximations to those operations

used during the analysis.

Optimizing program transformations can be viewed

at many levels, corresponding to the different levels of

languages encountered during compilation. At a high

level, for example, we have transformations such as fi-

nite differencing [55, 66], recursion removal (i.e., trans-

formation of recursive programs to tail recursive form)

[5, 29], deforestation [19, 73], transformations for par-

allelization and vectorization (see, for example, [3, 12]),

as well as various transformations described by Bacon

et al. [6]. At the level of “intermediate code” we

have machine-independent low-level optimizations such

as induction variable elimination [1], closure representa-

tion optimization in functional languages [46, 47], and

dereferencing optimizations in logic programming lan-

guages [68, 71]. At a lower level still we have machine-

dependent transformations such as register allocation

[9, 15, 20] and instruction scheduling [36, 59]. Concep
tually, we can divide these various optimization into

two classes: high level optimizattons, which correspond

roughly to optimization that can be expressed in terms

of transformations on the source program (or its ab-

stract syntax tree); and low-level optimization, which

involve constructs and objects that are not visible at the

source level, and which therefore cannot be so expressed

(this classification is not absolute, of course: whether

or not an optimization is to considered “low-level” de-

pends, among other things, on the language being con-

sidered: for example, in a language with explicit con-

structs for iteration, the implemental ion of a tail re-

cursive procedure in terms of iteration could be consid-

ered as a high-level optimization; in a language without

source-level iterative constructs, however, this would be

a low-level optimization).

There are two reasons why low-level optimizations

are important. The first is that they are beyond the

reach of the user. The point is that when faced with a

compiler that does not do much in the way of high-level

optimizations, the determined user can, in principle,

carry out the transformations manually where necessary

in order to obtain code with good performance. With a

compiler that does not perform low-level optimization,

however, there is little that even the most determined of

users can do. In particular, this implies that in the ab-

sence of low-level optimizations, even carefully crafted

programs written by skilled programmers will incur per-

formance penalties over which they have little control.

The second reason such optimizations are important

is that they can produce substantial performance im-

provements. As an example of this, Table 1 gives some
performance numbers for j c, an implementation of a

dynamically typed logic programming language [38].

The j c compiler currently performs only low-level opti-

mization: call forwarding [27], which is a form of jump

redirection at the intermediate code level; a simple form

of inter-procedural register allocation for output value

placement [7]; and represent ation optimization (i.e., us-

ing unboxed values where possible) for numerical val-

112

ues [8]. As Table 1 indicates, for the benchmarks tested

these optimizations more than double the speed of the

programs on the average, and also lead to significant

improvements in heap memory usage. 1 The speed of

the resulting code is competitive with that of optimized

C code written in a “natural” imperative style: on the

benchmarks shown, the Janus programs—which are dy-

namically typed and use dataflow synchronization be-

tween producers and consumers—is, on the average,

only 1370 slower than C code compiled with gcc2 -02,

about 25?Z0faster than C compiled with cc -02, and

6’?ZOfaster than C compiled with cc -04. This indicates

that low-level optimizations can be a valuable source of

performance improvements.

The appeal of semantics-based program manipula-

tion techniques is that they allow us to reason formally

about the manipulations themselves, and certify with

some confidence that such manipulations will not cause

“bad things” to happen. This paper considers the appli-

cability and relevance of semantics-based program anal-

ysis techniques such as abstract interpretation in the

context of low-level code optimization. Specifically, we

argue that “semantic mismatches” between the kinds

of information typically produced by semantics-based

analyses and the kinds of information needed by low-

level optimizations limit the utility of such formally de-

fensible analyses for these optimizations. Specifically,

we consider two kinds of semantic mismatch: in Sec-

tion 2 we consider the level at which the “concrete se-

mantics” is considered; and in Section 3 we consider

the problem of estimating runtime execution frequen-

cies and costs.

2 Low-Level Semantics and Abstract In-

terpretation

It is not difficult to see that while the kinds of infor-

mation provided by abstract interpretation (or other

semantics-based analyses) are perhaps necessary for

code optimization, they are by no means sufficient.

Part of the problem is that the “concrete” semantics

on which abstract interpretations are typically based

are, from the standpoint of low-level code optimization,

not concrete enough. They usually have little to say

about the registers and bit vectors and pointers and

other such low-level entities that are actually manipu-

lated during program execution. Indeed, the concrete

semantics usually encountered can themselves be seen

as abstractions of lower-level characterizations of pro-

gram behavior, where some or all of the information

1These numbers do not include the effects of tail call optimiza-

tion, though strictly speaking that is a low-level optimization in our

context. If the effects of tail call optimization are included, the speed

improvement IS by a factor of about 3.4.

about machinelevel entities has been abstracted away.

The problem, of course, is that usually we think of the

process of abstraction as forgetting about “irrelevant”

aspects of the behavior of a program, while in this case

it is precisely the most relevant aspects of the program’s

behavior that are being forgotten.

The problem can be addressed by abstract interpre-

tation based on a low-level semantics. While this does

not seem different from any other sort of abstract inter-

pretation at a conceptual level, the practical details can

become messy. As an example, it is very likely simpler

and more convenient to manipulate a high-level repre-

sentation of a program, such as an abstract syntax tree,

for such analyses, since the number of different kinds of

objects and operations that have to be dealt with for

such representations is relatively small. However, it is

not clear that a high level program representation can

encode low-level information in a reasonable way with-

out (implicit or explicit) assumptions about the behav-

ior of the code generator. This, in turn, implies that

such analyses, while simple to implement initially, are

potentially fragile.2

An example of this situation arises in the context

of dereference chain length analysis in Prolcjg systems.

In general, variable-variable unifications during the ex-

ecution of a Prolog program can cause pointer chains

to be set up, and these need to be dereferenced be-

fore the value of a variable can be accessed. Deref-

erencing arbitrary-length (tagged) pointer chains is a

fairly expensive operation, so static analyses to infer

the lengths of dereference chains can be very helpful

in improving program performance-in particular when

they allow dereference operations to be omitted en-

tirely [51, 69, 71]. However, high-level semantics for

Prolog typically do not have much to say about low-

level aspects such as pointer-chain lengths: for exam-

ple, when two variables are unified, such semantics say

nothing about how the pointers are oriented. Because

of this, dereference chain length analyses t!hat manip-

ulate high-level representations of program~s—such as

those of Van Roy [71] and Taylor [68, 69] —lmust either

limit their precision by refusing to handle any situation

where the high-level semantics is not unambiguous, or

expose themselves to potential fragilities by making as-

sumptions about the code generator. Closure analysis

in the Orbit compiler for Scheme [46, 47] provides an-

other example of the use of a high level representation

21n our Janus system, for example, we found that an optimization

to eliminate unnecessary dereference operations, based on an analysis

that used the abstract syntax tree of the program similar to analy-

ses of Van Roy [71] and Taylor [6S, 69], led to incorrect code being

generated when the mechanism for dealing with suspensions changed,

It turned out that as an ill-advised “convenience hack” the analysis

made implicit assumptions about whether or not the code genera-
tor would return output values in registers. These assumptions were

rendered invalid when the code generator was modified to handle sus-

pensions differently, but the analysis phase dld not know about this.

113

Source Program concrete semantics “Concrete” Meaning
— ,K

transformation

7-

abstraction

a

concrete semantics

- M’

“Approximate” Program “Abstract” Meaning

Figure 1: Program Analysis using Abstract Compilation

for analyzing low-level aspects of a program behavior:

in this case, decisions about the low-level representation

of closures are based on the structure of the abstract

syntax tree for the program.

It may be possible to get around this problem in

some cases by “lifting” implementation-level aspects of

a program to the source level and then treating the

analysis and optimization problems as high-level issues.

This approach is taken in &-Prolog [40], a parallel Pro-

log system, which extends the source language to al-

low various lower-level parallelization and synchroniza-

tion issues to be addressed at the source level, An-

other example of such an approach can be seen in ex-

posing low-level representational aspects of data, such

as whether they are boxed or unboxed, at the source

level, and formulating representation optimizations in

terms of source-level program transformations [49, 57].

However, it may not always be possible to capture low-

Ievel optimizations by lifting them to the source level

in this way (for example, it is not clear how the imple-

mentation of aggregate updates in a single-assignment

language via compiler-introduced destructive updates

(see, for example, [35, 37, 42, 53]) could be expressed

at the source level).

The alternative is to use a lower level representa-

tion, e.g., a sequence of intermediate code instructions.

This has the advantage that the appropriate low-level
details have been made explicit and can be reasoned

about without having to resort to assumptions about

the behavior of other parts of the compiler. This is con-

ceptually cleaner and more defensible than the previous

approach. However, there are two important practical

problems that arise with this approach. First, the num-

ber of operations that have to be accounted for is likely

to be considerably larger in a low-level representation

than in a high-level representation. Second, relation-

ships between objects, e.g., whether or not two objects

overlap in memory, may be harder to reconstruct by

examining a sequence of low-level operations.

Because of the large number of different operations

that might be encountered in a low-level representation

of a program, and the comparatively larger size of such a

represent at ion, one might expect a low level abstract in-

terpretation to be considerably slower than a high level

one. This problem can be alleviated to some extent by

a technique that, with tongue firmly in cheek, we call

“abstract compilation.” The idea is the following: to re-

duce the cost of program analysis, instead of repeatedly

traversing an internal representation of the program P

being analyzed, we partially evaluate an abstract inter-

preter to with respect to P so as to produce a program

P’ which, when executed, yields the result of analyz-

ing the original program P [30, 41]. In practice, for

any particular analyses that we wish to implement in a

compiler, we will know enough about the corresponding

abstract interpreters that instead of invoking a general

purpose partial evaluator on such an interpreter and the

input program P, we can simply make a single pass over

P and produce P’ (indeed, we initially thought of this

in terms of program transformation rather than partial

evaluation): this is illustrated in Figure 1. The idea is

similar to the notion of “need expressions” proposed by
Maurer [52] in the context of strictness analysis. McN-

erney also uses a similar approach for an abstract inter-

pretation to verify the correctness of low-level compiler

optimizations [50].

At first glance it might appear that such an approach
is practical only in languages, such as Prolog and Lisp,

where it is easy to create program fragments “on the

fly” and execute them. For languages such ss C, for ex-

114

ample, the traditional model for generating executable

code for a program would most likely incur much too

much 1/0 overhead, in writing out a program (or ex-

ecutable code) into a file and then reading it back in,

to make this worthwhile. However, recent work in dy-

namic code generation for such languages [34, 45] indi-

cates that the runtime overhead associated with creat-

ing and executing code for such languages at runtime

can be made small enough to make such an approach

practical. The success of dynamic code generation in

the SELF system [16] also suggests that the “abstract

compilation” approach may be practically usable in gen-

eral.

The second problem referred to above is that re-

lationships between objects that may be relatively

straightforward to detect at a high level may be much

harder to rediscover in a lower level analysis. For exam-

ple, a value that is easily identifiable as a list or a tree at

a high level may be visible only as a jumble of pointers

during a low level analysis, making it much more com-

plicated to rediscover relationships between its compo-

nents (e.g., compare high-level type inference as in [2]

with comparable low-level analyses aa in [18, 33]). On

the other hand, not all structural relationships between

objects may be amenable to high-level analysis, e.g.,

sharing relationships between objects may depend on

specific implementation decisions that are invisible at

a high level [54]. We have found that combining high-

and low-level analyses works well for this [38]. The idea

is to first carry out a high-level analysis and annotate

the high-level representation of the program with this

information. When this is translated to a lower-level

represent ation (e.g., from an abstract syntax tree to a

sequence of intermediate code instructions), the high-

level properties are also translated into low-level terms

alongside, and the low-level represent ation annotated

appropriately. Subsequent low-level optimizations can

then use the low-level information in a straightforward

way.

3 Cost Models and Code Optimization

A fundamental problem in low-level code optimization

is that abstract interpretation can tell us only whether a

particular optimization is permissible: it has nothing to

say about whether or not it is desirable in a particular

context. For example, we may discover, as a result of

alias analysis, that a variable may be kept in a register

over the course of a computation without affecting the

result. It may turn out, however, that this is not a

worthwhile thing to do because it precludes the use of

that register to hold another, more frequently accessed,
variable. The kinds of information typically obtained

from abstract interpretation provide little guidance on

the latter point.

One might feel that this is not, after all, such an

important issue because the primary technical problem

in program analysis and optimization is to ensure that

“bad things” do not happen, i.e., an optimization does

not cause a program to behave incorrectly. It is unde-

niably true that correctness is fundamentally more im-

portant than performance, and that we should always

choose to compute a correct result-perhaps slowly—

rather than an incorrect result quickly. It can be ar-

gued, however, that identifying “bad things hi~ppening”

with semantic incorrectness takes too narrow a view of

the situation. Given two computations that both pro-

duce the same correct solution to a problem, we would

probably choose the one that is faster, or uses less mem-

ory, or is better according to some appropriate measure

of performance. In such a setting, if the performance of

a program is adversely affected by the poor decisions of

an optimizer, one can certainly argue that “biid things”

have happened.

As an example of a perfectly plausible optimization

where inadequate attention to low-level detailk can lead

to a performance degradation, consider subprogram in-

lining (which is conceptually very similar to the “unfold-

ing” transformation of Burstall and Darlington [13]).

The main motivation behind this transformation, where

a call to a subroutine is replaced by (an appropriate in-

stance of) the body of the called subroutine, is to reduce

program execution time by eliminating the overhead

associated with calling the subroutine and eventually

returning from it. Davidson and Holler have shown,

however, that register usage can be adversely affected

by inlining: first, the number of registers that have

to be saved and restored at a subroutine call may in-

crease after inlining; and second, register allc}cation de-

cisions may change as a result of inlining, causing some

frequently accessed variables to be stored in memory

[26]. This can cause the inlined program to actually

run slower than the program without inlining. Cooper

et al. report a similar experience-though for differ-

ent reasons-with subprogram inlining in Folrtran [22].

Richardson [62] describes a somewhat different form of

“bad things happening” in the context of this trans-

formation: individual functions may grow enormously

in size as a result of inlining (even though the overall

growth of the size of the entire program may be rela-

tively modest), leading to greatly increased time and

space requirements during compilation and optimiza-

tion, and in the worst case causing compilation to fail

due to inadequate memory.

Another example of this phenomenon can be seen

in stack allocation of closures in functional languages

[46, 47]. The idea is that while closures need to be heap

allocated in general, with enough information about the

115

lifetime of a closure in a program it maybe possible to

avoid this and allocate it on the stack instead (for a

discussion of various low-level considerations for stack

vs. heap allocation, see [4]). Unless care is exercized,

however, this can lead to an increase in the memory

requirements of a program because &ad variables in

stack-allocated closures are nevertheless traversed by

the garbage collector [17]. In extreme cases, this can

cause a program to fail at runtime due to insufficient

memory availability.

The final example of potentially-pessimizing opti-

mization we consider is tabulation (also known as

memorization), where calls to a function or procedure,

and the corresponding return values, are noted in a ta-

ble [10]. The idea is that by consulting this table, subse-

quent calls may be able to reuse a previously computed

value and thereby avoid having to actually execute the

called function. An oft-cited example of the benefits of

tabulation is the naive exponential-time Fibonacci func-

tion, which runs in linear time with tabulation. How-

ever, if functions are tabulated without careful consid-

eration of the relative costs and benefits of tabulation,

the cost of table manipulation can overwhelm any ben-

efits that accrue from it. As an example, in an exper-

iment with tabulation using Ackermann’s function, we

found that the computation generated so many entries

in the table that even though table lookups incurred a

great many successful “hits,” the cost of table manage-

ment led to an overall slowdown in the program. The

large number of table entries’ also led to a significant

increase in the memory requirements of the program ~

raising again the specter of runtime failure due to in-

sufficient memory.

These examples illustrate two points: first, without

careful attention to low-level details, even apparently

plausible optimization can result in an overall degrada-

tion in program performance; and second, such perfor-

mance degradations should be taken seriously as a “bad

thing.” In the worst case they can lead to execution fail-

ure in correctly written programs, and this is no better

than an incorrectly performed optimization. A funda-

mental motivation behind program analysis frameworks

such as abstract interpretation is to give such analyses

a solid foundation on the mathematical semantics of

programming languages and thereby allow us to reason

formally about properties such as correctness. This, in
turn, is driven by the desire to ensure that any transfor-

mations that are performed do not change the behavior

of a program in undesirable ways. This suggests the

need for reasonable cost models that are able to account

for low-level aspects of program execution in sufficient

detail that optimization guided by them can reason-

ably be expected to not “goof up” too badly (Dean and

Chambers [28] discuss the use of such cost models to

guide the subprogram inlining optimization discussed

above).

Note that the need for low-level cost models does not
go away if we “lift” low-level operations to the source

level, as is done for boxing and unboxing operations us-

ing representation types [57]. For example, Henglein

and J@rgensen’s notion of formally optimal boxing [39]

does not take into account machine level costs (or execu-

tion frequencies). Because of this, it may happen that a

program that is compiled to formally optimal form may

be slower, at runtime, than one that is not optimal in

this sense, but which uses a low level cost model and

execution frequency information to guide the placement

of boxing and unboxing operations (e.g., see [56]).

Unfortunately, the construction of reasonable low-

level cost models seems nontrivial for a number of rea-

sons. First, it seems quite difficult to predict the “con-

crete” cost of a program, e.g., in terms of the number

of machine cycles it takes to execute the program on a

particular input, because even if we choose to ignore the

characteristics and behavior of the underlying operat-

ing system, we would have to account for machine-level

aspects of execution, such as cache behavior, in consid-

erable detail. One possibility y might be to abstract away

from such “really low-level” and more or less unpre-

dictable aspects and use some kind of abstract machine

description that nevertheless models some of the more

import ant aspects of an implement ation. Such abstract

cost models have been used successful y, for example,

for data representation optimization [65], for improv-

ing data locality [14, 78], and register allocation (see,

for example, [9, 15, 20]).

However, even with simplifications to the machine

model to make it tractable, we may need estimates of

execution frequencies for different parts of a program

to give an estimate of its cost: this is crucial for op-

timization where a reduction in cost in one part of a

program may be traded for a possible increase in cost in

another part. Where current systems use execution fre-

quency estimates, however, they very often tend to rely

on fairly simple-minded heuristics based on the static

loop nesting structure of the program. This can lead

to estimates that are quite imprecise. As an exam-

ple, a common heuristic used for register allocation in

compilers is to assume that each loop is executed some

fixed number of times, usually between 3 and 10 (see,
for example, [9, 15, 20, 58, 70]). Wall’s studies indi-

cate, however, that the profiles of basic block execution

frequency and procedure call frequency obtained using

this technique can be surprisingly poor, being, in many

cases, not much better than random profiles [75]. As

users, we have experienced this problem in the context

of our Janus compiler [38], which translates programs

to C and invokes gcc: our lack of explicit control over

116

register allocation in the C compiler,3 combined with

its often imperfect execution frequency estimates, occa-

sionally lead to the unexpected situation where trans-

formations at the Janus virtual machine level that one

would reasonably expect to yield speed improvements

actually produced slowdowns in overall execution speed.

As a concrete example, in a benchmark program to

evaluate Chebyshev polynomials, when we turned off

garbage collection-expecting an improvement in exe-

cution speed because of a reduction in the number of

explicit overflow checks on the heap pointer—we found

that the change in the number and distribution of static

references to the heap pointer led to changes in the reg-

ister allocation decisions in the C compiler that resulted

in an overall slowdown of about 50?lo.

The problem is not entirely that static analysis prob-

lems such as the estimation of execution frequencies and

costs are not amenable to formal methods. Early work

on these problems includes that of Cohen and Zucker-

man, who consider cost analysis of Algol-60 programs

[21]; Wegbreit, whose pioneering work on cost analy-

sis of Lisp programs addressed the treatment of recur-

sion [76]; and those of Ramshaw [60] and Wegbreit [77],

who discuss the formal verification of cost specifications.

Since then, the question of cost analysis has been inves-

tigated by a number of researchers: see, for example,

[11, 32, 44, 48, 61, 63, 64, 67, 72, 74]. Many of these

use semantics-based methods: for example, Rosendahl

[63] uses abstract interpretation for cost analysis, and

Wadler [72] uses projection analysis. Despite this fact,

the use of formally defensible semantics-baaed tech-

niques for the estimation of execution frequencies or

program costs does not seem very common in actual

compilers. This could possibly be due to a perception

that such techniques are interesting research tools but

too expensive to be part of a compiler. Another reason

may be that the information obtained from such anal-

yses, which are typically propositions of the form “on

an input of length N the function f requires (at most)

0.5N2 + 1.5N + 1 computational steps”, are not directly

amenable to low-level code optimization applications,

which would prefer to have more absolute information

of the form “variable x is accessed 23000 times”.

Some recent work on dynamic control of task cre-

st ion in parallel systems [31, 43] suggests how cost es-

timates based on semantics-based methods might be

incorporated into compilers. In essence, the idea in

[31, 43] is to use polyvariant specialization at a low-level

to construct different versions for each procedure: one
version handles inputs that are large enough to justify

the overheads associated with the creation of parallel

3While gcc version 2 provides extensions that provide some degree

of user cent rol over hardware register allocation, we do not usethem
at this time for portability reaaons.

tasks, and another handles inputs that are small enough

that sequential execution is preferable. At runtirne, the

appropriate version of a function is selected dynami-

cally by comparing the size of the input arguments with

a system-dependent “threshold size” for that function

that is determined at compile time. In principle, one

could imagine using a similar approach for c)ther low-

level optimizations as well: generate code for different

versions of a program fragment to account for differ-

ent various optimization scenarios, and choose the one

that is appropriate in any particular context, if nec-

essary dynamically. Chambers [16] refers to this kind

of application of polyvariant specialization to arbitrary

pieces of a program (rather than being limited to, say,

functions or procedures) as splitting. A straightforward

implementation of this idea seems impractical because

of the almost certain explosion in code size it would in-

cur. Moreover, interactions between different low-level

decisions in different versions would have to be taken

into account. It would be interesting to see whether

such problems could be addressed well enough to make

it practical to incorporate semantics-based methods for

execution frequency and cost analysis into compilers.

4 Summary

Compiler optimizations can be divided into two broad

classes: high-level optimizations, which correspond to

transformations expressible in terms of source-level con-

structs; and low-level optimizations, which are not so

expressible. While abstract interpret ation is widely ac-

cepted as a natural framework for semantics-lbased pro-

gram analyses, we have found that in many cases, such

analyses are not quite suitable for low-level optimiza-

tion, There are two main reasons for this. The first

is that there is often a “semantic mismatch” between

the kinds of information abstract interpretations pro-

vide, and the kinds of information a compiler wants

for its low-level optimizations: abstract interpretations

are typically formulated in high-level progra,m seman-

tics, while for low-level optimization we need informa-

tion about machine-level entities like registers, pointers

in memory, etc. The second reason is that in order

to carry out a low-level optimization, in general it is

not enough to know that the optimization is permis-

sible: we need to know also that it is desirable. De-

termining whether a particular optimization is desir-

able in a particular context requires low-level cost mod-
els, aa well as knowledge about execution frequencies.

While there has been a considerable body cjf work on

semantics-based methods for execution cost analysis of

programs, these techniques do not seem to be used very
much wit hin actual compilers, which tend to use sim-

ple and potentially imprecise heuristics. Again, this is

117

due in part to a semantic mismatch: semantics-based

cost analyses typically yield cost functions (or execu-

tion frequency functions) that are expressed in terms of

input size, while for optimization purposes it is easier

to work with absolute values for execution frequencies

and costs.

A fairly obvious solution to the first problem is to use

a low-level concrete semantics that makes explicit the

entities that are of interest in the context of low-level

optimization. The main pragmatic problem here is

that low-level program representations tend to be con-

siderable y larger than high-level representations, making

analyses more expensive. A possible solution is to re-

duce the overhead associated with interpreting a pro-

gram over an abstract domain by using some form of

“abstract compilation,” i.e., by executing (an appro-

priately modified form of) the low-level representation

of the program instead of interpreting its components.

There is the additional issue that program properties

that are relatively easily inferable at a high-level may

be obscured in a lower-level analysis, but this can be

handled by initially analyzing the program at a high

level, then translating the high-level program proper-

ties into low-level terms during the translation of the

program into a lower-level language.

The second problem can be addressed, at least in

principle, via polyvariant specialization at the low-level.

This idea has been applied to controlling dynamic task

creation in parallel systems, and appears to work rea-

sonably well. However, a significant problem that has

to be addressed when applying this to low-level code

optimization is that of controlling code growth.

The appeal of semantics-based program manipula-

tion techniques is that they allow us to reason formally

about the manipulations themselves, and certify with

some confidence that such manipulations will not cause

‘(bad things” to happen. Much of the current practice of

low-level optimization seems guided by simple heuris-

tics rather than careful semantic treatment. Because of

this, it is not clear that much can be said about whether

or not “bad things” can happen: an indeed, we some-

times do encounter situations where apparently plausi-

ble “improvements” to a program can lead to a degra-

dation in its performance. This is undesirable, but if

semantics-based techniques can be adapted for low-level

optimization it may be possible to reduce or eliminate
such anomalous situations in the future.

Acknowledgements

Numerous valuable discussions with Manuel
Hermenegildo are gratefully acknowledged.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

A. V. Aho, R. Sethi and J. D. Unman, Compilers -

Principles, Techniques and Tools, Addison-Wesley,

1986.

A. Aiken, E. L. Wimmers, and T. K. Lakshman,

“Soft Typing with Conditional Types”, Proc. 21st.

ACM Symposium on Principles of Programmmg

Languages, Portland, Oregon, Jan. 1994, pp. 163-

173.

R. Allen and K. Kennedy, “Automatic Translation

of FORTRAN Programs to Vector Form”, ACM

Transactions on Programming Languages and Sys-

tems vol. 9 no. 4, Oct. 1987, pp. 491-542.

A. W. Appel and Z. Shao, “An Empirical and Ana-

lytical Study of Stack vs. Heap Cost for Languages

with Closures”, Research Report CS-TR-450-94,

Dept. of Computer Science, Princeton University,

March 1994.

J. Arsac and Y. Kodratoff, “Some Techniques

for Recursion Removal from Recursive Functions”,

ACM Transactions on Programming Languages

and Systems vol. 4 no. 2, Apr. 1982, pp. 295–322.

D. F. Bacon, S. L. Graham, and O. J. Sharp,

“Compiler Transformations for High-Performance

Computing”, Computing Surveys vol. 26 no. 4, Dec.

1994, pp. 345-420.

P. A. Bigot, D. Gudeman, and S. K. Debray, “Out-

put Value Placement in Moded Logic Programs”,

Proc. Eleventh Int. Conf. on Logic Programming,

June 1994, pp. 175–189. MIT Press.

P. A. Bigot and S. K. Debray, “A Simple Approach

to Supporting Untagged Objects in Dynamically

Typed Languages”, Draft Report, Dept. of Com-

puter Science, University of Arizona, Tucson, Nov.
1994.

D. Bernstein, M. C. Golumbic, Y. Mansour, R.

Y. Pinter, D. Q. Goldin, H. Krawczyk, and I.

Nahshon, “Spill Code Minimization Techniques for

Optimizing Compilers”, Proc. SIGPLAN ’89 Con-

ference on Programming Language Design and Im-

plementation, Portland, June 1989, pp. 258-263.

R. S. Bird, “Tabulation Techniques for Recursive

Programs”, Computing Surveys vol. 12 no. 4, Dec.

1980, pp. 403-417.

B. Bjerner and S. Holmstrom, “A Compositional
Approach to Time Analysis of First Order Lazy

Functional Programs”, Proc. ACM Conference on

118

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Functional Programming Languages and Computer

Architecture, 1989, pp. 157-165.

F. Bueno, M. Garcia de la Banda and

M. Hermenegildo, “Effectiveness of Global Anal-

ysis in Strict Independence-Based Automatic Pr_

gram Parallelization, Pmt. Inter?iational Sympo-

sium on Logic Programming, Nov. 1994, pp. 320–

336. MIT Press.

R. M. Burstall and J. Darlington, “A Transforma-

tion System for Developing Recursive Programs”,

Journal of the ACM vol. 24 no. 1, Jan. 1977, pp.

44-67.

S. Carr, K. S. McKinley, and C.-W. Tseng, “Com-

piler Optimizations for Improving Data Locality”,

Proc. Sixth International Conference on Architec-

tuml Support for Programming Languages and Op-

erating Systems, San Jose, California, Nov. 1994,

pp. 252–262. SIGPLAN Notices vol. 29 no. 11.

G. J. Chaitin, “Register Allocation via Graph Col-

oring”, Proc. 1982 ACM Conference on Compiler

Construction, Boston, June 1982, pp. 98-104.

C. Chambers, The Design and Implementation of

the SELF Compiler, an Optimizing Compiler for

Object-Oraented Programming Languages, Ph.D.

Dissertation, Stanford University, 1992.

D. R. Chase, “Safety Considerations for Storage

Allocation Optimizations”, Proc. SIGPLAN ’88

Conference on Programming Language Design and

Implementation, Atlantaj June 1988, pp. 1-10.

D. R. Chase, M. Wegman, and F. K. Zadeck,

“Analysis of Pointers and Structures”, Proc. ACM

SIGPLAN ’90 Conference on Programming Lan-

guage Design and Implementation, White Plains,

NY, June 1990, pp. 296-310.

W.-N. Chin, “Safe Fusion of Functional Expres-

sions”, Proc. ACM Conference on Lisp and Func-

tional Programming, San Francisco, June 1992, pp.

11-20.

F. C. Chow and J. L. Hennessy, “The Priority-

Based Coloring Approach to Register Allocation”,

ACM Transactions on Programming Languages

and Systems vol. 12 no. 4, Oct. 1990, pp. 501–536.

J. Cohen and C. Zuckerman, “Two Languages for

Estimating Program Efficiency”, Communications

of the ACMvol. 17 no. 6, June 1974, pp. 301–308.

K. D. Cooper, M. W. Hall, and L. Torczon, “Un-

expected Side Effects of Inline Substitution”, ACM

Letters on Programmmg Languages and Systems

vol. 1 no. 1, March 1992, pp. 22–32.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

P. Cousot and R. Cousot, “Abstract Interpretation:

A Unified Lattice Model for Static Analysis of Pro-

grams by Construction or Apporoximation of Fix-

points”, Proc. Fourth ACM Symposmm on Princi-

ples of Programming Languages, 1977, pp. 238-252.

P. Cousot, and R. Cousot, “Systematic Design of
Program Analysis Frameworks”, Proc. S,ixth ACM

Symposium on Principles of Programming Lan-

guages, 1979, pp. 269-282.

P. Cousot , “Semantic Foundations of Program

Analysis”, in Progmm Flow Analysis: Theory and

Applications, eds. S. S. Muchnick and N. D. Jones,

Prentice-Hall, 1981.

J. W. Davidson and A. M. Holler, “Subprogram

Inlining: A Study of its Effects on Program Execu-

tion Time”, IEEE Transactions on Software Engi-

neering vol. 18 no. 2, Feb. 1992, pp. 89-102.

K. De Bosschere, S. K. Debray, D. Gudeman, and

S. Kannan, “Call Forwarding: A Simple Interpro-

cedural Optimization Technique for D:ynamicalIy

Typed Languages”, Proc. 21st. ACM Symposium

on Pn”nciples of Programming Languages, Port-

land, Oregon, Jan. 1994, pp. 409-420.

J. Dean and C. Chambers, “Towards Better In-

lining Decisions using Inlining Trials”, Proc. 1994

ACM Conference on Lisp and Functional Progmm-

ming, Orlando, Florida, June 1994, pp. 273–282.

S. K. Debray, “Optimizing Almost-TailI-Recursive

Prolog Programs”, Proc. Functional Programming

Languages and Computer Architecture, Nancy,

France, Sept. 1985.

S. K. Debray and D. S. Warren, “Automatic Mode

Inferencing for Logic Programs”, J. Logzc Progmm-

mmg vol. 5 no. 3, Sept. 1988, pp. 207-2;29.

S. K. Debray, N. Lin and M. Hermenegildo, “Task

Granularity Analysis in Logic Programs,” Proc.

ACM SIGPLAN’90 Conference on Pnogrammang

Language Design and Implementation, June 1990,

pp. 174-188.

S. K. Debray and N.-W. Lin, “Cost Analysis of

Logic Programs”, ACM Transactions on Program-

ming Languages and Systems, vol. 15 no. 5, Nov.

1993, pp. 826-875.

A. Deutsch, “On Determining Lifetime and Alias-

ing of Dynamically Allocated Data in Higher Order

Functional Specifications”, Proc. 17th ,4 CM Sym-

postum on Principles of Programming Languages,

Jan. 1990, pp. 157-168.

119

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

D. R. Engler and T. A. Proebsting, “DCG: An

Efficient, Retargetable Dynamic Code Generation

System”, Proc. Sixth International Conference on

Architectuml Support for Programming Languages

and Opemting Systems, San Jose, California, Nov.

1994, pp. 263–271. SIGPLAN Notices vol. 29 no.

11.

I. Foster and W. Winsborough, “Copy Avoidance

through Compile-Time Analysis and Local Reuse”,

Proc. 1991 International Symposium on Logic Pro-

gmmming, San Diego, Nov. 1991, pp. 455–469.

MIT Press, Cambridge.

P. B. Gibbons and S. S. Muchnick, “Efficient In-

struction Scheduling for a Pipelined Architecture”,

Proc. A Cikl SIGPLAN ’86 Conference on Compiler

Construction, June 1986, pp. 11-16.

K. Gopinath and J. Hennessy, “Copy Elimination

in Functional Languages”, Proc. Saxteenth ACM

Symposium on Principles of Progmmming Lan-

guages, Austin, TX, Jan. 1989, pp. 303–314.

D. Gudeman, K. De Bosschere, and S.K. Debray,

“j c: An Efficient and Portable Sequential Imple-

mentation of Janus”, Proc. Joint Int. Conf. and

Symp. on Logzc Programming, Nov. 1992, pp. 399-

413. MIT Press.

F. Henglein and J. Jorgensen, “Formally Optimal

Boxing”, Proc. 21st. ACM Symposzum on Prin-

ciples of Programming Languages, Portland, OR,

Jan. 1994, pp. 213-226.

M. Hermenegildo and K. Greene, “The &-

Prolog System: Exploiting Independent And-

Parallelism”, New Genemtion Computtng vol. 9

nos. 3–4, 1991, pp. 233–257.

M. Hermenegildo, R. Warren and S. K. Debray,

“Global Flow Analysis as a Practical Compilation

Tool”, Journal of Logic Programming, vol. 13 no.

4, Aug. 1992.

P. Hudak and A. Bless, “The Aggregate Update

Problem in Functional Languages”, Proc. Twelfth

ACM Symposium on Principles of Progmmming

Languages, 1985, pp. 300-314.

L. Huelsbergen, J. R. Larus, and A. Aiken, “Using

Run-Time List Sizes to Guide Parallel Thread Cre-

ation”, Proc. ACM Conference on Lisp and Func-

tional Progmmming, June 1994, pp. 79-90.

[44] S. Kaplan, “Algorithmic Complexity of Lo,gic Pro-

grams”, Proc. ‘Fiflh

Logic Programming,

MIT Press.

International ‘Conference on

Seattle, 1988, pp. 780-793.

[45] D. Keppel, S. J. Eggers, and R. R. Henry, “A Case

for Runtime Code Generation”, Technical Report

91-11-04, Department of Computer Science, Uni-

versity of Washington, 1991.

[46] D. Krantz, ORBIT: An Optimizing Compiler

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

for Scheme, Ph.D. Dissertation, Yale Univer-

sity, 1988. (Also available as Technical Report

YALEU/DCS/RR-632, Dept. of Computer Sci-

ence, Yale University, Feb. 1988.)

D. Krantz, R. Kelsey, J. Rees, P. Hudak, J. Philbin,

and N. Adams, “ORBIT: An optimizing Compiler

for Scheme”, Proc. SIGPLAN ’86 Symposium on

Compiler Construction, pp. 219-233.

D. Le M6tayer, “ACE: An Automatic Complexity

Evaluator”, ACM Transactions on Programming

Languages and Systems vol. 10 no. 2, April 1988,

pp. 248–266.

X. Leroy, “Unboxed objects and polymorphic typ

ing”, Proc. 19th. ACM Symposium on Principles of

Progmmming Languages, Albuquerque, NM, Jan.

1992, pp. 177-188.

T. S. McNerney, “Verifying the Correctness of

Compiler Transformations on Basic Blocks us-

ing Abstract Interpretation”, Proc. Symposium on

Partial Evaluation and Semantics-Based Program

Manipulation, New Haven, CT, June 1991, pp.

106-115.

A. Marien, G. Janssens, A. Mulkers, and M.

Bruynooghe, “The Impact of Abstract Interpre-

tation on Code Generation: an Experiment in

Code Generation”, Proc. Sixth International Con-

ference on Logic Programming, Lisbon, Portugal,

June 1989. MIT Press.

D. Maurer, “Strictness computation using special

A-expressions”, in Progmms as Data Objects, Oct.

1985, pp. 136-155. Springer Verlag LNCS vol. 217.

A. Mulkers, W. Winsborough, and M. Bruynooghe,

“Analysis of Shared Data Structures for Compile-

Time Garbage Collection in Logic Programs”,

Proc. Seventh International Conference on Logic

Programming, Jerusalem, June 1990, pp. 747-762.

MIT Press.

A. Mulkers, W. Winsborough, and M. Bruynooghe,

“Live-Structure Dataflow Analysis for Prolog”,

ACM Transactions on Programmmg Languages

and Systems vol. 16 no. 2, March 1994, pp. 205–

258.

120

[55]

[56]

[57]

[58]

[59]

[60]

[61]

R. Paige and S. Koenig, “Finite Differencing of

Computable Expressions”, ACM Transactions on

Pmgmmming Languages and Systems vol. 4 no. 3,

July 1982, pp. 402-454.

J. C. Peterson, “Untagged Data in Tagged En-

vironments: Choosing Optimal~presentations

at Compile Time”, Pmt. Functional Pmgmmming

Lunguages and Computer Amhitectum, London,

Sept. 1989, pp. 89-99.

S. Peyton Jones and J. Launchbury, “Unboxed val-

ues as first class citizens in a non-strict functional

language”, PrOC. Functional Progmmming Lan-

guages and Computer Architectutw 1991, pp. 636-

666.

M. L. Powell, “A Portable Optimizing Compiler

for Modula-2°, Proc. SIGPLAN ’84 Symposium on

Compiler Construction, Montreal, Canada, June

1984, pp. 310-318.

T. A. Proebsting and C. N. Fischer, “Linear-time

Optimal Code Scheduling for Delayed-Load Archi-

tectures”, Proc. ACM SIGPLAN ’91 Conference

on Progmmming Language Design and Implemen-

tation, Toronto, June 1991, pp. 256–267.

L. H, Ramshaw, Formalizing the Analysis of Al-

gorithms, Ph.D. Thesis, Stanford University, 1979.

(Also available as Report SL-79-5, Xerox Palo Alto

Research Center, Palo Alto, California, 1979.)

B. Reistad and D. Gifford, “Static Dependent

Costs for Estimating Execution Time”, Proc. 1994

ACM Conference on Lisp and Functional Progmm-

ming, Orlando, Florida, June 1994, pp. 65–78.

[62] S. E. Richardson, Evaluating Interpmceduml

Code Optimization Techniques, Ph.D. Dissertation,

Stanford University, 1991. (Also available as Tech-

nical Report CSL-TR-91-460, Computer Systems

Laboratory, Stanford University, Feb. 1991.)

[63] M. Rosendahl, “Automatic Complexity Analysis”,

Proc. ACM Conference on Functional Progmm-

ming Languages and Computer Architecture, 1989,

pp. 144-156.

[64] D. Sands, “Complexity Analysis for a Lazy Higher-

Order Language”, Proc. %d European Symposium

on Progmmming, May 1990, pp. 361–376. Springer-

Verlag LNCS vol. 432.

[65] E. Schonberg, J. T. Schwartz, and M. Sharir, “An

Automatic Technique for Selection of Data Repre-

sentations in SETL Programs”, ACM Tmnsactions

on Pmgmmming Languages and Systems vol. 3 no.

2, April 1981, pp. 126-143.

[66] M. Sharir, “Some Observations Concerning For-

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

mal Differentiation of Set Theoretic Expressions”,

ACM Transactions on Progmmming Languages

and Systems vol. 4 no. 2, April 1982, pp. 196–225.

J. Shultis, “On the Complexity of Highler-Order

Programs”, Technical Report CU-CS-288, Univer-

sity of Colorado, Feb. 1985.

A. Taylor, “LIPS on a MIPS: Results from a Prolog

Compiler for a RISC”, Pmt. Seventh International

Confemmce on Logic Pmgmmming, Jerusalem, Is-

rael, June 1990.

A. Taylor, High Performance Prolog Implementa-

tion, Ph.D. thesis, University of Sidney, Australia,

1991.

K. Thompson, “A New C Compiler”, Pmt. Sum-

mer 1990 UKUUG Conference, London, July 1990,

pp. 41-51.

P. Van Roy, Can Logic Progmmming Execute as

Fast as Impemtive Pmgmmming? PhD thesis, Uni-
versity of California at Berkeley, 1990.

P. Wadler, “Strictness Analysis Aids Time Analy-

sis”, Pmt. 15th. ACM Symposium on Principles of

Pmgmmming Languages, Jan. 1988, pp. 119-132.

P. Wadler, “Deforestation: Transforming programs

to eliminate trees”, Proc. European Symposium

on Pmgmmming, Nancy, France, March 1988, pp.

344-358. Springer-Verlag LNCS vol. 300.

T. A. Wagner, V. Maverick, S. L. Graham, and M.

A. Harrison, “Accurate Static Estimators for Pro-

gram Optimization”, Proc. ACM SIGPLAN ’94
Conference on Progmmming Language Dlesign and

implementation, Orlando, Florida, June 1994, pp.

85-96.

D. W. Wall, “Predicting Program Behavior Using

Real or Estimated Profiles”, Proc. SIGPLAN ’91

Conference on Programming Language llesign and

Implementation, Toronto, Canada, June 1991, pp.

59-70.

B. Wegbreit, “Mechanical Program ,4nalysis”,

Communications of the ACM vol. 18 nc~. 9, Sept.

1975, pp. 528-539.

B. Wegbreit, “Verifying Program Performance”,

Journal of the ACM VOI. 23 no. 4, Oct. 1976, pp.

691-699.

M. E. Wolf and M. S. Lam, “A Data Locality Op

timizing Algorithm”, Proc. SIGPLAN ’91 Confer-

ence on Progmmming Language Design and Imple-

mentation, Toronto, Canada, June 1991, pp. 30–44.

121

