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Abstract. It is shown that among all arrival processes (not necessarily stationary or renewal type) for an 
exponential server queue with specified arrival and service rates, that the arrival process which mmimizes 
the average delay and related quantities is the process with constant interarrival times. The proof is based 
on a convexity property of exponential server queues which is of independent interest. The folk theorem 
provides a lower bound, which is readily computable by existing methods, to the average delay in a 
network of queues under rather general routing disciplines. A sharper lower bound on average delay is 
provided for the special case of Generalized Round Robin routing for a Poisson arrival process. 
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1. Orientation and Statement o f  the Folk Theorem 

The purpose of  this paper  is to formulate and prove a certain folk theorem about  
queues. While the result is intuitively reasonable, its p roof  may  not be so apparent.  
Roughly speaking, the theorem (stated as Theorem 1.1 below) says that among all 
arrival processes for an exponential  server queue with specified average arrival and 
service rates, the arrival process which minimizes the average delay (and all moments  
of  the delay, as well as other related quantities) is the process with constant 
interarrival times. 

The p roof  of  Theorem 1.1 is given in Section 3. The  proof  relies heavily on a 
convexity property of  exponential server queues- -namely ,  that the expected number  
o f  customers in an exponential  server queue (as well as all higher moments)  at a 
given time is a convex function o f  the set o f  previous interarrival times. This property 
is established in Section 2 and is o f  interest in its own right. 

In  Section 4 it is shown how Theorem 1.1 can be used to lower bound the average 
delay in a network o f  queues under  a rather general class o f  routing strategies. This 
application, and indeed this whole paper, is motivated by the problem of  min imum 
delay routing in a packet-switched communicat ion network (see [1], [5-7], [9], [12], 
[16] and [20]). 
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The server considered in Theorem 1.1 is actually more general than an ordinary 
expofiential server in that batches of customers can depart simultaneously. This 
generality is exploited in Section 5 to obtain a rather accurate bound on the delay in 
an exponential server queue when the arrival process is derived from a Poisson flow 
by a Generalized Round Robin routing policy. 

The remainder of this section is divided into four subsections. In Section 1.1 the 
basic assumptions about the arrival and service processes are defined. In Section 1.2 
it is shown that the folk theorem is easily established within the class of arrival 
processes with independent, identically distributed interarrival times, for then a 
variant of  the well-known theory of G/M/1 queues applies. In Sections 1.3 and 1.4 
the folk theorem is formulated and stated as Theorem 1.1 and its corollary. 

1.1 FORMULATION OF AN EXPONENTIAL BATCH=SERVER QtrEoE WITH A GENERAL 
ARRIVAL PROCESS. Consider a queue in which there is an exponential server with 
the modification that customers are served in batches. Specifically, when the queue 
is nonempty suppose.that batches of service occur at a constant rate p > 0 and that 
the potential numbers of customers served in the batches are given by independent 
random variables with some common probability distribution (q~)k~l. The number of 
customers (Nt)t~ in such a queuing system subject to an arbitrary arrival random 
process can be described by the equation 

A N t  ffi A A t  -- min(Nt_, A D t ) ,  t >-- 0; No given, 

where ANt ffi N t  - Nt-, and 

(1) (Nt)t_,o is integer=valued, and has right-continuous-with-left-limits sample paths; 
(2) (At)t_,.o is a random counting process (i.e., Ao ffi 0 and (At) is integer-valued and 

has nondecreasing right=continuous sample paths); 
(3) (Dt)t~ is a compound Poisson counting process with jump rate v > 0 and jump 

size distribution (qk); 
(4) No is a non.negative, integer-valued random variable. 

Thus At is the number of arrivals in the interval (0, t], Dt the number of  potential 
departures in the interval (0, t ], and No the initial number of customers in the system. 

The average service rate is defined by 
c o  

l~ ffi v ~ kqk, 
k - 1  

and may be infinite. The process (Dr) is an independent-increment, pure jump 
Markov process with infinitesimal operator O (i.e., backward Kolmogorov operator-- 
see [3, Sections 15.4-15.5]) defined by 

ao 

Of(l) ffi v Y. qk(f(k + l) - f ( l ) )  
k--1 

for bounded functions f on Z+ (where Z÷ is the set of nonnegative integers). For 
example, 

d Ef(Dt) ffi EOf(Dt) (1.1) 

for any bounded function f o n  T+, and ifp(k, t) -- P(Dt -- k), then 
¢0 

d_p (l, t) ffi p ~ q~(p(l - k, t) - p(l, t)). (1.2) 
d ~  k--1 
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When (qk) ffi 6x, where 3x denotes the probability measure concentrated at k ffi 1, 
then (1),) is a Poisson process with rate # ffi p. In Section 5 an application is given in 
which a nondegenerate distribution (q~) naturally arises. 

Throughout this section the following independence assumption is in effect: 

(D,) t~ is independent of  (No, (At)t~_o). (1.3) 

This assumption rules out "feedback" in the sense that it implies that given No and 
(As)o.~,.~,, the future of  the arrival process (As),__., is conditionally independent of  
(N~)o~L-,. 

Define ~'k ffi rain {t:ht >-- k}.  Thus ~'k is the time of  arrival of  the kth customer after 
time zero. Finally, define AT~ to be the number of  customers in the system just before 
the kth arrival after time zero. I f  only one customer arrives (and no customer departs) 
at time ~'k, then -@k ffi N,, -- 1. 

1.2 SPECIAL CASE--INDEPENDENT IDENTICALLY DISTRIBUTED INTERARRIVAL 
TIMES. We shall briefly consider the situation where the random variables 
(rk+x - ~'k)h~ are independent and have a common distribution function F. The idea 
of  this subsection is due to Ephremides [4]. Suppose that 

E[ ' rk+l  - -  "rk] = ~k -1 (1.4) 

so that A is the average arrival rate, and define p ffi A/#. By an easy extension of  the 
well-known theory of  G / M / I  queues [17], i fp  < 1, then 

lira P(Nk ffi j )  = (1 - x)x J (1.5) 
k---~ oo 

where x is the unique solution in the interval (0, 1) of  the equation 

where 

F*(-Q(x)) ffi x (1.6) 

oo 

Q(x) = ~ y, (x k - l)¢k (1.7) 
k--I 

and F*(s) = E exp(--S0"k+l -- ~'k)) denotes the Laplace transform of  F. 
Among all distributions F satisfying eq. (1.4), x is minimized by F = 6x-1, the 

distribution concentrated at the single point A -1. That is, x* <_ x where x* is the 
unique number in the interval (0, 1) satisfying 

( - ~ )  = x *  (1 .8)  exp 

Indeed, by Jensen's inequality and the convexity of  the function exp(-sl-) in r we 
have exp(-s/A) _ F*(s) for s > 0. In particular, exp(Q(x)/A) <_ F*( -Q(x) )  = x. 
Since also exp(Q(1)/h) ffi 1 and the function exp(Q(y)/A) is strictly convex, 
exp(Q(y)/A) < y for x < y < 1 so that indeed x* _< x. 

If '~'  is any nondecreasing function on Z +, then the expectation of  @ with respect 
to the geometric distribution in eq. (1.5) is a nondecreasing function of x. Thus a 
consequence ofeq.  (1.5) and the fact that x in eq. (1.5) satisfies x >_ x* is that i f ' t '  is 
any nondecreasing function on Z+, then for any interarrival distribution F with A 
fixed, 

lim E~I'(.Nk) _> E*~I' (1.9) 
k - - . + ~  
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where 

I,~0 ~(i)(1 - x * ) ( x * ) '  if  p <  1, 
E,xit = - (1.10) 

t sup ~( i )  if 0 ~ 1. 

I f  No is bounded, equality is achieved in (1.9) when F -- $x-~ or equivalently, when 
• k ffi k /X for all k. 

The main result of this paper (Theorem 1.1 below) is an extension of the inequality 
(1.9) to general arrival processes under the additionalassumption that Pit is convex as 
well as nondecreasing. 

1.3 GENERAL AStmVAL PROOESS~.S. Since we will no longer assume that the 
arrival process (At) is a renewal process, or that it is even asymptotically stationary, 
there is no longer a unique way to de/me the average arrival rate. We will thus 
consider the following two conditions, each of which roughly mean that the average 
arrival rate is at least X: 

E~'n 
lim sup <_ ~-1 (1. l | )  

n-..,oo n 

lim " E A T >  m--,Lnf T -- A. (1.12) 

Neither of  these two conditions implies the other (see Appendix A). Note that A r / T  
is the time-averaged arrival rate over the fixed interval (0, T], while ( ,n/n) -1 is the 
time-averaged arrival rate over the random interval (0, ~-,,]. Conditions (1.11) and 
(1.12) each reduce to the condition that E(~'k+l -- zk) -- 'A -1 when the interarrival 
times are independent and identically distributed. 

The main theorem will now be stated. It is proved in Section 3. 

THEOREM l.l .  Let ~ > 0 and define 0 = X/#. Suppose that • is a nondecreasing 
convex function on Z+. Then 

(a) Condition (1.11) implies that 

1 

k--1 

(b) Condition (l.12) implies that 

U ..Ln i st*q,; 

where E*'P is defined by eqs. (1.iO), (1.7), and (1.8). 
1.4 APPLICATION TO WAITING TIMES IN EXPONENTIAL SERVER QUEUES, In this 

subsection it is assumed that the queue has an exponential server of  rate # > 0. Hence 
(qk) = St, Q(x) = #(x - 1), and eq. (1.8) for x * becomes 

x* - -  1 
exp - -  -- x* (1.13) 

0 

where p -- ?,/#. Now, let IV~ denote the waiting time in the queue of  the kth customer 
to arrive, excluding the service time of  the kth customer. The order of  service can be 
arbitrary. Let Fp denote the equilibrium waiting time distribution of  a typical 
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customer in a D / M / I  queue with first-come-first-serve (FCFS) service order. Ex- 
plicitly [17], 

F o ( y  ) ffi 1 - x *exp(-#(l - x*)y). 

COROLLARY. SUppOse that ~b is a nondecreasing, convex function on 1R+. Then 
condition (1.11) implies that 

l iminfE I ~ ~(W,)>_ ~l,(x)F,(dx), 
,~0, n k--1 

and condition (1.12) implies that 

lim infE 2 > ~b(x)Fo(dx). 
T--,~o k--1 ~ B 

Pttoor. We will first prove the corollary under the assumption that the queue is 
im'tially empty and a FCFS service order is used. Define the function ~t, on Z+ by 
'~(n) ffi E[~I'(Wk) I Nk ffi n]. Then 

E¢(W,)  ffi E,I,(~7~) (1.14) 

and 

o** O(x)Fp(dx) ffi E*~.  (1.15) 

It is shown in Appendix B that ,I, is convex and nondecreasing on Z+. Therefore 
Theorem 1.1 applies and in view of eqs. (1.14) and (1.15) the conclusion of Tbeorem 
1.1 coincides with that of  the corollary. This establishes the corollary under the 
restriction that the queue is initially empty and a FCFS service order is used. 

The corollary can then be deduced in the general case from the following fact. If 
the initial number of customers in the queue and all of the arrival and departure 
times are fixed, then for each n the sum 

k-1 

is minimized among all possible service orders by the FCFS order under the above 
restrictions on O. (See [18]. Also, this fact is a consequence of an inequality due to 
Hardy, Littlewood, and Polya [8].) [] 

Remark. After the appearance of the original manuscript of this paper, P. 
Humbler [10] obtained a generalization of the corollary which includes systems with 
general independent identically distributed service times. (This also generalizes 
results in [15] and [2] in which the arrival processes are all assumed to be renewal 
type.) Humblet's proof is similar to our proof of Theorem 1.1 given in Section 3. 
Overall his proof is much simpler since for the problem he considers the convexity 
property (i.e., the analog of  our Proposition 2.1) is immediate. Whether or not our 
Theorem 1.1 (which, in particular, allows batch service) can also be generalized to 
include general service distributions or, for example, multiple servers, remains open. 

2. A Convexity Property of  Exponential Server Queues 

Fix a time I-, and fLX numbers t,, i --> 1, which give the lengths of  the time intervals 
delineated by 1" and the arrival instants before time ~-, counting backward. Thus, the 
arrival instants before time ~- are s, -- ~- - tl . . . . .  t~ for i >_ 1, and by convention 
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we set So --- ~'. Also, fix a positive integer m and suppose that the queue is empty just  
before time sin. (This assumption is relaxed in the remarks following the proposition 
below.) 

Assume that the server is governed by a compound Poisson potential departure 
process (Dr) with jump rate ~, and jump-size distribution (qk) as in Section 1. Hence, 
if Y, denotes the potential number of  departures during the interval Is,, si-x), then the 
distribution of  the vector Y = (Yt, Y2 . . . .  , Y-0 depends on t = (tt, t2 . . . . .  t,~) and is 
given by 

Y1, Y2 . . . . .  Ym are independent; P[ Y, = k] = p(k, ti), (2.1) 

where p( . ,  t) is the probability distribution of  Dr. 
The number of  customers in the queue just before time s, is the random variable 

n,(Y) where n,, 0 _< i _ m, are the functions o f y  in Z~ defined by 

n,~(y) -- 0 (2.2) 

and 

n,_~(y) = max(n,(y) + 1 - y,, 0) for 1 _< i_< m. (2.3) 

In particular, no(Y) is the number in the queue just prior to time ,. 
The main result of  this section is the following proposition. 

PROPOSITION 2.1. For a function f t  on Z+ define the function d,, on IR'~ by 

Jm(t) -~ eft(no(Y)). (2.4) 

I f  f t  is nondecreasing then Jm is nondecreasing in the component-wise ordering on l~'g. 
I f  f t  is nondecreasing and convex, then Jm is convex on ~'g. 

Remarks. (1) If  it is not assumed that the queue is empty just before time s,~, 
then n,(y) (where n,(y) is defmed by eqs. (2.2) and (2.3)) is less than or equal to the 
number in the queue just before time s,. 

(2) The proposition readily extends to cover the number in the queue at time r as 
a function of  the infinite collection t,, i >_ 1 of  interarrival times counted backward 
from time ~-. Begin with an alternative expression for n0(y) which can be derived 
from eqs. (2.2) and (2.3) by induction on m: 

n 0 ( y ) - -  max i -  ~ yk, 
0 ~ _ m  k - 1  

where the sum is taken to be zero if i = 0. Thus, 

J,( t l  . . . . .  t , )  = E f t '  (max/-o~,_<m k-1 ~ Y') (2.5) 

where (Y,) satisfies (2.1). Now let X be the set of  infinite sequences t = fit, t~ . . . .  ) 
where 0 ___ t, < +oo. Suppose that '~" is nondecreasing. Then expression (2.5) shows 
that as a function on X, Jm is nondecreasing in m for each t. Hence we may define 

J( t ) - -  lira Jm(t~ . . . . .  tin) (2.6) 
m,..~oo 

with the provision that J(t) may equal +oo. Letting m tend to infinity in eq. (2.5) and 
using Lebesgue's Monotone Convergence Theorem implies that 

J ( t ) - -  E f t  ,(sup/-,~ k-, ~ Y ' )  (2.7) 
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with the provision that ~I,(+~) ffi sup{~I,(k):k _> 0}. Equation (2.6) provides a direct 
probablistic interpretation of  J. The function J is the analog corresponding to 
m ffi + ~  of  the function am. Proposition 2.1 extends to J - - t ha t  is, J is nonincreasing 
in the componentwise order on Z, and if'~' is convex, then J is convex on ~. Indeed, 
these properties are true since J is the limit of  functions with such properties. 

In the special case that t, ffi h -~ for all i, the random variable 

sup i -  ~ Yk (2.8) 

has the distribution of  the number in a D / M / 1  queue just before a typical arrival 
time. Therefore eqs. (2.6) and (2.7) imply that 

lim J~(X -~, X-x, . . . ,  X -~) --- E*ff'. (2.9) 

Proposition 2.1 will be proved after we present some preliminary notation and 
lemmas. Let a, denote the map from Z m to Z m which increases the ith coordinate by 
one. Thus 

a, (y l  . . . . .  ym) f f i  ( y l  . . . . .  y*--l, y, + 1, y,+~ . . . . .  y,~). 

Then for k >__ 0 and 1 _< i <_ m det'me the operator A,,~ acting on functions f on Z 
by hi,kf(y) -- f (a~y)  -- f(y).  Finally, for y E Z 2  and 1 ___ i < m let 

g,(y) -- min{na(y):0 _< a < i}. (2.10) 

Note that g,(y) = n0(y). Moreover, g,(y) is the largest amount by which n0(y) can be 
decreased by increasing y, (and leaving the other coordinates of  y fixed). 

LEMMA 2.2. For 1 <_ i <_ j <_ m, 

no(a~y) ffi no(y) - min(k,  g,(y)), (2.1 I) 

g,(ajty) = g,(y) - min(1, g,(y)), (2.12) 

and 

n0(a~as~y) ffi no(y) - min(k + l, k + gj(y), g,(y)). (2.13) 

Equation (2.1 l) is an easy consequence of  the interpretation of  g,. To PROOF. 
prove eq. (2.12), consider what happens as the number of  potential services Ys is 
increased one at a time. Call an additional potential service effective ff it causes no to 
decrease by one. Now, each potential service corresponding to increasing yj by one 
which is effective will decrease nb by one for all b with 0 -- b < j ,  and hence g, will 
decrease by one. On the other hand, if such an additional potential service is not 
effective, then (prior to the addition of  the service) either g, ffi 0 or nb -~ 0 for some 
b with  i _< b < j. Consequently g, is unchanged by an increase in yj which is not 
effective. This establishes eq. (2.12). 

Application of  eq. (2.11) with y replaced by c~y yields that 

no(a,kaJy) ffi no(a~y) - rain(k, g,(a~y)). (2.14) 

Finally, using eq. (2. I I) with i replaced by j and eq. (2.12) in the right side of  (2.14) 
yields eq. (2.13). [] 

LEMMA 2.3. For f i x e d  y E 77'2, let no and g, denote no(y) and g~(y), respectively. 
Then f o r  I < i <_ j <_ m, 

A,,k~I'(no(y)) = '~'(no -- min(k,  g,)) - ~'(no) (2.15) 
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A,,kAs,t~(no(y)) = ~l(no) - ~l(no - rain(k, g,))  
- 'll(no - min(l, gs)) + ~(no - min(k  + 1, k + gy, gi)). (2.16) 

PROOF. L e m m a  2.3 is an  i m m e d i a t e  consequence  o f  eqs. (2.11) a n d  (2.13) a n d  
the  def in i t ions  o f  A,~ a n d  As,z. [ ]  

T h e  ident i ty  g iven  in the  next  l e m m a  provides  an  a l te rna t ive  express ion  for  the  
r ight  side o f  eq. (2.16). 

LEMMA 2.4. Adopt  the convention that ~ ( k )  = ~(O) f o r  all k <_ O. Then f o r  0 <_ s 
<_ r <<. no and k, l>_ O, 

• (no) - '~l(no - min(k,  r)) - ~(no - min(l, s)) 
+ ~l(no - min(k  + l, k + s, r)) (2.17) 

is equal to (using ( a < r, s <_ b} to denote { a < r <_ b and a < s <_ b}) 

I r a  < r, s}[~ ' (no - a) - ~ ( n o  - a - 1) - ff'(no - k - a)  
l - 1  

a~O 

+ ~I'0(n - k - a - 1)] 
1--1 

+ ~ l { a < r , s < _ a + k } [ ~ l ( n o - k - a ) - ~ t ' ( n o - k - a  - 1 ) ] .  (2.18) 
am0 

P R o o f .  T h e  first s u m  in express ion  (2.18) is equa l  to 
l - - I  

I ( a  < s} ['~'(no - a) -- '~'(no -- a -- 1)] 
am0 

l--1 

- ~, I ( a < s ) [ ~ ( n o - k - a ) - ~ ( n o - k - a -  1)] 
a~O 

which ,  since the  sums  telescope,  is equa l  to 

' / ' (no) - ' I ' (no - min(l ,  s)) - [ff'(n0 - k)  - ' t ' (no - k - min( l ,  s))]. (2.19) 

T h e  second  s u m  in express ion  (2.18) is equa l  to 
l--1 

I (m in ( s ,  (r - k) +) --< a < s} [xt'(no - k - a) - ~ ( n o  - k - a - 1)] 
a--O 

= - - ~ ( n o  -- k - rain(t,  s)) + ~ ( n o  - k - rain(l,  s, (r  - k)÷)). (2.20) 

C o m b i n i n g  express ions  (2.19) a n d  (2.20) yields tha t  (2.18) is equa l  to  

• I ' (no) - ' t ' (no - rain(l,  s)) - ' t ' (no - k)  + ' t ' (no - k - rain(l,  s, (r  - k)+)). (2.21) 

N o w  i f  k > r, the  s u m  o f  the  last  two  te rms  in express ion  (2.21) is zero,  so the  
express ion  is u n c h a n g e d  if  k is r ep laced  b y  rain(k,  r). Thus ,  (2.18) is equa l  to 

ff'(no) - ~(no - rain(l, s)) - ~ll(no - min(k ,  r)) 
+ ' t ' (no - ra in(k,  r) - min(l ,  s, (r - k)+)). 

By  cons ide r ing  separa te ly  the  cases k _ r a n d  k > r, this express ion  is read i ly  seen to 
be  equa l  to express ion  (2.17). [ ]  

LF.MMA 2.5. Suppose ~t" is convex and nondecreasing on Z +. Then f o r  all y E Z'~ 
and integers k,  1 >_ O, the matrix  

{(A,,kAs,z + A,,zAs,k)~(no(y))}~<_,,s<_~ (2.22) 

is positive semidefinite. 
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PROOF. Let  no and  g, denote  no(y) and  g,(y), respectively. I f  i ___ j ,  then  0 _< gj 
g, ~ no, so tha t  L e m m a  2.4 with r = g, and  s = g~ can  be appl ied to the right side o f  
eq. (2.16). Thus,  i f i  _<j, then  

(Ai,ka,,t + A,,tAy,k)~I'(no(y)) 
1-1 

= ~ I (a  < g,, g:} [~(no  - a) - xlt(no - a - 1) - xIt(no -- k - a) 
a - - 0  

+ ~ ( n o - k - a -  1)] 
4--1 

+ ~ l {a  < g,, gy} [ff'(no - a) - ~ (no  - a -- 1) - ff'(no - l - a) 
a - - 0  

+ ',I'(no - ! - a - 1)] 
l--1 

+ ~ I (a  < g,, g~ <_ a + k} [~(no - k - a)  - ~t'(no - k - a - 1)] 
a - - 0  

k - 1  

+ Y, I (a  < g,, g~ <_ a + l} [~t'(no - l - a) - '~'(no - 1 - a - 1)]. 
a--O 

(2.23) 

Since each  side o f  eq. (2.23) is symmet r i c  in i and  j ,  the equa t ion  is val id for  all i, j 
wi th  1 _ i, j _< m. 

N o w  each  mat r ix  o f  the fo rm (I{a < g,, g~ <_ b})l.~,j~_m is posi t ive semidefmi te  
since it can  be  wri t ten as vv T where  v is the m-vec tor  wi th  v, = I{a  < g, <_ b). Thus  
eq. (2.23) and  the proper t ies  o f '~ '  show tha t  the mat r ix  (2.22) is a l inear  combina t i on  
with  nonnega t ive  coefficients o f  symmet r i c  posit ive semidefmi te  matrices.  Since a 
symmet r i c  m x m mat r ix  A is posit ive semidefmi te  if  and  only  i f  vTA v is nonnega t ive  
for  all m-vectors  v it is clear tha t  the set o f  such matr ices  is closed unde r  addit ion.  
This  implies  the desired result. [ ]  

PROOF Or PROPOSITION 2.1. Def ine  the opera to r  O, acting on  b o u n d e d  funct ions 
f o n  Z ~  by  

O,f(y) = v E q~A,,~f(y). (2.24) 
k - 1  

T h e n  #, is the s ame  as # appl ied  to f ( y )  as a funct ion of),, for  the  o ther  coordinates  
o f  y fixed. Since the r a n d o m  var iables  Y~ . . . . .  Y,n are independent ,  repea ted  use o f  
eq. (1.1) yields tha t  

#Jm 
(0  = eO,~(noOi)) 

Ot, 

and 

Thus ,  by  eq. (2.24), 

and 

(0  = Eo,¢ ,P(no(Y)). 
8t, Stj 

Ot, ( t ) =  Ev ~ qkA,,k¢l(no(Y)) (2.25) 
k - 1  

oo co 

a2Jm (t) Eva Y, E qkqtA,,kA,,t~(no(Y)). (2.26) 
Ot,Ot~ k--1 l--1 
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By the symmetry in k and I of the sum in eq. (2.26), 
O2jm vz oo 0~ 

Ot, Otj (t) = E ~- ~1 t-~l qkq,[a,,ha,,z + a,.za,A'I'(n0(Y)). (2.27) 

By eq. (2.15) each term in the sum on the right side of  eq. (2.25) is nonpositive if ~I, 
is nondecreasing. In this case, therefore, arm is nonincreasing in t. 

Now suppose that • is convex and nondecreasing. By Lemma 2.5 and the 
representation (2.27) the Hessian matrix V2Jm of  second partial derivatives is a limit 
of  linear combinations with nonnegative coefficients of  symmetric positive semi- 
definite matrices. Since the set of  symmetric positive semidefinite matrices is closed 
under addition and limits (see proof of  Lemma 2.5), V2j,,, is thus also positive 
semidefmite. Hence, Jm is convex (see [14, p. 27, Th. 4.5]). []  

3. The P r o o f  o f  Theorem 1.1 

First the basic idea of  the proof of Theorem 1.1 will be explained and then the 
detailed proof will follow. At the time of  each arrival the expected value of  the 
function ~I' of  the number of  customers in the system is a function (given by d in 
Section 2) of  the interarrival times for the previous arrivals. By choosing a customer 
at random a distribution is induced on the vector of  past interarrival times. The fact 
that the arrival rate is at least A places a constraint on this distribution. Specifically, 
it implies that the average interarrival time is at most h -1. Thus Jensen's inequality 
and the convexity property of, /established in Proposition 2.1 yield the desired result. 
We shall now begin the actual proof. 

Assume the notation of  Section 1 and suppose that q is a nondecreasing convex 
function on Z÷. For fixed k, the random variables ~'k -- *.k-~, *.k-X -- *'k-2 . . . .  are the 
interarrival times, counted backward from time *k. Since .~k is the number in the 
queue just before time *.k, Proposition 2.1 (and the first remark following it) yield 
that for all integers m and k with k _> m + 1, 

E(xP(Nk) IAt ,  t >- O, No) >-- J,n(~'k - I"k-1, ~'k-a -- ~'k-2 . . . . .  *.k-m+1 -- ~'k-m) (3.1) 

w h e r e  Jm is defmed as in Section 2. 
We now turn specifically to the proof of  part (a) of  Theorem 1.1. Thus, assume 

that condition (1.11) is true. Now taking expectations of  each side of  eq. (3.1) yields 
that 

E~(gVk) >-- EJm(*.k - * . k - l ,  * . k - 1  - -  * . k - 2  . . . . .  ' l ' k - m + X  - -  *'k-m). 

Hence 
tz 

E Z +(Nk) 
k - - m +  l 

n 

>-- (n - m)E I Y. ,L~(*.k -- *.k-l, *.k-1 -- *.k-2 ..... *.k-m+1--'rk-m). (3.2) 
n - -  F n  k - m + l  

Now for fixed k, the ~.~-valued vector (*.k - *.k-1 . . . . .  *.k-,,,+x - *.k-,~) is random 
and is thus by definition a function on the underlying probability space ~. By 
letting k vary, the vector can be viewed as an l ~ - v a l u e d  function on the set 

x (k: m + 1 _ k _< n), and the symbols 

1 

n - m k-m+l 
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represent an expectation with respect to a probability measure on this set. Thus, since 
J,, is convex on IR~, Jensen's inequality [3, p. 80] can be used to bound the fight side 
of  inequality (3.2) from below to yield that 

e Z 
k--m+l 

= (n -  m)Jm (E 1 

>_ (n _ m)Jm ( E 

\ 
n - m "~"rn - "I'm, "rn-1 - Tin-1 . . . .  , 'Tn-m+l - -  T1)) 

1 (¢., 'r,,, . . . ,  "r.)). 
t / r a m  

The last inequality is a consequence of  the fact that .In is a nonincreasing function on 
R$'  (see Proposition 2.1) and ~',, - "r,,_j - ¢m-j for 0 --< j--< m -- 1. Now divide through 
by n and let n tend to infinity (for m fixed) to yield that (using condition (1.11)) 

l i l ~ i n f  e 1-" ~ ~ ( I V k )  ~ J m ( X - l , ~ k - l ,  . . . , ~ k - 1 ) .  
n-*oo n k--1 

Then by (2.9) as m tends to infinity the fight side of  this inequality converges to 
E*xI,. This establishes part (a) of  Theorem 1.1. 

We shall now turn to the proof of  part (b) of  Theorem 1.1, so assume that condition 
(1.12) is true. Now multiplying each side of  eq. (3.1) by I(rk  ----- T} and taking 
expectations yields that 

E q ~ ( l ~ k ) l ( ¢ k  ~ T }  >-- E(Jm('rk - "fk-~ . . . . .  q'k-m+l -- "rk-m)I(rk < T}). 

Forming the sum of  each side of  this inequality over k from m + 1 to infinity yields 
that 

A T no 

E Y. ' ~ ( N k )  >-- E Y. J,,,O'k -- ~'k-1 . . . . .  Ck-m+~ -- ~'k-m)I(~'k <-- T ) .  (3.3) 
k - m ÷ l  k - m + l  

Now 

E 
co 

2 
k-m+ l 

I{¢~ _< T) ffi E max(AT -- m, 0), 

so that using the convexity of  J,n and Jensen's inequality to lower-bound the fight 
side of  inequality (3.3) yields that 

AT 
E 2 

k--m+ l 

~-- E m a x ( A T  - m, 0)Jm --(  E 2'~'m+1 (~" - ¢k-1,. •.,  "E----mm~iA--~-- ~ ,  0")~'-m+x -- ~',--m)I(Ik ~- T ) )  

>-- ( E A T  --  m)Jm \ E A T  - (3.4) 

where we have assumed that T is so large that E A T  - m >_ O. The final inequality is 
a consequence of  the fact that arm is a nonincreasing function on R ~  and the 
inequalities 

E max(AT -- m, 0) _> E A T  - m 
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and 

2 ('r,_~, -- ' rk - / -1 ) I ( ' rk  ~ T} --< T 
k - m  + l 

for O<_j<_m-- 1. 

845 

Dividing each side of inequality 0.4) by EAT and letting T tend to infinity (for m 
fLxed) yields that (using condition (1.12)) 

lira inf E Y, > jm(~-l, ~-1 . . . . .  ~--1). 
T--* oo k - 1  EAT 

Finally, by (2.9) as m tends to infmity the right side of this inequality converges to 
E*q', and the proof of Theorem 1.1 is complete. [] 

4. Application to Routing in Queuing Networks 

The purpose of this section is to apply Theorem 1.1 to provide a lower bound to the 
mean message delay in a network of exponential server queues under nonfeedback, 
loop-free routing strategies. First the network model will be described. Consider a 
network of M queues such that the service time distribution of the kth queue is 
exponential with mean #~-1. Let customers enter the kth queue from outside the 
network at an average rate ~,k, and suppose that there is an M x M matrix R = (rz, k) 
(called the routing matrix) such that, over a long period of time, a fraction rz, k of the 
customers which depart from queue I are next sent to queue k. Typically rt, k # 0 only 
if (/, k) ~ ~ for some subset c~ C ( 1 . . . . .  M} x { 1 . . . . .  M} denoting connectivity. 

We shall assume that the network is stable in the sense that the average rate of 
flow out of each queue is equal to the average rate of flow into the queue. Then the 
total average rates of flow ~,1 . . . . .  AM into the M queues are determined by the 
conservation of flow equations 

A problem often faced in the design and operation of such a queuing network is 
to choose appropriate parameter values (e.g., the routing matrix) in order to minimize 
the average delay per customer in passing through the network. Hence it is important 
to calculate or at least to bound the average delay. One solution to this problem is to 
assume that the incoming streams of customers are given by independent Poisson 
processes, and to assume that an "independent splitting" routing strategy, described 
next, is used. (Another routing strategy is described in the next section.) Under an 
independent splitting routing strategy, a customer exiting from queue 1 decides to 
join queue k next with probability r~,k, and the decision of which queue to join next 
is made independently of the past history of the entire network. Then by a well- 
known theorem of Jackson [9] the equilibrium distribution can be explicitly described 
(it has the "product form"), and the average delay per customer (service times 
included) is given by 

k ~ (4.1) 

where -f --- Y,k yk and d(p) = p/(1 - p). 
Various algorithms have been proposed for choosing the routing matrix R to 

minimize D in (4.1) for a given set of input rates (yk). (See, e.g., [1, 7, 9, 12, 16].) It 
is often the case, however, that some routing strategies other than independent 
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splitting achieve a smaller average delay per customer. For example, for routing a 
single stream of traffic through two parallel exponential server queues, it is shown in 
[5] that the routing strategy which minimizes the average delay per customer is the 
Round Robin strategy which sends every other arrival to one queue. For more 
general networks it appears very difficult to fred the minimum delay routing strategy, 
although it is clear that in most cases the optimal routing strategy is not an 
independent splitting type [5, 20]. 

Hence it is important to have a lower bound on the average delay achievable by 
general routing strategies. Such a bound is implied by Theorem 1.1. The bound is 
valid even if the incoming traffic streams are not Poisson processes, and the routing 
strategies need not be time-invariant. 

In order to apply Theorem 1.1, assume that the total average arrival rate (in the 
sense of condition (1.11) or condition (1.12)) of customers into the kth queue is at 
least Xk. Further, we must require that the independence assumption (1.3) holds for 
each of the queues in the network. This assumption rules out feedback routing 
strategies in which the number of customers in the queues downstream is fed back to 
the routing mechanism at a given queue (such as in [6]). Moreover, in most instances, 
the assumption is likely to be invalid if it is possible for customers to travel in loops-- 
thereby visiting a given queue more than once. 

Under these assumptions, the corollary to Theorem 1.1 yields that the average 
waiting time (including service time) in the kth queue for customers passing through 
the kth queue is at least 1/(1 - x*)#k whore x* satisfies eq. (1.13) with p = Xk/#k. 
(Once again, average waiting time here is in the sense of Theorem 1.1.) Thus 
by Little's result, the average number of customers in the kth queue is at least 
Xk/(1 -- x*)#k = d(p) where (using eq. (1.13) for x*), 3 is the function implicitly 
defined by 

p -- d(p) (1 - exp [ff~pl)]), 0 _ < p < l .  (4.2) 

Hence, again by Little's result (applied to the network as a whole), the average 
waiting time per packet in the network is lower bounded by 

l . 3 )  

where a is defined by eq. (4.2). Now a is convex and increasing on (0, l) andd(p) 
tends to infinity as p approaches one. Since the expression (4.3) has the same form 
as D in eq. (4.1), existing algorithms [1, 9] can be used to minimize the expression 
(4.3) over the parameters of interest, yielding an absolute lower bound to average 
delay for all loop-free, nonfeedback routing strategies with given external arrival 
rates (Tk). 

5. Application to Generalized Round Robin Splitting of a Poisson Flow 

Consider a flow of customers who arrive according to a Poisson process (.4t)t~ with 
rate o~ _> 0 and which are routed into one of M parallel queues. A Round Robin 
(RR) routing policy is characterized by the fact that any M consecutive arrivals are 
routed to the M distinct queues. In order to split the traffic asymmetrically, a 
Generalized Round Robin (GRR) policy could be used. Under a GRR routing 
policy, customers are routed solely on the basis of their order of arrival. More 
precisely, a GRR routing policy is specified by an infinite sequence (sk)~o (called a 
routing or splitting sequence) such that 1 <_ sk --< M and sk indicates the queue to 
which the kth arrival will be routed. 
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Suppose that a G R R  routing policy is used and consider one of  the M queues, say 
queue number one. Suppose the queue has an exponential server of  rate/t, and let 
(/3t) be a Poisson process of rate #, independent of (At), which models potential 
departures at queue one. Let u, denote the index, among arrivals routed to all queues, 
of the ith customer to be routed to queue one, and let Ak denote the number among 
the first k arrivals which are routed to queue one. Note that (ui) and (Ak) are 
deterministic sequences which are simply determined by the routing sequence. For 
example, the sequences un ffi nM and Ak = [k/M] (where Ix] denotes the largest 
integer less than or equal to x) arise from a (nongeneralized) RR strategy. 

Let .~, denote the number of customers in queue one just prior to the ith arrival at 
queue one. The number p represents the fraction of arrivals which are routed to 
queue number one. The purpose of this section is to prove the following proposition. 

PROPOSITIO~ 5.1. Let ~" be a nondecreasing, convex function on Z+. Then 
u,~ 1 n 

(a) I f  l imsup- -  <_p-1, then l im in fE-  ~ xI,(j~,)_> E*'~'; 

(b) I f  > p, then tim infE Y. >_ E*~;  
- ~.-.= ~=x EAk 

where E*~t ' is defined by eq. (1.10) with p ffi ap/# and if  p < 1, then x* is the unique 
solution in the interval (0, 1) of the equation 

a -- x * .  (5.1) 
( 1  - x*) t t  + a 

The inequalities in (a) and (b) are all equalities if  u,, ffi nK and p ffi I l K  for  some 
positive integer K. 

Remark. Many GRR routing disciplines are attractive because they are as easy 
to implement as independent splitting (which was described in Section 4) and yet 
often provide significantly smaller queuing delays [20, 5]. For example, we conjecture 
that for a given probability p a routing sequence such that Ak = [pk] yields the 
smallest mean delay at queue one among all deterministic routing sequences for 
which either condition (a) or (b) of Proposition 5.1 are satisfied. 1 (Curiously enough, 
although such conditions are compatible for two parallel queues they can be 
incompatible for three or more queues--suppose for example that the stream is to be 
split three ways in proportions (1/2, 1/3, 1/6).) Proposition 5.1 establishes this 
conjecture in casep ffi 1/K for some integer K. Ifp is rational this rule can be realized 
by periodic rout~mg sequences. If the routing sequence is periodic, then the limiting 
distribution of N, can be conveniently computed by the method of Markov processes 
with phases (see Neuts [13]). This was carried out in [19] and some results are 
pictured in Figure 1. The bound given by Proposition 5.1 is nearly reached for some 
periodic GRR sequences. 

PP.oov. Extend the sequence (Ak) to a (deterministic) cont'muous-parameter 
process ( A u ) ~ +  by defining Au ffi Atul. Note that the sequence (uk) consists of  the 
jump times of (Au). The idea of the proof is to show that N, can be viewed as the 
number of customers in a queue just before the ith arrival when the arrival process 
is (Au) and the server is governed by a certain compound Poisson process, representing 
potential departures. In essence, the trick is to view the potential service process (/)t) 
at queue one and the total arrival process (i/t) on a new time scale. One unit of time 

1 This conjecture has been estabhshed since this paper was originally written; information regarding its 
publication ts available from the author 
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FIG. 1. The  m e a n  number  m an  exponential  server queue 
o f  rate tL (excluding possible customer in service) versus p, 
where p is the  fraction o f  a Poisson stream of  rate A which 
is routed into the queue The  rauo P = A/# is fixed at 0.5. 

on the new scale (which we parameterize by u) corresponds to one interarrival period 
of  (/it). The connection between the two time scales is given precisely by the random 
increasing process (,r,), defmed next. 

Let ~'k denote the time of  the kth arrival, that is, ~-~ = min( t  :At _> k}. With ~'o = 0, 
the sequence 0"k)~_-o is a random walk, and the distribution of  rl is exponential with 
mean a -x. Since the exponential distribution is infinitely divisible the process 0"D 
can be extended to a continuous-parameter process 0"u)=~Ja+ which is right-continuoUs 
and nondecreasing with probability one, and hasstationary, independent increments 
(see [3, Sect. 14.4]. Of  course the extension may require an enlargement of  the basic 
probability space, and should be done so thai (~-=) is independent of  (/)t)). For each 
u, ~-= has a gamma distribution with Laplace transform 

E e  -~= --- . (5.2) 

The number of  potential departures between the arrivals of  customers i and i + 1 
at queue one is Du,.a - D,,, where (D~)u___o is defined by 

Ou -- /3, , .  (5.3) 

Hence, 

IV,+1 = max(0, N, + 1 - (D=,. 1 - Du,)) .  (5.4) 

Since the sequence (u , )  marks the jump times of  (A=), eq. (5.4) shows that ~7, is the 
number of  customers just before the ith arrival in a queue with arrival process (A=) 
and potential service process (D~). Since the two processes (/)t) and (~-~) are 
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independent and each has stationary, independent increments, and since 0"~,) is 
nondecreasing with probability one, it easily follows that the process (D~,) has 
stationary, independent increments. ((Du) is called (13t) subordinated by 0",,).) Since 
(Du) is also nondecreasing and integer-valued, it is thus a compound Poisson process. 
Therefore Theorem 1.1 can be applied to a queue which is governed by the processes 
(A ~) and (Du). If ~, is replaced by p in Theorem I. l, then the conditions of Theorem 
1.1 and Proposition 5.1 are identical. To complete the proof of Proposition 5.1 it 
remains only to identify the jump rate v and jump size distribution (qk) of the process 
(D~) in order to show that eq. (5.1) for x* is the same as eq. (1.8). 

Now, the generating function for Du is (using (5.2) and (5.3)) 

eO~(x) = Ex  D~ = EE[xDulr~] = Ee -~l-x)'~ ~ (1 - x)~ + a 

Taking the generating function of each side of eq. (1.2) and noting that the 
convolution on the right becomes multiplication yields that 

dq, u 
- q , ~ ( x ) a ( x )  

du 

where Q is defined by eq. (1.7). Hence, since ~N(x) -- l, 

Q ( x ) = ~ ( x )  ~-o=log ( l - x ) g + a  " 

By inversion, this implies that 

q~ = ~ and v = log 1 + . 

Equation (5.5) shows that eqs. (5.1) and (1.8) are equivalent. Thus Proposition 5.1 is 
indeed implied by Theorem 1.1. [] 

Appendix A 

The purpose of this appendix is to show that neither condition (1.11) nor condition 
(1.12) implies the other. Examples for which (1.12) holds but (1.11) does not are 
easily obtained by considering the special case T,~ = n X  for all n for some random 
variable X, for then (1.11) and (1.12) become E X  ~ ~-1 and E [ X  "~l] _> X, respectively. 
Thus in the remainder of this appendix we give an example for which (1.11) holds 
but (1.12) does not. 

Let/'1, T2 . . . .  be an increasing sequence of positive integers such that 

T t + T 2 + . . . + T ~ _ t + I < _ T ,  for i_>l.  

Let (U,.~ : i >_ 1, 1 <_ j <_ T,) be an array of random variables such that for each i fLxed 
row i of the array takes values in the set 

{ ( r , ,  0, 0, . . . ,  0),  (0, T,,  0 . . . . .  0),  . . . ,  (0, 0 . . . . .  0, T,)} 

and is equal to any one element of the set with equal probability. Consider the arrival 
process such that ¢n is equal to one plus the sum of the first n variables of the array, 
taken in lexicographic order. Now EU,,: - 1 for each i, j so that E~-,, = n + 1 and 
thus E¢n/n converges to one as n tends to infinity. 

On the other hand, since the first T, + , . .  + T,_~ customers all arrive by time T, 
and since the number of additional customers which arrive by t ime/~ is uniformly 
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distributed on the finite set {0, 1 . . . .  , T~ - 1}, we have that 

I + . . . + T , - 1  
E A r , =  7"1+ T2 + . . .  + Ti-s + 

Ti 
Z - 1  

- - - - 7 1 + 7 2 " 4 - ' ' '  + Ti-l  + ~  
2 

Thus, by choosing the sequence (T,) to increase very quickly we can arrange for 
E A r , / T ,  to converge to one half as i tends to infinity and then 

l im in f  EA  r _ 1 
T--,.~ T 2" 

Condition (1.11) is satisfied for X = 1 but condition (1.12) is not. 

Appendix  B 

In this appendix the following proposition is proved. 

PROPOSITION B1. Suppose that ~P is a convex, nondecreasingfunction on R +  and 
that • is defined on 7_ + by 

• P(n) = E,I,(X1 + X2 + . . .  + Xn) 

where )(1, )(2, . . .  are independent exponential  random variables with parameter  tt. Then 
if' is convex and nondecreasing on Z+. 

LEMMA B2. A n y  convex, nondecreasing funct ion ~p on I~+ has a representation 

~,(x)  = o ( 0 )  + O~(x)a(dc) 

f o r  some positive measure o on IR+ where dPc(x) -- m a x ( x  - c, 0). 

PROOF OF LEMMA. Such a function ~ has a fght-dedvat ive ~ - ( y )  which is 
nonnegative, nondecreasing and right-continuous, such that [14, Corollary 24.4.1 ] 

@(x) = dp(O) + '~'+(y) dy. 

Thus, if o denotes the positive measure on 1~+ such that o ((x :0 _< x - y } )  = @~(y), 
then by interchanging the order of  integration, 

¢ ( x )  --  ¢ ( 0 )  + a(dc) dy 

--  (I,(o) + o 

which yields the desired representation. []  

PRoof  o r  PROPOSITION. With ~c(n)  = EdP~(Xx + . . .  + Xn), direct computation 
yields that (assuming for simplicity that/~ --- 1) 

fc ° X n • I'~(n + l )  - "I'~(n) = ~ .  e - ~ d x  

and 
cn+le-e 

,I,c(n + 2)  - 2"I'~(n + l )  + "I'~(n) = - -  
(n  + 1)! 
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so that ~t% is nondecreasing and convex for each fLxed c > 0. By Lemma B2 and 
Fubini's Theorem which justifies changing the order of integration for nonnegative 
integrands, 

• (n) = ~(0) + E ¢Pc(Xx + X2 + . . .  + X.)o(dc) 

- -  ~ , (o )  + ,~(n)o(d¢). 

Since for each c, ' ~  is nondecreasing and convex, the same is true of ~t'. [] 
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