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haptic pathway to transfer the in-situ perception of the remote 
environment to the user. The concept of haptic exploration with a 
mobile manipulator (HEMM) [29] has been proposed to integrate 
a haptic device with a mobile manipulation system for the use of 
an assistive system in two ways: 1) as the controller for the 
mobile manipulation system and 2) as the generator for the 
environmental feedback to the human user. 
 
This paper discusses our approach for a direct haptic rendering 
from sensed environmental data, and displays a framework of 
algorithms that can sense the environment, process the sensory 
data to get a point-cloud representation of the three-dimensional 
(3D) map, and finally transform the perceived environmental data 
into a haptic representation. Section 2 lists some of the related 
work in the current research of robotics, assistive technology, and 
computer vision. , and Section 3 briefly describes a platform for 
our haptic exploration using a mobile manipulator. Section 4 
provides the details of sensory data processing algorithms that 
mainly incorporate several techniques of computer vision 
algorithms. Section 5 explains our haptic rendering algorithm 
based on a point-cloud spatial dataset. Then, Section 6 explains 
the experiment setup for human subject testing of our framework 
in a real-world environment. Finally, Section 7 displays the 
results of our system in observing and representing several indoor 
environments, and Section 8 concludes with discussion and future 
work. 
 

2. RELATED WORK 
Efforts to utilize robotic systems for assisting the VI can be found 
in recent literature [11,20]. However, few studies have focused on 
developing assistive robots to increase the sensory modalities for 
people with visual impairments (VI). Ulrich et al. developed a 
robotic cane [11] that can sense the environment and guide the 
individual through the environment with a robotic cane. Another 
approach from Kulyukin et al. incorporated a mobile-robot based 
guidance approach with RFID devices to help people with visual 
impairments navigate in their living areas [20]. Both systems, 
however, require the user to be either in contact with a device or 
in a preset environment to detect the user’s surrounding 
environment, and they are not capable of transferring remote 
environmental perception to the user. More recent challenges 
consist of a driving system for the VI by utilizing a semi-
autonomous car and a haptic vest [26], and a user study for 
robotic shopping using a robotic cart [25]. These efforts present 
pioneer studies in the field of assistive robotics in the sense that 
they intend to enable a person with a visual impairment to 
maintain independence in daily living. However, more 
challenging issues still remain.  
 
For presenting environmental perception to a user with visual 
impairments, haptic representation of the data is the most direct 
and effective interactive modality, which can be easily derived 
from the fact that the most common assistive tools for VI people 
are canes and Braille-notes that stimulate tactile sensations. 
Haptics is a mature field of engineering research, with varying 
applications in the medical field [9], rehabilitation [21], virtual 
reality [13], and teleoperation [27]. Its ability to transfer tactile 
and textural sensations along with force feedback adds another 
dimension of interaction between the human and the system. With 

the recent advances in virtual proxy methods [4,16,17,23,28] 
haptic rendering of 3D objects has become more convenient and 
effective with the aid of graphic libraries such as OpenGL. By 
building a detailed 3D model and with the aid of efficient 
physical simulation algorithms, calculating the virtual proxy force 
has turned out to be a fast and relatively easy process [18]. 
However, the calculation is based on the condition that the 3D 
model must be provided a priori. Haptic rendering of a real 3D 
environment is  widely known to be quite difficult, and there 
remain many challenging problems even in the area of virtual 
reality systems [6]. 
 
The simplest solution to this dilemma would be to estimate the 
real world with various sensors, transform the estimation into a 
3D model, and use the previously established haptic rendering 
solution. This method, however, does not solve the issue because 
transforming the estimated 3D data into a 3D model is far from 
simplistic. In fact, this process itself requires multiple stages of 
algorithms to work around issues such as occlusion and object 
identification. The reconstruction is usually processed off-line due 
to the high computation cost [5]. On the contrary, the other 
solution—a direct haptic rendering from the estimated data 
itself—provides a totally new approach and is one of the key 
contributions of this present work. Instead of creating a 3D 
graphical model, this method uses point-cloud based 3D data and 
directly applies a point-cloud based virtual proxy algorithm for 
haptic rendering. The advantages include fast computation time 
and a more flexible structure for coping with dynamic 
environments. 
 
As discussed in [25], one of the most critical reasons that limit 
assistive tasks in daily living is the perceptional matching of the 
environment with the system it is handling. In this sense, this 
research focuses on the problem of presenting environmental 
perception to a user with visual impairments, and presents a novel 
solution framework that provides both active sensing capabilities 
and effective transference of the detailed environmental data 
through a haptic modality. 
 

3. HAPTIC EXPLORATION SYSTEM 
For our research platform, we utilize our previously proposed 
HEMM (haptic exploration with a mobile manipulator) system 
[29], and employ this system to implement and validate a set of 
algorithms for haptic exploration. The structure of the HEMM 
system consists of two main parts: a haptic interaction system and 
a mobile manipulation robotic system (Figure 2).  
 

Figure 2.  Basic architecture of the HEMM system. 
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students (4 males and 4 females) participated with their average 
age 12. Of these, 7 were partially blind and one was fully blind. 
 

Table 4. Success Rate of Non-VI Human Subjects in 
Identifying Objects with Haptic Exploration  

Object #1 #2 #3 

Success Rate 84.2 % 78.9 % 84.2 % 

Table 5. Success Rate of VI Human Subjects in Identifying 
Objects with Haptic Exploration 

Object #1 #2 #3 

Success Rate 87.5 % 87.5 % 87.5 % 

 
Subjects with no visual impairments showed 79% to 84% 
recognition rate for the three objects, while subjects with visual 
impairment rated 87.5% for each objects. To understand which 
objects confused the human users, the confusion matrices for the 
responses of the participants are listed in Tables 6 and 7. Table 6 
reveals that two non-VI subjects became confused between object 
#2 and object #3 and two other non-VI students had trouble 
distinguishing object #1 and object #3, mainly because the objects 
are commonly up-right shaped. For VI subjects, Table 7 shows 
that one subject became confused between object #2 and object 
#3, and another subject could not tell the difference between 
object #1 and object #3, the reason being the same as in the non-
VI subjects’ case. 
 

Table 6. Confusion Matrix of Non-VI Human Subjects in 
Identifying Objects with Haptic Exploration  
Object 

Answer #1 #2 #3 

#1 16 - 1 

#2 1 15 2 

#3 2 4 16
 

Table 7. Confusion Matrix of VI Human Subjects in 
Identifying Objects with Haptic Exploration  
Object 

Answer #1 #2 #3 

#1 7 - - 

#2 1 7 1 

#3 - 1 7
 
8. DISCUSSIONS
The objective of this research is to create a linkage between an 
assistive robotic system and the human user by delivering haptic 
perceptions of the environment to a person with impairments. 
More specifically, this research tackles the problem of providing a 
sense of the world to individuals with visual impairments through 
a haptic interface based on the environmental data acquired by the 
perceptual system of a mobile robotic platform. To accomplish 
this, the user is provided with multi-scale haptic exploration 

capability of a real-world environment through a robotic system 
equipped with vision sensors. The challenges that must be 
addressed by this system involve 1) recognizing the environment 
in multi-scale dimensions because real-world objects are of 
various sizes and 3D world positions, 2) developing real-time 
processing algorithms to enable real-time interaction with the 
human, and 3) enabling 3D real-time haptic interaction for smooth 
tactile representation of objects in the environment. 
 
An extensive implementation of the haptic exploration algorithms 
using a mobile manipulation robotic system has been achieved, 
and this paper shows the results of the system working in real 
indoor-environments. To minimize the processing time and enable 
more smooth real-time haptic exploration, we plan to utilize the 
Kinect sensor. Our latest implementation is already showing more 
than 10x improvement in terms of processing time, although the 
structure of the sub-modules will be different. Future work will 
also include sound-source localization and its integration into the 
haptic feedback for enhanced multi-modal interaction. Methods 
for multi-modal fusion will be further investigated along with an 
extended set of real-world experiments and human subject testing. 
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