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Abstract

Multi-core and many-core systems are the norm in contemporary processor technol-

ogy and are expected to remain so for the foreseeable future. Parallel programming

is, thus, here to stay and programmers have to endorse it if they are to exploit such

systems for their applications. Programs using parallel programming primitives like

PThreads or OpenMP often exploit coarse-grain parallelism, because it offers a good

trade-off between programming effort versus performance gain. Some parallel ap-

plications show limited or no scaling beyond a number of cores. Given the abundant

number of cores expected in future many-cores, several cores would remain idle in such

cases while execution performance stagnates. This thesis proposes using cores that do

not contribute to performance improvement for running implicit fine-grain speculative

threads. In particular, we present a many-core architecture and protocols that allow

applications with coarse-grain explicit parallelism to further exploit implicit specula-

tive parallelism within each thread. We show that complementing parallel programs

with implicit speculative mechanisms offers significant performance improvements for

a large and diverse set of parallel benchmarks. Implicit speculative parallelism frees

the programmer from the additional effort to explicitly partition the work into finer

and properly synchronized tasks. Our results show that, for a many-core comprising

128 cores supporting implicit speculative parallelism in clusters of 2 or 4 cores, per-

formance improves on top of the highest scalability point by 44% on average for the

4-core cluster and by 31% on average for the 2-core cluster. We also show that this

approach often leads to better performance and energy efficiency compared to existing

alternatives such as Core Fusion and Turbo Boost. Moreover, we present a dynamic

mechanism to choose the number of explicit and implicit threads, which performs

within 6% of the static oracle selection of threads.

To improve energy efficiency processors allow for Dynamic Voltage and Frequency

Scaling (DVFS), which enables changing their performance and power consumption

on-the-fly. We evaluate the amenability of the proposed explicit plus implicit threads

scheme to traditional power management techniques for multithreaded applications

and identify room for improvement. We thus augment prior schemes and introduce

a novel multithreaded power management scheme that accounts for implicit threads

and aims to minimize the Energy Delay2 product (ED2). Our scheme comprises two

components: a “local” component that tries to adapt to the different program phases

on a per explicit thread basis, taking into account implicit thread behavior, and a

“global” component that augments the local components with information regarding
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inter-thread synchronization. Experimental results show a reduction of ED2 of 8%

compared to having no power management, with an average reduction in power of

15% that comes at a minimal loss of performance of less than 3% on average.
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Chapter 1

Introduction, Contributions and

Structure

With the shift toward multi- and many-cores, programmers can no longer enjoy steep

performance improvements for free with every new generation of processors. Instead,

parallel programming has to be employed both for programs written from scratch and

for legacy code in order to exploit this new hardware. However, parallel programming

is often hard and error prone, especially when addressing fine-grain threading which

involves complex synchronization, communication, data partitioning, and schedul-

ing [67, 96]. Thus, programmers often stay away from fine-grain parallelism and con-

centrate their efforts in exploiting parallelism at a coarser granularity. Coarse-grain

parallelism 1 offers a good compromise between development effort and performance,

and is often the first step exploited by programmers as they incrementally parallelize

and performance tune their programs. Typical examples of such types of parallelism

can be implemented via PThreads [84] and OpenMP [29].

Given this focus on coarse-grain parallelism, applications often show limited or no

scaling when executed in a large number of cores. Typical reasons for this are, among

others, large critical sections leading to serialization in the presence of many threads,

load imbalance between threads, and communication and coherence overheads [37,

46]. On the other hand, this focus on coarse-grain parallelism means that there is often

room for opportunistically exploiting further degrees of fine-grain parallelism [37, 46].

In this thesis we propose allocating cores beyond the application’s scalability limit

to exploit implicit speculative parallelism within individual explicit threads. Explicit

1We use the term coarse-grain parallelism to indicate parallelism under large tasks in terms of code

size and execution time as opposed to fine-grain parallelism which means that individual tasks are

relatively small in terms of code size and execution time.
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2 Chapter 1. Introduction, Contributions and Structure

1 /∗ Kerne l ∗ /

2 Do f o r i =1 t o Imax {

3 i f ( m a s t e r t h r e a d )

4 m o d i f y t h e s e q u e n c e o f k e y s ;

5 BARRIER( a l l p r o c s ) ;

7 f o r ( i =0; i<NUM KEYS; i ++ )

8 c o m p u t e t h e r a n k o f e a c h k e y l o c a l l y ;

10 l o c k ( CS lock ) ;

11 u p d a t e g l o b a l k e y a r r a y ;

12 unlock ( CS lock ) ;

13 BARRIER( a l l p r o c s ) ;

15 i f ( m a s t e r t h r e a d )

16 p e r f o r m p a r t i a l v e r i f i c a t i o n ;

17 }
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Figure 1.1: Scaling behavior of the is benchmark from the NAS Parallel Benchmarks [7]:

(a) Kernel source code, (b) Speedup scaling, (c) Breakdown of execution time.

threading is employed by conventional multiprocessors where the programmer explic-

itly specifies the partitioning of the program into threads and uses an application soft-

ware interface and runtime system (like PThreads and OpenMP) to dispatch and exe-

cute multiple threads on several cores in parallel. Implicit threads, on the other hand,

are transparent to the user and are either generated by the compiler or peeled off the

sequential execution stream using hardware. By running implicit speculative threads



3

through thread-level speculation (TLS) [45, 64, 78, 100, 104] performance can be im-

proved beyond the application’s scalability limit for a given input dataset. Moreover,

given the guaranteed sequential semantics of the TLS protocol, this further paralleliza-

tion is transparent to the programmers so that they do not have to struggle to further

partition and debug the parallel code. In fact, with TLS it is possible to exploit what-

ever degree of parallelism exists within the coarse-grain explicit threads even in the

presence of data dependences.

Figure 1.1 shows a simple example case study. Increasing the number of cores

beyond eight causes performance to decrease significantly (Figure 1.1b). This is due

to a large critical section whose relative execution time increases with the number of

cores, as can be seen in Figure 1.1c. In the critical section (lines 10–12 in Figure 1.1a)

each thread simply adds its local keys to the global key array in a for loop. This loop

is amenable to parallelization and doing so could reduce the time spent in the critical

section. Unfortunately, explicitly parallelizing this critical section requires writing

some non-trivial code that allows threads to be dynamically detected when waiting

at the critical section and then dynamically join the thread that is inside the critical

section to assist it in performing its work.

Under our scheme the implicit speculative threads operate within explicit parallel

threads with support for both types simultaneously in a nested fashion. Prior work

that proposed architectures with support for both TLS and explicit threads [85, 86]

could only accommodate either type at a time by switching between modes. We have

developed a combined and nested coherence plus TLS protocol that provides coher-

ence across explicit parallel threads and simultaneously provides TLS across multiple

groups of implicit speculative threads, where each group is associated with a single

explicit thread. This protocol is similar in spirit to previously proposed ones [81, 116]

that allow nesting of transactional memory and coherence, but it requires some spe-

cific mechanisms in order to accommodate the differences in behavior between TLS

and transactional memory.

Our approach has similar aims as Core Fusion [55] and Frequency Boost [50] in

that they all attempt to pre-allocate or shift resources to a subset of cores in order to ac-

celerate sections of a parallel code that do not scale well. However, they all differ in the

source of the acceleration and hardware support. In our evaluation we quantitatively

compare these approaches in terms of performance and energy efficiency.

In addition to improving the scalability of multithreaded workloads under implicit
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threads this thesis also focuses on the power management of such applications 2.

Workload imbalance between the threads of a multithreading application is a source

of energy inefficiency. For example, under a fork-join parallel execution model like

OpenMP, each thread performs its own portion of the parallel execution and then

reaches a barrier at the joint point of the code that synchronizes all the threads. If all

the threads reach the barrier the same time then synchronization stall time, and imbal-

ance, is thus minimal. Often, however, threads reach the barrier at different times with

some threads reaching earlier than others and spending significant time stalling. This

discrepancy between thread arrival times is either due to heterogeneous tasks or due

to execution performance variations like different cache behavior. Already substan-

tial, we expect load imbalance to worsen as future CMPs expose more performance

variations due to technology issues and thermal emergencies [15, 35]. Further, some

multithreaded applications exhibit additional synchronization stalls induced by highly

concurrent lock-based critical sections; this is another source of energy inefficiency.

In order to improve the energy efficiency of multithreaded applications due to

synchronization stalls, prior work has used Dynamic Voltage and Frequency Scaling

(DVFS) [74] to dynamically lower the frequency and voltage of cores running less

critical threads with minimal performance impact [9, 19, 69, 71, 34, 53]. Most of these

schemes focus on barrier-intensive applications [9, 19, 69, 71], however, and fail to

report applicability to a larger subset of parallel workloads.

We, in turn, propose an adaptive, hierarchical power management scheme that aims

at lowering the power consumption while maintaining the application performance,

targeting a wide set of parallel workloads – barrier-intensive, lock-intensive and data-

parallel ones. It comprises two components: (a) a “local” component that follows a

thread’s memory performance taking into account the difference in behavior between

explicit and implicit threads and chooses a locally optimal voltage and frequency pair,

and (b) a “global” component that tries to make globally optimal decisions based on

the synchronization behavior.

1.1 Main Thesis Contributions

The main contributions of this thesis are:

• We are the first to evaluate implicit speculative parallelism on top of explicit

2We use the term scalability improvement throughout the thesis to indicate improvement in the per-

formance of a multithreaded workload under a larger number of cores.
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parallelism as a means to improve performance in traditional multithreaded ap-

plications that exhibit poor scaling.

• We discuss the architectural requirements for a system supporting implicit and

explicit threads concurrently and evaluate such a many-core architecture.

• We present detailed analysis of performance bottlenecks in a set of multithreaded

applications and evaluate their behavior in the presence of different input datasets.

• We present a hill-climbing approach that dynamically selects the number of ex-

plicit and implicit threads for a class of parallel programming style.

• We evaluate the amenability of accommodating implicit threads into traditional

power management techniques for multithreaded applications. Furthermore, we

expose some drawbacks of prior work on power management for parallel work-

loads.

• We present a new, hierarchical power management scheme for multithreaded

workloads that both improves the state-of-the-art of power management and ac-

counts for implicit threads.

Our experimental results show that complementing parallel programs with implicit

speculative mechanisms offers significant performance improvements for a large and

diverse set of parallel benchmarks. For a many-core comprising 128 cores, perfor-

mance improves on top of the highest scalability point by as much as 102%, and 44%

on average, for a system with 4 implicit threads per explicit thread and by as much as

85%, and 31% on average, for a system with 2 implicit threads per explicit threads.

These performance improvements come with virtually no increase in total energy con-

sumption. Compared to the alternative – Core Fusion and Frequency Boost – our ap-

proach often leads to higher performance with consistently lower energy consumption.

Furthermore, our mechanism to choose the number of explicit and implicit threads

performs within 6% of the static oracle thread selection.

Finally, our adaptive, hierarchical power management scheme significantly outper-

forms competing power management schemes on the evaluated platform and work-

loads and enjoys a significant reduction of Energy Delay2 product of as much as 46%

and 8% on average. This is due to a reduction in power consumption of as much as

47%, and 15% on average, with a minimal loss in performance of less than 3% on av-

erage. Significantly, our scheme maintains its applicability throughout all the types of

parallel workloads evaluated – barrier-intensive, lock-intensive and data parallel alike.
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1.2 Thesis Overview

This dissertation is organized as follows:

Chapter 2 provides background information. First, it presents the necessary back-

ground on TLS, in terms of its main concept, and architectural and compilation sup-

port. Second, it presents necessary background on Dynamic Voltage and Frequency

Scaling (DVFS) on recent multi-cores as well as current trends in many-cores. Finally,

it discusses prior work in power management for multithreading applications.

Chapter 3 discusses the general idea of exploiting fine-grain nested speculative

parallelism to complement coarse-grain explicit parallelism to improve the scalability

of multithreaded workloads. First, it presents the high-level semantics of nested spec-

ulative parallelization in multithreaded applications. It further presents the many-core

architecture and protocols that implements these schemes. Moreover, it discusses a dy-

namic mechanism to automatically choose the number of explicit and implicit threads

in OpenMP programs.

Chapter 4 describes the simulator setup and the benchmarks used for evaluation.

It also discusses the system models evaluated, including core characteristics and on-

chip network, as well as models evaluated for comparison purposes. Next, it discusses

power management implementation details. Then, it presents the compilation frame-

work, along with per workload information regarding speculation coverage and sup-

port.

Chapter 5 discusses experimental results. First, it provides an in-depth analysis

of performance and scalability for the evaluated workloads. Second, it discusses the

effect of different dataset sizes on scalability. Third, energy consumption results are

presented and analyzed for the different schemes. Finally, the auto-tuning mechanism

is evaluated and compared against static oracle results.

Chapter 6 presents our power management scheme on-top of the proposed im-

plicit speculative parallelism scheme. First, it discusses room for improvement in prior

work on power management for multithreaded workloads as a motivation to our work.

Second, it presents the hierarchical, adaptive phase-driven scheme that augments the

nested speculative parallelism to make it more energy efficient. Finally, it discusses

the necessary hardware requirements to support our power management proposal.

Chapter 7 evaluates the proposed hierarchical power management scheme dis-

cussing experimental results. First, it discusses the amenability of the implicit threads

to power management schemes. Second, it provides an analysis of the performance
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and energy consumption of our scheme against the current state-of-the-art power man-

agement schemes running explicit and implicit threads. Finally, it discusses the effec-

tiveness of the proposed power management scheme under explicit threads only.

Chapter 8 discusses the related work and Chapter 9 provides thesis conclusions

and future work.





Chapter 2

Background

This chapter provides the necessary background for the rest of the dissertation. The

first part, in Section 2.1, discusses the high-level execution model for TLS as a means

to auto-parallelize sequential applications. Section 2.1.2 presents the necessary ar-

chitectural support together with compiler and task selection support for TLS. Sec-

tion 2.1.3 presents the compiler support required by TLS. The second part, in Sec-

tion 2.2, discusses the necessary background for power management. In Section 2.2.1

it provides background on Dynamic Voltage and Frequency Scaling (DVFS) on re-

cent multi-cores as well as current trends in many-cores. Finally, in Section 2.2.2, it

discusses prior work in power management for multithreading applications.

2.1 Thread-Level Speculation

Under the thread-level speculation (also called speculative parallelization or specula-

tive multithreading) approach, sequential sections of code are speculatively executed in

parallel hoping not to violate any sequential semantics [45, 64, 78, 100, 104]. Sequen-

tial control flow imposes a total order on the threads. At any time during execution,

the earliest thread in program order is non-speculative while the others are specula-

tive. The terms predecessor and successor are used to relate threads in this total order.

Stores in speculative threads generate unsafe versions of variables that are stored in a

speculative buffer. If a speculative thread overflows its speculative buffer it must stall

and wait to become non-speculative. Loads in speculative threads are provided with

potentially incorrect versions. As execution proceeds, the system tracks memory ref-

erences to identify any cross-thread data dependence violation. Any value read from a

predecessor thread is called an exposed read, and must be tracked since it may expose

9
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f o r ( i = 0 ; i < MAX; i ++) {
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(b)

Figure 2.1: Speculative task extraction: (a) Loop-level speculation and (b) Method-level

speculation.

a read-after-write (RAW) dependence. If a dependence violation is found, the offend-

ing thread must be squashed, along with its successors, thus reverting the state back to

a safe position from which threads can be re-executed. When the execution of a non-

speculative thread completes it commits and the values it generated can be moved to

safe storage (usually main memory or some shared lower-level cache). At this point its

immediate successor acquires non-speculative status and is allowed to commit. When

a speculative thread completes it must wait for all predecessors to commit before it can

commit. After committing, the core is free to start executing a new speculative thread.

Speculative threads are typically extracted from either loop iterations (Figure 2.1a)

or method continuations (Figure 2.1b). The compiler marks these structures with a

spawn instruction at the beginning, so that the execution of such an instruction leads

to a new speculative thread, and a commit instruction at the end. The parent thread

continues execution as normal, while the child thread is mapped to any available core.

For loops, spawn points are placed at the beginning of the loop body, so that each

iteration of the loop spawns the next iteration as a speculative thread. Threads formed

from iterations of the same loop (and that, thus, have the same spawn point) are called

sibling threads. For function calls, spawn points are placed just before the method call,
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for(i=0; i<N; ++i) {

  ...

  ...

  ...

}

  a = table[index1];

  table[index2] = b;

(a)
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im

e
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Figure 2.2: Example of Thread-Level Speculation execution: (a) pseudo-code of a loop

with infrequent dependences and (b) example of dynamic TLS execution.

so that the non-speculative parent thread proceeds to the body of the function call and

a speculative child thread is created from the method’s continuation.

2.1.1 Example

TLS allows the compiler to automatically parallelize portions of code in the presence

of statically ambiguous data and control dependences, thus extracting thread-level par-

allelism between whatever dynamic dependences actually exist at runtime. To illus-

trate how TLS works, consider the simple for loop in Figure 2.2a which accesses ele-

ments in a hash table. This loop cannot be statically parallelized due to possible data

dependences through the array table, assuming that the indexes cannot be statically

computed. While it is possible that a given iteration will depend on data produced
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by a preceding iteration, these dependences may in fact be infrequent if the hashing

function is effective. Hence a mechanism that could speculatively execute the loop

iterations in parallel – while aborting and re-executing any iterations which do suffer

dependence violations – could potentially speed up this loop significantly, as illustrated

in Figure 2.2b. In this example, the program runs on a shared-memory multi-core, and

some number of cores (four, in this case) have been allocated to the program by the

operating system. Each of these cores is assigned a unit of work, or task, which in

this case is a single loop iteration. When complete, each task attempts to commit its

speculative work. In this case a read-after-write (RAW) data dependence violation is

detected between task 1 and task 4; hence task 4 is squashed and restarted to pro-

duce the correct result, while tasks 1, 2, and 3 commit, thus successfully overlapping

execution. This example demonstrates the basic principles of TLS.

2.1.2 Architectural Support

In order to support speculative execution that maintains sequential semantics, the hard-

ware must provide at least the following functionality:

• A mechanism to dynamically detect true memory dependences between specu-

lative tasks, in order to determine whether the sequential semantics have been

violated.

• A mechanism for buffering speculative state so that it may be discarded when a

violation occurs or safely committed in case of successful speculation.

• A mechanism to spawn new speculative tasks.

• A mechanism to commit data written by speculative tasks that did not cause any

violations and merge them with main memory.

• A mechanism for squashing and re-executing speculative tasks that have caused

a violation of the sequential semantics.

• A mechanism to maintain the speculative task ordering with respect to the se-

quential execution.

The following paragraphs discuss typical implementations of these mechanisms in

prior work.
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2.1.2.1 Detecting Data Dependences

To support thread-level speculation, we must perform the difficult task of detecting

data dependence violations at run-time, which involves comparing load and store ad-

dresses that may have occurred out-of-order with respect to the sequential execution.

These comparisons are relatively straightforward for instruction-level data speculation

(within a single thread), since there are few load and store addresses to compare. For

thread-level data speculation, however, the task is more complicated since there are

many more addresses to compare, and since the relative interleaving of loads and stores

from different threads is difficult to track. There are three possible ways to track data

dependences at run time; for each option, a different entity is responsible for detecting

dependence violations. First, a third-party entity could observe all memory operations

and ensure that they are properly ordered–similar to the approach of the Wisconsin

Multiscalar’s address resolution buffer (ARB) [38, 100]. Such a centralized approach

has the drawback of increasing load hit latency which would hinder the performance

of non-speculative workloads. Second, the producer could detect dependence viola-

tions and notify the consumer. This approach requires the producer to be notified of all

addresses consumed by logically-later tasks, and for the producer to save all of this in-

formation until it completes. On every store, the producer checks if a given address has

been consumed by a logically-later task and if so, notifies that task of the dependence

violation. This scheme has the drawback that the logically-earliest task must perform

the detection, but we want the logically-earliest task to proceed unhindered.

A third approach is to detect data dependence violations at the consumer. In this ap-

proach, consumers track which locations have been speculatively consumed, and each

producer reports the locations that it produces to the consumers. Hence a producer task

that stores to a location must notify all consumer tasks that have previously loaded that

location, so that the consumer tasks can verify that proper ordering has been preserved.

The key insight is that this behavior is similar to that of an invalidation-based cache

coherence scheme: whenever a cache line is modified that has recently been read by

another core, an invalidation message is sent to the cache that has a copy of that line.

To extend this behavior to detect data dependence violations, we simply need to track

which locations have been speculatively loaded, and whenever a logically-earlier task

modifies the same location (as indicated by an arriving invalidation message), we know

that a violation has occurred.
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2.1.2.2 Buffering Speculative State

Speculative tasks generate speculative writes which cannot be merged with the perma-

nent state of the system unless the task commits. These writes are stored separately,

typically either in the cache of the core running the task [45, 94, 104] or in a dedicated

speculative store buffer [64, 100]. If the task successfully commits, the state is merged

with system state (typically either with main memory or shared lower level caches).

If it is squashed before it reaches completion, buffered state is discarded. A task only

commits if it completes execution and becomes non-speculative. This ensures that

tasks commit in order, thus preserving sequential semantics. Also, the hardware must

provision for the case that the speculative buffer overflows; speculative tasks can ei-

ther squash and re-execute or simply stall and wait until they are “safe” and can commit

their speculative buffer. Garzaran et al. [41] provide a study of different approaches to

speculative buffering along with their respective advantages and disadvantages.

2.1.2.3 Data Versioning

Each task has one version of each datum. If a number of speculative tasks are run-

ning on a system, each has a different version of shared data. On commit, versions are

merged into system state in task order. Some proposals allow one version per core [44],

while others support multiversioned caches and hence allow a speculative task to exe-

cute on a core even if commit is still pending for a previously executed task [42, 94].

To allow efficient execution in the presence of shared data, speculative systems also

forward shared data from earlier threads to later threads.

2.1.2.4 Spawning Speculative Tasks

Spawning a new operating system thread is a process that in conventional architec-

tures is typically fairly slow. In TLS systems, where speculative thread spawns are

fairly frequent, this would impair performance. For this reason special support for

fast spawning of threads is required. More specifically, in TLS systems when a thread

encounters a thread spawn instruction, it creates a small packet containing the stack

pointer, the program counter and some counters that have to do with the thread order-

ing. This packet is sent to an empty core which can start execution immediately after

initializing its program counter and stack pointer accordingly. One option is to rely

on register communication, as Multiscalar [100] does. A second option is to perform

communication of live-ins through memory. The compiler ensures that all values that



2.1. Thread-Level Speculation 15

are live-ins for the newly created thread will be spilled into memory (through register

spilling), so that when the new thread requests them they will be propagated to it via

the TLS protocol.

2.1.2.5 Committing Speculative Tasks

We cannot determine whether speculation has succeeded for the current speculative

task until all previous tasks (ordered based on the sequential semantics) have made

their speculative modifications visible to memory – hence the act of committing spec-

ulative modifications to memory must be serialized. This could be done, for example,

via an entity that maintains the ordering of the active tasks. A more scalable approach,

however, is to directly pass an explicit token–which we call the safe token–from the

logically-earliest task to its successor when it commits and makes all of its speculative

modifications visible to memory. Receipt of the safe token indicates that the current

task has no speculative predecessors, and hence is no longer speculative. This safe

token mechanism is simply a form of producer/consumer synchronization and hence

can be implemented using normal synchronization primitives.

Moreover, when a thread finishes execution, any cache lines it modified have to

be written back to memory. This is typically done via a lazy policy, where lines that

should be written back are left in the caches until they are replaced and thus written

back to a lower level cache. It is worth noting that in the presence of multiversioned

caches [42], execution of subsequent threads can proceed without having to wait for

all the previous cache lines of the previous task(s) running on the same core to be

committed to memory.

2.1.2.6 Squashing and Re-executing

Rolling back any changes is a fairly important architectural component of TLS sys-

tems. TLS threads should be able to restore any changes, so that the architectural state

remains valid even when data dependence violations have occurred. When a violation

is detected (control or value), the pipeline and the store buffers are flushed. The stores

in the speculative buffer that are not dirty and have not been modified by any other

thread, are kept intact whereas the rest of the cache lines are invalidated. Squashes

come in two forms. In a control violation, the task is squashed with a kill signal. In

a data violation, the task is squashed with a restart signal, which also restarts the task

from its beginning, hoping that the re-execution will not violate another data depen-
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dence. If the thread is restarted or killed, the register state is discarded. For a restart

the stack pointer and program counter are reset to their initial values.

2.1.3 Compiler Support

Thread Level Speculation requires some compiler support that typically involves task

selection, code generation and TLS specific performance optimizations.

2.1.3.1 Task Selection

In most TLS systems proposed in the literature, task selection is done statically at

compile time. Tasks are typically extracted out of high-level program structures, such

as loop iterations and function call bodies. This static approach is used, for example,

in the POSH [72], and Spice [90] compilers, as well as the compiler infrastructure

used in the STAMPede [103] TLS system. Other systems, however, take a different

approach and are not limited to tasks coming only from loops or function call bodies

but encompass finer-grain tasks (e.g., at a basic block level). The Min-Cut approach to

task decomposition [58], for example, applies graph theoretic algorithms to the control

flow graph, such that all basic blocks and combinations of basic blocks are candidates

for tasks. The Mitosis system [87] identifies spawning pairs and forms tasks out of

them. These are pairs of instructions that meet certain conditions of control and data

independence. More recently, the Anaphase system [75, 76] performs fine-grain task

selection based on a graph partitioning technique which performs a decomposition of

applications into speculative threads at instruction granularity leveraging communi-

cation and pre-computation slices to deal with inter-thread dependences. The tasks

selected for the Multiscalar system [111] and the compiler framework by Bhowmik

and Franklin [10] are also examples of fine-grain speculative task selection that do not

rely on high-level structures alone.

2.1.3.2 Code Generation

Code generation can be done in two ways: (a) by adding the new TLS instructions

as in-line assembly code using a source-to-source compiler (typically producing C

code) and re-compiling the output through a traditional compiler or (b) by changing

the back-end of a compiler infrastructure to output TLS code directly. For example,

the STAMPede system [103] uses a source-to-source compiler on top of GCC, while

the POSH [72] and the Mitosis [87] compilers directly produce TLS binaries.
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2.1.3.3 TLS specific optimizations

Some compilers also perform TLS specific optimizations to make speculative execu-

tion more efficient. For instance, Zhai et al. [117] look at identifying dependent scalar

use and define pairs and then aggressively scheduling the USEs late in the consumer

task and the DEFs early in the producer task. Steffan et al. [102] have noted that small

loop bodies can be made more TLS friendly through loop unrolling. Software value

prediction code may also be inserted at compile time, as by Mitosis [87].

2.2 Power Management

2.2.1 DVFS

Dynamic power Pdy dissipated by a chip is strongly dependent on supply voltage Vdd

and operating frequency f :

Pdy ∝V 2
dd f (2.1)

By reducing the voltage by a small amount, dynamic power is reduced by the square

of that factor. However, reducing the voltage means that transistors need more time

to switch on and off, which forces a reduction in the operating frequency. Dynamic

Voltage and Frequency Scaling (DVFS) [74] exploits this relationship by reducing the

voltage and the clock frequency when this can be done without experiencing a pro-

portional reduction in performance. Reducing frequency can usually be done quickly,

whereas for changing voltage the regulators have to settle their output voltage. Changes

in voltage must, thus, be carefully scheduled in advance to align ramping up voltage

with activity in the chip.

Adjusting the voltage and frequency is done by means of a DC-DC converter,

which changes the voltage to the desired levels. The new operating voltage is then

used to drive the frequency generator, which provides the chip with the operating fre-

quency for the corresponding voltage level.

Most modern processors have support for DVFS in order to save power or to avoid

thermal emergencies [51]. Experiments done in [32] show that it is advantageous to

reduce the CPU frequency for a memory intensive task, but not for a CPU-intensive

task. The performance of a task with high CPU utilization is linearly dependent on

frequency, and thus will suffer significant throughput loss when the frequency is low-

ered. A memory intensive task, however, will suffer minimal performance loss when
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the frequency is reduced. If a task is constantly accessing memory, then the CPU is

constantly stalling and waiting for memory. Power consumption can be reduced by

lowering the frequency for a memory intensive task, and system performance can be

increased by running a CPU-intensive task at the highest frequency.

2.2.2 Power Management for Multithreaded Workloads

Applications often do not show the same behavior throughout their execution, and they

typically have a dynamic fluctuation in terms of instructions per cycle (IPC). These re-

gions of repeatable behavior have been characterized as program phases [6, 33, 36, 99].

A low IPC typically means that the application is stalling on long latency events and is

unable to effectively utilize the computing resources. This is usually due to memory-

bound or bandwidth-bound phases but could also occur in phases with complex control

flow that incur high branch misprediction rates. When stalling on long latency events,

dynamically reducing the voltage/frequency of the core executing the application can

result in a significant reduction in its leakage and dynamic energy consumption with a

relatively small degradation in performance. Therefore, operating cores always at the

maximum voltage/frequency is not always beneficial and a DVFS policy that dynami-

cally adapts to the application’s performance can achieve higher energy efficiency.

Prior work has applied DVFS to single cores [2, 16, 49, 77, 97], clusters of multi-

chip multiprocessors [39, 70, 95, 101], shared-memory multi-cores [5, 9, 19, 56, 69, 71,

91], and many-cores [34, 53]. They focus on either sequential, multi-programmed or

multithreaded workloads. We focus on multithreaded workloads running on a shared-

memory many-core.

DVFS schemes for multithreaded applications have primarily targeted workloads

using barriers [9, 19, 69, 71]. Barriers are widely used synchronization primitives

in multithreaded applications. A barrier is essentially a mechanism to prevent the

progress of threads beyond the barrier until all threads reach the barrier. A thread that

reaches the barrier early must wait for all other threads to arrive at the barrier. Bar-

riers are typically implemented as shared counters that are incremented in a critical

region whenever a thread arrives at the barrier [80]. All threads waiting at a barrier

continuously check the value of this counter and continue only when it becomes equal

to the number of threads that must synchronize at the barrier. This requires threads to

continuously read their local copies of the shared counter, doing no useful work and

consuming leakage and dynamic energy. Energy overheads associated with barrier
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synchronization are proportional to the barrier wait times of threads. An imbalance in

workload distribution across threads can result in large barrier wait times. One solu-

tion to this problem is to use barrier-aware DVFS. This ensures that, at each barrier,

the voltages and frequencies of cores are dynamically scaled such that faster threads

do not arrive at the barrier early, but instead, arrive at the barrier at around the same

time as the slowest thread. Using this technique, the wait times of threads at the barrier

are minimized, and as a result, redundant leakage and dynamic energy consumption

spent at the barrier is avoided. In order to obtain energy savings using barrier-aware

DVFS, the discrepancy in thread execution times between two barriers, and in turn

the expected barrier stall times when all cores run at the maximum frequency, must

be accurately predicted. Meeting points [19] follows this approach. It assumes strict

Single Program Multiple Data semantics (e.g., traditional OpenMP) and places “meet-

ing points” at the end of each parallel loop. Each thread monitors its current progress

based on these meeting points, compares it against the other threads’ progress and

accordingly throttles down if it detects that it is further ahead in execution. Thread

criticality predictors [9] dynamically monitor the cache misses of each thread and give

higher priority to the thread that suffers the most misses. The insight behind this is that

the thread that is most likely to arrive last at the barrier is the slower one, and the one

suffering the most misses is an obvious candidate.

An alternative solution to this is to not perform dynamic voltage and frequency

scaling but instead put to sleep threads that arrive early. The thrifty barrier [69] fol-

lows this approach and tries to predict barrier stall times and puts the threads that are

predicted to stall longer than a threshold to sleep in order to minimize energy consumed

at barriers.





Chapter 3

Exploiting Implicit Speculative

Parallelism in Explicitly Parallel

Applications

This chapter discusses the high-level idea of exploiting implicit speculative parallelism

to improve the performance of multithreaded applications together with the motivation

behind it and the internals of its implementation. First, in Section 3.1, the general idea

is outlined together with a discussion of the main sources of scalability bottlenecks

for the parallel workloads evaluated, and how implicit speculative threads could theo-

retically improve scalability by tackling these bottlenecks. Second, in Section 3.2, it

proposes a viable tiled many-core architecture with support for nested implicit specu-

lative threads. Third, in Section 3.3, the coherence and TLS protocol of the many-core

architecture are discussed. Finally, in Section 3.4, it presents a dynamic scheme that

automatically finds the scalability tipping point of a parallel application and then de-

cides whether to employ implicit threads on top.

3.1 General Idea

The key realization that we exploit in this thesis is that explicitly parallel applications

with user-level coarse-grain threads (explicitly declared threads in coarse-grain paral-

lel programs) are often limited in scalability sooner or later. Further decomposing the

threads into smaller tasks beyond that point is often very difficult or futile. As future

many-cores are expected to have tens to a few hundred cores, many applications will

have an execution scalability cap below the total number of cores available on chip.

21
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#pragma omp p a r a l l e l f o r

f o r ( k = 0 ; k < KMAX; k ++) {

/∗ . . . ∗ /

b e g i n n e s t e d s p e c u l a t i o n ( ) ;

f o r ( l = 0 ; l < LMAX; l ++) {

s p a w n n e s t e d s p e c t h r e a d ( ) ;

/∗ i n n e r loop body ∗ /

c o m m i t n e s t e d s p e c t h r e a d ( ) ;

}

e n d n e s t e d s p e c u l a t i o n ( ) ;

/∗ . . . ∗ /

}

Ti,1Ti,0 Ti,2 i,3T

Ti0T jT Tm

Tj,0 Tj,1 Tj,2 j,3T

... ... ...

Figure 3.1: Implicit speculative parallelism on-top of an OpenMP parallel workload.

The key idea of this dissertation is to complement the explicit coarse-grain threads

with fine-grain implicit speculative threads. In this scenario the programmer has to

parallelize, debug, and performance tune the application only up to a desired cost-

benefit point with coarse-grain threads. Further fine-grain parallelism is then exploited

from within each coarse-grain thread by the hardware using thread-level speculation

(TLS). As TLS provides sequential semantics, parallelism is exploited implicitly and

transparently without the programmer having to worry about work partitioning, com-

munication, synchronization, and scheduling. Finally, we note that since speculation

is applied at the fine granularity of loops and procedure calls within a coarse-grain

explicit thread, its effect is quite different from that of simply dividing the amount of

work to be done by the explicit thread.

This concept of nested TLS within explicitly parallel threads is a natural expansion

of traditional TLS, which was presented in Chapter 2. An illustration of nested spec-

ulation on-top of an OpenMP multithreaded loop is presented in Figure 3.1 and can

be seen as an expansion to the example presented in Figure 2.1a. The nested implicit

speculative threads within the explicitly parallel threads operate exactly as traditional

TLS threads would within a sequential application.

3.1.1 Sources of Scalability Bottlenecks in Parallel Applications

Many parallel applications suffer from low scalability when executed on a large num-

ber of cores. In this section, we enumerate the primary reasons for this limited scala-
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bility on the workloads evaluated along with typical examples.

Large serial sections or critical sections that lead to serialization and thus prevent

scalability is a first bottleneck. Amdahl’s law [4] defines the importance of serial sec-

tions in parallel workloads and remains a first order constraint on coarse-grain paral-

lelism, despite having been re-evaluated for massively parallel workloads [43] and for

the multi-core era [46]. Even modern parallel workloads, like the bodytrack 1 bench-

mark from the PARSEC [11] benchmark suite, suffer from this textbook source of

performance bottleneck limiting its scalability. The behavior of bodytrack is presented

in Figure 3.2. The code snippet of Figure 3.2a shows the main kernel of the bench-

mark that includes serial elements that account for roughly 8% of its total sequential

execution time. Amdahl’s law allows for a theoretical 12.5 maximum speedup with

an infinite number of cores. In practice this translates to even less performance due to

parameters not taken into account by Amdahl (memory subsystem, interconnect, etc.),

as shown in Figure 3.2b. The workload’s scalability quickly stops at 16 cores and go-

ing beyond that yields insignificant benefits. While the main thread spends its time in

serial sections, the remaining threads wait in spin-locks until the next parallel region

is encountered. This is clearly illustrated in Figure 3.2c: for 2 cores the “Busy” time,

which basically represents parallel region time, is cut exactly in half and the rest of the

time is spent in “Lock”.

Second, load imbalance between the threads of a parallel application produces a

source of scalability bottleneck for many applications. Parallel applications with load

imbalance can be partitioned in two broad categories: (a) applications with task queues

that involve heterogeneous tasks, and (b) applications with static large-grain work par-

tition that leads to increased load imbalance. A common denominator of these parallel

workloads is the increased time spent in barriers (or in task queue synchronizations),

which typically increases exponentially as the thread count is increased.

The radiosity workload from the SPLASH2 [113] benchmark suite is an example

of a load imbalanced parallel application with heterogeneous tasks (Figure 3.3). It

is a task queue application with heterogeneous tasks that incur different loads in the

workload’s threads leading to flat scalability beyond 32 cores, depicted in Figure 3.3b.

This is despite employing work stealing [12] to mitigate task imbalance, because its

effectiveness is restricted by the limited length of the task window per iteration of the

workload’s main loop. Figure 3.3a shows the source code of the workload’s main func-

tion that the threads execute in order to get a new task, illustrating the heterogeneity of

1We evaluate the OpenMP version of bodytrack, as discussed in Chapter 4
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1 / / loop over a l l annea l i ng s t e p s s t a r t i n g w i t h h i g h e s t

2 f o r ( i n t k = ( i n t ) mModel−>StdDevs ( ) . s i z e ( ) − 1 ; k >= 0 ; k−−) {

3 CalcCDF ( mWeights , mCdf ) ; / / Monte Carlo re−sampl ing / / ∗ s e r i a l ∗

4 Resample ( mCdf , mBins , mSamples , m N P a r t i c l e s ) ; / / ∗ s e r i a l ∗

5 boo l m inVal id = f a l s e ;

6 whi le ( ! m inVal id ) {

7 G e n e r a t e N e w P a r t i c l e s ( k ) ;

8 CalcWeigh ts ( m NewPar t ic les ) ;

9 m inVal id = ( i n t ) m NewPar t ic les . s i z e ( ) >= m M i n P a r t i c l e s ;

10 / / r e p e a t i f no t enough v a l i d p a r t i c l e s

11 i f ( ! m inVal id )

12 s t d : : cou t<<” Not enough v a l i d p a r t i c l e s −Resampling ! ! ! ”<<s t d : : e n d l ;

13 }

14 m P a r t i c l e s = m NewPar t ic les ; / / save new p a r t i c l e s e t

15 }
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Figure 3.2: Scalability Bottleneck I: Large Critical Sections. Example using bodytrack

workload from PARSEC [11]: (a) Source Code of benchmark’s hot loop with the serial

sections indicated by “*serial*”, (b) Scalability graph, (c) Breakdown of Execution time.
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the thread execution flow.

Figure 3.4 depicts the scalability behavior of the swaptions benchmark from the

PARSEC suite. Despite being data parallel with respect to the number of “swap-

tions” [11] that are to be analyzed, it fails to exploit any other level of parallelism.

If, for example, the number of “swaptions” is less than the number of available cores it

simply does not yield any work for the remaining cores. This is depicted in Figure 3.4b

with a dataset evaluating 16 “swaptions”. One of the hot loops of this application is

presented in Figure 3.4a and tries to compute random numbers required for the finan-

cial analysis later in the program. The number of iterations for each of the loop levels is

constant (BLOCKSIZE=16, iFactor=3, and iN=11), independent of the thread count,

and known at compile time. These iteration counts are typical for most of the work-

load’s loops.

3.1.2 Use of Implicit Threads to Improve Scalability

Figure 3.5 illustrates the idea of using implicit speculative threads to attack each of

the bottlenecks presented in the previous section to improve performance scalability.

Figure 3.5a shows the case of an application dominated by critical sections. In this

case, attempting to scale the application from 4 to 8 explicit threads (Figure 3.5a-i to

Figure 3.5a-ii) successfully reduces the execution time of the parallel and critical sec-

tions, but overall scalability is limited by the serialization of the critical sections 2. We

propose to use the underutilized cores to run the critical section in TLS mode. By allo-

cating resources for speculative threads (Section 3.2) we effectively trade off reduced

execution time of the parallel sections for reduced serialization of the critical sections

and possibly reduction of the execution time of the critical sections (Figure 3.5a-iii).

Figure 3.5b shows the case of an application where the parallel section is divided

into one region with execution time proportional to the dataset and one with fixed

execution time 3. In this case, attempting to scale the application from 4 to 8 explicit

threads (Figure 3.5b-i to Figure 3.5b-ii) successfully reduces the execution time of the

dataset proportional region only. Again, by using the additional cores to run these

sections in TLS mode we can achieve some parallelization of the non-scalable regions

2In some cases, as that of IS of Figure 1.1, the problem is worsened by the fact that the critical

section time does not scale with the further work partition and the serialization problem is compounded

with the fixed time of the critical section
3In reality the parallel threads might have several of these non-dataset-proportional regions spread

throughout the thread. The example here is simplified for the sake of the explanation and our scheme is

not limited in this way.
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1 vo id p r o c e s s t a s k s ( unsigned p r o c e s s i d ) {

2 Task ∗ t = DEQUEUE TASK( t a s k q u e u e i d [ p r o c e s s i d ] , QUEUES VISITED , p r o c e s s i d ) ;

3 r e t r y e n t r y :

4 whi le ( t ) {

5 swi tch ( t−>t a s k t y p e ) {

6 case TASK MODELING:

7 p r o c e s s m o d e l ( t−>t a s k . model . model , t−>t a s k . model . type , p r o c e s s i d ) ;

8 break ;

9 case TASK BSP :

10 d e f i n e p a t c h ( t−>t a s k . bsp . pa tch , t−>t a s k . bsp . p a r e n t , p r o c e s s i d ) ;

11 break ;

12 case TASK FF REFINEMENT :

13 f f r e f i n e e l e m e n t s ( t−>t a s k . r e f . e1 , t−>t a s k . r e f . e2 , 0 , p r o c e s s i d ) ;

14 break ;

15 case TASK RAY :

16 p r o c e s s r a y s ( t−>t a s k . r a y . e , p r o c e s s i d , p r o c e s s i d ) ;

17 break ;

18 case TASK VISIBILITY :

19 v i s i b i l i t y t a s k ( t−>t a s k . v i s . e , t−>t a s k . v i s . i n t e r ,

20 t−>t a s k . v i s . n i n t e r , t−>t a s k . v i s . k , p r o c e s s i d ) ;

21 break ;

22 case TASK RAD AVERAGE:

23 r a d i o s i t y a v e r a g i n g ( t−>t a s k . r a d . e , t−>t a s k . r a d . mode , p r o c e s s i d ) ;

24 break ;

25 d e f a u l t :

26 f p r i n t f ( s t d e r r , ” P a n i c : p r o c e s s t a s k s : I l l e g a l t a s k t y p e \n” ) ;

27 }

28 /∗ Free t h e t a s k ∗ /

29 f r e e t a s k ( t , p r o c e s s i d ) ;

30 /∗ Get n e x t t a s k ∗ /

31 t = DEQUEUE TASK( t a s k q u e u e i d [ p r o c e s s i d ] , QUEUES VISITED , p r o c e s s i d ) ;

32 }

33 /∗ User De f i n ed B a r r i e r . While wa i t i n g f o r o t h e r co r e s t o f i n i s h ,

34 ∗ p o l l t h e t a s k queues and resume p r o c e s s i n g i f t h e r e i s any t a s k ∗ /

35 }
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Figure 3.3: Scalability Bottleneck II: Load Imbalance. radiosity from SPLASH2: (a)

Source code of the hot function process tasks() with the FF REFINEMENT and VISI-

BILITY tasks being modestly heavier than the others, (b) Scalability graph, (c) Break-

down of Execution time.
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1 / / =====================================================

2 / / s e q u e n t i a l l y g e n e r a t i n g random numbers

3 f o r ( i n t b =0; b<BLOCKSIZE ; b ++){

4 f o r ( i n t s =0 ; s <1; s ++){

5 f o r ( j =1 ; j<=iN−1;++ j ){

6 f o r ( l =0 ; l<=i F a c t o r s −1;++ l ){

7 / / compute random number in e x a c t same sequence

8 randZ [ l ] [ BLOCKSIZE∗ j + b + s ] = RanUnif ( lRndSeed ) ;

9 /∗ 10% o f t h e t o t a l e x e c u t i o n t ime ∗ /

10 }

11 }

12 }

13 }
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Figure 3.4: Scalability Bottleneck III: Non proportional parallel sections. swaptions PAR-

SEC [11] benchmark: (a) Source code of one hot loop, (b) Scalability graph, (c) Break-

down of execution time.
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(Figure 3.5b-iii).

Another case we found in our experiments is that shown in Figure 3.5c of an ap-

plication where static large-grain work partition leads to increased load imbalance. In

this case, attempting to scale the application from 4 to 8 explicit threads (Figure 3.5c-i

to Figure 3.5c-ii) successfully divides the work done but not in equal portions. By

running the original explicit threads in fine-grain TLS mode we can achieve a more

even partition of the work, leading to less load imbalance (Figure 3.5c-iii). Finally, we

note that we can further improve on this simple model by exploiting implicit specula-

tive threads also in the parallel sections of Figure 3.5a and in the dataset proportional

regions of Figure 3.5b, as shown in Figures 3.5a-iv and 3.5b-iv respectively.
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3.1.3 Expected Performance Behavior

Figure 3.6 illustrates the performance behavior we hope to achieve with our proposed

approach. In this example a baseline system with only explicit parallel threads scales

in region A but stops scaling beyond 16 cores. In this region the speedups of both a

2-way and a 4-way TLS 4 schemes are likely below that of the baseline, since TLS,

with its overheads and limited coverage, cannot compete with the performance gains

from more explicit threads. However, after the baseline stops scaling, a 2-way TLS

can potentially still provide performance gains for yet another doubling of the number

of cores, as shown in region B. After this point, in region C we expect the speedup

curve of the 2-way TLS system to behave similarly to that of the baseline, since a

2-way TLS can only provide at best a fixed performance boost over a corresponding

baseline system with the same number of cores. On the other hand, a 4-way TLS

performance curve will take longer to catch up with the baseline and a 2-way TLS

system but, ideally, this system can still provide performance gains after the 2-way

TLS stops scaling for yet another doubling of the number of cores, as shown in region

C. Again, we expect that after this point (not shown in the figure) the speedup curve

of the 4-way TLS system will also behave similarly to that of both the baseline and a

2-way TLS. Previous work on TLS has shown that it does not scale very well beyond 4

or 8 cores [54], which means that our proposed approach will only “buy” performance

boosts up to systems with 4 to 8 times the number of cores. However, the goal of our

approach is not to provide indefinite scalability, but to allow applications with poor

scalability to better exploit the few hundreds of cores expected to become available in

many-core systems by the end of the CMOS road map [14, 110].

Supporting this idea requires some small changes to the hardware. Unlike previous

TLS schemes that attempted to achieve scalable performance solely through TLS, in

our scheme it is sufficient that TLS be supported only in groups of small numbers of

cores. In fact, if one expects most explicitly parallel applications to scale at least up to

half or a quarter of the number of cores in the system, then all one needs is groups of

2- or 4-way TLS, respectively. In addition to supporting TLS within groups of cores,

our scheme also requires some small changes to the TLS and coherence protocols in

order to allow them to operate simultaneously in a nested fashion: coherence at the

outer layer across groups of cores running explicit threads, and TLS at the inner layer

within groups of cores running implicit speculative threads.

4We use the term n-way cluster (or n-way TLS) to refer to a scheme that partitions a given explicit

thread into n implicit threads.
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Figure 3.6: Expected speedup behavior with and without implicit speculative threads.

3.2 Many-Core Architecture

As explained in Section 3.1, our proposal to deal with the problem of limited scal-

ability of explicitly parallel applications is to speculatively parallelize portions of the

explicit threads. For this it suffices to support TLS within small groups of cores, or TLS

domains. A natural physical organization is then to partition the many-core in several

tiles as shown in Figure 3.7a, where each tile is an independent TLS domain, as shown

in Figure 3.7b. Given the small number of cores per tile, cache coherence can be easily

enforced within tiles by a snooping protocol on a bus, although directory based ap-

proaches are also possible. Cache coherence across tiles is enforced by a distributed

directory protocol, which also interfaces with the intra-tile coherence protocol layer

to build a fully coherent hierarchical system such as the one in [68]. This clustered

organization is in line with expected trends for many-core systems [65] and can be

already partially seen in the recent SCC system from Intel [47], which has multi-core

tiles albeit without cache coherence and multi-level interconnects. The now canceled

Rock processor [109] also features a clustered organization.

Each physical cluster corresponds to a TLS domain and TLS can be easily enforced

with a snooping TLS protocol, such as [20], although directory-like approaches, such

as [64], are also possible if coherence is also enforced by directories within clusters.
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Again, there is no need to fully support TLS across clusters, although some interaction

between the domains is necessary, as explained in more detail in Section 3.3.

3.3 Nested Coherence and TLS Protocol

As explained in Section 3.2, we base our architecture on a tiled many-core where each

tile comprises a cluster of two or four cores, and where TLS is enforced within each

cluster and coherence is enforced system wide. Simultaneously supporting coherence

and multiple, independent TLS domains in a nested way imposes some restrictions on

the flavor of TLS protocol used and also requires some mild changes to both protocols.

The overall organization of the protocols is shown in Figure 3.7c, with a TLS protocol

layer operating in each TLS domain underneath a Coherence protocol layer that oper-

ates across domains when running both explicit and implicit threads and additionally

operates within domains when running only explicit threads.

3.3.1 TLS Protocol

The TLS protocol we use performs eager conflict detection at a mixed word and line

granularity with forwarding and lazy version management and commit. An eager con-

flict detection policy (e.g., [94]) means that speculative threads are squashed as soon

as a data dependence violation is detected. Conflicts occur when a speculative thread

reads a value that is later modified. These can occur between a speculative thread and

its predecessors in the same TLS domain (case ❹ in Figure 3.7c) and also between

a speculative thread and the non-speculative thread in other TLS domains (cases ❺

and ❻ in Figure 3.7c). The later case has to be treated as a violation (leading to the

squash of the speculative thread) to guarantee that a later speculative thread (in se-

quential order) does not consume an earlier value than an earlier speculative thread.

Figure 3.8a depicts this problem: not squashing speculative thread Ti,2 at the time of

the invalidation (action ❹ in the figure) leads to incorrect execution semantics. Let us

walk through the steps of the example illustrated in Figure 3.8a to better understand

this: first the safe thread Ti,0 in TLS domain TLSi performs a load of memory location

X and receives a value of 5 in action ❶. Second, the speculative thread Ti,2 from the

same TLS domain performs a speculative load to the same location and receives the

same value, namely 5 in action ❷. Third, the safe thread Tj,0 from TLS domain TLS j

performs a store to this location X in action ❸, and because this is a non-speculative



3.3. Nested Coherence and TLS Protocol 33

thread this store is translated to a coherence invalidation message in action ❹. Finally,

when speculative thread Ti,1, which is less speculative than Ti,2, loads the correct value

of X (8) in action ❺. However, Ti,2 has already consumed a logically earlier value of X ,

therefore invalidating the sequential semantics. Thus, in the nested protocol incoming

invalidation requests from other clusters lead to squashes of speculative threads (note

that non-speculative threads, such as Ti,0 in the figure, do not have to be squashed). A

similar approach to nesting is followed by transactional memory systems that enforce

strong isolation between transactional and coherent threads [13].

We have chosen to implement conflict detection at the granularity of words within

each TLS domain as this has been shown to provide better performance due to the ab-

sence of false violations leading to squashes [25, 86]. This requires that the partially

updated cache lines merge in the order which the speculative threads commit. This in

turn requires the ability to identify partial modifications. To this end, one bit per word

within the speculative line indicates whether that specific word has been speculatively

modified [103]. A speculatively modified cache line is committed by updating the cur-

rent non-speculative state with only the words for which the modified word bits are set.

However, for the conflict detection between speculative threads in one TLS domain and

non-speculative threads in another TLS domain, as described above, we must perform

conflict detection at the granularity of whole cache lines. This is because the coher-

ence protocol operates at the granularity of lines. While the word level granularity of

conflict detection has been shown to minimize the false violations in TLS [25, 86], the

name cannot be said for cache coherence. The additional communication induced by

word-level cache coherence and the hardware overheads needed at the directory struc-

ture and at the significantly larger last-level cache outweigh the benefits of reducing

the false sharing, which can be largely achieved through compiler optimizations [108].

Forwarding [25] is supported entirely within a TLS domain when a speculative

thread loads a value that has been previously modified by a predecessor speculative

thread (case ❷ in Figure 3.7c). Speculative loads that do not find a version within the

TLS domain must cross to the coherence layer (Section 3.3.2) in order to both obtain

the return value and allow the identification of potential conflicts with coherent threads,

as explained above (case ❶ in Figure 3.7c).

A lazy version management and commit policy (e.g., [20, 94]) means that writes

by speculative threads are not merged with the non-speculative state until the thread

becomes non-speculative and commits. In the nested protocol committing involves

merging the state with the non-speculative state within a TLS domain and also with the
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Figure 3.7: Organization of tiled many-core architecture: (a) Many-core organization,

(b) Tile organization, (c) Hierarchical protocol view showing the following examples: A

speculative thread issues a speculative load that gets translated to a coherence load

in ❶, a speculative thread issues a speculative load that is forwarded through the

speculative protocol bypassing coherence in ❷, a non-speculative thread issues a

coherence load in ❸, a speculative thread issues a speculative store and a more

speculative task in its TLS domain gets squashed in ❹, and a non-speculative thread

issues a coherence store that results in a squash of one of the speculative tasks in its

own TLS domain in ❺ but also to a squash of a speculative thread in another TLS

domain through a coherence invalidation in ❻. Terms: s ld: speculative load, s st:

speculative store, c ld: coherence load, and c st: coherence store.
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Figure 3.8: Example of interaction between coherence and TLS protocols: (a) Incorrect

handling of coherence invalidation, (b) Incorrect log-based rollback.
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coherent state across domains. We note that the alternative, eager version management

with logs [82] leads to subtle interactions between speculative and non-speculative

(i.e., coherent) threads as previously identified in [13]. The problem is depicted in

Figure 3.8b: after a squash of thread Ti,2 undoing the write to X leads to an inconsistent

state in the non-speculative thread Tj,0 since coherence transactions (invalidation ❸

following store ❷ in Figure 3.8b and subsequent load ❹ of the new value) cannot be

undone. Let us analyze the steps in the example that lead to an inconsistent state. First,

the safe thread Tj,0 in TLS domain TLS j issues a load to memory location X and reads

a value of 5 in action ❶. Subsequently, the speculative thread Ti,2 in TLS domain

TLSi issues a store to X , changing its value to 8 in action ❷, logging the previous

value of 5 in case of rollback. Since we have eager version management this store,

despite being speculative, translates to a coherence invalidation (action ❸). Thus, the

subsequent load of X from thread Tj,0 in action ❹ will inevitably read this value of 8.

Next, however, thread Ti,2 is squashed (action ❺), and the replay of its write log results

in the invalidation in action ❻ for X restoring the value of 5. A further load of X

from thread Tj,0 in action ❼ will yield a value of 5. It is thus clear that the intermediate

value of 8 that was read by thread Tj,0 in action ❹ could lead to inconsistency. The lazy

commit alternative avoids this by not allowing speculative stores to be communicated

across clusters before thread commit. Finally, commits must appear to be atomic and,

as mentioned above, involve not only the TLS domain but the entire system. Thus,

lazy commit is reasonably straightforward in bus based systems (e.g., [20, 94]), but is

more involved in directory based systems [21]. We follow an approach similar to the

one in [21] where committing threads must obtain a special “commit token” from all

directories associated with their read and write sets. After the token has been acquired

the thread can safely commit all the cache lines in its write set, with the directories

affected sending invalidation messages to any sharers. A speculative thread with the

lower id always succeeds in committing when there is a write conflict with another

speculative thread, thus avoiding deadlock.

3.3.2 Coherence Protocol

The coherence protocol used is MESI with coarse-grain directory state per cluster

and a “pseudo-CPU” approach to interface snooping coherence within each cluster

and directory coherence across clusters [68]. A coarse-grain directory with “pseudo-

CPU” approach means that directories do not store coherence information for every
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core in the clusters, but only a summary information per cluster. This is convenient

when running a coherent plus multiple speculative threads in each cluster since the

TLS behavior does not have to be exposed to remote directories and the global coher-

ence protocol. Instead, the “pseudo-CPU” (whose part is played here by the directory

controller in each cluster - Figure 3.7b) is responsible for “translating” the remote co-

herence requests either into coherence transactions within each cluster when running

only explicit threads, or into TLS transactions when running TLS within each cluster.

Examples of these are cases ❶ and ❻ in Figure 3.7c: case ❶ is that of a load by an ex-

plicit thread or a non-speculative thread that is passed to the global coherence protocol,

and case ❻ is that of an external incoming invalidation that is translated into squashes

if a TLS violation is detected, as explained in Section 3.3.1. The local directories are

also responsible for handling the speculative commit scheme of [21], as described in

Section 3.3.1.

3.3.3 Speculative Buffering

Speculative state is buffered at the Level 1 caches [42, 25]. In the case of buffer over-

flow of a speculative thread, the thread simply waits until it receives the safe token.

After it receives the token it can safely commit its speculative lines and resume exe-

cution. In an effort to reduce the TLS hardware overhead the speculative cache does

not allow for multiple versions to co-reside in the same cache, unlike [42]. Only state

from one speculative version, which is denoted by the core’s current speculative task

id, is allowed to be alive at any point in time within the core’s Level 1 cache.

3.4 Dynamically Choosing the Number of Explicit and

Implicit Threads

Finding the exact scalability tipping point for a particular application and input dataset

of interest is commonly done in the HPC community by trials with increasing number

of cores [31, 18]. Ideally, however, one would like a mechanism for automatically find-

ing this tipping point on-the-fly and then choosing whether to employ implicit threads

on top of explicit ones. For this purpose, we have developed a simple hill climbing al-

gorithm (Algorithm 1) and implemented a prototype in the Omni OpenMP system [66].

This dynamic approach works for applications that are amenable to Dynamic Concur-

rency Throttling (DCT) [27, 28]. DCT, whereby the level of concurrency is adapted at
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runtime based on execution properties, is a software-controlled mechanism, or knob,

for runtime power performance adaptation on systems with multiple cores. DCT can-

not be applied to arbitrary parallel code regions without violating correctness. In prin-

ciple, codes written in a shared-memory model where parallel computation does not

include code dependent on the identifiers of threads, are amenable to DCT without

correctness considerations. The vast majority of OpenMP codes meet this requirement

for core-independence, as do the OpenMP workloads that we evaluate in this thesis.

The algorithm begins by choosing the initial number of threads to evaluate using a

heuristic 5: If the maximum number of iterations in all the omp for loops for the current

parallel region can be determined statically and is less than or equal to the number of

available cores (MAX CORES, equal to 128 in the evaluated system) we set the initial

number of threads to that value; otherwise we set it to 32 (number of available cores

divided by 4) , which is a value that we empirically found to require the least amount of

training time for the evaluated workloads (lines 2-6 in Algorithm 1). We then evaluate

this initial thread count and perform a hill climbing search until it detects a slowdown

in the execution time of the same parallel region or it encounters a thread count lower

than 1 or greater than the number of available cores (lines 7-17 in Algorithm 1). Note

that the hill climbing searches toward lower thread counts first as a repercussion of

setting the initial thread count equal to the maximum iteration count. After settling

on the number of explicit threads that yield the highest scalability, a simple empirical

heuristic chooses whether to employ TLS or not (lines 18-19 in Algorithm 1). The

heuristic is based on our observation that the tipping point on the number of explicit

threads remains (mostly) unchanged when enabling TLS. Subsequently, the degree of

TLS is chosen using the greedy heuristic presented in lines 18-19 of Algorithm 1, that

gives priority to 4-way TLS if a sufficient number of cores is available.

5Note that we apply algorithm 1 to each parallel region, which usually consists of for loops that are

executed several times.
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Algorithm 1 Dynamically choosing the number of explicit and implicit threads via hill

climbing

1: for all omp parallel regions do

2: if can determine max iter count statically ∧ (max iter count ≤

MAX CORES) then

3: orig cores← cur cores← 2⌊lg(max iter count)⌋

4: else

5: orig cores← cur cores←MAX CORES÷4

6: end if

7: evaluate cur cores

8: repeat //start searching downwards

9: evaluate cur cores÷2

10: until detect slowdown

11: opt cores← cur cores ·2

12: if opt cores= orig cores then // search upwards as well

13: repeat

14: evaluate cur cores ·2

15: until detect slowdown

16: opt cores← cur cores÷2

17: end if

18: if opt cores<MAX CORES÷2 then enable TLS4

19: else if opt cores=MAX CORES÷2 then enable TLS2 end if

20: end for





Chapter 4

Evaluation Methodology

This chapter discusses the experimental setup used throughout this thesis. First, in

Section 4.1, it presents the choice of simulator and compiler. Second, in Section 4.2, it

discusses the implementation of models and the choice of microarchitectural parame-

ters. Third, in Section 4.3, it discusses the DVFS and power management implemen-

tation specifics. Finally, in Section 4.4, it presents the evaluated workloads and further

discusses task selection, workload compilation, and profiling.

4.1 Simulation and Compilation Environment

We conduct our experiments using the SESC simulator [92]. SESC can model a vari-

ety of processor architectures, such as single processor systems, shared memory multi-

core systems, clusters of multi-chip multi-processors, and processors-in-memory. It

models processor pipelines ranging from simple in-order ones to full out-of-order ones

with branch prediction, multiple cache levels, network components, and several other

components of modern processor systems. The MINT MIPS emulator is leveraged by

SESC in order to emulate the MIPS instruction set architecture (ISA) and to generate

instruction objects. These instruction objects are then used by the event driven SESC

simulator for timing simulation. The access latencies of all the memory structures

(e.g., register files, caches) were obtained using CACTI [107] for a 70nm technology.

Note that the power and energy results reported later in the thesis and in Chapters 5 and

7 are always normalized to the baseline to which the respective schemes are compared

against and not in absolute numbers. By showing relative improvements in terms of

power and energy we in part alleviate the limitations of simulating a specific technol-

ogy point and the results should extrapolate to future fabrication technologies, given

41
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that the dynamic power remains a significant part of the total power consumption.

Power consumption numbers for the core and memory hierarchy are obtained using

CACTI [107] and Wattch [17].

We generate the binaries using a version of GCC 3.4.4 specially modified to operate

with SESC. The TLS binaries are generated through automatic instrumentation using

the Cetus source-to-source compiler [30]. Selection of the speculative regions was

done through manual profiling. We note, however, that this was done in the interest

of time and does not constitute a major limitation as existing automated TLS profiling

frameworks – such as POSH [72], which was not used due to its inability to handle

explicitly multithreaded applications – have been shown to be very effective.

4.2 System Models

The main microarchitectural and system features are listed in Table 4.1. The system

we simulate is a many-core with 128 cores, where each core is a 4-issue out-of-order

superscalar akin to an Intel Core 2 [51]. The on-chip network is hierarchical, where

cores within a cluster are connected via a snooping bus and clusters are connected via

a point-to-point network. Contention is fully modeled at all levels of the interconnect

and at the shared L2 caches. Figure 3.7 depicts the topology of the chip.

We have extended SESC to support our hierarchical hybrid snooping-directory

MESI invalidation protocol (Section 3.3.2) and our variant of TLS (Section 3.3.1).

All coherence and TLS transactions are handled in detail both in terms of functional

and timing simulation.

For comparison purposes we also roughly evaluate two competing alternative sys-

tems: Core Fusion [55] and Frequency Boost, inspired by [50]. Core Fusion dynam-

ically combines the computational resources of several cores together to deal with

lowly-threaded workloads, while separating the cores in case of highly-threaded ones.

Core Fusion is approximated by modeling a many-core comprising of wide 8-issue

cores with all the core resources doubled (L1 caches, ROBs, Instruction Window, etc.)

and without increasing the associated latencies. Thus, our model of Core Fusion is

more aggressive than what can be implemented in practice and represents an upper

bound of the performance that can be achieved with the technique. Frequency Boost

is modeled as follows: for each idle core one other core gains a Frequency Boost of

800MHz (we assume a 0.2V increase in core voltage that results in the same power

cap). Note that this is a static scheme where half the cores are switched off for the
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Core

Frequency 3GHz

Fetch/Issue/Retire Width 4/4/4

L1 ICache (IL1) 32KB, 2-way, 2 cycles

L1 DCache (DL1) 32KB, 4-way, 3 cycles

IL1/DL1 MSHR entries 10/16

IL1/DL1 block size 64B

I-Window/ROB 80/96

Branch Predictor 16Kbit Hybrid

BTB/RAS 1K entries, 2-way / 32 entries

Tile/System

Number of Cores 128

Shared L2 Cache 8MB, 8-way, 13 cycles, 64B block size

L2 MSHR entries 64

Directory Full-bit vector sharer list, 6 cycle latency

System bus transfer rate 48GB/s

Main Memory Access Latency 105ns

TLS

Cycles to Spawn 20

Table 4.1: Architectural parameters.
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Level Frequency (GHz) Voltage (V)

0 3.00 0.900

1 2.70 0.850

2 2.40 0.800

3 2.10 0.750

4 1.80 0.700

Table 4.2: Voltage-Frequency pairs.

entire execution of the application and the remaining half gain a constant boost in

frequency. Intel’s Turbo Boost [50] is a dynamic scheme which is enforced at large

intervals when cores enter lower performance states. It is thus better applicable to

multi-programmed workloads where cores are idle for long periods of time. In multi-

threaded workloads like the ones used in this study, however, Turbo Boost would not

be triggered since all cores are active all the time. Our static Frequency Boost policy is

better suited for such scenarios. The shared portion of the memory subsystem, which

includes the system bus, last-level shared cache, MSHRs, and on-chip interconnect,

have the same parameters across the different configurations.

4.3 DVFS and Power Management

Additional requirements specific to power management are discussed in this section.

Each one of the tiles with its cores and their associated L1 caches form a separate

voltage and frequency domain. This is in accordance with Intel’s experimental Single-

chip Cloud computer many-core [47] and can be extrapolated to future many-cores

since the required circuitry for decoupling and converting voltages and frequencies on

silicon may not scale as quickly as logic and memory transistors [63]. The shared L2

cache together with the interconnection network belong to a different domain (which

is fixed at 3GHz at 0.900V). On-chip regulators are placed per tile so as to implement

the different power domains, in a similar fashion to [63]. In order to synchronize com-

munication between the distinct domains that operate asynchronously to each other we

use the mixed-clock FIFO design proposed in [24].

We assume five voltage and frequency pairs, as shown in Table 4.2, similarly to

the offered performance operation points in current commercial designs (e.g., the Su-
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per Low Frequency Mode, Low Frequency Mode, Normal Frequency Mode and High

Frequency Mode used in [51]). All cores operate at the normal power mode (Level 0

in Table 4.2) except if our predictions dictate we should do otherwise. The cost for

changing a power mode depends on the voltage swing and it is modeled to be 5 ns per

10mV in accordance with [63].

Furthermore, we model the three alternative power management schemes presented

in Section 2.2.2 for comparison purposes. The Thrifty Barrier is modeled as described

in the original proposal [69] with a slight modification: instead of going to sleep when

predicting that the stall time will be big enough 1 we put the core to the lowest voltage-

frequency setting. This has the disadvantage of lower power savings but minimizes the

penalty of misprediction.

Meeting Points [19] is modeled as follows: since we already perform speculation

in most of the workload’s loops (see speculation coverage in Table 4.3) we treat the

speculative commit instruction as “meeting points”, in line with the original proposal.

We compare each thread’s current meeting point counter against the current maximum

(i.e., the furthest meeting point reached so far) and decide whether or not to scale

down, based on a thread’s distance between this furthest meeting point. In order to

mitigate frequent fluctuations in performance a 2-bit saturating counter per voltage

frequency pair is maintained, in accordance with [19]. When a voltage frequency pair

is suggested, its saturating counter is incremented by one and the rest of the pairs are

decremented by one. If the suggested voltage frequency pair’s saturating counter has

saturated we then apply this new voltage frequency settings and do nothing otherwise.

At the end of a barrier we simply reset each core’s meeting point counters.

The original Thread Criticality Predictors scheme proposed in [9] assumes a 4-core

multi-core with a monolithic last-level cache that has centralized visibility of the cache

misses of all the cores. In the clustered many-core system that we evaluate, however,

this assumption no longer holds. We thus assume a polling system instead, that pe-

riodically gathers each core’s cache misses every 10K cycles (this is very aggressive

in an effort not to hinder this scheme) and performs the power management algorithm

presented in their original proposal [9]. We use the same 2-bit saturating counters, and

criticality threshold values as presented in that paper.

1We have found that a prediction of 5K stall cycles amortizes the voltage change overhead of 300

cycles to change from the highest to the lowest voltage-frequency setting
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4.4 Benchmarks

Benchmarks from the PARSEC [11], SPLASH2 [113] and the OpenMP C version of

the NAS NPB (v2.3) [7] suites are evaluated. From PARSEC blackscholes (OpenMP

version), bodytrack (OpenMP version), canneal, streamcluster, and swaptions are

used. From SPLASH2 cholesky, ocean-ncp, radiosity, volrend, and water-nsquared

are used. From the NPB, ep, ft 2, is, lu, and sp are used. Some of the benchmarks from

the aforementioned suites were not included in our evaluation because they either: (a)

either did not compile for our simulator infrastructure due to library incompatibilities

or could not run with our infrastructure up to 128 threads due to reaching the simula-

tor memory limits (freqmine, dedup, facesim, ferret, x264, and vips), (b) scaled all the

way to 128 threads for a very small data set (fluidanimate), (c) showed similar scal-

ing and bottlenecks with other benchmarks of the same suite (barnes and radix scaled

similarly to water, raytrace similar to radiosity, fmm scaled close to volrend, mg, cg,

bt scaled similar to sp), (d) were subsumed by benchmarks of other benchmark suites

(fftSPLASH2 and ftNAS, luSPLASH2 and luNAS). For each of the benchmarks, we simulate

the parallel region to completion. The parallel region is denoted by the roi segment for

the PARSEC benchmarks, and by the main timer regions for the SPLASH2 and NAS

benchmarks.

As mentioned earlier, TLS binaries were generated with the Cetus source-to-source

compiler [30] and a modified version of GCC 3.4.4. The OpenMP benchmarks were

first compiled using a modified version of the Omni OpenMP compiler and runtime

system [66] before being provided as input to our compiler infrastructure. Specula-

tive spawn and commit points were added to loops within hot functions. Compiler

transformations to reduce data dependences, such as variable privatization, induction

variable elimination, reduction variable expansion and min-max expansion are also

performed automatically. Dependences in rand functions are relaxed to allow reorder-

ing of calls to the function due to the commutativity of such functions in streamcluster,

swaptions, and ep. Furthermore, register spilling is done at task boundaries so that all

inter-task register dependences are guaranteed to be communicated through memory.

A single speculative run per benchmark for the sequential version and for a data set

smaller than those evaluated was then performed to remove spawn points that slowed

down execution. Detailed information about the benchmarks showing the speculation

2The results for ft are updated with respect to those published in [52]. The main NPB timer for ft

included serial regions which we have excluded in these results to better reflect its parallel behavior.
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types applied, the coverage of the speculative regions in terms of percentage of the

program’s sequential execution, and the datasets used is depicted in Table 4.3. Further

information about the benchmarks can be found in Appendix A.



48 Chapter 4. Evaluation Methodology

B
en

ch
m

a
rk

D
es

cr
ip

ti
o

n
In

p
u

t
S

iz
es

C
o
v
er

a
g

e
o

f
T

y
p

es
o

f
S

p
ec

u
la

ti
o

n

N
o

rm
al

L
ar

g
e

S
p

ec
u

la
ti

v
e

R
eg

io
n

sa

P
A

R
S

E
C

b
la

ck
sc

h
o

le
s

F
in

an
ci

al
A

n
al

y
si

s
in

1
6

K
in

6
4

K
1

0
0

%
L

L
S

b
o

d
y

tr
ac

k
C

o
m

p
u

te
r

V
is

io
n

se
q

u
en

ce
B

1
se

q
u

en
ce

B
2

5
9

%
L

L
S

ca
n

n
ea

l
C

h
ip

D
es

ig
n

1
0

0
0

0
0

.n
et

s
2

0
0

0
0

0
.n

et
s

9
9

%
L

L
S

st
re

am
cl

u
st

er
D

at
a

M
in

in
g

4
K

8
K

9
2

%
L

L
S

sw
ap

ti
o

n
s

F
in

an
ci

al
A

n
al

y
si

s
1

6
3

2
8

0
%

L
L

S
,M

L
S

S
P

L
A

S
H

2

ch
o

le
sk

y
S

p
ar

se
M

at
ri

x
M

u
lt

ip
li

ca
ti

o
n

tk
1

5
tk

2
9

8
1

%
L

L
S

o
ce

an
-n

cp
O

ce
an

C
u

rr
en

t
S

im
u

la
ti

o
n

1
3

0
2

5
8

8
7

%
L

L
S

,M
L

S

ra
d

io
si

ty
G

ra
p

h
ic

s
R

en
d

er
in

g
te

st
ro

o
m

6
9

%
L

L
S

,M
L

S

v
o

lr
en

d
3

D
V

o
lu

m
e

R
en

d
er

in
g

h
ea

d
S

ca
le

d
D

o
w

n
2

h
ea

d
9

7
%

L
L

S
,M

L
S

w
at

er
-n

sq
u

ar
ed

M
o

le
cu

la
r

D
y

n
am

ic
s

5
1

2
1

0
0

0
9

9
%

L
L

S

N
A

S
O

p
en

M
P

ep
R

an
d

o
m

N
u

m
b

er
G

en
er

at
o

r
1

M
4

M
1

0
0

%
L

L
S

,M
L

S

ft
3

D
F

F
T

P
D

E
1

2
8

K
5

1
2

K
9

9
%

L
L

S

is
In

te
g

er
S

o
rt

6
5

K
1

M
4

%
L

L
S

lu
M

at
ri

x
M

u
lt

ip
li

ca
ti

o
n

1
2

3
3

3
3

9
9

%
L

L
S

sp
3

D
F

lu
id

D
y

n
am

ic
s

3
6

6
4

8
8

%
L

L
S

a
T

h
e

co
v
er

ag
e

o
f

sp
ec

u
la

ti
v
e

re
g

io
n

s
is

re
p

o
rt

ed
fo

r
th

e
se

q
u

en
ti

al
ru

n
.

T
a

b
le

4
.3

:
S

im
u

la
te

d
w

o
rk

lo
a

d
s
.

(L
L

S
:
L

o
o

p
L

e
v
e

l
S

p
e

c
u

la
ti
o

n
,
M

L
S

:
M

e
th

o
d

L
e
v
e

l
S

p
e

c
u

la
ti
o

n
).



Chapter 5

Experimental Results

This chapter presents experimental results and performs a quantitative analysis on the

performance and energy characteristics of the implicit speculative parallelism scheme

presented in the previous chapters of the thesis. First, in Section 5.1, it provides an

in-depth analysis of performance and scalability for the evaluated workloads. Second,

in Section 5.2, it discusses the effect of different dataset sizes on scalability. Third, in

Section 5.3, energy consumption results are presented and analyzed for the different

schemes. Finally, in Section 5.4, the auto-tuning mechanism is evaluated and compared

against static oracle results.

5.1 Performance and Scalability

As explained in Section 3.1 our proposal is to employ implicit speculative threads to

complement explicit user-level threads once performance with the latter stops scaling.

The top plots for each benchmark in Figures 5.1, 5.2, and 5.3 show the performance

of the different schemes as the number of cores is increased. The bottom plots show

the breakdown of execution times according to busy versus synchronization (further

divided into barrier and lock). The execution time bars are normalized to the baseline

for the corresponding number of cores. For the baseline scheme the number of cores

on the x-axes correspond to the number of explicit threads used. For Core Fusion

and Frequency Boost the number of cores correspond to the equivalent amount of

resources used, which are twice the number of explicit threads used (i.e., Core Fusion

merges two cores to run a single explicit thread and Frequency Boost switches off

one out of two cores to boost frequency of the active core). For our proposed scheme

the number of cores on the x-axes correspond to the total number of explicit plus

49
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Figure 5.1: Performance, scalability and bottleneck breakdown. (part I: PARSEC)
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implicit threads used. Finally, for the baseline, Core Fusion, and Frequency Boost

schemes, in the experiments with fewer threads than the number of cores in the system

(which is fixed at 128) we report results for the best mapping of threads to tiles. For

our proposed scheme we always map one explicit thread and its associated implicit

speculative threads to each tile.

In the following we discuss each benchmark separately.

5.1.1 Detailed Analysis

blackscholes (Figure 5.1a) is a data parallel application that scales linearly up to 64

cores, but shows a small slowdown going from 64 to 128 cores. This is due to increased

contention of the shared resources (last level cache and off-chip bandwidth) as well

as increased barrier time. The TLS version of the benchmark operates on the main

loop of bs thread(), which accounts for all the program’s parallel execution, by further

partitioning its iterations to speculative tasks. The 2-way TLS improves the scalability

by spending less time in barriers and by performing some prefetching to the shared

cache. The 4-way TLS, however, offers only minor performance benefits; despite

the similarly reduced barrier time and prefetching effects, it suffers from increased

Level 1 data cache misses [40]. Frequency Boost is able to improve scalability due

to a relatively high Instructions Per Cycle (IPC) of around 1.07 on average for the

baseline version with 64 cores. Core Fusion is bounded by the relatively high branch

misprediction rates that do not allow for performance improvements when going from

4-way to 8-way out-of-order superscalar.

bodytrack (Figure 5.1b) exhibits poor scaling due to serial sections of code be-

tween parallel regions [11]. The increasing importance of those serial sections and the

imposed load imbalance is reflected in the increased time spent in locks. By specu-

latively parallelizing loops in the serial sections as well as loops in the parallel sec-

tions we are able to improve its scalability. Speculated loops include loops in meth-

ods ImageMeasurements::EdgeError(), ImageMeasurements::InsideError(), Projecte-

Cylinder::ImageProjection(), FlexFilterRowV(), and FlexFilterColumnV(). The high

iteration count of the loops that we speculate upon reflects in the large 4-way TLS

performance improvement over 2-way. Core Fusion and Frequency Boost also report

significant speedups over baseline. This is due to faster execution of the serial sections.

Core Fusion is more successful due its ability to better exploit the relatively high ILP

found in some of the hot loops of the benchmark.
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(a) cholesky
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(c) radiosity
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Figure 5.2: Performance, scalability and bottleneck breakdown. (part II: SPLASH2)
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Figure 5.3: Performance, scalability and bottleneck breakdown. (part III: NASPB)
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canneal (Figure 5.1c) exhibits almost linear scaling up to 32 cores; going beyond

that yields no further performance improvement. This is due to increased contention

to the lock in the Rng object constructor and increased barrier time as we increase the

number of cores, and due to high cache miss ratio and relatively high inter-thread com-

munication [8]. We speculatively parallelize the hot loop in the annealer thread:Run()

method which takes most of the program’s parallel execution time (Table 4.3) and are

able to improve scaling to 64 cores. Despite the high-trip count of the hot loop and its

high coverage, the TLS speedup, and especially the 4-way one, is only modest as the

application becomes memory bound at this point. Moreover, the mediocre 4-way TLS

performance versus 2-way is further attributed to the introduction of squashes in the

4-way case (Figure 5.4). Core Fusion and Frequency Boost offer minor performance

improvements, again due to the memory-boundedness.

streamcluster (Figure 5.1d) exhibits good scaling up to 64 cores, but shows a

slowdown when going from 64 to 128 cores. As the number of cores is increased

the amount of work done by each thread decreases, except for some constant work

done by the master thread at the beginning of the main kernel and in some of the

steps of the pgain() function. This incurs load imbalance and manifests as increased

barrier time. We speculatively parallelize most of the loops in the pgain() function,

as well as the calls to random(), thus reducing load imbalance and improving scaling.

The significant mispeculation rates for this benchmark, and especially for 4-way TLS,

which are depicted in Figure 5.4 explain the lukewarm scalability boost. Both Core

Fusion and Frequency Boost perform comparatively to TLS.

swaptions (Figure 5.1e) scales well with respect to number of swaptions in the

input [11]. If the number of swaptions to be priced is less than the number of available

cores the remaining cores are not utilized. The amount of computation done for each

input swaption is constant and the loops are amenable to speculative parallelization

and account for a significant portion of the program’s execution time. Moreover, the

speculation coverage is further increased by exploiting the permutability of the func-

tion call RanUnif(), which accounts for 10% of the total execution time. This translates

to substantial performance increase for the 2-way and 4-way TLS versions. Both Core

Fusion and Frequency Boost are able to attain increased performance through higher

ILP, albeit significantly less than the TLS versions.

cholesky (Figure 5.2a) scales poorly and only up to 32 cores. This can be attributed

to the high fraction of time spent on synchronization points, a relatively high cache

miss rate, and high communication-to-computation ratio [113]. By speculatively par-
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allelizing the loops in functions ModifyTwoBySupernodeB(), ModifyBySupernodeB(),

OneMatMat(), OneDiv(), and OneLower() we are able to improve the application’s

highest scalability point, albeit by a small margin. This is primarily due to a relatively

high mispeculation rate, especially for 4-way TLS (Figure 5.4), and secondarily due to

being relatively memory bound. Core Fusion and Frequency Boost also offer marginal

improvements to scalability.

ocean-ncp (Figure 5.2b) is characterized by intense usage of barriers and fine grain

locks, as well as a relatively high cache miss ratio [113]. This limits its scalability

and in fact causes a slowdown when going from 32 to 64 cores. We speculatively

parallelize most of the loops in the slave2() function, effectively overlapping calls to

laplacalc() and jacobcalc(). Loops in the functions relax(), rescal(), and intadd() are

also speculatively parallelized. This speeds up each of the computational steps and

thus reduces the time spent in the barriers that succeed each step. Moreover, the well

known prefetching side-effect of TLS [72, 115] further improves performance by is-

suing misses early. Most loops speculated upon have a constant trip count of 2 which

is reflected in the lack of performance improvement of the 4-way TLS version over

2-way. Core Fusion’s improved tolerance of long latency events enables significant

performance improvements close to that of 2-way TLS. Frequency Boost, on the other

hand, increases the last-level cache miss latency in terms of core cycles and thus per-

forms unfavorably to the other schemes.

radiosity (Figure 5.2c) uses tasks managed by distributed task queues. These tasks

vary in size and, despite the use of task stealing, entail load imbalance beyond 16 cores,

thus limiting the application’s scalability. This is evident from the increased time spent

in the user defined synchronization (barrier) as the number of cores is increased. By

speculatively parallelizing the hot loop in the compute visibility values() function in

the highly significant visibility task and the calls to the compute form factor() function

in the also hot ff refinement task we effectively reduce load imbalance, thus allowing

the application to scale better. 4-way TLS offers little benefits over 2-way in this

benchmark due to the introduction of squashes when going from 2-way to 4-way TLS,

which is depicted in Figure 5.4. Both Core Fusion and Frequency Boost are able to

attain increased performance through higher ILP, albeit significantly less than the TLS

versions.

volrend (Figure 5.2d) is a barrier intensive workload due to serial sections at the

beginning of the rendering process (Render()) as well as at the epilogue of its main

loop (WriteGrayScaleTIFF()). These serial sections account for 3% of the sequential
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run and quickly become the bottleneck beyond 32 cores. The rest (97%) of the parallel

region is spent mostly in the main loop of Ray Trace Non Adaptively() entailing calls

to Trace Ray() as well as loops in other functions (Pre Shade(), Multiply Matrices,

etc). By speculatively parallelizing the calls to Observer Transform Light Vector() and

Compute Observer Transformed Highlight Vector() at the serial preamble of Render()

TLS is able to partially reduce the time spent in serial sections and improve scalabil-

ity 1. The rest of speculatively parallelized loops have a high-trip count that translates

to improved TLS-4 scalability. Frequency Boost and Core Fusion provide little perfor-

mance benefits because they do not reduce the barrier time, which is the primary factor

that limits the scalability of this workload.

water-nsquared (Figure 5.2e) scales very well up to 64 cores, but beyond this

point there is a slowdown due to additional synchronization and communication. The

hot loops in functions INTERF() and POTENG() that perform most of the computations

for each molecule show infrequent data dependences and are amenable to speculative

parallelization. We additionally parallelize speculatively loops in functions INTRAF(),

PREDIC(), and CORREC() thus covering most of the application’s parallel execution

(Table 4.3). This translates to a significant speedup of the 2-way TLS over the best

performing baseline, scaling all the way to 128 cores. The 4-way TLS performs unfa-

vorably compared to the 2-way TLS due to a large increase in the number of squashed

threads (Figure 5.4). Core Fusion and Frequency Boost perform almost identically in

this benchmark, both failing to match the performance of the 2-way TLS.

ep (Figure 5.3a) scales relatively well up to 16 cores, after which point there is a

significant performance drop. The data partitioning is done statically, which leads to

load balance problems. This is the case for the evaluated working set, which shows

performance degradation that manifests as increased barrier time. The application has

one hot loop which shows infrequent dependences and is amenable to speculative par-

allelization with synchronization around dependences. Moreover, we speculatively

parallelize calls to vranlc() which precede this loop and account for the remaining exe-

cution time. This yields considerable performance improvement for the TLS versions.

Both Core Fusion and Frequency Boost provide performance benefits, but are not able

to match that of our scheme.

ft (Figure 5.3b) is a memory bound application that scales poorly. The mem-

ory bandwidth quickly becomes the bottleneck as the number of cores is increased,

1The rest of the serial time is spent on the WriteGrayScaleTIFF() function, a function heavy on I/O

that we were unable to speculate upon.
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and going beyond 8 cores offers no benefits. Speculatively parallelizing several loops

helps improve scalability, but does not change the fact that the application is memory

bound. Core Fusion performs relatively well by having a better long latency tolerance.

Frequency Boost, on the other hand, exacerbates the memory boundedness issue and

performs worse than the other schemes.

is (Figure 5.3c) exhibits poor scaling due to a coarse-grain critical section. We

speculatively parallelize the critical section as well as the kernel preamble, which is

executed only by the “master” (in OpenMP terminology) thread and is followed by

a barrier. This provides an improvement in performance, enabling the application to

continue scaling up to 16 cores for 2-way TLS and up to 64 cores for 4-way TLS. Both

Core Fusion and Frequency Boost also improve performance, but only up to 16, and

less so than 2-way in this case.

lu (Figure 5.3d) scales nicely up to 16 cores, but shows no scaling beyond this

point. This is due to poor work partitioning which is done at the outermost level of the

benchmark’s loops that typically have an iteration count equal to a statically defined

value (ISIZ). For the evaluated dataset this value is set to 12, thus any cores above

this point do not receive work and spend most of their time in barriers. There is,

however, an abundance of nested parallelism in several of the benchmark’s loops and

we speculatively parallelize inner loops in functions rhs(), buts(), blts(), and jacu().

The exploitation of this nested parallelism yields scalability improvement by the 2-

way TLS, that is further enhanced with 4-way TLS. Core Fusion provides significant

boost in performance – better than 2-way TLS – due to a high level of ILP that reflects

in the high Instructions Per Cycle (IPC) that ranges from 1.12 to 1.67 on average for

the Base version with 16 cores that utilizes the larger cores of Core Fusion. Frequency

Boost performs in line with Core Fusion but for a different reason; the relatively low

last-level cache misses of lu allows for almost linear performance boost with respect

to frequency.

sp (Figure 5.3e) exhibits poor scaling beyond 16 cores and none beyond 32 cores

mostly due to synchronization time spent in barriers due to load imbalance, and to a

lesser extent due to memory boundedness. Most of the loops of this benchmark are

nested ones with depths ranging from two to four and work partitioning is done at the

outermost level, yielding work only for the first PROBLEM SIZE (36 for the evaluated

dataset) threads. We speculatively parallelize loops in functions add(), lhsy(), lshz(),

compute rhs(), x solve(), y solve(), and z solve(), consisting mostly of inner loops of

the aforementioned outer loops. This reduces the execution time of the outer loops,
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Figure 5.4: Breakdown of execution time for the best scalability point for each bench-

mark with 2-way and 4-way TLS, showing time spent in non-speculative regions, locks,

barriers, and speculative regions. The speculative region is further partitioned into time

spent in successful speculation and time spent squashing.

which in turn translates to less time spent in barriers. Core Fusion is able to provide

some performance improvement while Frequency Boost fails to provide any noticeable

benefits.

5.1.2 Summary

Overall, the results show that employing fine-grain implicit speculative threads to ex-

plicit threads beyond the scalability limit of the latter leads to performance gains in all

the applications studied. In cases where there is enough fine-grain parallelism (e.g.,

loops with large trip counts) the 4-way TLS was able to improve on the 2-way TLS

for even larger number of cores, after lagging behind for smaller number of cores. The

alternative approaches of Core Fusion and Frequency Boost are also often able to pro-

vide performance gains, albeit not in all cases and not as high as the TLS schemes. The

difference between TLS and Core Fusion shows that exploiting additional fine-grain

TLP can be advantageous as compared to exploiting more ILP, specially when enough

parallelism can be harvested for the 4-way TLS while fusing 4 cores becomes impracti-

cal. Finally, the results show that Frequency Boost can be effective on compute-bound
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applications, but is not as effective as the other approaches in memory-bound applica-

tions. A summary of these findings is depicted in Table 5.1.

Some of the exposed speculative parallelism exploited by TLS exhibited no data-

dependences (e.g., swaptions) and could thus be exploited by a keener programmer.

This entails, however, that the programmer must re-write all the applications in ques-

tion, with each application requiring different approaches based on their algorithmic

and data specifics. Our approach however is ubiquitous in the sense that it applies the

same procedure to all the workloads (semi) automatically. Moreover, for the applica-

tions that do show real data dependences (e.g. water-nsquared) it is not clear whether

the programmer could expose any additional safe parallelism.

5.2 Effect of Dataset Sizes

As shown in the previous section, the technique proposed in this thesis is effective in

providing additional performance gains once applications stop benefiting from more

explicit threads. So far we have assumed strong-like scaling by fixing the input dataset,

i.e., the “Normal” dataset (see Table 4.3). A valid question is how the approach would

fare under weak-like scaling conditions where the input of interest to the user is allowed

to increase. To assess this we have also simulated the “Large” datasets, and present the

results in Figures 5.5, 5.6,and 5.7.

Overall, as expected, most applications achieve performance improvements with a

larger number of cores with the larger datasets, one of them (streamcluster) showing

good scalability up to the total system size. However, in several cases performance still

stops scaling before the total number of cores available is reached. In these cases, we

again observe that our approach with 2-way and 4-way TLS is able to provide further

performance improvement with larger numbers of cores.

A more detailed analysis is as follows. ep (Figure 5.7a) and swaptions (Figure 5.5e)

exhibit a shift in scalability of two and one points to the right, respectively, but the

trends remain unchanged. Our scheme remains largely beneficial for these bench-

marks. lu (Figure 5.7d) also exhibits a shift in scalability of one point to the right, with

TLS being more beneficial for the larger dataset due to increased nested parallelism.

blackscholes (Figure 5.5a), is (Figure 5.7c), and ft (Figure 5.7b) are virtually un-

affected by the change in the input data size. bodytrack (Figure 5.5b) exhibits the

same trend in both datasets and no shift of scalability point, albeit shifted upwards in

terms of speedup with the larger dataset. Similarly, canneal (Figure 5.5c), and volrend
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Benchmark Base Scalability Improvement Over Best Scalability

Point (# cores) 2-way TLS 4-way TLS Freq. Boost Core Fusion

PARSEC

blackscholes 64 36% 13% 19% 5%

bodytrack 32 28% 76% 25% 36%

canneal 32 23% 9% 7% 7%

streamcluster 64 13% 10% 7% 5%

swaptions 16 33% 79% 19% 20%

SPLASH2

cholesky 32 13% 10% 9% 13%

ocean-ncp 32 20% 30% 6% 16%

radiosity 32 31% 33% 18% 13%

volrend 64 27% 42% 18% 8%

water-nsquared 64 34% 17% 16% 19%

NAS OpenMP

ep 16 42% 98% 12% 5%

ft 16 85% 102% 13% 70%

is 8 31% 70% 14% 16%

lu 16 16% 23% 19% 21%

sp 32 28% 41% 5% 14%

avg 31% 44% 14% 18%

Table 5.1: Summary of the scalability behavior of the evaluated workloads along with

the effect of 2-way and 4-way TLS, Core Fusion, and Frequency Boost.
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Figure 5.5: Performance and scalability of larger datasets. (part I: PARSEC)
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Figure 5.6: Performance and scalability of larger datasets. (part II: SPLASH)
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Figure 5.7: Performance and scalability of larger datasets. (part III: NASPB)
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(Figure 5.6d) exhibit a slight shift upwards of the scalability lines.

water-nsquared (Figure 5.6e), on the other hand, exhibits vastly different behavior

between the two evaluated working sets. More specifically, the larger working set

performs significantly worse than the normal one. This is due to the fact that the

normal working set partitions evenly between the threads (both are a power of two),

while the larger working set imposes load imbalance. Our scheme is effective in both

cases, even more so for the larger dataset.

ocean-ncp (Figure 5.6b) exhibits a more “flat” behavior for the larger dataset which

is largely due to it becoming memory bound. TLS remains beneficial, however, albeit

by a smaller margin. cholesky (Figure 5.6a) also becomes more memory bound with

the larger dataset which is reflected in the similar “flat” trend line.

radiosity (Figure 5.6c) exhibits significantly improved scalability with the larger

dataset of the baseline version, showing almost linear scaling up to 64 cores. Specula-

tion continues to enjoy considerable speedup on top of the baseline, however, enabling

impressive scaling.

streamcluster (Figure 5.5d) shows improved scalability with the larger data that

goes all the way to 128 cores, rendering the baseline the better performing option. The

reduced gains of TLS are attributed to increased rates of mispeculation for the larger

dataset.

5.3 Energy Consumption

Figure 5.8 depicts the total energy consumption of each of the evaluated schemes for all

the benchmarks, normalized against the best scalability baseline point. If we take is, for

example, the base case is for 8 cores, the 2-way TLS, Core Fusion and Frequency Boost

are for 16 cores (and 8 explicit threads), and the 4-way TLS is for 64 cores (16 explicit

threads). It is evident from this graph that Core Fusion’s excessive power consumption

is not coupled with enough performance improvement to be a viable solution energy-

wise. canneal and ft are an exception to this, with Core Fusion more energy efficient

than the baseline. In the case of ft, Core Fusion enjoys performance improvements

that are on-par with the increased power consumption. In the case of canneal Core

Fusion is able to attain its best performance using the same number of cores (i.e.,

half the number of explicit threads) as the best performing baseline. Also, the best

performing baseline of 64 cores is only slightly faster than the 32 core one, while

using significantly more power mostly spent on synchronization. Frequency Boost
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Figure 5.8: Energy consumption showing the best performing point for each scheme,

normalized to the best performing base case.

offers better energy efficiency than Core Fusion overall but is still 27% more energy

hungry than the baseline on average.

It is worth noting the variability of the number of fetched instructions for Core Fu-

sion and Frequency Boost, as depicted in Figure 5.9. This is solely due to the variable

execution of busy-wait synchronization primitives and is evident in the absence of vari-

ability for data parallel applications, like blackscholes, swaptions, and ep. Frequency

Boost closely follows the baseline in terms of fetched instructions, except in the cases

where the increased frequency magnifies load imbalance, thus amplifying the number

of fetched instructions (ocean-ncp, ft, and sp). Core Fusion, on the other hand, reduces

the number of fetched instructions for most workloads. This is due to reducing time

spent on synchronization primitives for benchmarks with large serial and critical sec-

tions (bodytrack, is) or OpenMP applications with parallel regions with high ILP (ft,

lu, and sp).

Our scheme is able to achieve significant performance improvements while main-

taining a reasonable power envelope that yields total energy consumption close to –

and sometimes better than – the baseline. Our scheme is less energy efficient than

the baseline in cases of high mispeculation rates, like cholesky, or when it imposes

increased contention of the shared resources, like streamcluster and, to a lesser ex-
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Figure 5.9: Aggregate sum of fetched instructions over all cores for the best performing

point for each scheme, normalized to the fetched instructions of the baseline.

tend, 4-way ep. However, for bodytrack, canneal 2, ft, is, sp, 4-way TLS volrend 3,

and to a lesser extend, radiosity, it is actually more energy efficient than the baseline.

This is due to reduced time spent in the busy-wait synchronization primitives, which

are particularly energy hungry. Moreover, this reduction in synchronization time is

fully reflected in the total aggregate sum of fetched instruction over all the cores and is

shown in Figure 5.9.

In the cases, however, with little to no synchronization overheads speculative par-

allelization is typically less efficient than the execution of explicit parallel threads This

is true for blackscholes, swaptions, ocean-ncp, and ep with 2-way TLS. Furthermore,

this comes as little surprise considering the extra hardware required to support specu-

lation, the overheads in terms of extra instructions executed (depicted in Figure 5.9),

and is in line with observations in prior work [60].

5.4 Dynamically Tuning the Number of Threads

As explained in Section 3.4 we have developed an auto-tuning mechanism to dynami-

cally choose the number of explicit and implicit threads for OpenMP applications such

2We should note that for canneal, the best performing baseline is for 64 cores, the 2-way TLS and

Core Fusion are for 64 cores, and the Frequency Boost and 4-way TLS are for 128 cores.
3The vastly reduced energy of the best 4-way TLS versus the 2-way is attributed to having half the

number of explicit threads and thus spending significantly less time in barriers (Figure 5.2d).
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Figure 5.10: Dynamically tuning the number of threads.

that performance is maximized. We have employed this to all the evaluated OpenMP

benchmarks apart from bodytrack, whose parallel regions include code dependent on

the thread identifiers and does not support dynamically switching the number of par-

allel threads. Figure 5.10 compares this auto-tuning mechanism against the static op-

timal extracted from the results of Section 5.1. Our auto-tuning mechanism performs

within 11% of the optimal in the worst case (is), less than 1% in the best case (ep),

and 6% on average. ep’s high iteration count completely amortizes the training costs.

The high number of iterations of the parallel region minimizes the training overhead

for lu and blackscholes as well. In the case of is, however, the auto-tuning settles

correctly at 8 explicit threads, which is the tipping point of the baseline, but not the

optimal in performance when coupled with 4-way TLS (which is 16 explicit threads).

It therefore settles for a sub-optimal thread count leading to notably less performance

than the static oracle. sp’s parallel region is only encountered a few times and is thus

more susceptible to training noise. ft also exhibits a low trip count parallel region,

but shows less performance difference between adjacent thread counts. These results

assert that the evaluated parallel applications retain their auto-tuning amenability even

when we employ implicit threads. Furthermore, our proof-of-concept auto-tuning al-

gorithm offers a feasible solution with performance benefits that are close to the static

oracle.





Chapter 6

Adaptive, Hierarchical Power

Management Scheme

This chapter discusses our power management scheme for multithreaded applications

with implicit threads running on the shared-memory many-core multi-processor pre-

sented in Chapter 3 that aims at lowering total-chip energy consumption while main-

taining performance. First, in Section 6.1, it discusses room for improvement in prior

work on power management for multithreaded workloads as a motivation to our work.

Second, in Section 6.2, it presents the adaptive phase-driven scheme that augments

the nested speculative parallelism to make it more energy efficient and discusses the

necessary hardware requirements to support our proposal.

6.1 Motivation

We identify some shortcomings in the prior work for power management on multi-

threaded workloads and try to amend them. More specifically, we focus on the pro-

posed schemes from [9, 19, 69], as presented in Chapter 2. The thrifty barrier [69]

uses the idleness at the barrier to move the faster cores to sleep by predicting barrier

stall times based on prior behavior. Meeting points [19] assumes strict Single Pro-

gram Multiple Data semantics (e.g., traditional OpenMP) and places “meeting points”

at the end of each parallel loop. Each thread monitors its current progress based on

these meeting points, compares it against the other threads’ progress and proportion-

ally throttles down depending on how far ahead in execution it is compared with the

slowest thread. Thread criticality predictors [9] (TCP) dynamically monitor the cache

misses of each thread and characterize the threads suffering the most cache misses as

69
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“critical”. Higher frequency and voltage is then applied to the critical threads; lower

frequency and voltage pairs, proportional to the ratio of cache misses against the max-

imum cache misses, are applied to the remaining threads.

The identified shortcomings that leave room for improvement are the following:

• They assume that the parallel workload will be barrier intensive [9, 19, 69]

and fail to show how they would deal with different types of parallel work-

loads. Moreover, “meeting points” [19] assumes strict Single Program Multiple

Data (SPMD) semantics for the workload in addition to being barrier intensive.

Other types of parallel workloads, like data-parallel, would not benefit from such

schemes. In fact, we expect them to perform worse in those cases.

• Their power management is driven by predictors; they either try to directly pre-

dict the barrier stall time [69] and hence put threads to sleep or to predict the

most “critical” thread(s) [9] and shift DVFS resources accordingly. Typically,

the thread(s) that arrive late at a barrier are the ones that suffer the most cache

misses. By running these thread(s) at increased frequencies it is assumed that it

will lead to globally better execution time and power [9]. We see two problems to

this: (a) running threads with high cache miss ratio at high frequencies is locally

energy inefficient (as in [9]) and (b) possible misprediction would definitely lead

to globally sub-optimal energy efficiency (as in [9, 69]).

• A limitation of their evaluation methodology is that they do not make compar-

isons with other static frequency settings apart from the highest frequency set-

ting. They should instead try to improve the best static frequency setting in terms

of the metric they try to optimize (e.g., Energy, Energy-Delay Product (EDP)).

For example, we have found that running at lower frequency and voltage pairs

can be more efficient in terms of total Energy consumption (see Section 7).

The behavior of each of the evaluated schemes in different types of parallel work-

loads is illustrated in Figure 6.1, in order to better understand their shortcomings. The

Normal frequency and voltage pair is operating at 3.00GHz at 0.900V (Level 0 in Ta-

ble 4.2), the Low frequency and voltage setting is operating at 2.40GHz at 0.800V

(Level 2 in Table 4.2), and the Very Low frequency and voltage setting is operating

at 1.80GHz at 0.700V (Level 2 in Table 4.2). First, in Figure 6.1a we show a barrier

intensive SPMD parallel workload (e.g., the sp OpenMP benchmark from the NAS

PB [7]) and assume perfect prediction accuracy. This ideal example depicts the the-

oretical behavior of these schemes under their target application space. The thrifty
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barrier (Figure 6.1a-ii) correctly puts threads that reach a barrier early to sleep and

wakes them up just before the last thread reaches the barrier. The thread criticality

predictors (Figure 6.1a-iii) correctly predicts the critical thread, and proportionally re-

duce the frequency of the other threads in order to minimize time spent in barriers.

The meeting points (Figure 6.1a-iv) behaves identically to criticality predictors in this

example.

Second, Figure 6.1b depicts the same parallel workload as in Figure 6.1a, but with-

out assuming perfect prediction. The thrifty barrier (Figure 6.1b-ii) correctly predicts

the thread behavior for the first barrier, but fails to do the same in the second one.

Assuming that the behavior of the second barrier is predicted based on the first barrier

(a realistic assumption under the thrifty barrier scheme in case both dynamic barriers

are based on the same static barrier) the thrifty barrier will incorrectly wake up stalling

threads early, resulting in wasted energy spent spinning full-speed at the barrier. The

thread criticality predictor (Figure 6.1b-iii) first incorrectly predicts the thread running

at core C0 as critical before correctly settling to the thread running at core C1, for the

first barrier region. A similar situation is assumed at the second barrier region, switch-

ing between critical threads before settling correctly at the thread running at core C2.

These mispredictions lead to an increase in execution time, as well as non-negligible

time spent spinning at barriers at various frequency settings. Similarly, the meeting

points (Figure 6.1b-iv) exhibits some energy inefficiency due to mispredictions.

Third, Figure 6.1c depicts a multithreaded workload with large serial sections and

no barriers (e.g., the bodytrack benchmark from PARSEC [11]). The thrifty barrier

(Figure 6.1c-ii) fails to perform any power management under a no barrier condition.

The thread criticality predictors (Figure 6.1c-iii) incorrectly predicts the main thread

(running at core C0) as non-critical since we assume that the previously idle threads

(running at cores C1, C2, and C3) will show a higher cache miss ratio. This leads

to an increase in total execution time. It will, however, have threads spinning at the

synchronization points waiting for the serial sections to finish at the lowest frequency

setting since we naturally assume cache misses only for the main thread (core C0) in

those regions. The meeting points (Figure 6.1c-iv) show a small increase in execution

time due to some training noise before settling to the actual critical threads in the

parallel regions of execution. It fails, however, to perform any power management for

the serial sections of the workload and the spinning threads are thus left running at the

highest frequency.

Finally, Figure 6.1d depicts a data parallel workload with no synchronization (e.g.,
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the swaptions benchmark from PARSEC [11]). The thrifty barrier (Figure 6.1d-ii)

again fails to perform any power management. The thread criticality predictors’ (Fig-

ure 6.1d-iii) assumption that running threads suffering the most cache misses at higher

frequency and voltage pairs would lead to globally optimal energy consumption does

not hold for data parallel workloads. Running memory-bound threads at high frequen-

cies and compute-bound threads at lower frequencies is definitely less energy efficient

in this scenario (akin to sequential and multi-programmed workloads [2, 5]). The meet-

ing points also fails to adapt to this type of parallel workload – with no barriers and

no strict SPMD semantics – exhibiting either random power management in case there

are meeting points placed in the workload (as it is assumed in Figure 6.1d-iv) or no

power management whatsoever in case there are none.

6.2 An Adaptive, Hierarchical Power Management Scheme

In order to overcome the above shortcomings, we propose a hierarchical power man-

agement scheme that is composed of two principal components: (a) a “local” compo-

nent that tries to make a local optimal decision on a per-tile basis and (b) a “global”

component that tries to make globally optimal decisions based on the synchronization

behavior. The power management algorithm of our scheme is depicted in Algorithm 2.

We describe the power management components in the following sections.

6.2.1 Local Component: Phase-Based Adaptive DVFS

The “local” component of our power management scheme is a DVFS controller based

on a last-value phase-based predictor. Phase detection and prediction has been exten-

sively studied in prior work [6, 33, 36, 98, 99]. The main purpose of phase character-

ization is to classify application execution into regions (or patterns) that show similar

behavior. This phase detection and characterization can be done using various features,

ranging from extremely fine grain features operating at a basic block level to larger

features which typically involve metrics using performance monitor counters (e.g., in-

struction per cycles (IPC), misses per instructions (MPI)) sampled at large intervals.

The granularity of the phase detection technique depends on its target application and

the overheads of its operation.

Our goal is to apply phase detection and prediction within the scope of DVFS. In

order to do so, we first have to identify a metric with which we are to classify differ-
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Figure 6.1: Behavior of the different schemes under different types of parallel workloads

and conditions: (a) barrier-intensive workload assuming perfect prediction, (b) barrier-

intensive workload with more realistic prediction accuracy, (c) parallel workload with

large serial sections, and (d) data parallel workload.
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ent phases and then build a phase-predictor. Since we will be changing the frequency

dynamically, the metric that we choose has to be independent of frequency changes.

Prior work [57] has shown that using memory transactions per instruction is a met-

ric that (a) closely characterizes phase behavior and (b) is independent of frequency

changes. Moreover, it obviously reflects the memory-boundness of each phase of exe-

cution [9, 32] and can be further used as direct input to the DVFS controller. We thus

use cache misses per instruction (MPI) to both classify different phases and to drive

frequency changes. To account for the greater impact in performance of last level

cache (L2) misses compared to private cache misses we assign a larger weight to the

last level cache misses. This weight is calculated as the ratio of last level cache latency

to L1 miss latency [9]. The MPI value is then computed using the following equation:

MPI = (L1Misses+L2Misses · (L2MissLat÷L1MissLat))÷ Ins (6.1)

Each tile periodically monitors the memory misses of its cores at every power man-

agement quantum (or interval) and performs DVFS control as depicted in lines 17-23

of Algorithm 2. The MPI value is computed at each quantum, mapped to a phase,

which in turn is predicted to be the phase for the next quantum in a last-value fashion.

The thresholds based on which the mapping between MPI value and voltage-frequency

pair is chosen is presented in Table 6.1. Phases are essentially classified from compute-

bound to completely memory bound and gradually mapped from the highest to the

lowest frequency setting, respectively. These thresholds have been empirically cho-

sen in an effort to minimize ED2 and are thus biased towards higher frequencies. We

have found that implicit threads incur higher contention to the shared resources and are

naturally less dependent to frequency changes compared to the explicit thread only re-

gions. This is reflected in the lower MPI values required for a frequency change in the

case of implicit thread regions as opposed to explicit thread only regions as depicted in

Table 6.1. Note that we place the power management module to the un-core portion of

the tile and specifically between the L2 cache bank and the directory and router logic

(Figure 6.2a) in order to (a) operate at a constant frequency (see Section 4.3), and (b)

make the cache misses directly accessible to the module.

Frequent fluctuations in performance due to spurious program behavior can lead

to wrong phase predictions and subsequently lead to sub-optimal choice of frequency

settings. To amortize this effect we make use of a saturating counter table that contains

a saturating counter for each of the voltage-frequency settings (Table 4.2). The values

are initialized to zero for all the frequencies and to the maximum value for the highest
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MPI range ETs MPI range ITs Phase # Frequency (GHz)

[0.00 ,0.40] [0.00 ,0.35] 0 3.00

(0.40, 0.80] (0.35, 0.70] 1 2.70

(0.80, 1.20] (0.70, 1.05] 2 2.40

(1.20, 1.60] (1.05, 1.40] 3 2.10

(1.60, ∞) (1.40, ∞) 4 1.80

Table 6.1: Phase classification and frequency mappings based on Misses Per Instruc-

tion (MPI) values, with different mappings for Explicit Threads(ETs) and Implicit Threads

(ITs).

frequency. When the power manager decides on a new frequency for the next interval

it first checks the saturating counter table’s entry for that frequency. If it is at the

maximum value, it proceeds with the frequency change. In any case, it increments the

entry for the chosen frequency by one and decrements the other frequency entries by

one (lines 25-29 of Algorithm 2).

6.2.2 Global Component: Synchronization Aware DVFS

We defer from increasing the frequency on low performing cores until we know that

other cores are waiting for them to reach a barrier or release a lock/semaphore. To

this end, it is essential to provide the local managers with information regarding the

synchronization status of other threads in the system. We augment each tile with a bar-

rier flag and a lock flag to indicate whether a tile is stalling on a barrier or lock. Global

synchronization information is held in two shared bit vectors, a barrier stall bit vector

and a lock stall bit vector. Each tile has write access only to the bit corresponding to its

barrier stall bit and lock stall bit in the shared vectors. These shared bit vectors along

with the accumulator logic that provide the number of tiles currently stalling in barrier

and in locks are placed near the router logic of a centrally placed tile, as depicted in

Figure 6.3a.

We annotate each barrier call in the program with a start barrier instruction be-

fore the barrier call and a end barrier after the call. Similarly, we annotate lock

and semaphore (P semaphore calls only [106]) calls with start lock and end lock in-

structions. This annotation is done automatically in our source-to-source compilation

framework (Chapter 4). Note that we support multiple different lock variables simulta-
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neously as we only care whether we are within a barrier (lock) and not which particular

barrier (lock) we are stalling on. Similarly sense reversing barriers [3] are fully sup-

ported since we annotate the calls to such barriers at the program calling site. Nested

locks are not supported, however, as it did not affect the applicability of our scheme to

the evaluated workloads 1.

During runtime the synchronization structures are updated dynamically. Upon en-

countering a start barrier (start lock) instruction the barrier flag (lock flag) is set, and

a signal is sent to the shared barrier (lock) stall bit vector to set the bit corresponding

to its tile. The flags and bits of the synchronization bit vectors are reset in a similar

fashion upon encountering the end barrier (end lock) instruction.

Each tile polls the shared synchronization structures at a power management quan-

tum granularity (same as the one used for the local managers) and obtains the number

of threads currently stalling in a barrier or locks. Then, the power manager uses an

empirical heuristic to choose an appropriate voltage-frequency setting (lines 12-16 of

Algorithm 2). If the power manager on a tile detects that more than 20% of the explicit

threads are stalling on a barrier or more than 80% of the explicit threads are awaiting

to get a lock, then it characterizes itself as critical and thus raises its frequency to the

highest value. Additionally, each tile power manager makes a local decision based on

its synchronization status. If its barrier or lock flag is set it opts for the lowest pos-

sible voltage frequency setting (Level 4 in Table 4.2), as depicted in lines 10-11 of

Algorithm 2.

6.2.3 Expected behavior

The expected behavior of our power management scheme against the evaluated al-

ternative schemes is depicted in Figure 6.1. Apart from the ideal case presented in

Figure 6.1a, we expect our scheme to perform better than the alternatives. First, for

barrier intensive workloads (Figure 6.1b-v), our scheme will operate as follows. For

the parallel region and before reaching the barrier, all the threads will choose a fre-

quency and voltage setting based on their cache miss behavior, with threads exhibiting

high cache misses running at slower frequencies. Threads that reach the barrier will

shift to the lowest possible frequency and voltage pair, with the rest of the threads in-

creasing their frequency to the highest value to minimize energy wasted at the barrier.

Second, a similar approach is taken for the parallel workload with large serial sections

1Replacing the lock bits with dynamic stacks could trivially amend this shortcoming should this

become necessary.
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Algorithm 2 Local phase + Global sync power management

1: // This is executed on each tile every 10K cycles

2: // Step 1: Update synchronization flags and get current values

3: global barr array[myid]← my barrier f lag

4: global lock array[myid]← my lock f lag

5: barrier ratio← barr stalled

6: lock ratio← lock stalled

7: // Step 2: Proceed to power management

8: volt f req← curr volt f req

9: if my barrier f lag∨my lock f lag then

10: // Either in barrier or lock, opt for lowest frequency

11: volt f req←VOLTFREQ[4]

12: else if (barrier ratio≥ 0.2)∨ (lock ratio≥ 0.8) then

13: // More than 20% of the threads are stalling on a barrier or

14: // more than 80% of the threads are waiting to get a lock,

15: // then choose the highest frequency

16: volt f req←VOLTFREQ[0]

17: else

18: // Synchronization information yielded none of the other heuristics,

19: // proceed to MPI-based last-value based prediction and DVFS

20: MPI← (l1Misses+((l2Misses · l2MissLat)÷ l1MissLat))÷ Ins

21: quantise MPI based on empirical threshold

22: volt f req←VOLTFREQ[MPI QUANTIZED]

23: end if

24: // Step 3: Update saturating counters and apply DVFS settings

25: if (SATCNT [volt f req] =MAX)∧ (volt f req 6= current volt f req) then

26: set voltage and f requency to new setting

27: end if

28: increment saturating counter f or selected volt f req by 1

29: decrement saturating counters f or other voltage and f requency pairs by 1
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Figure 6.2: Local power management component: (a) Placement of the local power

management component inside a tile, and (b) the hardware structures required per tile

for the local power management component includes the synchronization flags, MPI

and current voltage-frequency (VF) pair registers, the thresholds for MPI to VF map-

pings, and 2-bit saturating counters for each of the VF pairs.

(Figure 6.1c-v). During the serial section, the main thread knows that other threads are

waiting for it to finish and thus runs at the highest possible frequency, with the remain-

ing threads waiting on the synchronization points at the lowest frequency and power

setting. In the parallel section, each thread chooses a frequency and voltage setting

that locally maximizes its energy efficiency. Finally, our scheme is able to handle data

parallel workloads as well (Figure 6.1d-v). The local components will remain active

throughout execution choosing appropriate frequency and voltage pairs depending on

each thread’s memory behavior.

6.2.4 Hardware Support

The power management algorithm detailed in Algorithm 2 highlights the hardware

augmentations required to support our scheme. First, the local component assumes

the additional hardware structures illustrated in Figure 6.2b: a 1-bit my barrier flag, a

1-bit my lock flag, a 3-bit register to store the quantized misses per instruction value, a

3-bit register to store the current voltage-frequency pair, five 2-bit saturating counters,

one for each voltage-frequency pair, and two 1-bit flags to store whether the number

of cores stalling on a barrier or locks are above a certain threshold. Second, the global

component assumes the additional hardware structures illustrated in Figure 6.3b: a
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lock stall bit vectors along with accumulators that provide the number of tiles currently
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32-bit barrier stall bit vector (i.e., one bit per tile), a 32-bit lock stall bit vector, and

two 5-bit registers storing the current number of stalled tiles in barrier or in locks,

respectively. The total number of additional hardware storage required is a mere 640

bits (80 bytes) for all the local components (20 bits each) and 74 bits (< 10 bytes) for

the global component.



Chapter 7

Analysis of the Adaptive, Hierarchical

Power Management Scheme

This chapter evaluates the proposed hierarchical power management scheme. First, in

Section 7.1, it discusses the amenability of the implicit threads to power management

schemes. Second, in Section 7.2, it presents the bottom line results comparing this

scheme against the current state-of-the-art power management schemes for the evalu-

ated workloads with implicit threads, and it further performs a detailed analysis on the

efficacy of our proposal. Finally, in Section 7.3, it discusses the effectiveness of the

proposed power management scheme under explicit threads only.

7.1 Effectiveness Under Implicit Threads

In this section, we briefly evaluate the impact of implicit threads in the behavior of

some of the power management schemes for multithreaded workloads discussed in

Chapter 4 [9, 19, 69]. In order to do so, we first implemented these schemes in our

simulator infrastructure (Chapter 4) and simulated the best scalability point for each

workload (Chapter 5), with and without implicit threads. Details for the DVFS simula-

tion and for the implementation of the evaluated schemes can be found in Section 4.3.

The metric we evaluate is Energy Delay2 (ED2), which puts more emphasis on

performance than energy, as our aim is not to hurt performance [93]:

ED2 = Power ·Time3 (7.1)

The results are depicted in Figures 7.1a and 7.1b running explicit threads only and

explicit plus implicit threads respectively. The results show the best scalability point

81
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for each benchmark, based on the results presented in Chapter 5. The ED2 bars are

normalized to a baseline with no power management, running constantly at the highest

voltage-frequency setting of 3.00GHz at 0.900V (Level 0 in Table 4.2). For each set

of bars, from left to right, we see the ED2 performance for running at a constant Low

voltage-frequency setting of 2.40GHz at 0.800V (Level 2 in Table 4.2), running at a

constant VLow voltage-frequency setting of 1.80GHz at 0.700V (Level 4 in Table 4.2),

the thrifty barrier [69] power management (“Thrifty”), meeting points [19] power man-

agement (“MeetPoints”), and the thread criticality predictors [9] power management

(“CritPred”). The take-away from these two graphs is that implicit threads do not af-

fect the amenability of a multithreaded application to DVFS management. Applying

any of the evaluated alternative power managements schemes on top of explicit threads

only or explicit plus implicit threads yields almost identical results.

7.2 Bottom Line Results

The bottom line results showing the performance of our power management scheme

are illustrated in Figures 7.2, 7.3, and 7.4, showing Energy Delay2 product, execution

time, and power, respectively. All these results are using the best performing scalability

point for each workload including implicit threads and are normalized against having

no power management. The number of explicit threads is depicted with each bench-

mark. For each set of bars, from left to right, we see the performance of (a) running at

a constant Low voltage-frequency setting of 2.40GHz at 0.800V (Level 2 in Table 4.2),

(b) running at a constant VLow voltage-frequency setting of 1.80GHz at 0.700V (Level

4 in Table 4.2), (c) the thrifty barrier [69] power management (“Thrifty”), (d) meeting

points [19] power management (“MeetPoints”), (e) the thread criticality predictors [9]

power management (“CritPred”), and (f) our MPI adaptive plus synchronization-aware

scheme (“MPI Adapt Sync”).

Our scheme is able to significantly outperform both the baseline and the best per-

forming alternative scheme (thrifty barrier) in terms of ED2 (Figure 7.2). The other

two alternative schemes compared (meeting points and thread criticality predictors)

perform worse than the baseline in terms of ED2. We first analyze the performance

of the alternative schemes. The thrifty barrier is only able to marginally outperform

the baseline. This is due to three reasons: (a) our best performing baseline being more

powerful and energy efficient than the one used in [69] 1, (b) using lower DVFS in-

1The baseline used in [69] does not constitute the best scalability point for each evaluated workload,
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Figure 7.1: Energy Delay2 product for the three prior power management scheme eval-

uated, normalized to a baseline with no power management. (a) Explicit threads only

and (b) Explicit and Implicit threads. The number for each benchmark represents the

number of explicit threads.
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Figure 7.4: Average power consumption for each power management scheme, normal-

ized to the best scalability point with implicit threads with no power management.

stead of going to sleep, and (c) the non-applicability of the scheme to applications

with little or no barrier time (blackscholes, swaptions, bodytrack, cholesky, radiosity,

ep, and ft). We attribute the performance of thread criticality predictors to the following

causes: (a) the results shown in [9] are for in-order cores with blocking caches while

in this study we show results for aggressive out-of-order superscalar cores with non-

blocking caches, (b) we include data-parallel workloads in our evaluation for which

this scheme was not intended (e.g., blackscholes, swaptions), (c) we aim at minimizing

ED2, while their aim was more towards energy and Energy Delay Product (EDP), for

which thread criticality is still beneficial compared to the baseline. The meeting points

scheme performs poorly in terms of ED2 due to partially similar reasons: (a) having

several workloads without strict SPMD semantics (e.g., bodytrack, cholesky, radios-

ity), (b) simulating aggressive 4-issue out-of-order cores with non-blocking caches as

opposed to in-order cores with blocking caches used in [19], and (c) the difference

in the implementation of meeting points compared to the original proposal in [19] as

discussed in Section 4.3.

On the other hand, our scheme enjoys a significant reduction in terms of Energy

artificially leaving more room for improvement.
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Delay2 product of as much as 46% (bodytrack), and 8% on average, compared to the

baseline as is depicted in Figure 7.2. This is due to a reduction in power consumption

of as much as 47% (bodytrack), and 15% on average, (Figure 7.4) with a minimal loss

in performance of less than 3% on average and 9% in the worst case for cholesky (Fig-

ure 7.3). The performance of our scheme can be attributed to the following character-

istics: (a) it is able to accurately adapt to the performance of each thread independently

of synchronization by utilizing the misses per instruction at a local level, (b) it lowers

the frequency of threads that stall on synchronization, and (c) it boosts the performance

of cores when it is certain that they are critical for performance since other threads

are waiting for them at synchronization points. These three characteristics make our

scheme applicable to all the evaluated workloads – data-parallel, barrier-intensive, and

workloads with large critical sections.

Figure 7.5 shows the breakdown of execution time into busy and synchronization

(divided into barrier time and lock time) for all the power management schemes, nor-

malized against the best scalability point of the baseline with implicit threads and

no power management, in order to better assess the difference in behavior between

the different power management schemes. First, we observe that the static schemes

(4-way TLS running at low and very low voltage frequency pairs) naturally exhibit

increased execution time compared to the baseline, except for memory bound bench-

marks with very small serial sections (canneal, and ocean-ncp). Compute-bound work-

loads (blackscholes, swaptions, radiosity, ep, and lu) show a big drop in performance

without, however, exhibiting a change in the synchronization to busy ratio. Workloads

with large sequential parts of execution where threads stall waiting the main thread to

finish, exhibit an increase in their synchronization to busy ratio (bodytrack, and vol-

rend). Second, the thrifty barrier incurs minimal change in behavior compared to the

baseline, as it only slows down threads only when they are stalling in barriers and

does not affect the busy part of the multithreaded execution. Third, the meeting points

has a minimal effect in benchmarks with just a few barrier calls (bodytrack, cholesky,

and swaptions), shows little increase in execution time for homogeneous workloads

(blackscholes, canneal, streamcluster, cholesky, water-nsquared, ep, and sp), and ad-

versely affects the performance of imbalanced workloads (radiosity, volrend, ft, and

lu). Fourth, the criticality predictors power management scheme significantly increases

the execution time of data-parallel workloads (blackscholes, swaptions, and ep), of

workloads with large sequential parts of execution (bodytrack, and volrend), and of

compute bound workloads with few cache misses (radiosity, water-nsquared, and lu).
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It performs favorably both in terms of execution time and in terms of ED2, however, in

the case of memory bound workloads with frequent cache misses (canneal, ocean-ncp,

and sp). Finally, our scheme, on the other hand, performs closely to the baseline both

in terms of execution time and in terms of busy to synchronization ratio across bench-

marks. The only exception to this are cholesky and lu, both of which are very sensitive

to frequency changes. We analyze the performance of our scheme in depth in the next

paragraphs.
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7.2.1 Detailed Analysis

We first analyze the impact of the synchronization component of our scheme as pre-

sented in Section 6.2.2 and then analyze the effect of using the saturating counter table

to mitigate fluctuations in performance.

7.2.1.1 Synchronization Aware Power Management

Figure 7.6a illustrates the performance in terms of ED2 of the different components

of our power management scheme: (i) using the local MPI-driven DVFS only (“MPI-

Adapt”), (ii) adding local synchronization-aware DVFS module (“MPI Adapt LocalSync”),

and (iii) adding the global synchronization-aware module (“MPI Adapt Sync”). This

plot clearly depicts the additive gains of our scheme components. First, the MPI-

adaptive component is able to deploy power savings at minimal performance degrada-

tion for benchmarks that exhibit memory bound phases, like canneal, ocean-ncp, ft,

and to a lesser extend, sp, is, and swaptions (Figures 7.6a and 7.6b). The only bench-

marks for which it shows poor ED2 performance are bodytrack, and cholesky. This is

due to slowing down critical threads. Second, the local synchronization optimization

where each threads lower its frequency when stalled at a synchronization point signif-

icantly lowers the power consumption of workloads that exhibit long synchronization

stalls. This is true for bodytrack, volrend, canneal, sp, water-nsquared, and ep. By

not taking into account global synchronization behavior, however, it adversely affects

the performance of benchmarks with either frequent synchronization calls, like ocean-

ncp, lu, cholesky, and radiosity, or with critical threads, like lu, ocean-ncp, cholesky,

bodytrack, is, bodytrack, and water-nsquared (Figure 7.6b). The final optimization

that takes into account global synchronization information is able to mitigate this per-

formance degradation. By boosting critical threads when other threads are waiting

for them we are able to regain performance lost from the local synchronization power

optimization in lu, is, ocean-ncp, cholesky, bodytrack, is, water-nsquared, and vol-

rend. This is directly reflected in reduced time spent in synchronization primitives

when going from the MPI adaptive plus local optimization scheme (“MALS”) to the

MPI adaptive plus local plus global optimization scheme (“MAS”), illustrated in Fig-

ure 7.6b.
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Figure 7.6: Evaluating the different components of our scheme. Showing (a) normalized

(a) Energy Delay2 product and (b) breakdown of normalized execution time for (i) using

the local MPI-driven DVFS only (“MPI Adapt” or “MA”), (ii) adding local synchronization-

aware DVFS module (“MPI Adapt LocalSync” or “MALS”), and (iii) adding the global

synchronization-aware module (“MPI Adapt Sync” or “MAS”).
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Figure 7.7: Effect of using Saturating Counter Table with different number of bits. Show-

ing normalized Energy Delay2 product for (a) No saturating counter table (“No Sat-

Cnt”), (b) 1-bit saturating counters (“1 bit”), (c) 2-bit saturating counters (“2 bits”), and

(d) 3-bit saturating counters (“3 bits”).
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7.2.1.2 Confidence Estimation

Suggestion confidence can mitigate phase mispredictions induced by frequent fluctua-

tions in a thread’s performance by requiring a thread’s behavior to be consistent over

longer time periods before making a prediction. The sensitivity of our scheme under

different levels of confidence estimators in the form of varying saturating counter bit-

width is shown in Figure 7.7. Even a 2-bit confidence estimator is able to successfully

improve performance by mitigating performance noise in the case of streamcluster,

radiosity, sp, and blackscholes.

However, while confidence estimation improves prediction performance in the pres-

ence of noise it tends to increase the prediction learning time. This is evident in the

case of cholesky, is, lu, and to a lesser extent canneal, bodytrack, and ocean-ncp. ft

shows mixed behavior, with 2-bits performing worse than 1-bit or no confidence esti-

mator but with 3-bits performing significantly better than the others.

It is worth noting that the low latency of the evaluated DVFS mechanism presented

in Section 4.3 somewhat lessens the effect of confidence estimation. Under DVFS

mechanisms operating at coarser granularities, like the ones present in current state-

of-the art multi-processors [59], we expect confidence estimation to be more critical in

performance, and hence opt to keep them in our power management system to broaden

its applicability.

7.3 Evaluation Under Explicit Thread Only

Finally, we evaluate the applicability of our scheme on multithreaded application with

no implicit threads. We note at this point that we assume only one explicit thread

running in each tile so that we have complete control over each explicit thread. This,

however, could easily be alleviated by having voltage and frequency control over each

core, and our scheme is not limited in this way. Further, the MPI mappings for implicit

threads presented in Table 6.1 are naturally not taken into account in the case of pure

explicit thread execution.

The results depicted in Figures 7.8, 7.9, and 7.10, are normalized to the best per-

forming explicit thread only version (as opposed to the results shown earlier in this

chapter which were normalized to the best performing explicit and implicit thread ver-

sion). These results clearly show that our scheme remains beneficial even in the ab-

sence of implicit threads. This is a testament to the general applicability of our power
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Figure 7.8: Energy Delay2 product for each power management scheme, normalized to

a baseline with no power management. Using explicit threads only.

management scheme. In fact, our scheme is more beneficial in the pure explicit thread

case showing an average reduction in ED2 of 12% compared to 8% for the mixed

implicit and explicit thread case. This can be attributed to the more energy efficient

baseline in the case of having mixed implicit and explicit threads due to reduced syn-

chronization time as explained in Chapter 5. The explicit thread baseline simply has

more room for improvement in terms of energy efficiency.
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Figure 7.9: Execution time for each power management scheme, normalized to a base-

line with no power management. Using explicit threads only.

Figure 7.10: Average power consumption for each power management scheme, nor-

malized to the baseline with no power management. Using explicit threads only.



Chapter 8

Related Work

TLS has been a topic of intense investigation over the years, but the vast majority

of previous work has applied it to single-threaded applications. The implicit goal of

such prior work on TLS, thus, was to achieve scalable parallel performance solely

through implicit speculative threads, while our goal is to improve the scalability of

explicitly parallel programs. TLS has been applied to individual threads of parallel

applications in [112], but its overall impact on the entire application has not been

considered; their focus lies in task selection and they only emulate TLS to estimate

the overlap potential of each task. The possibility of applying TLS to improve the

scalability of parallel applications has been briefly raised in recent studies on coping

with Amdahl’s law in many-cores (e.g., [46]). However, these have not investigated the

architecture implications or the trade-offs involved when combining explicit threads

with TLS. To the best of our knowledge, this is the first work to investigate these trade-

offs and propose a viable architecture for this purpose.

The closest prior work to ours is [62], where Speculative Parallel-stage Decou-

pled Software Pipelining (S-PS-DSWP) (originally proposed in [48]) is used to paral-

lelize threads of a parallel application. Speculative Parallel-stage Decoupled Software

Pipelining (S-PS-DSWP) [48] is a technique that supports speculative parallel exe-

cution of loop iterations, with nested sub-transactions within each iteration. Besides

the differences between TLS and S-PS-DSWP as well as between the architectures, the

main difference between that work and ours is that we investigate the trade-offs in scal-

ability between employing more outer explicit threads versus more inner speculative

implicit threads, and we also propose a mechanism for dynamically and automatically

identifying the best trade-off.

Nested explicit and non-speculative parallelism is commonly exploited in the high-
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performance community through MPI-OpenMP environments. Also, nested explicit

speculative parallelism has been proposed with nested transactional memory (e.g.,

[82]). Unlike our implicit speculative TLS threads, nested transactional memory is

not transparent to the user and requires additional programming effort.

Two prior works [85, 86] have considered architectures that support both explicit

and TLS threads. They propose the use of explicit parallelism where available, and

the use of TLS only outside these explicit parallel regions. Thus they switch between

explicit and implicit thread modes, and do not support both types of threads simulta-

neously in a nested fashion.

In addition to works that consider nested and speculative parallelism, our work

is also very much related to current efforts that attempt to mitigate Amdahl’s law

through other dynamic and transparent means. Core-fusion [55] does so by dynam-

ically “merging” cores together and exploiting ILP when sufficient explicit parallelism

is not available. Recent commercial multi-cores incorporate Frequency Boost [50] to

shift resources to a subset of cores in order to improve performance when the workload

does not provide enough parallelism to utilize all cores. The work in [75] proposed a

hardware/software scheme to improve performance of sequential applications using

speculative fine-grain multithreading. It uses a clustered architecture, similarly to this

work, but only evaluates single threaded applications. The now cancelled ROCK archi-

tecture [23] proposed the use of automatic, hardware implicit threads to complement

sequential execution by either exposing more ILP or MLP.

Speculative Lock Elision (SLE) is another similar approach [79, 88, 89], that allows

explicit threads to run speculatively ahead of a synchronizing operation. SLE tries to

overlap some of the work inside critical sections with work being done by other threads

outside the critical section, while our approach is to accelerate the execution of the

critical section itself. Like our approach, this technique attempts to reduce the amount

of time lost in synchronization in the case of large critical sections and load imbalance

(Figure 3.5a,c). It offers little benefits, however, for applications limited by regions

non proportional to the dataset (Figure 3.5b). Also, unlike our nested approach, SLE

requires speculation control across the entire system, which makes the scheme harder

to scale to many-core systems.

Finally, [105] speeds up applications with significant critical sections using a static

heterogeneous architecture. Our approach, and those mentioned above, provide a more

dynamic approach to deal with critical sections and Amdahl’s law.
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8.1 Power Management

Power management techniques to reduce energy consumption have been extensively

studied in prior work. Our focus lies on multithreaded workloads running on a clus-

tered many-core architecture. DVFS schemes for multithreaded applications have pri-

marily targeted workloads using barriers [9, 19, 69, 71].

The thrifty barrier [69] uses the idleness at the barrier to move the faster cores to

a low power mode by predicting barrier stall times based on prior behavior. We also

apply lower power modes when idling at barriers, but we also employ lower DVFS set-

tings when stalling at other synchronization primitives as well. Moreover, our scheme

is applicable to a wide range of parallel workloads and exploits the amenability of

program phases to different DVFS operation points throughout a parallel program’s

execution – both in parallel regions and in synchronization primitives – unlike [69].

Meeting points [19] follows a different approach. It assumes strict Single Program

Multiple Data semantics (e.g., traditional OpenMP) and places “meeting points” at

the end of each parallel loop. Each thread monitors its current progress based on

these meeting points, compares it against the other threads’ progress and accordingly

throttles down if it detects that it is further ahead in execution. Our scheme is applicable

to any parallel workload, however, and is not limited to SPMD programs only.

Thread criticality predictors [9] (TCP) dynamically monitor the cache misses of

each thread and give higher priority to the thread that suffers the most misses. The

insight behind this is that the thread that is most likely to reach last at the barrier is the

slower one, and the one suffering the most misses is an obvious candidate. Unlike TCP,

our scheme is not limited to barrier intensive applications alone, but is able to manage

a larger set of parallel workloads. Also, we do not rely on predictions to characterize

thread criticality; we use current synchronization behavior instead.

The phase-driven “local” component of our power management scheme (see Chap-

ter 6.2.1) is closely related to the work by Icsi et al. [57]. We both characterize phases

and drive DVFS management through the memory operations per instruction as an

independent metric with respect to frequency. Our scheme aims multithreaded work-

loads, however, taking into account synchronization on-top of memory behavior.





Chapter 9

Conclusions and Future Work

This chapter presents the conclusions reached by this thesis, and discusses possible

future work extensions.

9.1 Summary of Contributions

With the advent of multi-cores, programmers have to endorse parallel programming

if they are to exploit the additional hardware resources to improve their applications’

performance. Fine-grain parallelism is hard and error-prone, however, and program-

mers usually avoid parallelizing their applications using fine-grain threading. They

instead focus on uncovering parallelism at a coarser granularity which offers a good

compromise between performance improvement and development time.

In this thesis we have proposed using implicit speculative parallelism to comple-

ment user-level explicit threads. Our scheme is able to improve a parallel application’s

performance beyond its higher scalability point by using cores that would otherwise

be underutilized to run implicit speculative threads. Moreover, given the guaranteed

sequential semantics of the TLS protocol, this further parallelization is transparent to

the programmers so that they do not have to struggle to further partition and debug the

parallel code. Experimental results on a simulated 128-core show that performance im-

proves on top of the highest scalability point by as much as 102%, and 44% on average,

for a 4-way cluster and by as much as 85%, and 31% on average, for a 2-way clus-

ter. Significantly, we have further shown that these performance improvements come

at virtually no increase in energy consumption. Also, we have presented a compre-

hensive analysis of performance bottlenecks in the evaluated multithreaded workloads

and evaluated their behavior in the presence of different input datasets. Furthermore,
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we present an auto-tuning mechanism to dynamically choose the number of explicit

and implicit threads for OpenMP applications which performs within 6% of the static

oracle thread allocation.

Finally, we have presented an adaptive, hierarchical power management scheme

that is applicable to a wide range of parallel workloads – with and without implicit

threads. It comprises two components: (a) a “local” component that follows a thread’s

memory performance taking into account the difference in behavior between explicit

and implicit threads and chooses a locally optimal voltage and frequency pair, and

(b) a “global” component that tries to make globally optimal decisions based on the

synchronization behavior. Our scheme is able to significantly outperform competing

power management schemes on the evaluated platform and workloads and enjoys a

significant reduction of Energy Delay2 product of as much as 46% and 8% on average

compared to the baseline. This is due to a reduction in power consumption of as much

as 47% and 15% on average with a minimal loss in performance of less than 3% on

average. Most importantly, our power management scheme maintains its applicability

through all the types of parallel workloads evaluated: barrier-intensive, lock-intensive,

and data parallel.

9.2 Future Work

A natural avenue of future research work would be to use other forms of implicit mech-

anisms to further improve performance of multithreaded workloads. These implicit

mechanisms include Helper Threads [22], Runahead execution [83], and Multipath

execution [1]. Combining the implicit speculative threads presented in this thesis with

Helper Threads, Runahead execution, and Multipath execution could be beneficial for

the cases where TLS alone fails to provide benefits. All these mechanisms require

similar hardware extensions, and if the support for one is provided, supporting any of

the others requires only incremental extensions [115]. The interplay between these

implicit mechanisms would also provide interesting research potential in selecting the

most beneficial choice of mechanisms to be applied, statically or dynamically. Our

prior work in improving sequential application performance by combining Thread-

Level Speculation with Helper Threads and Runahead execution [115], and TLS with

Multipath execution [114], is a testament to the potential of this future work.

The static task selection heuristic used in our implicit thread proposal in this thesis

could be naturally extended and further studied. Prior work in task selection for TLS
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systems shows significant potential, both in profile driven static approaches and/or dy-

namic hardware task selection schemes [73]. A good task selection scheme for implicit

tasks running on top of explicit threads would require revisiting the cost models of prior

approaches (e.g., incorporating synchronization costs). Moreover, sophisticated static

or dynamic checkpointing and synchronization schemes [26, 61, 117] could be studied

in the context of explicit and implicit threads.

Further, we could extend the power management scheme presented in this thesis

to incorporate an elaborate control loop to guarantee it settling in an optimal setting

based on an analytical model. Also, our power management scheme could be studied

and potentially extended in the context of sequential and multi-programmed workloads

to broaden its applicability.





Appendix A

Benchmarks

A.1 PARSEC 2.1

The Parsec benchmarks suite represents modern and emerging parallel workloads. It

has been included in our evaluation to study the effect of the schemes presented in this

thesis in contemporary and future parallel applications with larger datasets.

A.1.1 blackscholes

The blackscholes application is an Intel RMS benchmark. It calculates the prices for a

portfolio of European options analytically with the Black-Scholes Partial Differential

Equation (PDE). There is no closed form expression for the Black-Scholes equation

and as such it must be computed numerically. The blackscholes benchmark was chosen

to represent the wide field of analytic PDE solvers in general and their application in

computational finance in particular. The program is limited by the amount of floating-

point calculations a processor can perform.

blackscholes stores the portfolio with numOptions derivatives in array OptionData.

The program includes file option-Data.txt which provides the initialization and control

reference values for 1,000 options which are stored in array data init. The initialization

data is replicated if necessary to obtain enough derivatives for the benchmark. The

program divides the portfolio into a number of work units equal to the number of

threads and processes them concurrently. Each thread iterates through all derivatives

in its contingent and calls function BlkSchlsEqEuroNoDiv for each of them to compute

its price.

103



104 Appendix A. Benchmarks

A.1.2 bodytrack

The bodytrack computer vision application is an Intel RMS workload which tracks

a 3D pose of a marker-less human body with multiple cameras through an image se-

quence. bodytrack employs an annealed particle filter to track the pose using edges and

the foreground silhouette as image features, based on a 10 segment 3D kinematic tree

body model. These two image features were chosen because they exhibit a high degree

of invariance under a wide range of conditions and because they are easy to extract. An

annealed particle filter was employed in order to be able to search high dimensional

configuration spaces without having to rely on any assumptions of the tracked body

such as the existence of markers or constrained movements. This benchmark was in-

cluded due to the increasing significance of computer vision algorithms in areas such

as video surveillance, character animation and computer interfaces.

The parallel kernels use tickets to distribute the work among threads and balance

the load dynamically. The ticketing mechanism is implemented in class TicketDis-

penser and behaves like a shared counter.

A.1.3 canneal

This kernel was developed by Princeton University. It uses cache-aware simulated an-

nealing (SA) to minimize the routing cost of a chip design. SA is a common method

to approximate the global optimum in a large search space. Canneal pseudo-randomly

picks pairs of elements and tries to swap them. To increase data reuse, the algorithm

discards only one element during each iteration which effectively reduces cache ca-

pacity misses. The SA method accepts swaps which increase the routing cost with

a certain probability to make an escape from local optima possible. This probability

continuously decreases during runtime to allow the design to converge. The program

was included in the workload selection to represent engineering workloads, for the

fine-grained parallelism with its lock-free synchronization techniques and due to its

pseudo-random worst-case memory access pattern.

A.1.4 streamcluster

This RMS kernel was developed by Princeton University and solves the online cluster-

ing problem: For a stream of input points, it finds a predetermined number of medians

so that each point is assigned to its nearest center. The quality of the clustering is mea-
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sured by the sum of squared distances (SSQ) metric. Stream clustering is a common

operation where large amounts or continuously produced data has to be organized un-

der real-time conditions, for example network intrusion detection, pattern recognition

and data mining. The program spends most of its time evaluating the gain of open-

ing a new center. This operation uses a parallelization scheme which employs static

partitioning of data points. The program is memory bound for low-dimensional data

and becomes increasingly computationally intensive as the dimensionality increases.

Due to its online character the working set size of the algorithm can be chosen indepen-

dently from the input data. streamcluster was included in the evaluated workloads suite

because of the importance of data mining algorithms and the prevalence of problems

with streaming characteristics.

A.1.5 swaptions

The swaptions application is an Intel RMS workload which uses the Heath-Jarrow-

Morton (HJM) framework to price a portfolio of swaptions. The HJM framework de-

scribes how interest rates evolve for risk management and asset liability management

for a class of models. Its central insight is that there is an explicit relationship be-

tween the drift and volatility parameters of the forward-rate dynamics in a no arbitrage

market. Because HJM models are non-Markovian the analytic approach of solving the

PDE to price a derivative cannot be used. Swaptions therefore employs Monte Carlo

(MC) simulation to compute the prices. The workload was included in the benchmark

suite because of the signicance of PDEs and the wide use of Monte Carlo simulation.

The program stores the portfolio in the swaptions array. Each entry corresponds

to one derivative. Swaptions partitions the array into a number of blocks equal to the

number of threads and assigns one block to every thread. Each thread iterates through

all swaptions in the work unit it was assigned and calls the function HJM Swaption

Blocking for every entry in order to compute the price. This function invokes HJM

SimPath Forward Blocking to generate a random HJM path for each MC run. Based

on the generated path the value of the swaption is computed.

A.2 SPLASH2

The SPLASH2 parallel benchmark suite is the (now ageing) de facto standard in par-

allel applications. It comprises highly optimized parallel workloads with fine-grain
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locks and barriers. It has been chosen to allow the evaluation of hand optimized paral-

lel workloads with good scalability.

A.2.1 cholesky

The blocked sparse Cholesky factorization kernel factors a sparse matrix into the prod-

uct of a lower triangular matrix and its transpose. It is similar in structure and parti-

tioning to the LU factorization kernel (see LU), but has two major differences: (i) it

operates on sparse matrices, which have a larger communication to computation ratio

for comparable problem sizes, and (ii) it is not globally synchronized between steps.

A.2.2 ocean-ncp

The ocean application studies large-scale ocean movements based on eddy and bound-

ary currents, and is an improved version of the ocean program in the original SPLASH

benchmark suite. The major differences are: (i) it partitions the grids into square-like

subgrids rather than groups of columns to improve the communication to computation

ratio, (ii) grids are conceptually represented as 4-D arrays, with all subgrids allocated

contiguously and locally in the nodes that own them, and (iii) it uses a red-black Gauss-

Seidel multigrid equation solver, rather than an SOR solver.

A.2.3 radiosity

This application computes the equilibrium distribution of light in a scene using the

iterative hierarchical diffuse radiosity method. A scene is initially modeled as a num-

ber of large input polygons. Light transport interactions are computed among these

polygons, and polygons are hierarchically subdivided into patches as necessary to im-

prove accuracy. In each step, the algorithm iterates over the current interaction lists of

patches, subdivides patches recursively, and modifies interaction lists as necessary. At

the end of each step, the patch radiosities are combined via an upward pass through

the quadtrees of patches to determine if the overall radiosity has converged. The main

data structures represent patches, interactions, interaction lists, the quadtree structures,

and a Binary Space Partitioning (BSP) tree which facilitates efficient visibility com-

putation between pairs of polygons. The structure of the computation and the access

patterns to data structures are highly irregular. Parallelism is managed by distributed

task queues, one per processor, with task stealing for load balancing. No attempt is
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made at intelligent data distribution.

A.2.4 volrend

This application renders a three-dimensional volume using a ray casting technique.

The volume is represented as a cube of voxels (volume elements), and an octree data

structure is used to traverse the volume quickly. The program renders several frames

from changing viewpoints, and early ray termination and adaptive pixel sampling are

implemented, although adaptive pixel sampling is not used in this study. A ray is shot

through each pixel in every frame, but rays do not reflect. Instead, rays are sampled

along their linear paths using interpolation to compute a color for the corresponding

pixel. The partitioning and task queues are similar to those in raytrace. The main data

structures are the voxels, octree and pixels. Data accesses are input-dependent and

irregular, and no attempt is made at intelligent data distribution.

A.2.5 water-nsquared

This application is an improved version of the water program in the original SPLASH

benchmark suite. This application evaluates forces and potentials that occur over time

in a system of water molecules. The forces and potentials are computed using an O(n2)

algorithm (hence the name), and a predictor-corrector method is used to integrate the

motion of the water molecules over time. The main difference from the SPLASH

program is that the locking strategy in the updates to the accelerations is improved.

A process updates a local copy of the particle accelerations as it computes them, and

accumulates into the shared copy once at the end.

A.3 NASPB

The NAS Parallel Benchmarks suite comprises traditional scientific workloads. The

OpenMP version of NASPB has been chosen to be evaluated in order to study the

schemes presented in this thesis under regular OpenMP code.

A.3.1 ep

An “embarrassingly parallel” kernel, which evaluates an integral by means of pseu-

dorandom trials. This kernel, in contrast to others in the list, requires virtually no
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interprocessor communication.

A.3.2 ft

A 3-D partial differential equation solution using FFTs. This kernel performs the

essence of many “spectral” codes. It is a rigorous test of long-distance communication

performance.

A.3.3 is

An integer sort kernel. This kernel performs a sorting operation that is important in

“particle method” codes. It tests both integer computation speed and communication

performance.

A.3.4 lu

A regular-sparse, block (5x5), lower and upper triangular system solution. This prob-

lem represents the computations associated with the implicit operator of a newer class

of implicit CFD algorithms, typified at NASA Ames by the code “INS3D-LU”.

A.3.5 sp

Solution of multiple, independent systems of non diagonally dominant, scalar, penta-

diagonal equations. SP is representative of computations associated with the implicit

operators of Computational Fluid Dynamics (CFD) codes such as “ARC3D” at NASA

Ames.
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[19] Qiong Cai, José González, Ryan Rakvic, Grigorios Magklis, Pedro Chaparro,
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torre, Alejandro Martinez, Raúl Martinez, and Antonio Gonzalez. Boosting

single-thread performance in multi-core systems through fine-grain multithread-

ing. In Intl. Symp. on Computer architecture (ISCA), pages 474–483, June 2009.

[76] Carlos Madriles, Pedro Lopez, Josep Maria Codina, Enric Gibert, Fernando

Latorre, Alejandro Martinez, Raul Martinez, and Antonio Gonzalez. Anaphase:

A fine-grain thread decomposition scheme for speculative multithreading. In

Intl. Conf. on Parallel Architectures and Compilation Techniques (PACT), pages

15–25, September 2009.

[77] Grigorios Magklis, Michael L. Scott, Greg Semeraro, David H. Albonesi, and

Steven Dropsho. Profile-based dynamic voltage and frequency scaling for a

multiple clock domain microprocessor. In Intl. Symp. on Computer Architecture

(ISCA), pages 14–27, June 2003.
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