
Bundled Execution of Recurring Traces for
Energy-Efficient General Purpose Processing

Shantanu Gupta
∗

†, Shuguang Feng†, Amin Ansari†, Scott Mahlke†, and David August‡

†Advanced Computer Architecture Laboratory ‡ Department of Computer Science
University of Michigan Princeton University

Ann Arbor, MI Princeton, NJ
{shangupt, shoe, ansary, mahlke}@umich.edu august@cs.princeton.edu

ABSTRACT

Technology scaling has delivered on its promises of increasing de-
vice density on a single chip. However, the voltage scaling trend
has failed to keep up, introducing tight power constraints on man-
ufactured parts. In such a scenario, there is a need to incorporate
energy-efficient processing resources that can enable more compu-
tation within the same power budget. Energy efficiency solutions
in the past have typically relied on application specific hardware
and accelerators. Unfortunately, these approaches do not extend to
general purpose applications due to their irregular and diverse code
base. Towards this end, we propose BERET, an energy-efficient
co-processor that can be configured to benefit a wide range of ap-
plications. Our approach identifies recurring instruction sequences
as phases of "temporal regularity" in a program’s execution, and
maps suitable ones to the BERET hardware, a three-stage pipeline
with a bundled execution model. This judicious off-loading of pro-
gram execution to a reduced-complexity hardware demonstrates
significant savings on instruction fetch, decode and register file ac-
cesses energy. On average, BERET reduces energy consumption
by a factor of 3-4X for the program regions selected across a range
of general-purpose and media applications. The average energy
savings for the entire application run was 35% over a single-issue
in-order processor.

Categories and Subject Descriptors

C.1.3 [Processor Architectures]: Adaptable Architectures

General Terms

Design, Experimentation, Measurement

Keywords

Energy Saving, Microarchitecture, Efficiency, Co-processor

∗Author is currently with the Hybrid Parallel Computing Group at
Intel Corporation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO 44, December 3–7, 2011, Porto Alegre, Brazil.
Copyright 2011 ACM 978-1-4503-1053-6/11/12 ...$10.00.

1. INTRODUCTION
The traditional microprocessor was designed with an objective

of running general purpose programs at a good performance, while
treating efficiency as a second order criteria. However, with a grow-
ing demand for on-chip resource integration, longer battery life and
lower heat dissipation in modern day devices, there is an emerg-
ing need to improve computational energy efficiency. The trend
in the silicon integration is also reinforcing this need for energy-
efficient architectures. Over the years, transistor density and per-
formance have continued to increase as per Moore’s Law, however,
the threshold voltage has not kept up with this trend. As a result,
the per-transistor switching power has not witnessed the benefits of
scaling, causing a steady rise in power density. Overall, this limits
the number of resources that can be kept active on a die simultane-
ously [?]. An instance of this trend can be already seen in Intel’s
Nehalem generation of processors that boost the performance of
one core, at the cost of slowing down/shutting off the rest of them.

While the importance of efficiency today is being felt across all
domains of computing, from datacenters cooling costs to smart-
phone battery lives, a majority of past works have focussed on the
embedded application domain. These solutions have leveraged spe-
cialized hardware units [16, 18, 21], loop accelerators (LAs) [6,
30], and wide-SIMD support [27, 9] to save energy. Unfortunately,
these specialization approaches do not directly extend to general
purpose applications such as desktop workloads, SPEC integer suite,
OS utilities, library codes etc., for several reasons. First, these
applications have a highly irregular program structure, and con-
tain a large amount of control flow. For instance, the large, un-
counted, non modulo-schedulable loops in these applications can-
not be mapped to LAs [6, 4]. Second, these irregular codes exhibit
little, if any, data level parallelism (DLP). This limits the applica-
bility of SIMD support for energy savings. And finally, the general-
purpose application space is very diverse and constantly evolving,
Therefore, designing a custom hardware (like ASICs) for each of
these programs is not very cost-effective.

Despite its shortcomings, specialized hardware like ASICs form
an important design point (rightmost in Figure 1) in the space of
techniques to improve performance and efficiency. In fact, a re-
cent work [?] makes a case for function-level ASICs in the con-
text of irregular codes, claiming the large availability of dark sil-
icon. The advantage here is that carefully customized data-paths
and long instruction ranges deliver highest levels of efficiency. The
disadvantage of ASICs is that each of them can handle only one
application/function. A second class of performance/efficiency so-
lution that overcomes this challenge is the work on programmable
functional units (PFU) [3, 19] (leftmost in Figure 1). PFUs allow
a small (acyclic) chain of operations to execute together using a

+ &

>>X

+

GPP + Programmable

Functional Units (PFU)
GPP + BERET

GPP + ASICs and

Loop Accelerators (LA)

Core

PFU

Core

B
E

R
E

T

Core

A
S

IC
2

ASIC 1 A
S

IC
3

Custom

instruction

Instruction

Queue

Application

Recurring
Traces
Recurring

Traces

Fn 1 ()

Fn 2 ()

Fn 3 ()

Remaining
applications

Fn 1 (x, y)

Applications (functions)

with ASIC support

Generality

Range

Any application Most applications Single application

2 - 8 instructions 1K ± 100K instructions 10K ± 10M instructions

Figure 1: Solution classes to improve computational efficiency of general purpose processors (GPPs). Range of dynamic instructions off-
loaded determines frequency of communication with the main core, and correlates well with energy savings. The PFU class covers custom
instructions and subgraph accelerators that can target virtually any application, but work on small ranges. ASICs provide a much larger
range, but are typically exclusive to an application’s function. BERET is our proposed design point, which provides application flexibility
while also covering large instruction ranges.

programmable/customizable set of functional units. The advantage
is its universal applicability to almost any program. However, the
energy efficiency gains are limited due to a small instruction range,
and an emphasis on processor back-end. Studies have shown that
a large fraction of application energy is consumed by the processor
front-end [5].

The two solution classes (ASICs and PFUs) discussed above fall
into opposing extremes, with one providing large efficiency gains,
and the other a flexibility to work across applications. To bridge
this gap, this paper proposes BERET (Bundled Execution of RE-
curring Traces), a configurable co-processor that achieves signifi-
cant energy savings for the selected program regions mapped onto
it, without sacrificing performance. As the approach tries to bridge
the gap between PFUs and ASICs, it has to simultaneously achieve
two objectives, increase instruction range relative to PFUs (which
translates into better energy savings), and make the design flexible
across applications unlike ASICs.

For increasing the instruction range, the insight is to leverage
recurring instructions sequence in a program’s execution. Such a
sequence consists of instructions that repeatedly execute back-to-
back with a high likelihood, despite the presence of intervening
control instructions. These recurring sequences represent phases
of "temporal regularity" in an otherwise irregular code, and make
good candidates for mapping to BERET. Conceptually these are
traces or frames [17, 8, 14], with an added requirement of form-
ing a loop. Hereonwards, we refer to them as hot traces or recur-
ring traces. The recurring traces provide several benefits such as
long instruction ranges, predictable code behavior and appearance
of structure to irregular codes, all of which help in designing a sim-
ple and efficient co-processor hardware. More importantly, as these
traces are significantly shorter (15-20 instructions) than the original
unstructured loops, BERET buffers them internally and eliminates
redundant fetches and decodes.

The second objective of BERET is to support multiple applica-
tions. The insight here is to use a bundled execution model for

running the traces. In this model, instead of executing one instruc-
tion at a time, BERET uses compiler analysis to break down traces
into bundles of instructions, and executes them sequentially. These
bundles are essentially subgraphs (chains of interconnected opera-
tions) from the trace-wide data flow graph. Further, our analysis
of application traces demonstrated that many subgraph structures
are common within as well as across applications. Thus, given a
diverse enough collection of subgraph execution blocks, our com-
pilation scheme is able to break down any given recurring trace
into constituent subgraphs from this collection. In terms of energy
savings, a major advantage of this bundled execution is that it sig-
nificantly cuts down on the redundant register reads and writes for
the temporary variables. Overall, we consider this bundled execu-
tion model a trade-off design that lets us achieve efficiency gains
nearer to an application specific data flow hardware while main-
taining application universality of regular Von Neumann execution
model.

Leveraging these two insights, BERET is designed as a subgraph-
level execution pipeline for recurring instruction sequences that en-
ables significant energy savings for general purpose programs. Pri-
marily, the energy savings come from large reductions in redundant
fetches, decodes, and register reads and writes for temporary vari-
ables. BERET also represents a hybrid accelerator design point in
the efficiency solution space where a large range of instructions are
offloaded and most applications benefit.

2. A CASE FOR ENERGY EFFICIENT

TRACE EXECUTION
In this section, we investigate the sources of inefficiency in a sim-

ple in-order RISC processor core, explore opportunities for energy
savings, and detail our insights on designing a general purpose,
energy-efficient compute engine. For a detailed comparison of our
work to prior schemes, please refer to Section 6 and Table 1.

Fetch

37%

Decode

18%

Issue

14%

Execute

9%

Memory

15%

W
ri

te
b

a
ck

7
%

0 10 20 30 40 50 60 70 80 90 100

Figure 2: The distribution of energy dissipation across pipeline
stages in an in-order processor.

2.1 Pipeline Energy Distribution
In a conventional Von Neumann architecture, the processor spends

a large amount of effort in supplying instructions and data values
to the actual execution units. The per-stage energy distribution in
a simple in-order RISC processor (modeled after a MIPS core [5])
is shown in Figure 2. This data confirms that a large fraction of
energy dissipation can be attributed to the instruction supply (Fetch
and Decode). The major component behind this was the instruc-
tion cache, which is not only a large structure, but needs to be
accessed for every single dynamic instruction in a program. The
second biggest energy draw was from the combined register read
(Issue) and write back (Writeback) cost. This is representative of
the data supply cost, along with the datapath memory access (Mem-
ory). The last stage in this tally, surprisingly enough, is the data
computation (Execute). Once the instructions and data are deliv-
ered to an execution unit, only a small amount of energy is required
to compute the result.

This behavior clearly highlights that a regular in-order pipeline
has a severe imbalance in terms of where the energy is being spent.
For a small fraction of compute energy, almost 8X more energy is
taken up to deliver the instruction and data to the execute stage. On
a positive note, this also indicates that methods targeting instruction
and data supply energy can achieve substantial savings.

2.2 Opportunities for Energy Saving
A significant source of this biased energy consumption is the lack

of understanding a general purpose processor has for the underly-
ing program structure. The hardware is typically agnostic of the
presence of loops, live data values, data flow between instructions,
chains of frequently occurring operations, and so on. This results in
wasted effort for redundant instruction fetches and decodes (for re-
peating sequences such as loops), redundant register file reads and
writes (for temporary / intermediate values), redundant forward-
ing and dependency checks for unrelated instructions, etc. Each of
these redundant actions present an opportunity for energy savings.

A popular approach for reducing this wasted effort has been to
introduce hardware specialization, in the form of ASICs [16, 18,
21], loop accelerators [6, 30], wide-SIMD support, etc. The at-
tempt here is to encode the program structure in the hardware, such
that it can avoid wasted effort during execution. For instance, loop
accelerators buffer the instructions in a loop, thereby avoiding the
redundant instruction cache accesses [6]. The hardware special-
ization solutions work particularly well for applications that have
regular structure, data parallel computations, and limited control
flow. Prime examples of this are multimedia and signal processing
kernels.

2.3 Limitations for Irregular Codes
In addition to regular codes, energy-efficiency is equally impor-

tant for applications in desktop computing, SPEC integer suite, OS
utilities, libraries, etc. Unfortunately, the concept of hardware spe-
cialization, does not scale to this application class because:

BB 1

BB 2

BB 5

BB 0

BB 20

BB 1

BB 2

BB 5

Side branches trigger an exit to
the original control-flow graph

BB 3

BB 4

BB 7BB 6

85% 15%

90%10%

50% 50%

BB 20

Hot basic

blocks

Control Flow
Graph (CFG)

A Looping Trace

BB 1

BB 2

BB 5

BB 20

BB 3 exit?

BB 4 exit?

Sequence of

hot basic blocks

Figure 3: Extracting a looping trace from an irregular control flow
graph. We also refer to these as hot traces or recurring traces in this
paper, and use them as a construct that runs on our energy-efficient
hardware design.

1. Large and irregular loops: The programs are highly irreg-
ular and contain a large amount of control flow. More specif-
ically, the loops are usually large, uncounted (while loops),
and contain deeply nested if-then-else statements. These char-
acteristics are unfavorable for specialized hardware because:
a) the hardware will be very large due to code divergence /
loop size, b) it will have a low utilization because only single
execution path would be taken each iteration, c) hardwired or
simplified instruction delivery is lost due to the lack of code
structure.

2. Too many applications that are also regularly modified:

Even if one could somehow design ASICs for these irreg-
ular codes, a large number of such ASICs will be required
to keep up with the application diversity and code modifi-
cations. This is unlike some embedded systems that have a
limited number of relatively stable, well structured kernels.

2.4 Energy Efficiency for Irregular Codes
Due to the aforementioned reasons, achieving general purpose,

energy-efficiency for irregular codes has long remained a tough
challenge. In this work, we build upon two insights for solving
this problem:

1. Structuring the Irregular Code using Traces: Often times,
the dynamic behavior of irregular codes exhibits a regular
structure. In the literature, this "temporal regularity" has
been referred to as traces [8], frames [17] and superblocks [14]
(in compilers). Traces are defined as sequences of instruc-
tions that have a high likelihood of executing back to back,
despite the presence of intervening control instructions. These
can be identified both statically and dynamically, covering
roughly 70% of dynamic instructions [17].

In the scope of this work, we focus on a subset of traces
that also loop around with a high probability (hot or recur-
ring traces). Figure 3 shows an example of an irregular con-
trol flow graph (CFG), with the extracted hot trace. These
hot traces not only render a regular structure, but in addition,
their looping nature is favorable to instruction supply energy
savings.

2. Generalizing Across Applications: Working with hot traces
eliminates the differences due to control flow between appli-
cation codes, leaving behind only data flow variations. Fur-
ther, we observed that hot traces can be segmented into small

CPU CPU CPU CPU B
E

R
E

T

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU

L1 D$L1 I$

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU c
h

c
o
d
e

u
e

c
u

te

b
a

c
k

m
o

ry

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

F
e
tc

R
F

D
e
c

Is
s
u

E
x
e
c

W
ri

te

M
e
m

Trigger Entry Exit1 3 56

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$
L1 Instruction

Cache
L1 Data
Cache

BERET (Bundled Execution
of Recurring Traces)

2

4

Figure 4: Deployment of BERET at multicore level and its integration within a single processor core.

data flow subgraphs, many of which are common across ap-
plications. Consequently, as we demonstrate later, given a di-
verse enough collection of subgraph execution units, a com-
pilation scheme can be formulated to break down a trace
into constituent subgraphs from this collection. The use of
subgraph-based computation is also favorable for data sup-
ply energy savings.

3. THE BERET DESIGN

3.1 Overview
The proposed design, named BERET, is a configurable co-processor

optimized for energy-efficient execution of hot traces from a pro-
gram flow. These hot traces are short, logically atomic, single-
entry, single-exit program regions with a high probability to loop
back. Further, the BERET hardware executes these traces in bun-
dles of instructions rather than individual instructions. One can
think of these instruction bundles as data flow subgraphs from the
trace. As a result of these high level design choices, several av-
enues of energy savings follow. First, the short program traces are
stored inside BERET hardware, this eliminates redundant instruc-
tion fetches as traces loop around. Second, the instruction bun-
dles from traces are encoded as BERET microcode, eliminating
the need for decode. Third, use of instruction bundles helps in re-
ducing unnecessary storage and retrieval of temporary values. And
finally, the simplified design due to no branch prediction, smaller
storage structures, and fewer pipeline latches, also contributes to-
wards energy savings.

Conceptually, every core in a system can be augmented with an
instance of BERET execution engine. Figure 4 shows this setup,
and integration of BERET within a pipeline while sharing the same
cache hierarchy. During a program’s execution, whenever a (stat-
ically marked) hot trace is encountered, the fetch stage transfers
control to the BERET hardware (Step 1 in Figure 4). BERET loads
the configuration corresponding to this trace from the instruction
cache (Step 2), and copies register live-ins for this region of code
from the main pipeline (Step 3). At this point, the execution con-
trol has successfully transferred to BERET and it acts as an inde-
pendent entity (Step 4). Internally, BERET executes the hot trace
at the granularity of data-flow subgraphs, and repeats the sequence
until a trace exit is flagged. More discussion about the BERET mi-
croarchitecture, its working, and challenges for trace exits, follow
in Section 3.2. Once a trace exit is identified, the live-outs from this
execution are copied back to the main pipeline register file (Step 5).
And finally, a trigger is sent to the pipeline fetch stage, to start the
regular program execution (Step 6).

Utilizing the BERET hardware involves identifying hot traces in
a program’s execution, and appropriately mapping them to the un-
derlying BERET execution engine. Figure 5 shows a high level
view of this process. The first step is to identify hot traces (Fig-
ure 5(a)) from the program execution that are good candidates for
using BERET. The selected traces are frequently occurring sequence
of program instructions that loop around, and rarely take a side
exit. For every such hot trace, the instruction sequence is broken
down into data flow subgraphs (Figure 5(b,c)). The subgraphs, if
desired, can span across control instructions within a trace. In fact,
the larger window of instructions visible in a trace supports this
notion, and helps in identifying longer chains of connected oper-
ations. Finally, these subgraphs are mapped onto a heterogeneous
set of subgraph execution blocks (SEBs) within the BERET hard-
ware (Figure 5(d)).

In the above discussion, the latter few steps of dividing up a
trace into subgraphs and mapping them to SEBs are interdepen-
dent, and thus, need to be handled concurrently. Section 3.3 details
our compiler analysis and mapping algorithms for a near-optimal
breakdown of traces into subgraphs supported by the BERET hard-
ware. In order to decide this set of SEBs, we performed detailed
analysis on traces from SPEC integer benchmarks, Linux utilities,
encryption and media kernels. Section 4 discusses this procedure
and also uses trace analysis to guide sizing of various microarchi-
tectural sub-components within BERET (internal register file, con-
figuration RAM, etc.).

The above described execution model of the BERET microar-
chitecture is quite effective at saving energy. These savings can be
broadly attributed to: 1) reducing instruction fetch / decode cost
and 2) reducing register access cost. First, once BERET buffers
a trace for execution, there is no further instruction cache access.
This eliminates redundant activations of instruction cache, fetch
stage logic, and decode logic for the repeated sequence of instruc-
tions within a trace. Second, the register file accesses are cheaper
as well as less frequent in the BERET design. The small size of the
BERET’s internal register file makes the accesses cheaper, while
the subgraph execution model minimizes register reads and writes
for intermediate variables in a program data flow.

3.2 Hardware Design
Unlike a regular pipeline, the BERET hardware deals with the

execution of a small snippet of code (∼20 instructions), containing
a small number of a live registers (∼6), and no internal control di-
vergence. Further, the execution is conducted at the granularity of
data-flow subgraphs, instead of individual instructions. These dif-
ferences guide the following discussion about the design and work-
ing of BERET.

Program

Hot Traces
(with high loop

back probability)

MPY

ADD

SUB

BR

LD

AND

SHIFT

ST

ADD

ADD

OR

BR

+

|

&

<<

ST

×

-

BR

LD

+ +

BR

1

2

3

1

2

3

SEB 0

SEB 1

SEB 2

SEB 3

Configuration

C
o
n

tro
l

R
F

Hot Trace
Data flow
subgraphs BERET with Subgraph

Execution Blocks (SEBs)
(a)

(b)
(c)

(d)

exit

exit

Figure 5: The process of mapping hot traces in a program to the BERET hardware: (a) shows a program segment with two hot traces, (b) a
closer look at a trace with instructions and two side exits, (c) illustrates the break-up of trace code into data flow subgraphs, and (d) mapping
of subgraphs to subgraph execution blocks (SEBs) inside the BERET hardware.

3.2.1 Basic Microarchitecture

Once a hot trace is configured to run on BERET, it acts as an in-
dependent execution engine. Given the small size of a trace, and no
internal control flow, the BERET microarchitecture has a simpli-
fied front-end. However, it allocates significantly more resources
to the execution back-end for running a wide variety of data-flow
subgraphs. Figure 6(a) shows a block diagram of the BERET mi-
croarchitecture. Here, the configuration RAM (CRAM) stores the
microcode for subgraphs in a trace, register file is for the internal
data state of BERET, subgraph execution blocks (SEBs) are the
equivalent of functional units, and control logic is to orchestrate
the operation. In reality, the control logic is distributed across the
entire fabric, with connections to virtually every component. The
block diagram hides these connections for the sake of clarity.

Logically, BERET execution can be divided into three stages:
1) Configure SEB, 2) Execute SEB, and 3) Writeback results (Fig-
ure 6(b)). For every subgraph in the trace, the first step is send-
ing (microcode) configuration bits to the mapped SEB. During this
configuration stage, the register file inputs are also read into the in-
put latch of an SEB. In the second stage (execute SEB), the SEB
that has its inputs latched, configuration defined, and is in posses-
sion of the execution token, fires its functional units. The execu-
tion can take multiple cycles depending upon the subgraph depth
(longest chain of instruction dependencies). Once the execution
completes, the SEB sends the result on the writeback bus, and
broadcasts an execution token. This token is now taken up by some
other ready-to-execute SEB, and the pipelined execution continues.
A more detailed stage-by-stage description follows below:

1. Configure SEB: The task of this stage is to sequence through
the subgraphs in a trace, and configure SEBs to execute them. The
configuration for the entire trace is stored on the CRAM. For each
subgraph, this contains the SEB mapping, the register live-ins and
live-outs, literal inputs, and mode bits for functional units within
the SEB. In the first cycle, configuration bits are sent to the cor-
responding SEB, and register file access is made for two live-in
values. In the second (optional) cycle, two more register live-ins
can be read, or, when needed, the values are bypassed from the last
executed subgraph.

2. Execute SEB: The second stage is responsible for the actual
data computation on the SEBs. A SEB starts its execution when

all the inputs are latched, configuration bits are available, and it
possesses the execution token. The execution token is used as a
serializing method to enforce in-order execution of subgraphs, and
it keeps shuttling between SEBs. The execution can take multiple
cycles, depending upon the subgraph depth, and concludes with
values recorded in the output latch. In the event of cache miss, just
like a regular pipeline, the SEB also stalls while waiting for the
value.

Each SEB or subgraph execution block (Figure 6(c)) is an inter-
connected set of functional units (ALU, shifter, multipliers, etc),
that represent a data-flow pattern. The number of functional units
per SEB vary from two to six in our design space exploration (Sec-
tion 4). The SEB structure has an input latch for live-ins, an output
latch for live-outs, and a latch to store configuration bits. For every
subgraph mapped, these bits decide the active functional units, their
modes (add, subtract, etc), and flow of values between them. The
selection of a good set of SEBs is central to the efficiency gains
from mapping traces to BERET, and the pertaining discussion is
presented in Section 4.

3. Writeback: This third and final stage is responsible for writing
back the results from the last concluded subgraph execution to the
BERET register file. All SEBs share a common writeback bus for
this purpose, and any SEB that has its outputs ready, can request it.
Due to the enforcement of in-order subgraph execution, there can
never be a contention for this bus.

3.2.2 Handling Trace Exits

The microarchitectural description in the previous section as-
sumes a straightforward execution scenario with indefinitely loop-
ing traces. However, in reality, the trace conditions would eventu-
ally dictate an exit, and a consistent program state has to be trans-
ferred back to the main processor. This is even more challenging
when a side exit is taken in the middle of trace execution, because
1) the subgraphs are formed across control divergence boundaries,
and assume that all instructions in the trace window execute in ev-
ery iteration; 2) temporary register variables are excluded when
mapping a trace to BERET, hence some of the live-ins required
on the exit edge might not even be available. Figure 7 shows an il-
lustration of control transfer between the main core and the BERET
engine, copy-in and copy-out of values, and use of dual register file
to maintain a clean state for last completed iteration.

Control
Logic

C
o

n
fi

g
u

ra
ti

o
n

 R
A

M

(C
R

A
M

)

Internal
Register File

SEB 1 SEB 2 SEB N

Writeback Bus

MUX

S
to

re

B
u

ff
e

r

w/ mem

Data

Cache

Trigger from / to the
Processor Fetch stage

From / to

Processor RF

ALU LD

<<

ALU

Subgraph Execution
Block (SEB)

Register File index bits

Instruction

Cache

Input Latch

Output Latch

c
o
n
fi
g
.

b
it
s

BERET Logical Stages

Configure
SEB

Execute
SEB

Writeback

(a) BERET Microarchitecture

(b)

(c)1 ± 2 cycles 1 ± 5 cycles 1 ± 2 cycles

bypass

SEB
config.

Figure 6: The BERET Microarchitecture: (a) the block diagram of the BERET hardware, (b) logical stages in the microarchitecture, and (c)
a closer look at a subgraph execution block (SEB).

There are two parts to resolving this challenge. First, BERET
needs a mechanism to detect when a side exit is taken by a trace.
Second, BERET is required to maintain a committed state (at iter-
ation boundaries) as well as per iteration speculative state. In the
case of a side exit, the committed state (from last trace iteration) is
copied back to main processor, which resumes execution from the
trace head.

Detecting Side Exits: We first convert all the branches in the trace
with assert operations (similar to [17]). The functional units within
SEBs recognize this operation, and raise an exit flag whenever an
assert computes to a true condition. Whenever any of the SEBs flag
an exit, the control logic initiates the copying out of the committed
state.

Maintain Speculative and Committed State: For recovering from
early trace exits, BERET needs to maintain a committed state from
the last completed trace iteration. There are two parts of this state
maintenance: register file state and memory state. For register files,
BERET uses a design similar to the concept of shadow register
files. Essentially, every logical register maintains two physical ver-
sions in the register file. The even iterations of the trace write back
to version 0 of registers, and odd iterations write back to version
1. As the code is linear within a trace, every iteration will pro-
duce exactly the same set of live-outs. Thus, at any point in time,
the committed register state from the last iteration is available for
recovery.

To maintain the memory state from the end of previous itera-
tion, BERET buffers the stores from the current iteration. The
store buffer releases them when the current iteration successfully
completes.

3.2.3 Processor Interfacing

The main processor requires two modifications to interface with
BERET. First, the fetch stage maintains a table of trace header
addresses in the loaded program. Whenever the program counter
hits any of these locations, the fetch sends an entry trigger and the
corresponding trace configuration address to BERET. The BERET
hardware loads the configuration using the instruction cache, runs

through the trace, and returns with an exit trigger to the fetch stage.
The second modification allows the main processor’s register file
to be directly addressed by the BERET. This is required by the
BERET to read the trace live-ins (at entry) into its internal register
file and write back the trace live-outs (at exit).

3.3 Mapping Traces to BERET
We use a comprehensive compiler flow to identify and map hot

traces from a program onto the BERET hardware. While mapping,
the objective is to segment an identified hot trace into a minimum
number of subgraphs, each of which can execute on a SEB in the
BERET hardware. This compiler flow can be broken down into five
major steps, each of which is elaborated below.

Find Traces: Given a procedure, the objective of this step is to
identify traces that have a very high probability to loop back, and
rarely take side exits. For this step, we leverage the previously
proposed Superblock identification heuristic [14]. Superblock for-
mation is a static compiler analysis that groups together program
basic blocks with a high likelihood of executing one after another.
This gives the compiler opportunity to perform optimizations on a
larger window of instructions. From the set of Superblocks com-
posed in a procedure, for BERET mapping, we select the ones that
have a looped structure (branch from the last basic block to the first
basic block), with an 80% probability to loop back.

Enumerate: In this step, all data-flow subgraphs are enumerated
from the given trace. The subgraphs can range in size from one
operation, all the way to a pattern of 4-6 interconnected operations.
Since we are enumerating all subgraphs, an operation can appear in
more than one subgraph.

Map: This steps checks the feasibility of which data-flow sub-
graphs can actually run on the BERET hardware, and prunes away
the rest. The mapping phase iterates over the enumerated sub-
graphs, and attempts to map each of them to a SEB in BERET.
If the subgraphs can map to multiple SEBs, the mapping to the
smallest SEB is recorded. On the other hand, if the subgraph does
not map to any SEB, it is discarded. In order to maintain mem-

. . . Execution Timeline

CPU
Execution

BERET
Execution

C
o

p
y
-i

n
 v

a
lu

e
s

C
o

p
y
-o

u
t
v
a

lu
e

s

PC
0x0096

PC
0x0096

PC
0x0096

PC
0x0096

Side

Exit

PC
0x0092

PC
0x0096

R
F

 2
R

F
 1

R
F

 2
R

F
 1

R
F

 2
R

F
 1

R
F

 2
R

F
 1

Figure 7: Execution transfer between the primary core and the BERET engine. The trace execution is terminated on BERET when a side
exit is encountered, and register updates (from the last successful iteration) are transferred back to the main pipeline.

0

20

40

60

80

100

%
 T

o
ta

l
ex

e
cu

ti
o

n
 t

im
e

Figure 8: Fraction of execution time spent in hot traces for all 24 benchmarks. The average coverage is 54%.

ory consistency, a subgraph is also discarded if it contains memory
instructions that alias.

Select: The input to this step is a set of SEB executable data-flow
subgraphs from a hot trace. The selection phase is responsible for
choosing the smallest subset of these subgraphs, while covering all
instructions in the trace. This is equivalent to the set covering prob-
lem, which is NP-hard. We model it as a unate covering problem,
and solve it using a branch and bound heuristic.

Group: Many of the subgraphs under utilize the SEB where they
are mapped. This phase coalesces disconnected subgraphs, wher-
ever it is possible, and places them on a single SEB.

After these steps for mapping, the compiler generates a configu-
ration RAM code for this hot trace, and embeds it into the program
binary. For ISA compatibility reasons, this configuration can be
added as a part of the global data segment. Note that the compiler
does not replace the original set of basic blocks in the program, as
the execution reverts back to them in cases of early trace exit. Fur-
ther, this keeps the code compatible on machines that do not have
the BERET hardware.

4. DESIGN SPACE EXPLORATION
The previous sections assume a fixed hardware design for BERET,

including the set of SEBs and sizes for different structures within
the microarchitecture. This section explains our methodology to
arrive at these design specifics. All experiments here were con-
ducted on traces from SPEC integer benchmarks, Linux utilities,
encryption kernels, and media kernels.

4.1 Benchmark Sets
We start with a total of 24 benchmarks from SPEC 2000 and

2006 integer suite, linux utilities, encryption and mediabench suites.
These were divided into two equal sets of 12 benchmarks each. The
first set is used as the training set (164.gzip, 181.mcf, 401.bzip2,
429.mcf, grep, lex, eqn, rc4, blowfish, cjpeg, pgpdecode, pgpen-
code) to help in fixing the BERET design parameters and SEBs,

and the second set is used as the test set (175.vpr, 197.parser, 254.gap,
256.bzip2, 445.gobmk, cmp, yacc, sha, pc1, idct, gsmdecode, gs-
mencode) to evaluate the benefits on an unknown set of application
traces.

4.2 Hot Trace Coverage
The fraction of a program’s execution time spent in the hot traces

determines the overall benefits from utilizing the BERET hardware.
In our experiments, we used a static compiler analysis implemented
in the Trimaran compiler to identify hot traces. The results are
shown in Figure 8 for all benchmarks in training set (first block
of 12 bars), and test set (second block of 12 bars). Almost all the
benchmarks were found to spend at least 15-20% of their execution
time in hot traces, with many spending as much as 90%. The num-
ber of hot traces per benchmark varied from just a couple of them
to as many as 50. Also note that while we use a static compilation
flow in our evaluation, it is our belief that a better hot trace cov-
erage can be garnered by a dynamic compilation framework. That
would translate into even higher energy savings.

4.3 Determining SEB Collection
The objective of this study was to define the smallest collection

of SEBs that exhibit a good mapping behavior for the traces in our
benchmarks. Where, a good mapping implies that traces get di-
vided into a small number of large subgraphs. Large subgraphs
are better as they imply fewer CRAM accesses, more internal data
forwarding, less number of register file accesses, and overall better
energy savings. However, there is a trade-off here, because as an
SEB gets larger, it also loses its flexibility across traces, forcing the
need to have an overall bigger collection of SEBs.

We resolve this situation by performing a subgraph exploratory
study on all traces in our training set of applications. The entire
training set of applications is compiled, and subgraphs are enumer-
ated from all recurring traces. From this list, we selected top eight
specialized SEBs based on their frequency of occurrence across all
traces, while maintaining a diversity in their sizes. The ISA in-

A

A

A

M

X

A

S

M

SA

A

S

AS

A

A

MM

Legend

A : ALU
M : MEM
X : MPY
S : SHF

M

M

A

A

A

A

M
S

M

S

M

A

A

Figure 9: The final set of eight SEBs determined from the analysis of traces in training set. These are used for all evaluations of BERET
design that follow in this paper.

structions were classified into four types (ALU, Shifter, Multiplier
or Memory Access Unit) while forming these subgraphs. Figure 9
shows the final set of specialized SEBs.

For a given trace, the real metric to evaluate quality of special-
ized SEBs is the average subgraph size obtained for its mapping.
Figure 10 shows these average subgraph sizes (across all traces)
for every benchmark in training and test set. It is noteworthy that
subgraphs sizes seen for applications in test set are at par with those
seen for training set. This strongly suggests that specialized SEBs
collection obtained using training set is stable for use in unknown
general purpose applications.

4.4 Trace Characterization for Microarchitec-
tural Parameters

Some of the important design parameters in the BERET hard-
ware are the sizes of the CRAM, register file and store buffer. To
determine a reasonable value for these parameters, we collected
various statistics from the traces in our training set. For CRAM
size, we analyzed the distribution of number of subgraphs per trace.
As much as 90% of the traces had number of subgraphs less 12.
Consequently, we fixed the CRAM size at 16 × 64 bits (our sub-
graph encoding fits in roughly 64 bits). For register file size, we
analyzed the distribution of maximum live values per trace. This
led to a register file with 8 entries. Finally, for the store buffer
sizing, we looked at the distribution of store operations per trace,
leading us to a store buffer with 6 entries.

5. EVALUATION

5.1 Methodology
In order to evaluate the potential of the BERET design, we used

a comprehensive methodology involving compiler analysis for the
identification and mapping of traces, an architectural simulator for
performance, CAD tools for synthesis, place and route, power, area
and finally, an energy simulator for computing total energy con-
sumption while running a trace on BERET. Details about each of
these components, along with benchmarks and baseline description
follows below.

Benchmarks: A unique attribute of the BERET architecture is
its relevance to both irregular as well as regular code based ap-
plications. The benchmark set was chosen to represent both these
classes. We selected nine benchmarks from the SPEC integer suite
(164.gzip, 175.vpr, 181.mcf, 197.parser, 254.gap, 256.bzip2, 401.bzip2,
429.mcf, 445.gobmk), five linux utilities (grep, cmp, lex, yacc,
eqn), four encryption kernels (rc4, pc1, blowfish, sha) and six bench-
marks from the MediaBench suite (cjpeg, idct, gsmdecode, gsmen-

code, pgpdecode, pgpencode). The division of these benchmarks
into training and test set is discussed in Section 4.

Baseline Processor: The ARM1176 [1], a widely used proces-
sor in cellphones and portable electronics, was chosen to be the
baseline processor for comparison. Being a single-issue in-order
pipeline, we consider the ARM1176 to be an aggressive baseline
for showing energy efficiency improvements. According to the
ARM website [1], an 800MHz ARM1176 synthesized at 65nm
technology node consumes roughly 160mW, which includes 16 KB
level 1 instruction and data caches.

Compiler Infrastructure: The Trimaran compilation system [25]
was used to implement the compiler flow that identifies hot traces
and maps them to the BERET hardware. The trace identification
component was implemented in OpenIMPACT (the front-end and
profiling engine of Trimaran), whereas, the hardware mapping al-
gorithms were implemented under ELCOR (back-end of Trimaran).

Performance Simulation: Cycle accurate simulators were used to
model the performance of the baseline processor, as well as the
execution time of traces mapped onto BERET. For the baseline
single-issue in-order processor, we used SIMU, a performance sim-
ulator which is a part of the Trimaran package. A separate trace-
based performance simulator was developed to measure the run-
time of traces on the BERET hardware. This also accounted for the
cost of execution control transfers between the main processor and
BERET.

Power and Area Estimation: We implemented the BERET hard-
ware in Verilog, and used a full CAD flow to synthesize (Synop-
sys Design Compiler), place and route (Cadence Encounter) and
estimate power (Primetime PX). This was performed at the IBM
65nm technology node, while targeting a clock period of 1.25ns.
This analysis gave us the power and area for all structures in the
BERET hardware. Cache access power was estimated separately
using CACTI [15] on a 16 KB, 4-way set associative cache.

Energy Simulator: The energy simulator was modeled after the
BERET performance simulator. During the execution of a trace, it
accumulates the energy consumed based on the number of activa-
tions for structures within BERET. For every activation, the average
power for the structure is extracted from the CAD synthesis. Fur-
ther, clock gating is assumed for the main processor whenever the
control transfers to BERET. As a result, the processor logic incurs
leakage energy in all phases of execution.

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v

er
ag

e
 S

u
b

g
ra

p
h

 S
iz

e

Training Set Test Set

Figure 10: Average subgraphs sizes for training set and test set traces mapped to the specialized set of SEBs.

0
.3

7

0
.3

1

0
.3

4

0
.3

4

0
.3

4

0
.3

2

0
.2

9 0
.3

4

0
.3

1

0
.3

0 0
.3

8

0
.3

6 0
.4

0

0
.3

1

0
.2

9 0
.3

7

0
.3

6

0
.2

8

0
.3

0 0
.3

8

0
.3

9

0
.3

0

0
.3

1 0
.3

6

0
.3

3

0

0.1

0.2

0.3

0.4

0.5

N
o

rm
al

iz
ed

 E
n

er
g

y
 f

o
r

tr
ac

es

m
ap

p
ed

 t
o

 B
E

R
E

T

Core leakage CRAM Access SEB Units Register File Access Cache/Memory Access

T
ra

in
in

g
S

e
t

T
e

st

S

e
t

(a) Hot trace energy consumption while they ran on the BERET hardware (normalized to main processor).

0
.8

2

0
.8

1

0
.4

8

0
.7

3

0
.7

7

0
.4

6

0
.7

8

0
.5

6

0
.3

9

0
.4

7

0
.9

1

0
.8

2 0
.9

9

0
.8

7

0
.8

7

0
.7

3

0
.3

7

0
.3

4 0
.5

5

0
.3

8

0
.8

5

0
.7

2

0
.4

5

0
.4

9 0
.6

5

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
ed

 E
n

er
g

y
 f

o
r

th
e

fu
ll

 b
en

ch
m

ar
k

BERET Energy Baseline Processor Energy

T
ra

in
in

g
S

e
t

T
e

st

S

e
t

(b) Full benchmark energy savings while using the BERET hardware in conjunction with the main processor.

Figure 11: Energy consumption relative to the baseline.

5.2 Results

5.2.1 Energy Savings

Figure 11a shows the normalized energy dissipation for the pro-
gram regions running on BERET. The numbers shown also take
into account the energy for transferring data and control in/out of
the BERET hardware. The saving for a given application using
BERET is tightly correlated with the average subgraph size seen
for the same (see Figure 10). A larger subgraph size translates into
higher savings, and vice versa. On average, the proposed design
reduces energy by a factor of 3X over a single-issue in-order core.
For reference, a carefully designed ASIC can give anywhere be-
tween 10-50X energy reduction for regular codes. However, unlike
BERET, they are not programmable across applications. Further,
for irregular codes, ASICs cannot be expected to reach the same
level of efficiency due to their diverse control and memory access
patterns. The absolute energy dissipation by the BERET hardware
is roughly 65pJ per instruction.

The breakdown in the bars depicts the leakage energy of main
core, and energy spent by various structures within BERET. The
contribution of main core’s leakage energy remains constant across
all applications at about 12%. For BERET structures, the distribu-
tion of energy indicates a higher fraction spent for actual compute
(SEB Units), relative to instruction and data supply. This is a no-
table improvement over the distribution shown in Figure 2, and it
follows from the fact that energy savings in BERET are focused
around the instruction supply (fetch, decode) and register data sup-
ply (fewer registers, reduced temporary variable accesses), with
peripheral benefits from having smaller structures and eliminating
pipeline latches. Just as in the case of average subgraph sizes, the
results are comparable between training and test sets.

Figure 11b shows the energy numbers for the complete applica-
tion runs. In this case, the overall benefits are correlated to the frac-
tion of a program covered by hot traces (see Figure 8). The program
portions that get mapped to the BERET hardware (black) garner
significant energy savings, while the rest of them (white) dissipate

0
.9

7

0
.7

1 0
.8

2

0
.8

6

0
.8

8

0
.6

8

0
.7

2

0
.7

9 0
.8

9

0
.7

6

0
.9

6

0
.8

4

0
.8

2

0
.7

1

0
.6

5

0
.9

8

0
.6

9

0
.7

2

0
.6

9

1
.0

8

0
.8

9

0
.5

9

0
.9

3 1
.1

2

0
.8

1

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n

 t
im

e
fo

r
tr

ac
es

 m
ap

p
ed

 t
o

 B
E

R
E

T

T
ra

in
in

g
S

e
t

T
e

st

S

e
t

(a) Hot trace execution time while they ran on the BERET hardware (normalized to the main processor).

0
.9

9

0
.9

2

0
.8

6

0
.9

4

0
.9

6

0
.7

0 0
.9

1

0
.8

6

0
.9

1

0
.8

2 0
.9

9

0
.9

5

1
.0

0

0
.9

4

0
.9

4

0
.9

9

0
.7

0

0
.7

2

0
.7

9

1
.0

7

0
.9

7

0
.8

2 0
.9

4 1
.0

9

0
.9

0

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

N
o

rm
al

iz
ed

 E
x
ec

u
ti

o
n

 t
im

e
fo

r
th

e
fu

ll
 b

en
ch

m
ar

k

BERET Execution Baseline Processor Execution

T
ra

in
in

g
S

e
t

T
e

st

S

e
t

(b) Full benchmark execution time while using the BERET hardware in conjunction with the main processor.

Figure 12: Execution time relative to the baseline.

the standard energy on the main processor. The full benchmark en-
ergy savings ranged from 1% on 175.vpr to 66% on cmp, with an
average of 35%.

5.2.2 Performance Comparison

The primary objective of the BERET design was to target energy
savings in irregular codes, without sacrificing any performance.
Fortunately, the use of a bulk execution model, using subgraphs in-
stead of isolated instructions, gives a performance edge to BERET
in certain cases. Figure 12a shows the normalized execution time
for code regions mapped to the BERET hardware. On average,
benchmark traces exhibit 19% performance improvement. This im-
provement stems from the instruction level parallelism (ILP) achieved
within an SEB as it executes a data flow subgraph. For instance, a
subgraph containing two add instructions feeding their outputs to
a xor instruction would finish in two cycles, resulting in an IPC of
1.5. For a minority of benchmarks, a performance loss is also seen.
This results in cases where ILP benefits do not successfully out-
weigh the overheads of communication and early exits when using
the BERET hardware.

Figure 12b shows the execution time improvement for the entire
benchmark execution. As in the case of energy savings, the perfor-
mance impact of using BERET gets diluted in accordance with the
fraction of hot trace coverage. Overall, the execution time for the
benchmarks evaluated is reduced by 10%.

5.2.3 Design Overheads

The final design of the BERET architecture consisted of a 128
byte CRAM, 8-entry register file, 6-entry store buffer, a heteroge-
neous set of 8 SEBs, and miscellaneous logic and interconnects.
The total area for this in the 65nm technology node (after place and

route) was 0.396mm
2. In the same technology node, the area of

an ARM1176 core is 1.94mm
2.

The BERET hardware is practically a standalone engine. As a
result, it does not prolong any critical path in the base processor,
and is expected to maintain the original operational frequency for
the same.

6. RELATED WORK
The architectural designs for performance and energy have been

an active area research for a long time. In this landscape (see
Table 1), BERET stands out by being the only general purpose
compute engine that provides high energy-efficiency for irregular
(e.g., desktop workloads and SPEC int) as well as regular codes
(e.g.,media kernels). Further, the BERET design can be attached as
a co-processor to the main core, without any elaborate hardware or
programming paradigm changes.

Specialized hardware designs [16, 18, 21] and instruction set ex-
tensions [9, 24] have long been a source of performance and energy
efficiency for computations such as media kernels [13], encryption,
signal processing [11]. ASIC designs are a good example of this,
and get on the order of 40-50X energy efficiency improvements
over simple RISC processors. Loop accelerator (LA) [7] designs
are a limited form of ASICs that target modulo-schedulable, reg-
ular loop bodies with highly predictable memory access patterns.
More recently, some flexibility has also been incorporated in these
LAs [6, 30, 4] to generalize them for more than one application.
BERET differs from such LAs and traditional ASICs in two ways:
1) it targets irregular codes, that are heavily control divergent, hard-
to-parallelize, and not well-suited to modulo scheduling; 2) it is
general purpose and not application specific.

Irregular codes have also been targeted by a recent work titled
Conservation Cores (C-Cores) [?]. C-cores borrows insights from

Table 1: Comparison to Prior Work.

BERET ASIC [16, 21] Loop C-Cores [?] ELM [5] Programmable
ASIP [9] Accelerators [7, 6, 29] FUs [3, 19]

Energy Savings High V.High V.High High V.High Low

Multiple Applications Yes No No No Yes Yes

Irregular Codes Yes No No Yes No Yes
Area Medium Large Medium Large Large Small

Processor Integration Co-processor Stand-alone Co-processor Stand-alone Stand-alone In-pipeline

Program Scope Traces Full Loops Functions Full Op-chains

prior spatial computation solutions [2] and synthesizes application-
specific hardware for energy-efficiency improvements. However,
this scheme requires an independent co-processor for every appli-
cation, imposing heavy area and design time costs. In contrast,
BERET engine is general purpose and not tied to any application
or domain.

Trace Cache [12] and Loop Stream Detector (LSD) [22] are two
popular industrial solutions introduced by Intel in Pentium 4 and
Nehalem line of chips, respectively, for saving processor energy.
Trace Cache is an SRAM structure that buffers sequences (called
traces) of program instructions in a pre-decoded form, and in case
of a hit, the back-end directly reads instruction from here. This
removes the activation cost of predictors and decoders, while also
garnering speed-up. BERET differs with Trace Cache on two fronts:
1) BERET eliminates instruction cache access, whereas due to its
large SRAM structure, read access for Trace cache is similar to the
original instruction cache, and 2) BERET uses a bundled execu-
tion model, and saves back-end data supply energy, whereas Trace
cache provides no such savings for back-end energy.

The LSD design is conceptually very similar. However, instead
of storing traces, it can buffer loops with fewer than 28 micro-ops
(compare this to Trace Cache that can store 12-K micro-ops). For
any program loop that can be accommodated within LSD, instruc-
tion fetch and decode energy is saved. Unfortunately, a large frac-
tion of loops in irregular codes are large, and cannot fit inside LSD.
Further, just like Trace Cache, LSD still incurs the energy expenses
from inefficiencies in the processor back-end.

Another approach for irregular codes has been the use of sub-
graph accelerators like CCA [3], PRISC [19] to improve their per-
formance. These solutions propose adding a customizable func-
tional unit within the processor, that can improve performance for a
range of data flow subgraphs encountered during a benchmark run.
Unfortunately, the efficiency gains from these schemes are limited
as they target primarily the back-end energy savings (data supply).
The instruction supply still has to perform redundant fetches and
decodes for the custom instruction(s). On the other hand, BERET
targets both instruction and data supply savings.

DySER [?] is a recent proposal that builds upon the concept of
programmable unit, and introduces DySER block, a grid of net-
worked functional units. The approach works by splitting the orig-
inal program into two streams: 1) compute instructions for DySER
block, and 2) memory and control instructions for execution on the
main pipeline. Although an interesting framework, the savings are
limited due to frequent data and control communication between
DySER block and main pipeline. Further, unlike BERET, it does
not save on instruction supply energy.

ELM [5] is a programmable processor design dedicated to both
instruction and data supply energy savings. While it achieves con-
siderable efficiency improvements, the targeted applications are reg-
ular kernels from the embedded systems.

The BERET design bears some resemblance to data flow ma-
chines, as it breaks down the recurring traces from a benchmark

into constituent data flow subgraphs. However, the full blown data
flow designs such as WaveScalar [23] and TRIPS [20] are more
performance centric, and introduce large area and complexity costs.
Another related effort is the Braids [26] architecture, that converts
the pipeline back-end into a series of homogeneous execution units,
called braid execution units (BEUs). However, unlike BERET,
the Braids architecture is performance centric, and works towards
achieving aggressive issue-widths in simple in-order cores.

Finally, reconfigurable architectures have been used in the past
for performance improvements. Garp [10] and Chimaera [28] use
an FPGA-like substrate to map instruction sequences. Garp can
also handle tight inner-most loops from an application. However,
the use of a reconfigurable fabric, and dependence on regular code
behavior limits their overall usability and impact on general pur-
pose energy efficiency.

7. CONCLUSION
With the growing importance of energy conservation in all do-

mains of computing, there is a clear need for architects to develop
efficiency solutions that apply to general purpose computing. This
is especially true given that the embedded systems approach of de-
signing special purpose hardware does not scale to the requirements
of irregular and diverse code base in general purpose application
space. Towards this end, this paper identified the challenges posed
by irregular codes, and developed BERET, an energy-efficient ar-
chitecture for general purpose programs. Further, the BERET ar-
chitecture is not application specific and can be programmed to
deliver efficiency improvements for virtually any recurring trace
of instructions. Fundamentally, BERET relies on these recurring
traces to cut down on redundant instruction fetch and decode en-
ergy, and a bundled execution model to reduce register file access
energy. The capability to handle multiple applications and offload
long ranges of instructions, sets BERET apart in the space of effi-
ciency solutions.

We applied BERET on a variety of benchmarks from SPEC inte-
ger suite, Linux utilities, and MediaBench. On average, we found
that BERET can reduce energy by a factor of 3X for the program
regions it executes. The average energy savings for the entire ap-
plication was 35% over a single-issue in-order processor.

8. ACKNOWLEDGMENTS
We thank the anonymous referees for their valuable comments

and suggestions. This research was supported by National Science
Foundation grants CCF-0916689 and CNS-0964478 and ARM Lim-
ited.

9. REFERENCES
[1] ARM. Arm11.

http://www.arm.com/products/CPUs/families/ARM11Family.html.

[2] M. Budiu, G. Venkataramani, T. Chelcea, and S. C.
Goldstein. Spatial computation. In 12th International

Conference on Architectural Support for Programming

Languages and Operating Systems, pages 14–26, 2004.

[3] N. Clark et al. Application-specific processing on a
general-purpose core via transparent instruction set
customization. In Proc. of the 37th Annual International
Symposium on Microarchitecture, pages 30–40, Dec. 2004.

[4] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized
execution accelerator for loops. In Proc. of the 35th Annual
International Symposium on Computer Architecture, pages
389–400, June 2008.

[5] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. Harting,
V. Parikh, J. Park, and D. Sheffield. Efficient embedded
computing. IEEE Computer, 41(7):27–32, July 2008.

[6] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the
computation gap between programmable processors and
hardwired accelerators. In Proc. of the 15th International
Symposium on High-Performance Computer Architecture,
pages 313–322, Feb. 2009.

[7] K. Fan, M. Kudlur, H. Park, and S. Mahlke.
Compiler-directed synthesis of multifunction loop
accelerators. In Proc. of the 2005 Workshop on Application
Specific Processors, pages 91–98, Sept. 2005.

[8] D. Friendly, S. Patel, and Y. Patt. Putting the fill unit to work:
Dynamic optimizations for trace cache microprocessors. In
Proc. of the 25th Annual International Symposium on

Computer Architecture, pages 173–181, June 1998.

[9] R. Hameed, W. Qadeer, M. Wachs, O. Azizi,
A. Solomatnikov, B. C. Lee, S. Richardson, C. Kozyrakis,
and M. Horowitz. Understanding sources of inefficiency in
general-purpose chips. In Proc. of the 37th Annual
International Symposium on Computer Architecture, pages
37–47, 2010.

[10] J. R. Hauser and J. Wawrzynek. GARP: A MIPS processor
with a reconfigurable coprocessor. In Proc. of the 5th IEEE
Symposium on Field-Programmable Custom Computing

Machines, pages 12–21, Apr. 1997.

[11] T. Instruments. Tms320c2x user’s guide, Jan. 1993.

[12] Intel. Intel xeon processor with 512 kb l2 cache, 2004.

[13] H. Kalva. The H.264 video coding standard. IEEE
MultiMedia, 13(4):86–90, 2006.

[14] W. mei W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery. The
superblock: An effective technique for vliw and superscalar
compilation. Journal of Supercomputing, 7(1):229–248, May
1993.

[15] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.
Optimizing nuca organizations and wiring alternatives for
large caches with cacti 6.0. In IEEE Micro, pages 3–14,
2007.

[16] M. Papadonikolakis et al. Efficient high-performance ASIC
implementation of JPEG-LS encoder. In Proc. of the 2007
Design, Automation and Test in Europe, pages 159–164, Apr.
2007.

[17] S. J. Patel and S. S. Lumetta. rePLay: A hardware framework
for dynamic optimization. IEEE Transactions on Computers,
50(6):590–608, June 2001.

[18] P. G. Paulin and J. P. Knight. Force-directed scheduling for
the behavorial synthesis of ASICs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
8(6):661–679, June 1989.

[19] R. Razdan and M. D. Smith. A high-performance
microarchitecture with hardware-programmable function
units. In Proc. of the 27th Annual International Symposium
on Microarchitecture, pages 172–180, Dec. 1994.

[20] K. Sankaralingam et al. Exploiting ILP, TLP, and DLP using
polymorphism in the TRIPS architecture. In Proc. of the 30th
Annual International Symposium on Computer Architecture,
pages 422–433, June 2003.

[21] R. Schreiber et al. PICO-NPA: High-level synthesis of
nonprogrammable hardware accelerators. Journal of VLSI
Signal Processing, 31(2):127–142, 2002.

[22] R. Singhal. Inside intel next generation nehalem
microarchitecture, 2008. http://software.intel.com/file/18976.

[23] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin.
Wavescalar. In Proc. of the 36th Annual International
Symposium on Microarchitecture, page 291. IEEE Computer
Society, 2003.

[24] Tensilica Inc. Diamond Standard Processor Core Family
Architecture, July 2007.
http://www.tensilica.com/pdf/Diamond WP.pdf.

[25] Trimaran. An infrastructure for research in ILP, 2000.
http://www.trimaran.org/.

[26] F. Tseng and Y. N. Patt. Achieving out-of-order performance
with almost in-order complexity. In Proc. of the 35th Annual
International Symposium on Computer Architecture, pages
3–12, June 2008.

[27] M. Woh et al. From SODA to scotch: The evolution of a
wireless baseband processor. In Proc. of the 41st Annual
International Symposium on Microarchitecture, pages
152–163, Nov. 2008.

[28] Z. A. Ye et al. CHIMAERA: a high-performance architecture
with a tightly-coupled reconfigurable functional unit. In
Proc. of the 27th Annual International Symposium on

Computer Architecture, pages 225–235, 2000.

[29] S. Yehia et al. Exploring the design space of LUT-based
transparent accelerators. In Proc. of the 2005 International
Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, pages 11–21, Sept. 2005.

[30] S. Yehia, S. Girbal, H. Berry, and O. Temam. Reconciling
specialization and flexibility through compound circuits. In
Proc. of the 15th International Symposium on

High-Performance Computer Architecture, pages 277–288,
2009.

