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ABSTRACT

Robotic assistance through telepresence technology is an emerg-
ing area in aiding the visually impaired. By integrating the robotic
perception of a remote environment and transferring it to a human
user through haptic environmental feedback, the disabled user can
increase one’s capability to interact with remote environments
through the telepresence robot. This paper presents a framework
that integrates visual perception from heterogeneous vision
sensors and enables real-time interactive haptic representation of
the real world through a mobile manipulation robotic system.
Specifically, a set of multi-disciplinary algorithms such as stereo-
vision processes, three-dimensional map building algorithms, and
virtual-proxy haptic rendering processes are integrated into a
unified framework to accomplish the goal of real-world haptic
exploration successfully. Results of our framework in an indoor
environment are displayed, and its performances are analyzed.
Quantitative results are provided along with qualitative results
through a set of human subject testing. Our future work includes
real-time haptic fusion of multi-modal environmental perception
and more extensive human subject testing in a prolonged
experimental design.

Categories and Subject Descriptors
H.1.2 User/Machine Systems, 1.2.9 Robotics, 1.2.10 Vision and
Scene Understanding, 1.4.8 Scene Analysis, H.5.2 User Interfaces.

General Terms
Algorithms, Measurement, Experimentation, Human Factors.

Keywords

Haptic exploration, telepresence, 3D in-situ perception.

1. INTRODUCTION

One of the major functions of current robotic systems is to
promote the welfare of human beings. The advancement in
robotic technology has resulted in various forms of robotic
support for human lives such as cleaning, entertainment,
education, and even medical care, and has introduced new
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application fields such as teleoperation [15] and telepresence [2].
However, robotic techno-logy is usually targeted for general users,
and it is still left with many challenging issues such as
compensating for impaired or disabled sensory functionalities.

Assistive technology, on the other hand, has a long history of
adopting new techniques to aid people with disabilities, and has
opened new opportunities for individuals with disabilities [11,26].
Traditional aids, such as wheelchairs, canes, Braille readers, and
hearing aids, have basically focused on generating passive and
close-range sensory aids. Recent assistive devices, including
electronic Braille adaptors and computer-screen readers for the
visually impaired (VI) or electronic wheelchairs and prosthetic
limbs for the motor impaired, have evolved to transfer more
information to the user and have granted wider access to daily
living for people with impairments, including education and
employment [1]. Nevertheless, all of these tools are designed to
(1) work passively with predefined sources of information, and
(2) aid in mobility or manipulation to assist in daily living but
only in specific conditions. In other words, there is no general
solution yet that functions in various situations, and there is still a
need to push forward research with a focus on providing more
general and multi-purpose support for individuals with disabilities,
as illustrated in Figure 1.

Given the current status of assistive technology and the advance-
ment in robotics, we speculate that a mobile manipulation robotic
platform will be a viable solution to serve as a multi-purpose
assistive tool for people with disabilities. Mobile manipulation is
a fast growing area [7] due to advances in robotic systems,
increases in computing power, and a rising interest in applications
for the home and indoor environment. As an assistive device, a
mobile manipulator can aid an impaired person with manipulative
tasks using its robotic arm and also provide mobility or remote
access using its mobile base. Additionally, a mobile manipulator,
being a robotic agent, can monitor the environment and form a

Figure 1. An image of a mobile manipulator robot serving a
remote user with haptic exploration framework.



haptic pathway to transfer the in-situ perception of the remote
environment to the user. The concept of haptic exploration with a
mobile manipulator (HEMM) [29] has been proposed to integrate
a haptic device with a mobile manipulation system for the use of
an assistive system in two ways: 1) as the controller for the
mobile manipulation system and 2) as the generator for the
environmental feedback to the human user.

This paper discusses our approach for a direct haptic rendering
from sensed environmental data, and displays a framework of
algorithms that can sense the environment, process the sensory
data to get a point-cloud representation of the three-dimensional
(3D) map, and finally transform the perceived environmental data
into a haptic representation. Section 2 lists some of the related
work in the current research of robotics, assistive technology, and
computer vision. , and Section 3 briefly describes a platform for
our haptic exploration using a mobile manipulator. Section 4
provides the details of sensory data processing algorithms that
mainly incorporate several techniques of computer vision
algorithms. Section 5 explains our haptic rendering algorithm
based on a point-cloud spatial dataset. Then, Section 6 explains
the experiment setup for human subject testing of our framework
in a real-world environment. Finally, Section 7 displays the
results of our system in observing and representing several indoor
environments, and Section 8 concludes with discussion and future
work.

2. RELATED WORK

Efforts to utilize robotic systems for assisting the VI can be found
in recent literature [11,20]. However, few studies have focused on
developing assistive robots to increase the sensory modalities for
people with visual impairments (VI). Ulrich et al. developed a
robotic cane [11] that can sense the environment and guide the
individual through the environment with a robotic cane. Another
approach from Kulyukin et al. incorporated a mobile-robot based
guidance approach with RFID devices to help people with visual
impairments navigate in their living areas [20]. Both systems,
however, require the user to be either in contact with a device or
in a preset environment to detect the user’s surrounding
environment, and they are not capable of transferring remote
environmental perception to the user. More recent challenges
consist of a driving system for the VI by utilizing a semi-
autonomous car and a haptic vest [26], and a user study for
robotic shopping using a robotic cart [25]. These efforts present
pioneer studies in the field of assistive robotics in the sense that
they intend to enable a person with a visual impairment to
maintain  independence in daily living. However, more
challenging issues still remain.

For presenting environmental perception to a user with visual
impairments, haptic representation of the data is the most direct
and effective interactive modality, which can be easily derived
from the fact that the most common assistive tools for VI people
are canes and Braille-notes that stimulate tactile sensations.
Haptics is a mature field of engineering research, with varying
applications in the medical field [9], rehabilitation [21], virtual
reality [13], and teleoperation [27]. Its ability to transfer tactile
and textural sensations along with force feedback adds another
dimension of interaction between the human and the system. With

the recent advances in virtual proxy methods [4,16,17,23,28]
haptic rendering of 3D objects has become more convenient and
effective with the aid of graphic libraries such as OpenGL. By
building a detailed 3D model and with the aid of efficient
physical simulation algorithms, calculating the virtual proxy force
has turned out to be a fast and relatively easy process [18].
However, the calculation is based on the condition that the 3D
model must be provided a priori. Haptic rendering of a real 3D
environment is widely known to be quite difficult, and there
remain many challenging problems even in the area of virtual
reality systems [6].

The simplest solution to this dilemma would be to estimate the
real world with various sensors, transform the estimation into a
3D model, and use the previously established haptic rendering
solution. This method, however, does not solve the issue because
transforming the estimated 3D data into a 3D model is far from
simplistic. In fact, this process itself requires multiple stages of
algorithms to work around issues such as occlusion and object
identification. The reconstruction is usually processed off-line due
to the high computation cost [5]. On the contrary, the other
solution—a direct haptic rendering from the estimated data
itself—provides a totally new approach and is one of the key
contributions of this present work. Instead of creating a 3D
graphical model, this method uses point-cloud based 3D data and
directly applies a point-cloud based virtual proxy algorithm for
haptic rendering. The advantages include fast computation time
and a more flexible structure for coping with dynamic
environments.

As discussed in [25], one of the most critical reasons that limit
assistive tasks in daily living is the perceptional matching of the
environment with the system it is handling. In this sense, this
research focuses on the problem of presenting environmental
perception to a user with visual impairments, and presents a novel
solution framework that provides both active sensing capabilities
and effective transference of the detailed environmental data
through a haptic modality.

3. HAPTIC EXPLORATION SYSTEM

For our research platform, we utilize our previously proposed
HEMM (haptic exploration with a mobile manipulator) system
[29], and employ this system to implement and validate a set of
algorithms for haptic exploration. The structure of the HEMM
system consists of two main parts: a haptic interaction system and
a mobile manipulation robotic system (Figure 2).
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Figure 2. Basic architecture of the HEMM system.



The haptic device we use is the SensAble™ Phantom Omni,
which is capable of taking 6-DoF inputs and generating 3-DoF
force feedback. The mobile manipulator is composed of a
Pioneer3AT and a Pioneer2Arm. It utilizes its various sensing
modules to perceive the environment and generate visual and
haptic feedback to the human operator. Through this HEMM
system, the human can feel the environment and be more in
control with the help of the mobile manipulator. Thus, the
benefits expected from the HEMM system are as follows: (1) it
enables a bidirectional linkage between a haptic device and a
mobile manipulation robotic system and (2) it can convey
environmental data to the user through haptic exploration.

4. MULTI-SCALE VISON PROCESS FOR
3D PERCEPTION

People with visual impairments typically use canes for navigation
or sense objects with tactile sensing. To develop a system that can
provide similar multi-scale environmental feedback, our HEMM
system is equipped with two different camera sensors: a stereo
camera in front of the robot and a monocular camera mounted on
top of the wrist. The stereo vision provides larger scale perception
of an indoor environment, and the monocular camera enables up-
close and more detailed observation of an object. The following
sections explain the vision processes and disparity map generation
algorithms for the camera systems.

4.1 Stereo Vision Process for Indoor Spatial

Perception

Stereo vision processes [10,12,19] have been widely adopted for
spatial recognition due to their ability to embed in a simple
hardware structure. A disparity map is the result of the stereo
vision process that represents the depth distribution of the space.
Although the algorithm side of generating the disparity map is not
so simple, the computer vision society has come up with sound
processes. One of the most favorable solutions is a graph-cut
(GC) energy optimization method [8] using Markov-random
fields (MRF) [24]. It represents the disparity image as a set of
MREF variables with two energy functions representing the cost of
estimated disparity and the cost of smoothness with neigh-boring
pixels, and calculates the optimal solution by minimizing the total
energy function.

The energy model for MRF-based sterco matching algorithm
consists of a data term E; and a smoothness term E;, both
represented in the form of energy functions. For a disparity map
solution £, the total energy function E(f) can be represented by the
following:

E(f) = Eqa(f) + Es(f) ey
Ea(D) = ) Dy(fy) @

pEP
Eg(f) = ZpeP quN(p) Cs(fp:fq) > 3)

where for fq € f> N(p) is a set of 8 neighbor points of p in 3D
space, and D, (f,) and C;(fy, fy) are defined as

Dy(fy) = |fy = I D, (f,)Dp (fp) 4)
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Here, I, is an observed value of the disparity value at pixel p of
the stereo image pairs. Thus, Dy,(f) is a cost function for the
data term of the direct observation of the disparity map and
Cs(fp, fg) is the cost function for representing the smoothness by
estimating the discontinuities with neighboring pixels. This
optimization process is combined with a rapid minimization
process called “graph-cut,” which achieves a good local minimum
in labeling the image and accomplishes a fast approximation of
the disparity map with well segmented representation and
minimal energy cost of the map.

The GC method generates results with quite good estimation.
However, it is not sufficient to produce a clean 3D reconstruction.
Effects from lighting and textures cause noise in the disparity map,
necessitating post-processing to eliminate them. To further
complete the 3D perception process, a ground plane is estimated
using a statistical region merging algorithm [14]. This algorithm
reduces noise and error terms in the disparity calculation, which
are caused by the short distance to or the complexity in the texture
of the ground. If properly estimated, it will also allow more
freedom in the disparity calculation for non-ground objects that
are of interest as shown in Figure 3.

(®)

Figure 3. Stereo disparity estimation process: (a,b) Stereo
pair images of a living room; (c) MRF GraphCut based
disparity output; (d) final disparity result after ground

estimation.

4.2 Mono-Stereo Vision Process for Object

Perception

For objects that are too close to get detailed spatial observation
with the stereo camera, the monocular camera mounted on the
wrist of the mobile manipulator is utilized. Several research
efforts exist that employ monocular vision for 3D perception, for
instance, mono-SLAM with probabilistic 3D map [22], which
shows good results but requires large computation powers to
process the stream of image sequences. On the other hand, we
plan to make an instant observation of the object at its proximity.
Therefore, the manipulator is controlled to move the monocular



camera sideways to capture a pair of images forming a small
baseline between the image pairs, and the stereo matching process
discussed is reused for disparity calculation. This process is
named “mono-stereo process”.

(b)

(d
Figure 4. Mono-stereo disparity estimation process: (a)
mono-stereo image; (b) initial disparity; (c) segmented regions
after background / foreground estimation; (d) final disparity
after background elimination.

To acquire the stereo pairs with a single camera on the wrist of
the manipulator, the robot’s wrist is moved sideways forming a
baseline of lcm between the image pair. The movement takes
time, so the images are taken in sequence, making the process
unsuitable for dynamic objects. On the other hand, the stereo
process itself is not a real-time process yet (it takes a few seconds
of processing time with a 2.4GHz CPU). In addition, similar to
the case of the stereo estimation process, post-processing of the
disparity image is required in the case of mono-stereo. The issues
of the presence of interferences in disparity calculation due to
background color and lighting are addressed along with the effort
to resolve the problem in the following sections. An example of
the mono-stereo process with post-processing results is illustrated
in Figure 4.

As a post-processing sequence, foreground objects are separated
from the background image to capture the right partition of the
object in the disparity image. This foreground/background
separation process first marks pixels with optic flows over a
threshold, samples the points to form a set of skeletonized
(silhouette-like) point markings, performs region selection with
the points as seed points, and then subtracts large regions which
can be assumed to be background elements. To eliminate
background elements, adaptive thresholding is implemented to
determine the right number of elements for removal based on the
total number of segmentations and the total sum of regions of
candidate background elements. More details on this post-
processing will be discussed in our future papers.

5. HAPTIC EXPLORATION ALGORITHM

Once a reliable disparity estimation of the environment is
acquired, a 3D map can be built from the disparity map (either
from the stereo process or from the mono-stereo process). After

the 3D map is acquired, the haptic exploration process is then
activated, which interactively searches the map with the
movement of the haptic probe and efficiently calculates the haptic
force feedback in real-time (Figure 5).
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Figure 5. Flow-chart of the 3D-perception process through
heterogeneous stereo-matching.

The proxy force is designed as a spring-damper system as in
Equation (6)
f(© = [Kd(®) + Bd(®)], (6)

where d(t) is the penetration depth at time 7, d(t) is the instant
velocity of the probe at the penetrated position (that arises due to
the exploratory movement of the user), K is the spring constant
and B is the damping constant. Lastly, 1l is the normal vector to
the surface of the penetrated volume.

The usual process for 3D map generation from the disparity map
involves a projection matrix built from the camera parameters.
After the surface points are projected in 3D space, the volume
beneath the surface points are filled outward, forming a set of
volumetric point-clouds. Once the point-cloud based 3D map is
constructed, the system enables a haptic device, Phantom Omni,
to explore the 3D space and feel objects in it. For haptic force
generation, a  well-known proxy-based haptic volume
representation algorithm [3] is implemented.

This paper mainly focuses on haptic-volume representation, so the
virtual-proxy is placed on the surface of a volumetric object
disregarding the effect of friction forces. From the distance
between the virtual-proxy placed on a surface and the position of
a probe (Omni’s end-point), the penetration depth of the probe
can be calculated from the surface (the virtual-proxy), which is
then used to generate force feedback for haptic volume
representation. Since sparse grid-based 3D data are being used,
the haptic interaction algorithm first checks for the occupancy of
neighboring grid points with respect to the position of Omni’s
probe in the 3D map, then calculates the penetration depth if the



probe is totally inside the object’s volume, or calculates surface
penetration depth if the probe is near the surface (see flowchart in
Figure 6.).
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Figure 6. Haptic virtual-proxy force calculation algorithm
with 3D grid map.

To get the distance vector, the volume proxy-force is generally
calculated by searching for the closest surface. The surface proxy
force is calculated by the convolution of the surface-normal
vector and the penetration depth from the surface, which leads to
an interpolation issue due to sparseness. To speed up the process,
a look-up table of the surface normal vector is generated for all
combinations of the neighboring grid points. A few examples are
shown in Figure 7.

Processing time for the 3D-map search and proxy-force
generation is crucial for a real-time experience of the haptic
exploration. Our structure of the algorithms explained above
results in an average processing time of 3.075ms for surface-
normal depth calculation in the 3D grid map (STD=6.287ms over
7,035 measurements) and proxy-force generation.
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Figure 7. Examples of 3D interpolation for surface proxy
force calculation.

To illustrate what type of force profile the user may feel with
amplitude changes in force, Figure 8 is plotted over a partial
trajectory while the haptic device touches the side of an object.

Figure 8. Force feedback (red line) over a user’s exploratory
trajectory on an object. The direction of the force is from the
penetration point to the surface point.

6. EXPERIMENT SETUP

The performance of the HEMM framework is evaluated based on
the results from the three major sub-processes, namely, stereo
matching (with ground elimination), mono-stereo matching (with
background elimination), and the haptic exploration process. For
the first two matching processes, a ground-truth map of the real
world the system is observing is created, and the error of the
disparity estimation is analyzed. For quantitative analysis, the
processing time and the estimation error of the depth are
calculated for both stereo and mono-stereo processes. For the
qualitative analysis, the final process of haptic exploration is
tested with human subjects, both with non-VI students and VI
students. We design a set of experiment for human subject testing
only with haptic exploration based on the mono-stereo process
results because the stereo process deals with a large space volume
and the spatial recognition of the VI students will depend on the
familiarity of the environment, or a priori knowledge of the
environment of the student.

For initial training, the subjects—after providing their
written/verbal consent on our IRB (protocol #: H09220)—are
given a basic sample shape (a cubic) and given a minute to feel
the object with our haptic interface and get accustomed to the
concept and feeling of hatpic exploration. Then, the subjects are
asked to identify objects by haptically feeling the models created
from real-world objects, without seeing the object. The non-VI
students are provided with a random sequence of three haptic
models, along with the images of the three actual objects as
depicted in Figure 9. After approximately a minute of exploration
time per each object, they are asked which haptic models feel the
closest to the objects in the images. The same process is used to
test VI students, but this time the actual objects are provided for
the participants to select from after feeling the haptic models.

Figure 9. Images of objects of which the haptically visualized
models are provided for haptic exploration to human users.



7. RESULTS

Figure 10 and Table 1 present the results of the stereo-matching
algorithm with ground elimination. Two different scenes were
achieved, one from an actual household living environment and
another from a real office environment. The average processing
time for the stereo matching and 3D map generation was 6.01s.

(b) Disparity (scene 1)

(a) Left view (scene 1)

(c) Left view (scene 2) (d) Disparity (scene 2)
Figure 10. Results of our stereo matching process.

Table 1. Processing Time from Stereo Process

Stereo Pairs Scene 1 Scene 2

Processing Time (s) 6.36 5.65

Figure 11 and Table 2 show the results from the mono-stereo
matching algorithm with background elimination. Two objects
were placed in a small refrigerator and on a table. The disparity
map was generated from the mono-stereo algorithm utilizing a
moving robotic arm, and the background was automatically
climinated if the number of segments detected in the image
reached a threshold. The average processing time for the mono-
stereo matching and 3D map generation was 3.26s.

(a) Left view (scene 3) (b) Disparity (scene 3)

B

(c) Left view (scene 4) (d) Disparity (scene 4)

Figure 11. Results of our mono-stereo matching process.

Table 2. Processing Time from Mono-stereo Process

Mono-stereo Pairs Scene 3 Scene 4

Processing Time (s) 3.04 348

Ground truth data were determined by measuring over the 3D
environment and then translated into a disparity map. For equal
comparison, the ground planes were also eliminated from the
ground truth map by manual segmentation for the stereo process
results, and the background was eliminated from the ground truth
map for the mono-stereo process. The absolute difference of
disparity values over the entire image plane was calculated and
the root-mean-squared error was computed for the stereo process.
The error term was then calculated only for the foreground part in
the mono-stereo process. The error between the algorithm’s
estimation and the ground truth for the first scene (stereo process)
was 5.7%, and the error between the algorithm’s estimation and
the ground truth for the third scene (mono-stereo process) was
7.9%, showing the accuracy of the process.

The ground truth disparity map and the estimated disparity map
from our algorithms, along with the error of depth on the image
plane, are shown in Figure 12 and specified in Table 3,
respectively. Considering the complexity of the scene (in stereo
process) and the low resolution of disparity values for
representing detailed 3D shapes in close range (in mono-stereo
process), the results are satisfactory.

(a) Disparity (b) Ground Truth (c) Error

(d) Ground Truth (e) Error

(c) Disparity

Figure 12. Ground-truth disparity maps and estimation

errors.

Table 3. Disparity Estimation Errors

Stereo Pairs Scene 1 Scene 3

Depth Error 5.7 % 7.9 %

Additionally, the average processing times (and percentages from
the whole process) for each algorithmic stages are as follows:
initial stereo-matching ~3011ms(52.85%), histogram analysis =
10ms(0.2%), ground estimation ~193ms(3.4%), disparity mixture
~1929ms(33.8%), and 3D map building process ~546ms(9.5%) in
PC environment with a dual-core 2.4GHz processor and 2GB
memory. We will discuss our future plans to minimize the
processing time in Section 8.

Finally, the human subjects testing results are displayed in Tables
4 and 5, with the confusion matrix listed in Tables 6 and 7. A total
of 19 non-VI human subjects participated in the experiment, and
their average age was 25. For VI human subjects, 8 middle school



students (4 males and 4 females) participated with their average
age 12. Of these, 7 were partially blind and one was fully blind.

Table 4. Success Rate of Non-VI Human Subjects in
Identifying Objects with Haptic Exploration

Object #1 #2 #3

Success Rate 84.2 % 78.9 % 84.2 %

Table S. Success Rate of VI Human Subjects in Identifying
Objects with Haptic Exploration

Object #1 #2 #3

Success Rate 87.5 % 87.5% 87.5%

Subjects with no visual impairments showed 79% to 84%
recognition rate for the three objects, while subjects with visual
impairment rated 87.5% for each objects. To understand which
objects confused the human users, the confusion matrices for the
responses of the participants are listed in Tables 6 and 7. Table 6
reveals that two non-VI subjects became confused between object
#2 and object #3 and two other non-VI students had trouble
distinguishing object #1 and object #3, mainly because the objects
are commonly up-right shaped. For VI subjects, Table 7 shows
that one subject became confused between object #2 and object
#3, and another subject could not tell the difference between
object #1 and object #3, the reason being the same as in the non-
VI subjects’ case.

Table 6. Confusion Matrix of Non-VI Human Subjects in
Identifying Objects with Haptic Exploration

capability of a real-world environment through a robotic system
equipped with vision sensors. The challenges that must be
addressed by this system involve 1) recognizing the environment
in multi-scale dimensions because real-world objects are of
various sizes and 3D world positions, 2) developing real-time
processing algorithms to enable real-time interaction with the
human, and 3) enabling 3D real-time haptic interaction for smooth
tactile representation of objects in the environment.

An extensive implementation of the haptic exploration algorithms
using a mobile manipulation robotic system has been achieved,
and this paper shows the results of the system working in real
indoor-environments. To minimize the processing time and enable
more smooth real-time haptic exploration, we plan to utilize the
Kinect sensor. Our latest implementation is already showing more
than 10x improvement in terms of processing time, although the
structure of the sub-modules will be different. Future work will
also include sound-source localization and its integration into the
haptic feedback for enhanced multi-modal interaction. Methods
for multi-modal fusion will be further investigated along with an
extended set of real-world experiments and human subject testing.
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