
Analyzing the Communication Topology of Concurrent Programs

Christopher Colby*

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213-3891

colby+@cmu. edu

Abstract

Concurrent languages present complex problems for pro-

gram analysis. Existing analyses are either imprecise, expo-

nential, or apply only to languages with statically-allocated

processes and channels. We present a new polynomial-time

analysis using abstract interpret ation that addresses the gen-

eral problem of determining the communication topology

of programs in a subset of Concurrent ML with arbitrary

data structures, recursive higher-order functions, dynamic

processor allocation, dynamic channel creation, and syn-

chronous message-passing operations transmit and receive.

The analysis addresses the following question: Whtch occur-

rences o~transmit can match whzch occurrences of receive?

The notion of occurrence is formalized as a control path

in a small-step semantics, which provides a powerful basis

for distinguishing recursive communication topologies. The

analysis is relational, in that it relates pairs of processes, and

non-rmi~orm, in that it distinguishes between iterations in

an infinite recursive communication pattern. The results are

thus precise enough to aid processor allocation, scheduling,

and sequentialization on both uniprocessors and multipro-

cessors.

1 Introduction

Analysis of concurrent languages has proven to be a chal-

lenging task. The vast majority of existing work (e.g., [CC80,

Mer91]) deals with languages that do not have dynamic pro-

cessor allocation and dynamic channel creation. However,

we feel that these are important features of a realistic con-

current language. Unfortunately, they present difficult prob-

lems for analyses; consequently, little work has been done in

this area.

We present a new polynomial-time analysis, using ab-

stract interpretation [CC77], that addresses the general prob-

lem of determining the communication topology of programs

in a powerful subset of Concurrent ML.

Concurrent ML [Rep92] is an extension of Standard ML

[MTH90] that provides dynamically-created processes and

* Vkting the Laboratoire d’Informatique, Ecole Polytechnlque,
91128 Palaiseau cedex, France

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
PEPM ’95 La Jolla, CA USA
G 1995 ACM 0-89791 -720-0/95/0006 ...$3.50 202

dynamically-created first-class channels. The fundamental

restrictions on our subset are that there are no references

(mutable values) or exceptions, and that the only two mes-

sage-passing operations are transmit and receive. Note

that references may be modeled by message-passing [Rep92].

Our analysis addresses the following question: Which
occurrences of transmit can match which occurrences of

receive ? To illustrate, consider the following partially-

labeled program that recursively and concurrently folds the

operations base and combine over a binary tree and trans-

mits the result through an output channel.

dat at ype ~a Tree = LEAF of ‘a

I NODE of oa Tree * ‘a Tree)

rec fold (ch, tree) =

case tree of

LEAF v => ❑ :transmit (ch, base v)

I NDDE (ltree ,rtree) =>

let val 1 = ❑ : channel ()

val r = ❑ :charmel ()

in ~:spawn (fold (1, ltree)) ;

~:spawn (fold (r, rtree));

~:transmit (ch, combine (~:receive 1,

~:receive r))

end

The analysis determines that any dynamic occurrence of the

receive at ~can be matched only with the transmit at ❑
or ~ in the process created at the dynamically preceding

spawn at ~. Likewise for ~ and ~, and thus the pro-

gram exhibits a tree topology of communication. The anal-

ysis determines this information regardless of the remain-

der of the program; in particular, the functions base and

combine may spawn processes, create and use new channels,

and even call fold.

Even for sequential languages, polyvariance (e.g., [JM82])

is insufficient to distinguish between iterations in an infinite

pattern. For this, we need non-uniform analysis techniques

(e.g., [Deu92,, Chp: 4]). Inthecontext ofcomrnunication
topology, we ldentlfy an analysis as non-uniform if it can

distinguish between iterations in a recursive communication

pattern. In this case, thepattern is an infinite tree in which

messages are sent only from a child to its parent. This is

very precise information and can be exploited in the follow-

ing ways in a compiler:

Process allocation on a multiprocessor. Messages are

sent only from a child to its parent, so an appropriate

http://crossmark.crossref.org/dialog/?doi=10.1145%2F215465.215592&domain=pdf&date_stamp=1995-06-23

allocation strategy to minimize the cost of this virtual

one-way tree topology may be chosen.

● Sequentialization on both uniprocessors and multipro-

cessors. The topology information given above is nec-

essary to inline the two spawns in this example, and a

weaker analysis would be insufficient. By switching to

sequentialized code when the physical processors are

exhausted, the overhead of virtual processes can be

eliminated. This overhead can be especially costly on

multiprocessors that must access shared resources for

virtual-processor management.

The details of such optimizations are non-trivial and beyond

the scope of this paper. Our aim is rather to provide a clear

description of the analysis itself.

2 Related Work

In [CH92], Chow and Harrison present an analysis for a

shared-memory language with a cobegin-coend construct

that synchronizes on completion of its branches. This offers

only a limited form of dynamic processor allocation. Their

analysis is exponential, and because it is based on a uni-

form location model, it cannot determine recursive topolo-

gies. In [JW94], Jagannathan and Weeks present an anal-

ysis for a language with dynamic processor allocation and

asynchronous communication via shared memory. Although

the analysis is polynomial, it is by in large an extension of

a uniform control-flow analysis for higher-order sequential

languages [JM82]; as such, the results give little information

about the concurrency present in the program. In [NN94],

Nielson and Nielson present an analysis based on a type

system for a large subset of Concurrent ML to address the

question of whether or not a program will generate an in-

finite number of channels or prc)cesses. The analysis gives

no further information about the communication topology

of programs.

To our knowledge, our work is the first non-uniform anal-

ysis for a language with dynamic processor allocation.

3 A Sequential Core Language

We begin by defining a sequential core language. It is the

fragment of Standard ML without references described be-

low, with datatypes, records, and higher-order recursive func-

tions.

k C Const

P,e ::=

OP ::=

Z, y G Var f E Field c E Constructor

kl x I {fl=el, fn=en} I ope
fnx=>e[recy(t)=elee’1

case eofclzl=>el I . . . Icnzn=len

Cltf

Atuple (e] , . . . ,en) is syntactic sugar for {I=el , . ,rr=em},

and { } is the syntax for the unit value. The only constructs

of Standard ML omitted here fc,r technical reasons are ref-

erences and exceptions. All other omissions, such as other

primitive operations and type information, are for reasons

of brevity and clarity.

There are many techniques for designing a dynamic se-

mantics of a sequential functional language. In Section 4,

however, we will be extending this sequential core with con-

currency constructs, and it is difficult to model concurrency

with denotational semantics or structured operational se-

mantics. We therefore choose a small-step operational se-

mantics for the sequential core. In some approaches to op-

erat ional semantics, transitions are defined between terms

in the language. We instead choose an abstract-machine

semantics in which transitions are defined between states

comprising (1) a program address representing the current

syntactic point of evaluation (sometimes called the program

point or label) and (2) a frame representing the other nec-

essary state information.

Each syntactic occurrence of an expression in program P
has a unique program address corresponding to its position

in the syntax tree of P. We write P@la to denote the expres-

sion at program address a. The form of program addresses

follows the structure of the syntax, where the program ad-

dress of P itself is ● (i.e., P@* = P).

If P@a = {fl=el, . . . ,f~=e~}

then P@a.field, = e,.

If Pflkz=fnz=>eor P@a=rec y(z) =e

then P@a.body = e.

If P@a = e e’

then P@a.op = e and P@a. arg = e’.

If P@a = op e

then PQa.arg = e.

If P@a=case eofclzl=>el I . . . lc~z~=>e~

then PQa.pred = e and P@a.case, = e,.

Later, we will define control paths as sequences of program

addresses; control paths will play a crucial role for the con-

current language semantics in Section 4 and for the approx-

imation in Section 5 and are thus the chief motivation for

int reducing program addresses at this stage.

For each program address a there is a unique variable (a)

used to represent the value of expression P@a. Note that

this is static; if there are m function-bound and n expres-

sions in P, thenincluding these program-address variables

there are n + m variables total.

A state a: (p, K) has a program address a, representing

the current syntactic point of evaluation, and a frame (p, K)

comprising an environment p, which is a partial map assign-

ing values to variables, and a continuation K, which is either

● at top level or an address to return to and a frame to re-

store upon return of a function call. Values are constants,

records, datatypes, and closures. A closure (a, p) is a pair

of the program address of its function and an environment

assigning values to its free variables.

There is a transition for each possible single step of a

strict left-to-right evaluation of P. The semantic domains

and transitions are defined in Figure 1. Given a state a: (p, K),

we sometimes write d: (p, K) to assert that p((a)) is unde-

fined and Q: (p, K) to assert that p((a)) is defined. The for-

mer corresponds to a state at the beginning of the evaluation

of expression P@a, and the latter corresponds to a state at

the end of the evaluation of expression P@a.

A point about this semantics is that “old” bindings are

never removed from the environment. For inst ante, if the

body of the program is ((el , e2) , es), then during the eval-

uation of es the environment will still cent ain bindings for

the program addresses of el and e2. But these bindings are

no longer needed; only the binding for the program address

of (e 1, e2) is needed. This choice simplifies the formulation
wit bout aITectin8 the results of the analysk. The alternative

would be to explicitly remove unneeded bindings in the ap-

propriate transitions (e.g., for the case above, the transition

Semantic Sets:

program addresses
values

environments

continuations
frames
states

transitions:

Notation: {..., f=w,...

(Addr) : a ..—..—

(Val) : v ..—..—

(Env = Vur - VaZ) : p ::=
(Kent = 1 + State) : K ::=

(Frame = Env x Kent) : ir ::=
(State = Adclr x Frame) : s ::=

● [afield! I a.body I a.op I a.arg \ a.pred I a.caset

kl{~l=vl,..., ~n=vn}lcvl(a, p)

{X, +m,..., znw%}

●1s

(p, K)
a:rr
S*S”

}.f ==’U

Initial State: szntt=.:({}, ~)

Transitions:

ii: (/), R) a:(d(a) ~ k]} ~)

a:(p[(a) ~ p(z)], K)

a: (~[(a) * {}1, ~)
a. fieldl : (p, K)

if P@a = k

if PCla = z

if P@a = {Jz: (p, K)

ti:(fl, K)

afield, : (p, K)

u. field~: (p, K)

.,
if P@a= {.fl=el, . . . ,fn=en}

a. field, +l : (p, K) if P@a = {fl=el, . . . ,fn=en} A 1 ~i<n

a:(p[(a) w {fl = p((a.fieldl)), f~ = p((a.fieldn))}l, K)

if P@a = {fl=e~, . . . ,fn=en}

a.pred: (p, K) if PCDa = case . . .

a.case, : (p[z, % v], K) if PQa=casee of... Ictz, =>e, I . . .

A p((a.pred)) = c, v

a:(p[(a) + p((a.caset))l) ~)

a.arg: (p, K) if P@a = op e

a: (p[(a) ++ c (p((a. arg)))], K) if PQa=ce

a: (~[(a) * p((a. arg)). flj ~) if P@a = #f e

a: (p[(a) + (a, p)], K) if POa=fnx=>e VP@a =recy(x)=e

a.op:(p, ~) if P@a = e e’

a.arg: (p, K)

a’.body: (p’[x ++ p((a.arg))], a:(p, K)) if P@a = e e’ A Pea’ = fn x => e“

A p((a.op)) = (a’, p’)

a’. body: (p’[x I-- p((a. arg))][y ~ (a’, p’)], a: (p, K)) if P@a = e e’ A P@a’ = rec Y(Z) = e“

A ,o((a.op)) = (a’, p’)

a’: (p’[(a’) R-+ p((a.body))], K)

ii: (/2, K)

a.pred:(p, ~)

l---+

+-+

a.caset :(P, K)

zi:(p, ~)
a.arg:(p, K)

a.arg: (p, E)

l---+

l---+

+--+

m: (p, K)

z:(p, K)

a.op: (p, M)

a.arg:(p, ~)

l--+

+

H

a.arg: (p, i-c)

a.body :(P, u’ : (p’, K))

Figure 1: The dynamic semantics of the sequential core language.

with left-hand-side a. fieldn : (p, K)). 4 Adding Concurrency Constructs

Example 1 Suppose the expression (x, 45) is at program We extend our language with constructs for process gener-
address a tn P. (Recall that this is syntactic sugar for

{1=x, 2=45}.) The following M the sequence of states m
at ion and synchronous message passing.

the evaluation of this expression .frvm a state W!th an en- e ..—..—. . .] spawn e

uir-onment mapp~ng x to; and with continuation K. We let ‘JP ‘:= . . i ~hannel I transmit [receive

al = a. fieldl and a2 = a. field2. The environment in the
final state maps (a) to the result.

The expression spawn e does not evaluate e directly, but

creates a new process to concurrently evaluate e and re-

a:({x +-+ V}, K) turns {} to the current process. The primitive operation

al:({x * v},~) channel takes the unit value and returns a fresh channel

al:({z ++ V, (al) * v}, ~) (i. e., one that is distinct from any other channel in the cur-

a2:({x * v, (al) ~ ~}j~) rent state of evaluation). Values are (synchronously) passed

az:({z t+ v, (al) + v,(az) *45}, tt) between processes through channels via the primitive op-

a:({x * v, (al) w v,(a2) * 45, erations transmit and receive. The primitive operation

(a) + {1 = v,~ =45}}, K) transmit takes a pair (v], v2), where vl is a channel and V2

204

is the value to be transmitted, amd blocks until it can syn-

chronize with a matching receiver. The primitive operation

receive takes a channel and blocks until it can synchronize

with a matchirw transmitter. ,4 blocked transmitter and

blocked receiver”match when they share the same channel,

and when this occurs they may become unblocked and the

value atomically transmitted. Note that a blocked trans-

mitter mav match with several blocked receivers. and oice
“

versa; in these cases, any match is a valid transition.

4.1 Control paths

A control pathis a sequence al . ..an of program addresses

where al = ., the program address of the initial state, and

for all 1 s i<rr there is a transition from program address

at to program address a?+l. At any state in the evaluation,

each process has a control path: the sequence of program

addresses that starts with ● . traverses the historv of evalu-

ation of the process (including its ancestors from oldest to

youngest), and ends with the program point at the current

state of the process. Control paths serve two purposes: (1)

they replace the usual arbitrary set of process identifiers,

and (2) they provide a way of modeling channels that sup-

ports reasoning about communication topology.

Most formulations of the semantics of concurrent lan-

guages (e.g., [BMT92, Rep92]) use an arbitrary set of pro-

cess identifiers to distinguish processes. In those semantics,

when a new process is created an arbitrary fresh process

identifier is chosen and attached to that process. We in-

stead make the observation that in any state the current

control paths of the processes are guaranteed to be distinct.

So instead of attaching a process identifier to a process, we

retain its control pathl.

Our motivation for using control paths to replace the

usual arbitrary set of process identifiers stems from the ob-.
servatlon that process Identifiers by themselves have no se-

mantic meaning, while control paths provide a way of mod-

eling channels that provides a powerful basis for reasoning

about their equality: the key property needed to determine

the communication topology of the program. The idea is

simple; a channel is modeled as the control path at which it

was created. Equality of channels thus reduces to equality of

control paths, and control paths provide the rich structure

needed for useful abstraction.

4.2 The dynamic semantics

The dynamic semantics of the full concurrent language is

shown in Figure 2. A state in i,he concurrent semantics is

a tree of program addresses with a frame attached to each

leaf, one for each process. The root of the tree is the initial

program address ●, and the path from the root to a leaf

is the control path of the process at that leaf. A branch

in the tree corresponds to a prclcess spawn. The syntax of

program addresses is extended for the spawn expression; if
PQa = spawn e then the address of e is a.proc.

The set of values is extended with channel values, which

are control paths.

The first rule of the semantics handles the sequential

core of the language by extending each sequential transition

to its concurrent form. It says that ang process ready to

make a transition from the sequential core may do so, and

its control path is extended by one program address.

‘Indeed, process Identdiers can be wewed as abstractions of the
control paths.

The second rule handles channel creation. The new chan-

nel is the control path at which it is created.

The third rule handles process spawns. A process ready

to spawn may create a new branch in the state. The left-

hand side of the branch is the first state of the new process;

the branch for the new process does not require the contin-

uation, so it is discarded, but it inherits the environment.

The control path of the new process is not simply a.proc, but

rather aa(a. proc); this is because a control path of a process

starts at the beginning of the evaluation rather than at the

beginning of the new process. The existing process contin-

ues on the right-hand side of the branch with control path

aaa.
The fourth and final rule handles synchronization. The

left-hand side of the transition shows two different processes
that originally branched from a spawn at control path aa~,

one of which is waiting to perform a transmit, the other of
which is waiting to perform a receive. If their channels are

equal, then the transition may be taken, in which case a
value is transmitted between processes and both take a step

representing the returns of their respective operations. The

transmit expression returns { } and the receive expression

returns the transmitted value. Recall that the argument

of the transmit operation is a pair of the channel and the

transmitted value; hence the record-field selectors 1 and 2

in the rule.

5 A Finite Approximation of a Set of States

We wish to compute properties of states. A property is

simply the set of states for which it holds, and so the first

step in the development of an algorithm to compute these

properties is the design of a finite representation of sets of

states. Of course, the representation that we choose will

exactly determine the properties that it can express, and so

this is the most important step of the algorithm design.

Figure 3 shows the definition of an approximation of a

set of states with a member of

State = SAddr + (Branch x Addr) -+ F~me,

where SAddr is the set of program addresses of spawn ex-
—

pressions, Branch = {a, D} x CP, and Frame is an approx-

imation of sets of frames. Here, 7P is a partitioning of the

set CP of control paths with partition E (2’P -+ CP and is
a parameter of the approximation.

A member X of this set can be seen as a four-dimensional

table. Say that a set S of states is approximated by X c

S~e. Then given

Q a program address as such that P@a S = spawn e,

● a token z chosen from {a, b},

● a partition ii of control paths taken from &P, and

● a program address a,

—
the value X(a.)((z, a), a) is an abstract frame * ~ Frame

that approximates the set of all frames rr such that

some a, a’, and .s such that par-tttton(a’a) = a, and

205

Semantic Sets:
program addresses

values

control paths

states

transitions:

(Addr-) : a ..—..— . . . I a.proc

(Val) : . . . la

(CP = Addr*) : ; ;;: cl aa

(State) : s
‘:= a:mla(s’11s2)S*LZ’

Notation: The picture
a

a s is a metavariable for a state with subtree s at control path

these sets inductively:

a
aa’ s

‘:= -(-e+’) was)

a. We define the family of

Initial State: (same as the sequential semantics)

Transitions:

a a a:7r *
a

a aa’ : rf’ ifa:7r*a’:#

a
a Z:(p, K) *

a
a aa :(p[(a) * aa], K) if P@la = channel e

a
a ti:(p,~) =+ G.(a.proc:(p, o) IIa:(d(a)++{}1> ~)) if P@a = spawn e

~a(slls.) ~ ~a(s~lls~) if PQat = transmit e

A p~a, = receive e’

Szt =
-

at at. arg: (pt, Kt) S;t =
+

at (at.arg)at :(pt[(at) +-+ {}], K,) A ,ot((at.arg)).l = p,((a,.arg))

A (z,, z~) e {(4, D), (D, 4)}

S.v =
a

ar a,. arg:(pr, ~r)
/

s% =
a

ar (a,.arg)ar: (pr[(ar) k+ pt((at.arg)).2], Kr)

Figure 2: The dynamic semantics of the full concurrent language.

● ifz=bthen~a,(sll~a:m) ~,!j’for

some a, a’, and s such that partition(a’a) = ii.

Intuitively, * approximates the set of all frames that ap-

pear in some process in some state in S that is currently

at program address a, whose control path went through ei-

ther the left side of a spawn branch at program address a.

if z = Q (new process, beginning with as .proc) or the right

side if z = D (existing process, beginning with as), and whose

control-path suffix since that point is in partition a c C-P.

This representation was the inspiration for introducing

control paths in the semantics in the first place, and par-

ticularly for modeling a channel as the control path of it

creation point. Our represent ation is designed to allow the

differentiation between channels (and in general any data)

created during the evaluation of the left side of a branch,
created during the evaluation of the right side of a branch,

and created at other points. This differentiation is achieved

with the last step of the abstraction, defined by 73 and de-

scribed in Section .5.2. But first, we present the first two

stages of the abstraction, outlined at the top of Figure 3.

5.1 Relating processes with their branching points

The function al takes a set of states and extracts from each

state all processes in that state, split at the branching points

in their control paths. Formally, (a, ~, a’, m) E al (S) iff there

is some state

and (a, D, a’, T) c al (S) iff there is some state

-+[sll++.)e’.

Note that a given process in some state s G S can cause sev-

eral different tuples to appear in aI (S), one for each point in

the control path of that process at which a spawn occurred.

This is a key idea: that we will be focusing on the branching

points.

After invoking an isomorphism on the codomain of aI,

we have a representation of a set of states by

CP + (Side x CP) -+ f’J(Frame)

where Side = {a, D} and the domain corresponds to the first

component of the codomain of al. Note that we must indeed

have @(Frame) instead of Frame here because two different

states in S may each have a process with the same control

path, but with different frames due to communication with

other processes.

206

Next comes the partitioning of control paths. This is

done by the pointwise application of aZ, which yields

CP - ((Stale x Z7) x Addr) ~ @(Frame)

For each control path a, crz applies the function partition

to the path and also maintains the final program address of

the path. Formally, n c ciz(al(S))(a)((~, a), a) iff there is

some state

~.[++].,

and par-tition(a’a) = a; similarly for ~, with the branches

reversed.

Maintaining the final program address is analogous to

the standard application of abstract interpretation to find

local invariants, or collected data at each syntactic point in

the program. Keeping the partitioning is similar to tech-

niques that generally fall under the name poiyvarirznce; not

dissimilar are Harrison’s control~ strings [Har89]. However,

polyvariance alone yields only a uniform analysis. The chief

int crest in our abstraction lies not in each individual (poly-

variant) function in dz (al (S)), but rather in the mapping

from control paths to these functions. Indeed, the abstrac-

tion in the next part will approximate these functions differ-

ently, relative to the control paths that map to them, and

it is this technique that achieves the non-uniformity. The

advantage of this will become clear in Section 6.

Since at each step we have a complete lattice under the

pointwise subset ordering ~, then as in [CC92] the abstrac-

tion functions al and CYZ define associated concretization

functions Y1 and 72, as shown in Figure 3.

5.2 Abstracting values relative to their ancestor spawns

At this point, the most complicated step of the abstraction is

applied: the approximation of a :set of frames with a member

of the set

F~me = Var + {K} - @(Source x Addr)

where Source = Branch+ {EXTERNAL} and Branch = Side x

C-P. An abstract frame ii ~ Ffi~e assigns a set of abstract

values ti to each variable and to the extra ‘(variable” K repre-

senting the continuation. The recursively-defined function

[]: assigns to abstract ~mes and values their concrete

counterparts under X ~ State and control path a.

Its definition is given in Figure 3.

Note that the domain of S~~e is SAddr, the set of pro-

gram addresses of spawn expressions, but the domain of the

previous step in the abstraction (the codomain of 73) is CP.

This step of the abstraction strips off all but the final pro-

gram address of this control path, which is a program ad-
—

dress of a spawn expression. Therefore, given X ~ State

and as E SAcldr, X(aS) represents the pairs of processes

that split at one of possibly m any different control paths

aa,, as described in the introduction to Section 5. But the

subtle point is that the meaning that 73 gives to abstract

channel values in % = X(as)(b, a) is relatzve to the entire

control path au., not just a,. This is why []% is parame-

trized by a control path. Recall that a channel value is the

control path at which it was created. The possible abstract

channel values are, for P@a = channel e:

●

●

●

((4, ~), a), representing a control path with prefix aa,

that then takes the left side of the spawn at a. (i. e., the

side beginning with a, .proc) and continues through a

control path that is in partition a and ends with a,

((P, a), a), representing a control path with prefix aa,

that then takes the right side of the spawn at a, (i. e.,

the side beginning with a.) and continues through a

control path that is in partition a and ends with a,

and

(EXTERNAL, a), representing a control path that ends

with a and does not have au, as a prefix.

Channel values are the only ones that directly use the

control path a, but the meanings of other types of values use

the same technique. In general, the meaning of an abstract

value (q, a) is relative to a control path a that ends with a

spawn; it represents values that were created at a control

path

●

●

●

The

that ends with a and either

begins with a, takes the left branch, and whose remain-

der after the spawn is in partition & (if q = (+ A)),

begins with a, takes the right branch, and whose re-

mainder after the spawn is in partition ii (if q = (P, 5)),

or

did not pass through this spawn (if q = EXTERNAL).

last is called EXTERNAL because intuitively it corre-

sponds to values that exist in environments within the sub-

tree a, but that were created outside that subtree, either

inherited from an ancestor process or received from another

process.

If an abstract value represents a value with subcompo-

nents (z. e., records, constructed data, and closures), then

the values of those subcomponents are derived from the en-

vironment at their creation point2. This is why X itself

is a parameter of []%. For instance, if P@u = c e, then

[(!l, a)]~s represents values c w that were created at a and
at point q relative to au.. If q E Stale, then we can just look

up X(a,)(q, a)((a. arg)) directly to retrieve the abstract val-

ues for v. But if g = EXTERNAL, then it could have come

from any control path ending with a, and hence the defini-

tion at the bottom of Figure 3.

The reason why there is only a concretization function 73

for the last step, and no associated abstraction function as,

is that a value does not have a unique abstract representa-
—

tion in Frame. For instance, given an constant k, there may

be more than one occurrence of the expression k in the pro-

gram, and so abstract values with these different program

addresses may concretize to the same value3. From [CC92],

the function -Y3 is sufficient for an abstract interpretation

because S~e is a complete lattice.

‘This IS a technique used In some closure analyses (e.g. [He,92])
—

3More precisely, State IS an abstraction of a more expressive set of

state. that rnamtak kforrnatmn about the creat, om points of values

That formulation of the standard semantics would be useful for, e.g.,

a general ahas analysis [COl].

207

Given a function ~ E A - B, we write ~ for the pointwise extension of ~, we write P(f) for the function ,lx. {~(a) I a E z} in

P(A) ~ !?(B), and we write ~–1 for the inverse image of ~ (a function in B ~ P(A)). We implicitly use tuple isomorphisms
.

such as A x (B x C) = A x B x C. The approximation of ,@(State) with State by y = ~1 o +2 073 is:

@(State) + @(CP x Side x CP x Frame) E G’P ~ (Side x CP) ~ @(Frame)

-h
p CP ~ (Branch x Addr) ~ j~(Frame)

~z
73

- SAddr ~ (Branch x Addr) - F;me = S~e

with
ZG Side = {cl, P}

b c Branch = Side x CAP SAddr = {a c Addr I P@a = spawn . . .}

Source = Branch+ {EXTERNAL}
—

q= % G Frame = Var + {K} ~ @(Source x Addr)

where al and aZ are defined as follows (y,(y) = U{Z 1 a,(z) ~ y} for i E {1, 2}):

Q’1 = U o @(patrs) c @(State) + P(CP x Side x CP x Frame)

~2 = A$. (u o @(~) o branch-’) 6 ((Side x CP) + @(Frame)) + (Branch x Addr) ~ @(Frame)

pairs~a:~) =

~air’(a(s’ II“)) =
procs E

procs(a: T) =

~rocs(a(s’ II“)) =
branch c

branch(z, aa) =

State -i P(CP x Side x CP x Frame)

0

({(a, ~)} x procs(s~)) U ({(a, D)} X procs(sz)) U patrs(as~) U pairs(asz)

State - P(CP x Frame)

{(a, 7r)}

procs(as~) U procs(as~)

(Szde x CP) ~ (Branch x Addr)

((z, partition), a)

and where ~s c (SAddr + (Branch x Addr) ~ F=me) + (3P ~ (Branch x Addr) ~ @(Frame) is defined as follows:

73(X)(aa.)(b, a) = {T ● [X(a,)(b, a)]~s}

(p, ●) E [ii]> iff

(p, a:7r) c [ii]y’ iff

p c [*]: iff

v e [0]: if

~ = [(q, ~)n% iff

{} ~ [(q, a)]% iff

{f, =V,,.. ., fn = %} E u(q, ~)n:s iff

c v = u(q) a)]:’ iif

(a, P) e [(q, u)IY iff

aas(a$.proc)a’a C [((4, ii), a)]~s iff

aa. a.a’a & [((P,a), a)]:” iff

a’a e [(EXTERNAL, a)ll~ iff

p E [i]>

p c [~]~’ A ~q E Source. ((q, a) G ~(K) A T c [X(a,)(q, a)]~fi’)

Vz E Var. p(z) defined ~ p(z) c [?I(z)]>

3’0 E ?. v E [0];

P@a = k

P@a = {} V P@a = spawn e V P@a = transmit e

P@a = {fl=el, . . . ,~~=e~} A VI < z < n.w E [X(a,)(q, a)((a.field,))IIY’

P@a = c e A v < [X(u.)(q, a)((a.arg))]~’

(P@a = fn z => e v P@a = rec y(z) = e) A p C [x(a,)(q, a)]~s

P@a = channel e A partitton((as.proc) a’a) = a

FT2a = charmel e A part! tzon(a,a’a) = a

P@a = channel e A a is not a prefix of a’

.~(a,)(EXTERNAL, a)(z) = U{source(.~(a~)(b, a)(z)) I a: G SAddr A b e Branch}

source(~) = {(q, a) [g E Source A ~(q’, a) e 6}

Figure 3: The approximation of sets of states with S%e, parametrized by @ and partition < CP - CAP,

208

6 An Application of the Approximation

We now formally present the main motivation for the design—
of the State approximation: a way to determine pairs of

dynamic occurrences of channels that are unequal.

Proposition 1 For PI, fiz E @(Source x Addr) we define

Gl E fiz t~ there ezists (g, a) ● tiI n 62 such that Pklla =

channel e. Then if the following three conditions hold for

any X E S%Ze:

X(a.)((a, al), al)(~l) ~ x(as)((D, &), @)(~2)

partztion(al al) = & A partition(azaz) = az

then pl (XI) and p(zz) are not the same channel.

This proposition is useful when X is the least tixpoint of

the abstract transition fnnction presented in the next sec-

tion, because then “. . . c Y(X)” becomes “. . . is a state

reachable in some evaluation of P“. Then this proposition

becomes a powerful automatic proof technique for determin-

ing the communication pattern (of P because it eliminates

many possibilities for synchronizations that cannot happen.

The polyvariance achieved by the control-path partition-

ing ~P is not the source of the non-uniformity in the anfl-

ysis; rather, it is the universal quantification over a in this
—

proposition that allows an element of State to distinguish

between iterations in an infinite recursive pattern. Hence

our comments at the end of Section 5.1. In Section 8 we

given an example.

7 The Abstract Transition Function

With the design in the previous section of an expressive

finite approximation of a set of states, we completed the

major conceptual task of the algorithm design. But we still

need an abstract transition function that operates on this

representation that is safe with respect to the semantics.

The transition fnnction of the semantics maps sets of states

to sets of states:

T(s) = {s’ \ s’ = S,n,, v 3s c S.s ==+’ s’}

We need a function

such that T o y ~Ay o ?. By [CC77], we then have that the

least fixpoint of T represents a superset of all states s such

that s,~,~ =+* s. This fixpoint, which can be obtained for

inst ante by standard iteration techniques, is the result of

the analysis.

The abstract transition function ~ is defined componen-

twise; each abstract frame ~(~”)(a~)(b, a) is defined with

respect to the abstract frames of X by a series of rules that

mirror th~ rules of the semantics in Figures 1 and 2. All

rules for T except those that are related to synchronization

are shown in Figure 4, and the rules for synchronization are

given in Figure 5.

As an example, consider the rnle for constants. If P@a =

k, then:

X(a.)(b, a){(a) w {(b, a)}) & Y(a.)(b, a)

This corresponds to the semantic rule:

-aa Z:(p, ~) =+
a

a aa: (p[(a) ~ k], R)

In particular, if we assume for instance that b = (~, a), it

corresponds to the following subclass of this rule, where a =

a’a, a” and partition(a”a) = &

(If instead b = (D, a) then the~anches would swap.) In this

case, Y(a.)(b, a) is short for T(X)(as)((a, a @ a), a), and so

we expect that partition(a’’aa) = ii @ a. In general @ must

satisfy the property that

partition(a) @ a = partition.

So the rule of @ for constants describes how to define the

new frame from the old one, which is simply a new binding

of an abstract constant created at branch b terminating with

program address a.

Most of the remaining rules are derived the correspond-

ing rules of the standard semantics in the same manner. The

exceptions to this are the last two rules for process spawn

and the rules for synchronization. Consider the following

subclass of the spawn rule of the standard semantics, where

irI = (A.) and m = M(a) I+ {}]) K):

The middle line corresponds to the first two spawn rules of

~, where b = (~, a) and partition(a’a) = a:

X(as)(b, a){K * 0] ~ Y(a.)(b, a.proc)

X(a.)(b, a)((a) w {(b, a)}} & Y(as)(b, a)

But the last line in the above transition corresponds to an

alternate view of the right-hand-side st ate—a view from the

new branch at a. This corresponds to a completely different

entry in X for the same state, so rrl and m have to be

“copied” to that entry. This is done with the remaining two

spawn rules:

ezternal(X(a.)(b, a)~K H 0]) & Y(a)((a, F), a.proc)

ezterncs2(X(a,)(b, a){(u) w {(b, a)}})

~ y(a)((D, :), a)

209

Here, t c 7P is pczrtitzon(e), corresponding to the occur-

rences of c in the new branch above, and the source of all

values in the environment mnst change to EXTERNAL be-

cause they are inherited from outside the new branch.

The rules for synchronization are given in Figure 5. The

first two rules exactly match the synchronization rule of

the standard semantics as written in Figure 2, where & =

partition(a,(a. arg)) and a, = partition(a, (a.arg)).

This is recording a synchronization between processes at

the point a, at which they branched. But this synchroniza-

tion is also visible when the state is viewed from different

spawn points. The middle two synchronization rules cover

the effect of this communication on a view from a branch at

aj that occurred before the branch at as. In other words,

a = a’a~a” for some a’ and a“, and b = (z, partztion(a’’a.)).

If for instance z = a, then the class of states covered are:

And the branches bt and b,, into s,, and s=. respectively,

need to be prefixed with b by the operator 8.

The last two rules for synchronization handle branching

points after the branch at a,, within s,, and s., respectively.

If b = (z, partztion(a’aj)), b; = (z{, partition(aj(at .arg))),

and b; = (z;, partition(a~ (a,. arg))), then the class of states

covered in each case where e.g. z: = ~ and z; = ~ are:

s=,=+. [+at.arg:(frt,.t) I s)

sz=+j-a~ [+l-ar.arg:(p,, tc,) Is)

where a’a~a~ = at and b = bt or a’aja~ = i% and b = br,

respectively. The latter case, for the receive expression, is

troublesome because the value received comes from a trans-

mit that is not within the subtree at branch aj. However,

EXTERNAL is not sufficient to model such values, since a

value may have been created within that subtree, transmit-

ted outside, and then transmitted to the receive currently

being considered. Therefore, we must assume any member

of Source for the received value.

8 An Example

We now present the fold example of Section 1. Let us as-

sume that fold is one function (written with syntactic sugar

for sequencing, let bindings, and pattern-matching for pair

arguments) in an otherwise arbitrary program P. We must

first choose an appropriate partition ~P of CP. We pick a

simple one that will suffice for this example:

t2P = {ORIG, NEW}

{

NEW
partition(a) =

if 3a’a, (a,.proc)a” = a

ORIG otherwise

CP is partitioned into two classes: the class NEW for control

paths that have gone through the left side of some spawn

branch (t. e., those that terminate in a different process from

their beginning) and the class ORIG for all other control

paths (z. e., those that remain in the same process from be-

ginning to end). As explained in Section 6, fi~ is not the

source of the precision of this analysis, and simple choices

will typically suffice.

We also need to define the following operations for the

abstract transition function T-:

t= ORIG

(NEW if a = a’. proc fOr some a’
&@a =

a otherwise

%@b =

(

ORIG if a = ORIG A b = (D, ORIG)

NEW otherwise

We then calculate the least fixpoint Z of ~, which rep-

resents all possible traces of an evaluation of P. The in-

formation in Z relevant to determining the communication

topology of fold is summarized in Table 1. This informa-

tion is independent of the rest of the program, including the

process creation and communication behavior of functions

combine and base, and including the possibility that those

functions and/or other parts of the program may call fold

anywhere. An entry in the table at row [a, z A] and column

x flu is Z(a,)((z, a), a)(z), the set of abstractions of all vzi-

ues that were bound to z in some process during evaluation

of P that is at program address a, whose control path took

either the left side (new process) of some spawn branch at

program address as if z = ~ or the right side (existing pro-

cess) if z = D, and whose control-path suffix since that point

was”in partition a.

The first column shows the values of the channel compo-

nent of the arguments to the two transmit expressions (they

are the same). The two other columns show the values of

the (channel) argument of the two receive expressions.

For the values, ORIG” is short for (~, ORIG), and similarly

for NEW”, ORIGo, and NEW”. Each occurrence of the token V?

stands for some set that is not shown, but does not include

(9, ❑) or (9, ❑) for any q C Source. The a~~h~~ entries are
valid for all program addresses of spawn expressions in P

other than ~ and ~.

Consider the entry in the first column of row [~ ~ NEW].

This column represents the possible values of the channel of

each transmit expression in some process that whose con-

trol path went through the left side (i. e., new process) of a

spawn branch at ~ (from the Q) and whose control-path

suffix since that point included a left side of another spawn

branch, possibly also at ~ (from the NEW). Now con-

sider the abstract value (ORIG”, ❑) in this entry. It repre-

sents channels created at program address ❑ in the process

whose control path also went through the left side of this

same spawn branch (from the ~), but whose control-path

suffix since that point did not include a left side of another

spawn branch (from the ORIG). In contrast, the abstract

value (NEW<, ❑) represents channels created at program ad-

dress ❑ in a process whose control path also went through

the left side of this spawn branch and whose control-path

suffix since that point included a left side of another spawn

branch (but not necessarily the same branch that caused the

NEW in this row index).
We can apply Proposition 1 to this table to determine

the communication topology of the program. Many pairs of

entries in this table match with the relation -, but accord-

ing to the proposition the only pairs we need to consider are

ones comprising a transmit in some row [a. zt at] and a

receive in some row [a. z, a~] such that zt # z.. There are

only two such pairs that match, and the witnesses to those

mat ches are boxed in Table 1. The o rdy possible synchro-

The definition of T(X) is given componentwise below, where Y(a.)((z, ii), a) ‘~f ~(X)(a,)((z, A @ a), a).

reach(k) = 3x. ii(z) # 0

X(a.)(b, a)(z.c) = U{ X(as)(q, a’)((a’.arg)) I (q, u’) C X(a.)(b, a)(z) A ~@a’ = c e}

X(a.)(b, a)(z..f) = l_{ X(a,)(q, a’)((a’.field,)) I (q, a’) c X(a,)(b, a)(z) A P@a’ = {.fl=el , . . . ,t~=e~} A $ = .ft}

ezternfd(;)(z) = {(ExTERN41,, a) I 3(q, a) C *(Z)}

X(a,)(b, a){(a) k-+ {(b, a)}]

X(a,)(b, a){(a) + x(a8)(4 ~)(x))

X(a.)(b, a){(a) t+ {(b, a)}]

X(a,)(b, (1)

X(a.)(b, afield,)

X(a,)(b, a. fielc~n){(a) w {(b, a)}}

X(a.)(b, a)

X(a,)(b, a.pred)((a) * X(a,](b, a)((a.pred).c,)}

X(a,S)(b, a.case,)((a) ~ X(a.)(b, a)((a.case,))}

X(a,)(b, a)

X(a,)(b, a.arg){(a) ~ {(b, a)}}

X(a,)(b, a.arg){(a) H X(a,)(b, a.arg)((a.arg).j)]

X(a.)(b, a){(a)* {(b, a)}}

X(a,)(b, a)

X(a.)(tI, a.op)

L

~ Y(as)(b, a) if P@a = k

~ Y(a,)(b, a) if P@a = x

< Y(a,)(b, a) if P@a = {}

~ Y(as)(b, afield,) if P@a = {fl=el , ,$n=en}

Q Y(a.)(b,a.field,+l) if P@a = {~l=el , . . . ,~~=e~} A 1 < i < n

~ Y(a,)(b, a) if P@a = {fl=el , . . . ,fn=en}

~ Y(a,)(b, a.pred) if P@a = case. . .

& Y(a.)(b, a.case,) if P@a=casee of... Ic, x,=>e, l

~ Y(a,)(b, a)

~ Y(a$)(b, a.arg) if Pt2a = op e

~ Y(a,)(b, a) if P@la=ce

& Y(a.)(b, a) if P@a = #f e

~ Y(a$)(b, a) if PCla=fnx=>e VPCla =recy(x)=e

~ Y(a.)(b, a.op) if P@a = e e’

& Y(a~)(b, a.arg)

X(a,)(g, a’){x t-+ X(a,)(b, a.arg)((a.arg))]{K ~ {(b, a)}]

~ Y(a.)(b, a’.body) if P@a = e e’ A P@a’ = fn z => e“

A (q, a’) = X(a.)(b, a.arg)((a.oP))

X(a.)(q, a’){x w X(a,)(b, a.arg)((a.arg))}{g F-+ {(q, a’)}]{K t-+ {(b, a)}}

X(a,)(q, a’){(a’) w X(a,)(b, a.body)((a.body))}

X(a,)(b, a.arg){(a) ~ {(b, a)}}

X(a,)(b, a)(K P+ 0}

X(a,)(b, a){(a)+ {(b, a)}}

ezternal(X(a,)(b, a){K w Oj)

ezternai(X(a,)(b, a){(a) + {(b, a)}})

~ Y(a.)(b, a’.body) if P@a =e e’ A P@a’ = rec y(z) ‘e”

A (q, a’) ~ X(a.)(b, a.arg)((a.op))

~ Y(a,)(b, a’) if (q, a’) c X(a,)(4 a.body)(K)

~ Y(a,)(b, a) if P@a = channel e

~ Y(a,)(b, a.proc) if P@a = spawn e

& Y(a.)(b, a) if P(QM = spawn e

~ Y(a)((a, ;), a.proc) if P@a = spawn e

~ Y(a)((P, ~), a) if P@la = spawn e

Figure 4: The abstract transition function ~ without synchronization, parameterized by ; c C-P and @ ~ ~P x Addr ~ ~P.

211

If

then

PQat = transmit e P@a, = receive e’

b, = (Z,,&) br = (ZT, iiT) Zt # z,

X(a,)(b,, a,.arg)((a,.arg) .1) s X(a,)(&, a~.arg)((a,.arg))

X(a.)(bt, ut.arg)((at) * {(bt, at)}}

X(a.)(b,, a..arg){(ar) w X(a,)(bt, at.arg)((a,.arg) .2)}

X(a~)(b~, a~.arg)((a,) * {(b\, at)}}

X(a~)(b~, a,.arg){(a.) + X(aj)(b{, a,.arg)((at.arg) .2)}

X(a~)(b~, a,.arg){(a,) ++ {(b{, a,)}}

X(aj)(b~, ar.arg)((a~) + source(X(a,)(bt, at.arg)((at.arg) .’2))]

where (z, a) @ b = (z, a @ b) and where source is defined in Figure 3.

~ Y(a.)(bt, at)

< Y(a,)(br) a,)

~ Y(aj)(b~, at) if reach(X(a{)(b, a,)) A b~bt = bj

< Y(aj)(bj, a,) if r-each(X(a&)(b, a.)) A b @b, = b:

& Y(aj)(bj, at) if reach (X(a,)(b, aj)) A b @ b{ = bt

~ Y(a~)(b~, a,) if reach (X(a,)(b,a{)) A b ~b~ = b,

Figure 5: Synchronization rules of the abstract transition function ~, parameterized by @ c 7P x Branch ~ ~P.

nizations must thus be of the form:

where

partitzon(at) = ORIG partitiofz(a,) = ORIG

and similarly for ~. This means that either the base-case

or the recursive-case transmit in a process spawned at ~

can synchronize with the receive at ~ of the continuation

of its parent process, and similarly for ~/~1. These are

the only communications that can occur in the node code,

independent of base, combine, or the other code in P.

There are other transmit/receive pairs that match, but

we don ‘t have to explicitly consider them. Consider the case

where z~ = z, = z. Such matches (e. g., where a. = ~,

z = q, & = NEW, and & = ORIG) correspond to synchro-

nizations of the form:

where

2; # z:
partttton(a’a~a~) = at part2t20n(a’a~a~) = a,

But these synchronizations are covered by a transmit in row

[.: z; a;] and a receive in row [aj z; ~~] for some a: and

&~, and because Z; # z; this must fall into one of the two true

matches already considered above. This is a rather subtle

point that illustrates the benefit of the non-uniformity of
the analysis—the universaf quantification over control path

prefixes in the proposition that was described in Section 6.

The technique is that we relate pairs of processes with their

point of branching. In cent rast, any uniform analysis would

have to consider these “false” entries as well and would thus

only determine that any process can communicate with any

other. Thus, the tree topology that our analysis yields would

completely collapse. Therefore, we see that non-uniformity

is a crucial property for a communication analysis.

9 Complexity

The height of the lattice (S~e, ~) is s(n(n + v) + 2n2p(n +

‘u)(2P + 1)), where s = lSAddr\, n = lAcMr\ (the number

of expressions in P), v = I Var\, and p = I CPI. This is

0(P2 sn3), and thus so is the number of iterations in the com-

putation of the least fixpoint of ~. Clearly, ~ is O(poly(n)),

since it is doing a local computation at each label in P, and

thus the algorithm is O(poly(n)).

Our goal in this paper was to present the analysis con-

ceptually, not to minimize the polynomial factor. However,

we conjecture that S~e could be reformulated, albeit with

a loss of conceptual clarity, with a height of O(p2 sn2), us-

ing ideas of, e.g., [Hei92, JM82]. Furthermore, for similar

reasons we conjecture that there is an iterative fixpoint al-

gorithm that is O(P2 sn3). Finally, again for similar reasons,

we would expect such an algorithm to be near 0(P2 sn) in

practice.

For our node example, h = 2, so we conjecture a com-

plexity of 0(sn3) worst case, and near O(sn) in practice.

10 Conclusion

We have developed a powerful, and most likely practical,

general-purpose communication-topology analysis for a sub-

set of Concurrent ML with dynamic process and channel cre-

ation. The analysis uses non-uniform relational techniques

that allow it to distinguish infinite communication patterns

212

~ d ORIG

NEW

b ORIG

NEW

~ 4 ORIG

NEW

D ORIG

NEW

aother d ORIG

NEW

b ORIG

NEW

(~.arg). 1 @❑ .arg

(~.arg). 1 Cl ~.arg (~.arg) 0 ~.arg

~=

14 + {1~~[}

O? + {(cJRIG”, ~), (oRIG”, @, {(NEw”,@}

G, + {(EXTERNAL, H),

- (ORIG”, ❑), (ORIGP, ❑), “ ‘-

(NEW”, ❑), (NEWb, ❑)}

v? + {~ii7Emqq} {(oRIG”, ~)}

iZ + {(oRIG”, n), (oRIG”,m), {(NEw”, @}

(NEW”, Q, (NEW”, ❑)}

v? {(EXTERNAL, m), (ORIG”, ❑)}

F? + {(c)RIG”, E), (oRIG”, m), {(NEw’, Q}

(NEW”, IiJ), (NEW”, ❑)}

5~
F? + {(ORIG”, ❑), (oRIG”, ❑), {(NEw”, iZl)}

(NEW”, Q, (NEW”, ❑)}

Table 1: Results of the analysis for fold.

where uniform analyses would fail. In contrast to sequen-

tial languages, these techniques seem to be a requirement

for useful concurrent-language analyses because of the diffi-

culty caused by dynamic processor allocation. Our work is

to the best of our knowledge the first such analysis, and as

such is a major conceptual step toward a new understand-

ing of analysis problems for concurrent languages. In par-

ticular, our analysis derives information that is required for

sequentializ ation and is useful for processor allocation, and

we believe that it will prove beneficial in both uniprocessor

and multiprocessor implement at ions of these languages.

Acknowledgments I would like to thank the Laboratoire

d’Informatique of Ecole Polytechnique for hosting me during

this work. Also, thanks to Patrick Cousot, Radhia Cousot,

Robert Harper, and Peter Lee for comments and sugges-

tions.

References

[BMT92] Dave Berry, Robin Milner, and Dav,d N Turner A seman-

tics for ML concurrency pr!mlt]ves In Nznteenth Annual

ACM Sympos%um on Prznczples of Programming Lan-

[CC77]

[CC80]

[CC92]

guages, January 1992

P Cousot and R. Cousot. J4bstract mterpretatlon: A uni-

fied latt]ce model for stat]c analysls of programs by con-

struction of approximations of fixpoints. In Fourth Annua/
ACM Symposzum on Pr%nczples of Programming Lan-

guages, 1977

P, Cousot and R. Cousot Semantic analysis of commu-

nicating sequential processes In Pmt. of 7th Int. COliO -

qutum on Automata, Languages and Progmmmmg, LNCS
vol. 85 Springer, 1980

P. Cousot and R. Cousot. Abstract mterpretatlon frame-

works Journal of Logtc and Computation, 2(4) 511–547,

1992

(~.arg) Q ~.arg

{(oRIG”, E)}

{(NEW”, ~)}

{(EXTERNAL, ❑), (ORIG”, ❑)}

{(NEw”, ❑)}

{(oRIG”, ~)}

{(NEw”,liTJ)}

{l(ExTERNAL,m)~, (ORJG”, ❑ }

{(NEw”, ~)}

{(oRIG”, E)}

{(NEw”, ~)}

{(ORIG”, ❑)}

{(NEw”, E)}

[CH92]

[Col]

[Deu92]

[Har89]

[Hei92]

[JM82]

[JW94]

[Mer91]

[MTH90]

[NN94]

[Rep92]

Jyh-Herng Chow and Williams Ludwell Harrison Com-

pile time analysis of parallel programs that share memory

In Nznteenth Annual ACM Symposzum on Prtnctples of
Programming Languages, January 1992.

Christopher Colby Analysis of synchromzatlon and abas-

ing with abstract interpretation Unpublished

Alain Deutsch Operational Models of Programming Lan-

guages and Representations of Relataons on Regular Lan-

guages w%th Applzcataon to the Statac Determznataon of
Dynamtc Akastng Proper-t,.. of Data, PhD thesis, LIX,

Ecole Polytechmque, Palalseau, Prance, 1992.

Williams Ludwell Harrison The interprocedural analysls

and automatic parallehsatlon of scheme programs Lzsp
and Symboltc Coraputatton, 2(3) 176–396, October 1989

Nevm Hemtze. Set Based Program Analyszs PhD the-

sis, Carnegie Mellon University, Pittsburgh, Pennsylvania,

1992.

N D. Jones and S Muchnick. A flexlble approach to inter-

procedural data flow analysls and programs with recursive

data structures In Ntnth Annual ACM Sympos%um on

Prsnctples of Programming Languages, pages 64–74, 1982

Suresh Jagannathan and Stephen Weeks Analyzing stores

and references in a parallel symbohc language In Pro-
ceedings of the ACM Sympostum on Ltsp and Functional

Programming, pages 294–306, 1994

N. Mercouroff An algorlthm for analysing commumcating

processes In S Brookes, M Mare, A. Melton, M. MM-

love, and D Schmidt, editors, Mathematical Foundations
of Programming Semant!cs Springer LNCS vol 598, 1991.

Robin Milner, Mads Tofte, and Robert Harper The Def-
%natzon of Standard ML. MIT Press, Cambridge, Mas-

sachusetts, 1990

Hanne Rhs Nielson and Flemmlng Nielson. Higher-order

concurrent programs with finite communication topology.

In Twenty-first Annual ACM Symposzum on Przncaples
of PT09=m~s~9 LangUa9eS, 1994

John Reppy. High-Order Concurrency. PhD thesis, Cor-

nell University, Ithaca, New York, June 1992

213

